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Abstract. In this paper we consider the k-fixed-endpoint path cover problem
on proper interval graphs, which is a generalization of the path cover problem.
Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of
G with respect to T is a set of vertex-disjoint simple paths that covers the
vertices of G, such that the vertices of T are all endpoints of these paths.
The goal is to compute a k-fixed-endpoint path cover of G with minimum
cardinality. We propose an optimal algorithm for this problem with runtime
O(n), where n is the number of intervals in G. This algorithm is based on
the Stair Normal Interval Representation (SNIR) matrix that characterizes
proper interval graphs. In this characterization, every maximal clique of the
graph is represented by one matrix element; the proposed algorithm uses this
structural property, in order to determine directly the paths in an optimal
solution.
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1. Introduction

A graph G is called an interval graph, if its vertices can be assigned to intervals
on the real line, such that two vertices of G are adjacent if and only if the cor-
responding intervals intersect. The set of intervals assigned to the vertices of G
is called a realization of G. If G has a realization, in which no interval contains
another one properly, then G is called a proper interval graph. Proper interval
graphs arise naturally in biological applications such as the physical mapping of
DNA [1]. Several linear-time recognition algorithms have been presented for both
graph classes in the literature [2, 3, 4, 5]. These classes of graphs have numerous
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applications to scheduling problems, biology, VLSI circuit design, as well as to
psychology and social sciences [6, 7].

Several difficult optimization problems, which are NP-hard for general graphs
[8], are solvable in polynomial time on interval and proper interval graphs. Some
of them are the maximum clique, the maximum independent set [9, 10], the Hamil-
tonian cycle (HC) and the Hamiltonian path (HP) problem [11]. A generalization
of the HP problem is the path cover (PC) problem. That is, given a graph G,
the goal is to find the minimum number of vertex-disjoint simple paths that cover
all vertices of G. Except graph theory, the PC problem finds many applications
in the area of database design, networks, code optimization and mapping parallel
programs to parallel arcitectures [12, 13, 14, 15].

The PC problem is known to be NP-complete even on the classes of pla-
nar graphs [16], bipartite graphs, chordal graphs [17], chordal bipartite graphs,
strongly chordal graphs [18], as well as in several classes of intersection graphs
[19]. On the other hand, it is solvable in linear O(n + m) time on interval graphs
with n vertices and m edges [12]. For the greater class of circular-arc graphs
there is an optimal O(n)-time approximation algorithm, given a set of n arcs with
endpoints sorted [20]. The cardinality of the path cover found by this approxi-
mation algorithm is at most one more than the optimal one. Several variants of
the HP and the PC problems are of great interest. The simplest of them are the
1HP and 2HP problems, where the goal is to decide whether G has a Hamiltonian
path with one, or two fixed endpoints, respectively. Both problems are NP-hard
for general graphs, as a generalization of the HP problem, while their complexity
status remains open for interval graphs [21, 22, 23].

In this paper, we consider the k-fixed-endpoint path cover (kPC) problem,
which generalizes the PC problem in the following way. Given a graph G and a
set T of k vertices, the goal is to find a path cover of G with minimum cardinality,
such that the elements of T are endpoints of these paths. Note that the vertices
of V \ T are allowed to be endpoints of these paths as well. For k = 1, 2, the
kPC problem constitutes a direct generalization of the 1HP and 2HP problems,
respectively. For the case, where the input graph is a cograph on n vertices and
m edges, a linear O(n+m) time algorithm for the kPC problem has been recently
presented in [22].

We propose an optimal algorithm for the kPC problem on proper interval
graphs with runtime O(n), based on the zero-one Stair Normal Interval Repre-
sentation (SNIR) matrix HG that characterizes a proper interval graph G on n
vertices [24]. In this characterization, every maximal clique of G is represented
by one matrix element. It provides insight and may be useful for the efficient for-
mulation and solution of difficult optimization problems. In most of the practical
applications, the interval endpoints are sorted. Given such an interval realization
of G, we construct first in O(n) time a particular perfect ordering of the vertices of
G [24], which complies with the ordering of the vertices in the SNIR matrix HG.

We introduce the notion of a singular point in a proper interval graph G on
n vertices. An arbitrary vertex of G is called singular point, if it is the unique
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common vertex of two consecutive maximal cliques. Due to the special structure of
HG, we need to compute only O(n) of its entries, in order to capture the complete
information of this matrix. Based on this structure, the proposed algorithm detects
the singular points of G in O(n) time and then it determines directly the paths
in an optimal solution, using only the positions of the singular points. Namely,
it turns out that every such path is a Hamiltonian path of a particular subgraph
Gi,j of G with two specific endpoints. Here, Gi,j denotes the induced subgraph of
the vertices {i, . . . , j} in the vertex ordering of HG. Since any algorithm for this
problem has to visit at least all n vertices of G, this runtime is optimal.

Recently, while writing this paper, it has been drawn to our attention that an-
other algorithm has been independently presented for the kPC problem on proper
interval graphs with runtime O(n+m) [23], where m is the number of edges of the
input graph. This algorithm uses a greedy approach to augment the already con-
structed paths with connect/insert operations, by distinguishing whether these
paths have already none, one, or two endpoints in T . The main advantage of
the here proposed algorithm, besides its runtime optimality, is that an optimal
solution is constructed directly by the positions of the singular points, which is
a structural property of the investigated graph. Given an interval realization of
the input graph G, we do not need to visit all its edges, exploiting the special
structure of the SNIR matrix. Additionally, the representation of proper interval
(resp. interval) graphs by the SNIR (resp. NIR) matrix [24] may lead to efficient
algorithms for other optimization problems, such as the 1HP, 2HP, or even kPC
problem on interval graphs [21, 22].

The paper is organized as follows. In Section 2 we recall the SNIR matrix of
a proper interval graph. Furthermore, in Section 3 we present an algorithm for the
2HP, based on the SNIR matrix. This algorithm is used in Section 4, in order to
derive an algorithm for the kPC problem on proper interval graphs with runtime
O(n). Finally, we discuss some conclusions and open questions for further research
in Section 5.

2. The SNIR matrix

An arbitrary proper interval graph G with n vertices {1, . . . , n} can be charac-
terized by the SNIR matrix HG, which has been introduced in [24]. This is the
lower portion of the adjacency matrix of G, which uses a particular ordering of its
vertices. In this ordering, the vertex with index i corresponds to the ith diagonal
element of HG. All diagonal elements of HG are zero, i.e. HG(i, i) = 0 for every
i ∈ {1, . . . , n}. Every diagonal element has a (possibly empty) chain of consec-
utive ones immediately below it, while the remaining entries of this column are
zero. These chains are ordered in such a way that HG has a stair-shape, as it is
illustrated in Figure 2(a). We recall now the definitions of a stair and a pick of
the SNIR matrix HG [24].
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Definition 2.1. Consider the SNIR matrix HG of the proper interval graph G. The
matrix element HG(i, j) is called a pick of HG, iff:

1. i ≥ j,
2. if i > j then HG(i, j) = 1,
3. HG(i, k) = 0, for every k ∈ {1, 2, . . . , j − 1}, and
4. HG(l, j) = 0, for every l ∈ {i + 1, i + 2, . . . , n}.

Definition 2.2. Given the pick HG(i, j) of HG, the set

S = {HG (k, `) : j ≤ ` ≤ k ≤ i} (2.1)

of matrix entries is called the stair of HG, which corresponds to this pick.

Lemma 2.3 ([24]). Any stair of HG corresponds bijectively to a maximal clique of
G.

A stair of HG can be recognized in Figure 2(a), where the corresponding pick
is marked with a circle. Given an interval realization of G with sorted endpoints,
the ordering of vertices in HG can be computed in O(n) time [24]. Furthermore,
the picks of HG can be also computed in O(n) time during the construction of the
ordering of the vertices, since every pick corresponds to the right endpoint of an
interval in G [24]. Due to its stair-shape, the matrix HG is uniquely determined
by its O(n) picks.

For an arbitrary vertex w of G, denote by s(w) and e(w) the adjacent vertices
of w with the smallest and greatest index in this ordering, respectively. Due to
the stair-shape of HG, the vertices s(w) and e(w) are the uppermost and lower-
most diagonal elements of HG, which belong to a common stair with w. Denote
now the maximal cliques of G by Q1, Q2, . . . , Qm, m ≤ n and suppose that the
corresponding pick to Qi is the matrix element HG(ai, bi), where i ∈ {1, . . . ,m}.
Since the maximal cliques of G, i.e. the stairs of HG, are linearly ordered, it holds
that 1 ≤ a1 ≤ . . . ≤ am ≤ n and 1 ≤ b1 ≤ . . . ≤ bm ≤ n. Denote for simplicity
a0 = b0 = 0 and am+1 = bm+1 = n + 1. Then, Algorithm 1 computes the values
s(w) and e(w) for all vertices w ∈ {1, . . . , n}, as it is illustrated in Figure 1. Since
m ≤ n, the runtime of Algorithm 1 is O(n).
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Figure 1. The computation of s(w) and e(w).
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Algorithm 1 Compute s(w) and e(w) for all vertices w

1: for i = 0 to m do
2: for w = ai + 1 to ai+1 do
3: s(w)← bi+1

4: for w = bi to bi+1 − 1 do
5: e(w)← ai

(a)

· · ·

· · ·
w − 1

w

w + 1
Q

Q′

(b)

Figure 2. (a) The SNIR matrix HG, (b) a singular point w of Gi,j .

The vertices {i, . . . , j} of G, where i ≤ j, constitute a submatrix Hi,j of HG,
which is equivalent to the induced subgraph Gi,j of these vertices. Since the proper
interval graphs are hereditary, this subgraph remains a proper interval graph as
well. In particular, H1,n = HG is equivalent to G1,n = G.

Definition 2.4. A vertex w of Gi,j is called singular point of Gi,j , if there exist two
consecutive cliques Q, Q′ of Gi,j , such that

|Q ∩Q′| = {w} (2.2)

Otherwise, w is called regular point of Gi,j . The set of all singular points of Gi,j

is denoted by S(Gi,j).

Proposition 2.5. For every singular point w of Gi,j, it holds i + 1 ≤ w ≤ j − 1.

Proof. Since w is a singular point of Gi,j , there exist two consecutive maximal
cliques Q, Q′ of Gi,j with Q ∩Q′ = {w}. Then, as it is illustrated in Figure 2(b),
both Q and Q′ contain at least another vertex than w, since otherwise one of
them would be included in the other, which is a contradiction. It follows that
i + 1 ≤ w ≤ j − 1. �

Definition 2.6. Consider a connected proper interval graph G and two indices
i ≤ j ∈ {1, . . . , n}. The submatrix Hi,j of HG is called two-way matrix, if all
vertices of Gi,j are regular points of it. Otherwise, Hi,j is called one-way matrix.
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The intuition resulting from Definition 2.6 is the following. If Hi,j is an one-
way matrix, then Gi,j has at least one singular point w. In this case, no vertex
among {i, . . . , w − 1} is connected to any vertex among {w + 1, . . . , j}, as it is
illustrated in Figure 2(b). Thus, every Hamiltonian path of Gi,j passes only once
from the vertices {i, . . . , w − 1} to the vertices {w + 1, . . . , j}, through vertex w.
Otherwise, if Hi,j is a two-way matrix, a Hamiltonian path may pass more than
once from {i, . . . , w− 1} to {w + 1, . . . , j} and backwards, where w is an arbitrary
vertex of Gi,j . The next corollary follows directly from Proposition 2.5.

Corollary 2.7. An arbitrary vertex w of G is a regular point of the subgraphs Gi,w

and Gw,j, for every i ≤ w and j ≥ w.

3. The 2HP problem on proper interval graphs

3.1. Necessary and sufficient conditions

In this section we solve the 2HP problem on proper interval graphs. In particular,
given two fixed vertices u, v of a proper interval graph G, we provide necessary and
sufficient conditions for the existence of a Hamiltonian path in G with endpoints
u and v. An algorithm with runtime O(n) follows directly from these conditions,
where n is the number of vertices of G.

Denote by 2HP(G, u, v) this particular instance of 2HP on G. Since G is
equivalent to the SNIR matrix HG and since this matrix specifies a particular
ordering of its vertices, we identify w.l.o.g. the vertices of G with their indices
in this ordering. Observe at first that if G is not connected, then there is no
Hamiltonian path at all in G. Also, if G is connected with only two vertices u, v,
then there exists trivially a Hamiltonian path with u and v as endpoints. Thus, we
assume in the following that G is connected and n ≥ 3. The next Theorems 3.1 and
3.2 provide necessary and sufficient conditions for the existence of a Hamiltonian
path with endpoints u, v in a connected proper interval graph G.

Theorem 3.1. Let G be a connected proper interval graph and u, v be two vertices
of G, with v ≥ u + 2. There is a Hamiltonian path in G with u, v as endpoints if
and only if the submatrices H1,u+1 and Hv−1,n of HG are two-way matrices.

Proof. Suppose that H1,u+1 is an one-way matrix. Then, due to Definition 2.6,
G1,u+1 has at least one singular point w. Since G1,u+1 is connected as an induced
subgraph of G, Proposition 2.5 implies that 2 ≤ w ≤ u.

In order to obtain a contradiction, let P be a Hamiltonian path in G with u
and v as its endpoints. Suppose first that for the singular point w it holds w < u.
Then, due to the stair-shape of HG, the path P has to visit w in order to reach the
vertices {1, . . . , w−1}. On the other hand, P has to visit w again in order to reach
v, since w < v. This is a contradiction, since P visits w exactly once. Suppose now
that w = u. The stair-shape of HG implies that u has to be connected in P with
at least one vertex of {1, . . . , u− 1} and with at least one vertex of {u + 1, . . . , n}.
This is also a contradiction, since u is an endpoint of P . Therefore, there exists no
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such path P in G, if Hi,u+1 is an one-way matrix. Similarly, we obtain that there
exists again no such path P in G, if Hv−1,n is an one-way matrix. This completes
the necessity part of the proof.

For the sufficiency part, suppose that both H1,u+1 and Hv−1,n are two-way
matrices. Then, Algorithm 2 constructs a Hamiltonian path P in G having u
and v as endpoints, as follows. In the while-loop of the lines 2-4 of Algorithm
2, P starts from vertex u and reaches vertex 1 using sequentially the uppermost
diagonal elements, i.e. vertices, of the visited stairs of HG. Since H1,u+1 is a
two-way matrix, P does not visit any two consecutive diagonal elements until
it reaches vertex 1. In the while-loop of the lines 5-10, P continues visiting all
unvisited vertices until vertex v− 1. Let t be the actual visited vertex of P during
these lines. Since P did not visit any two consecutive diagonal elements until it
reached vertex 1 in lines 2-4, at least one of the vertices t + 1, t + 2 has not been
visited yet. Thus, always one of the lines 7 and 10 is executed.

Next, in the while-loop of the lines 11-13, P starts from vertex v − 1 and
reaches vertex n using sequentially the lowermost diagonal elements of the visited
stairs of HG. During the execution of lines 11-13, since Hv−1,n is a two-way
matrix, P does not visit any two consecutive diagonal elements until it reaches
vertex n. Finally, in the while-loop of the lines 14-18, P continues visiting all
unvisited vertices until v. Similarly to the lines 5-10, let t be the actual visited
vertex of P . Since P did not visit any two consecutive diagonal elements until it
reached vertex n in lines 11-13, at least one of the vertices t − 1, t − 2 has not
been visited yet. Thus, always one of the lines 16 and 18 is executed. Figure 3(a)
illustrates the construction of such a Hamiltonian path by Algorithm 2 in a small
example. �

Theorem 3.2. Let G be a connected proper interval graph and u be a vertex of G.
There is a Hamiltonian path in G with u, u + 1 as endpoints if and only if HG is
a two-way matrix and either u ∈ {1, n − 1} or the vertices u − 1 and u + 2 are
adjacent.

Proof. Suppose that HG is an one-way matrix. Then, at least one of the matrices
H1,u+1 and Hu,n is one-way matrix. Similarly to the proof of Theorem 3.1, there
is no Hamiltonian path in G having as endpoints the vertices u and v = u + 1.

Suppose now that HG is a two-way matrix and let u ∈ {2, . . . , n− 2}. Then,
both vertices u− 1 and u + 2 exist in G. Since the desired path P starts at u and
ends at u + 1, at least one vertex in {1, . . . , u− 1} has to be connected to at least
one vertex in {u + 2, . . . , n}. Thus, due to the stair-shape of HG, it follows that
the vertices u − 1 and u + 2 are connected. This completes the necessity part of
the proof.

For the sufficiency part, suppose that the conditions of Theorem 3.2 hold.
Then, Algorithm 2 constructs a Hamiltonian path P in G having u and u + 1 as
endpoints. The only differences from the proof of Theorem 3.1 about the correct-
ness of Algorithm 2 are the following. If u = 1, the lines 2-10 are not executed
at all. In this case, P visits all vertices of G during the execution of lines 11-18,
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exactly as in the proof of Theorem 3.1. If u ≥ 2, none of the lines 7 and 10 of
Algorithm 2 is executed when P visits vertex t = u− 1, since in this case it holds
that t + 1 = u ∈ P and t + 2 = u + 1 ∈ P ∪{u + 1}. If u + 1 = n, then P visits the
last vertex u + 1 in lines 12 and 13. Otherwise, if u + 1 < n, the vertices u− 1 and
u+2 are adjacent, due to the conditions of Theorem 3.2. In this case, P continues
visiting all the remaining vertices of G, as in the proof of Theorem 3.1. Figure
3(b) illustrates the construction of such a Hamiltonian path by Algorithm 2 in a
small example. �

Algorithm 2 Construct a Hamiltonian path P in G with u, v as endpoints

1: t← u; P ← {u}
2: while t > 1 do
3: p← s(t) {the adjacent vertex of t with the smallest index}
4: P ← P ◦ p; t← p
5: while t < v − 1 do
6: if (t + 1) /∈ P then
7: P ← P ◦ (t + 1); t← t + 1
8: else
9: if (t + 2) /∈ P ∪ {v} then

10: P ← P ◦ (t + 2); t← t + 2
11: while t < n do
12: p← e(t) {the adjacent vertex of t with the greatest index}
13: P ← P ◦ p; t← p
14: while t > v do
15: if (t− 1) /∈ P then
16: P ← P ◦ (t− 1); t← t− 1
17: else
18: P ← P ◦ (t− 2); t← t− 2
19: return P

If the conditions of Theorems 3.1 and 3.2 are satisfied, Algorithm 2 constructs
a Hamiltonian path with endpoints u, v, as it is described in the proofs of these
theorems. Algorithm 2 operates on every vertex of G at most twice. Thus, since
all values s(t) and e(t) can be computed in O(n) time, its runtime is O(n) as well.
Figure 3 illustrates the construction of such a Hamiltonian path by Algorithm 2
in a small example, for both cases v ≥ u + 2 and v = u + 1.

3.2. The decision of 2HP in O(n) time

We can use now the results of Section 3.1 in order to decide in O(n) time whether
a given proper interval graph G has a Hamiltonian path P with two specific end-
points u, v and to construct P , if it exists. The values s(w) and e(w) for all vertices
w ∈ {1, . . . , n} can be computed in O(n) time. Due to the stair-shape of HG, the
graph G is not connected if and only if there is a vertex w ∈ {1, . . . , n − 1}, for
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u

v

(a)

u

u + 1
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Figure 3. The construction of the HP with endpoints u, v where
(a) v ≥ u + 2, (b) v = u + 1.

which it holds e(w) = w and thus, we can check the connectivity of G in O(n)
time. If G is not connected, then it has no Hamiltonian path at all. Finally, a
vertex w is singular if and only if e(w − 1) = s(w + 1) = w and thus, the singular
points of G can be computed in O(n).

Since the proper interval graphs are hereditary, the subgraphs G1,u+1 and
Gv−1,n of G remain proper interval graphs as well. Thus, if G is connected, we
can check in O(n) time whether these graphs have singular points, or equivalently,
whether H1,u+1 and Hv−1,n are two-way matrices. On the other hand, we can
check in constant time whether the vertices u − 1 and u + 2 are adjacent. Thus,
we can decide in O(n) time whether there exists a Hamiltonian path in G with
endpoints u, v, due to Theorems 3.1 and 3.2. In the case of non-existence, we
output “NO”, while otherwise Algorithm 2 constructs in O(n) time the desired
Hamiltonian path.

4. The kPC problem on proper interval graphs

4.1. The algorithm

In this section we present Algorithm 3, which solves in O(n) the k-fixed-endpoint
path cover (kPC) problem on a proper interval graph G with n vertices, for
any k ≤ n. This algorithm uses the characterization of the 2HP problem of the
previous section. We assume that for the given set T = {t1, t2, . . . , tk} it holds
t1 < t2 < . . . < tk. Denote also for simplicity tk+1 = n + 1.

Algorithm 3 computes an optimal path cover C(G, T ) of G. In lines 4-9, it
checks the connectivity of G. If it is not connected, the algorithm computes in
lines 7-8 recursively the optimal solutions of the first connected component and
of the remaining graph. It reaches line 10 only if G is connected. In the case
|T | = k ≤ 1, Algorithm 3 calls Algorithm 4 as subroutine.

In lines 12-14, Algorithm 3 considers the case, where G is connected,
|T | ≥ 2 and t1 is a singular point of G. Then, Proposition 2.5 implies that
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Algorithm 3 Compute C(G, T ) for a proper interval graph G

1: if G = ∅ then
2: return ∅
3: Compute the values s(w) and e(w) for every vertex w
4: w ← 1
5: while w < n do
6: if e(w) = w then {G is not connected}
7: T1 ← T ∩ {1, 2, . . . , w}; T2 ← T \ T1

8: return C(G1,w, T1) ∪ C(Gw+1,n, T2)
9: w ← w + 1

10: if k ≤ 1 then
11: call Algorithm 4
12: if t1 ∈ S(G) then
13: P1 ← 1 ◦ . . . ◦ t1
14: return {P1} ∪ C(Gt1+1,n, T \ {t1})
15: call Algorithm 5

2 ≤ t1 ≤ n− 1. Since no vertex among {1, . . . , t1 − 1} is connected to any ver-
tex among {t1 + 1, . . . , n} and since t1 ∈ T , an optimal solution must contain at
least two paths. Thus, it is always optimal to choose in line 13 a path that visits
sequentially the first t1 vertices and then to compute recursively in line 14 an op-
timal solution in the remaining graph Gt1+1,n. Algorithm 3 reaches line 15 if G is
connected, |T | ≥ 2 and t1 is a regular point of G. In this case, it calls Algorithm
5 as subroutine.

Algorithm 4 Compute C(G, T ), if G is connected and |T | ≤ 1

1: if k = 0 then
2: return {1 ◦ 2 ◦ . . . ◦ n}
3: if k = 1 then
4: if t1 ∈ {1, n} then
5: return {1 ◦ 2 ◦ . . . ◦ n}
6: else
7: P1 ← 2HP(G, 1, t1)
8: P2 ← 2HP(G, t1, n)
9: if P1=“NO” then

10: if P2=“NO” then
11: return {1 ◦ . . . ◦ t1} ∪ {(t1 + 1) ◦ . . . ◦ n}
12: else
13: return {P2}
14: else
15: return {P1}
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Algorithm 4 computes an optimal path cover C(G, T ) of G in the case, where
G is connected and |T | = k ≤ 1. If k = 0, then the optimal solution includes
clearly only one path, which visits sequentially the vertices 1, 2, . . . , n, since G is
connected. Let now k = 1. If t1 ∈ {1, n}, then the optimal solution is again the
single path {1, 2, . . . , n}. Otherwise, suppose that t1 ∈ {2, . . . , n−1}. In this case,
a trivial path cover is that with the paths {1 ◦ . . . ◦ t1} and {(t1 + 1) ◦ . . . ◦ n}.
This path cover is not optimal if and only if G has a Hamiltonian path P with
u = t1 as one endpoint. The other endpoint v of P lies either in {1, . . . , t1 − 1}
or in {t1 + 1, . . . , n}. If v ∈ {t1 + 1, . . . , n}, then H1,t1+1 and Hv−1,n have to be
two-way matrices, due to Theorems 3.1 and 3.2. However, due to Definition 2.6, if
Hv−1,n is a two-way matrix, then Hn−1,n is also a two-way matrix, since Hn−1,n

is a trivial submatrix of Hv−1,n.
Thus, if such a Hamiltonian path with endpoints t1 and v exists, then there

exists also one with endpoints t1 and n. Similarly, if there exists a Hamiltonian
path with endpoints v ∈ {1, . . . , t1 − 1} and t1, then there exists also one with
endpoints 1 and t1. Thus, we call P1 = 2HP(G, 1, t1) and P2 = 2HP(G, t1, n)
in lines 7 and 8, respectively. If both outputs are “NO”, then {1 ◦ . . . ◦ t1} and
{(t1 + 1) ◦ . . . ◦ n} constitute an optimal solution. Otherwise, we return one of
the obtained paths P1 or P2 in lines 15 or 13, respectively. Since the runtime of
Algorithm 2 for the 2HP problem is O(n), the runtime of Algorithm 4 is O(n) as
well.

In lines 5-9 and 12-14, Algorithm 3 separates G in two subgraphs and com-
putes their optimal solutions recursively. Thus, since the computation of all values
s(w) and e(w) can be done in O(n) and since the runtime of Algorithms 4 and 5
is O(n), Algorithm 3 runs in O(n) time as well.

4.2. Correctness of Algorithm 5
The correctness of Algorithm 5 follows from the technical Lemmas 4.2 and 4.3. To
this end, we prove first the auxiliary Lemma 4.1. For the purposes of these proofs,
we assume an optimal solution C of G. Denote by Pi the path in C, which has
ti as endpoint and let ei be its second endpoint. Observe that, if ei = tj , then
Pi = Pj . Let further `i be the vertex of Pi with the greatest index in the ordering
of HG. It holds clearly `i ≥ ti, for every i ∈ {1, . . . , k}.

Lemma 4.1. If e1 ≤ t1, then w.l.o.g. `1 < t2 and e1 = 1.

Proof. At first, suppose that e1 = t1, i.e. P1 is a trivial path of one vertex. If
t1 = 1, the lemma holds obviously. Otherwise, we can extend P1 by visiting
sequentially the vertices t1 − 1, . . . , 1. Since there is no vertex of T among the
vertices {1, . . . , t1 − 1}, the resulting path cover has not greater cardinality than
C and e1 = 1.

Let now e1 < t1. Suppose that `1 ≥ t2. Thus, since `1 is not an endpoint of
P1, it holds that ti < `1 for some i ∈ {2, . . . , k}. Suppose first that ti < `1 < `i,
as it is illustrated in Figure 4(a). Then, we can clearly transfer to Pi all vertices
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Algorithm 5 Compute C(G, T ), where G is connected, |T | ≥ 2, t1 /∈ S(G).

1: if {1, ..., t1 − 1} ∩ S(G) = ∅ then {e1 = t2}
2: if 2HP(G1,t2+1, t1, t2) =“NO” then
3: a← t2
4: else
5: if {t2 + 1, ..., t3 − 1} ∩ S(G) 6= ∅ then
6: a← min{{t2 + 1, ..., t3 − 1} ∩ S(G)}
7: else
8: a← t3 − 1
9: P1 ← 2HP(G1,a, t1, t2)

10: C2 ← C(Ga+1,n, T \ {t1, t2})
11: else {e1 = 1}
12: if 2HP(G1,t1+1, 1, t1) =“NO” then
13: a← t1
14: else
15: if {t1 + 1, ..., t2 − 1} ∩ S(G) 6= ∅ then
16: a← min{{t1 + 1, ..., t2 − 1} ∩ S(G)}
17: else
18: a← t2 − 1
19: P1 ← 2HP(G1,a, 1, t1)
20: C2 ← C(Ga+1,n, T \ {t1})
21: return {P1} ∪ C2

of P1 with index between ti + 1 and `1. The obtained path cover has the same
cardinality as C, while the greatest index of the vertices of P1 is less than ti.

Suppose now that ti < `i < `1, as it is illustrated in Figure 4(b). Since
e1 < t1, the path P1 is a Hamiltonian path of some subgraph of G1,`1 with end-
points e1 and t1. Now, we obtain similarly to the proofs of Theorems 3.1 and 3.2
that Ht1−1,`1 is a two-way matrix, since otherwise the path P1 would visit two
times the same vertex, which is a contradiction. It follows that H`i−1,`1 is also
a two-way matrix, as a submatrix of Ht1−1,`1 . Thus, we can extend Pi by the
vertices of P1 with index between `i + 1 and `1. In the obtained path cover, the
greatest index `′1 of the vertices of P1 is less than `i. Finally, if ti < `′1, we can
obtain, similarly to the above, a new path cover with the same cardinality as C,
in which the greatest index of the vertices of P1 is less than ti.

It follows now by induction that there is an optimal solution, in which the
greatest index `1 of the vertices of P1 is less than t2, as it is illustrated in Fig-
ure 4(c). Then, similarly to above, Ht1−1,`1 is a two-way matrix. Now, The-
orems 3.1 and 3.2 imply that G1,`1 has a Hamiltonian path with 1 and t1 as
endpoints. Thus, it is always optimal to choose P1 = 2HP(G1,`1 , 1, t1), for some
`1 ∈ {t1, . . . , t2 − 1}. �
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t2

t1

`1

P1
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Figure 4. The case e1 ≤ t1.

Lemma 4.2. If {1, . . . , t1} ∩ S(G) = ∅, then w.l.o.g. e1 = t2.

Proof. Suppose at first that e1 ≤ t1. Then, Lemma 4.1 implies that e1 = 1 and
`1 < t2. In particular, the proof of Lemma 4.1 implies that P1 = 2HP(G1,`1 , 1, t1),
as it is illustrated in Figure 5(a). Thus, since P1 visits all vertices {1, 2, . . . , `1},
it holds that

|C| = 1 + |C(G`1+1,n, T \ {t1})| (4.1)
Suppose now that e1 > t1. Since there are no singular points of G among

{1, . . . , t1}, the submatrix H1,t1+1 is a two-way matrix. Then, Theorems 3.1 and
3.2 imply that G1,t2 has a Hamiltonian path with endpoints t1 and t2. Thus, we
may suppose w.l.o.g. that P1 = 2HP(G1,a, t1, t2), for an appropriate a ≥ t2, as
it is illustrated in Figure 5(b). Since P1 = P2 and thus e2 = t1 < t2, we obtain
similarly to Lemma 4.1 that a = `2 < t3. Since P1 visits all vertices {1, 2, . . . , a},
it follows in this case for the cardinality of C that

|C| = 1 + |C(Ga+1,n, T \ {t1, t2})| (4.2)

Since in (4.1) it holds `1 < t2 and in (4.2) it holds a ≥ t2, it follows that
Ga+1,n is a strict subgraph of G`1+1,n. Since T \ {t1, t2} is a subset of T \ {t1}, it
follows that the quantity in (4.2) is less than or equal to that in (4.1). Thus, we
may suppose w.l.o.g. that e1 = t2. �

P1

t2

t1

1

`1

t3

(a)

P1

a

t2

t3

t1

1

(b)

Figure 5. The case, where there is no singular point of G among {1, . . . , t1}.
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Lemma 4.3. If {1, . . . , t1 − 1} ∩ S(G) 6= ∅ and t1 /∈ S(G), then w.l.o.g. e1 = 1.

Proof. Let w ∈ {1, . . . , t1 − 1} be the singular point of G with the smallest index.
Due to Proposition 2.5, it holds w ≥ 2. Then, there is a path P0 in the optimal
solution C, which has an endpoint t0 ∈ {1, . . . , w − 1}. Indeed, otherwise there
would be a path visiting vertex w at least twice, which is a contradiction.

Thus, since {1, . . . , t0} ∩ S(G) = ∅ and since t0 is an endpoint, Lemma 4.2
implies for the other endpoint e0 of P0 that e0 = t1 and therefore P0 = P1.
Thus, since the second endpoint of P1 is e1 = t0 < t1, Lemma 4.1 implies that
w.l.o.g. it holds e1 = t0 = 1 and, in particular that P1 = 2HP(G1,a, 1, t1) for some
a ∈ {t1, . . . , t2 − 1}, as it is illustrated in Figure 6. �

a

t1P1

1

t2

Figure 6. The case, where there are singular points of G among
{1, . . . , t1 − 1} and t1 is a regular point of G.

Algorithm 5 considers in lines 1-10 the case where there are no singular points
of G among {1, . . . , t1 − 1}. The proof of Lemma 4.2 implies for this case that
e1 = t2 and, in particular that P1 = 2HP(G1,a, t1, t2) for some a ∈ {t2, . . . t3 − 1}.
In order to maximize P1 as much as possible, we choose the greatest possible value
of a, for which G1,a has a Hamiltonian path with endpoints t1, t2. Namely, if
G1,t2+1 does not have such a Hamiltonian path, we set a = t2 in line 3. Suppose
now that G1,t2+1 has such a path. In the case, where there is at least one singular
point of G among {t2 + 1, . . . , t3 − 1}, we set a to be this one with the smallest
index among them in line 6. Otherwise, we set a = t3 − 1 in line 8. Denote for
simplicity G1,n+1 = G. Then, in the extreme cases t3 = t2 + 1 or t2 = n, the
algorithm sets a = t2 = t3 − 1.

Next, in lines 11-20, Algorithm 5 considers the case, where there are some sin-
gular points of G among {1, . . . , t1−1}. Then, the proof of Lemma 4.3 implies that
e1 = 1 and, in particular that P1 = 2HP(G1,a, 1, t1), for some a ∈ {t1, . . . , t2 − 1}.
In order to maximize P1 as much as possible, we choose the greatest possible value
of a, for which G1,a has a Hamiltonian path with endpoints 1 and t1. Namely, if
G1,t1+1 does not have such a Hamiltonian path, we set a = t1 in line 13. Suppose
now that G1,t1+1 has such a path. In the case, where there is at least one singular
point of G among {t1 + 1, . . . , t2 − 1}, we set a to be this one with the smallest
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index among them in line 16. Otherwise, we set a = t2 − 1 in line 18. Note that
in the extreme case t2 = t1 + 1, the algorithm sets a = t1 = t2 − 1.

The algorithm computes P1 in lines 9 and 19, respectively. Then, it computes
recursively the optimum path cover C2 of the remaining graph in lines 10 and
20, respectively, and it outputs {P1} ∪ C2. Since the computation of a 2HP by
Algorithm 2 can be done in O(n) time, the runtime of Algorithm 5 is O(n) as well.

5. Concluding remarks

In this article we presented a simple algorithm for the k-fixed-endpoint path cover
problem on proper interval graphs with runtime O(n). Since any algorithm for
this problem has to visit at least all n vertices of G, this runtime is optimal.
The presented algorithm is based on the characterization of proper interval graphs
by the SNIR matrix. The complexity status of the k-fixed-endpoint path cover
problem, as well as of 1HP and 2HP, on the general class of interval graphs remain
interesting open questions for further research.

References

[1] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM J. Comput., 31(1):289–305, 2001.

[2] W.L. Hsu. A simple test for interval graphs. In WG ’92: Proceedings of the 18th
International Workshop on Graph-Theoretic Concepts in Computer Science, pages
11–16, London, 1993. Springer-Verlag.

[3] D. Corneil, H. Kim, S. Natarajan, S. Olariu, and A.P. Sprague. Simple linear time
recognition of unit interval graphs. Inform. Process. Lett., 55:99–104, 1995.

[4] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition
algorithm? In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, pages 175–180, 1998.

[5] B.S. Panda and S.K. Das. A linear time recognition algorithm for proper interval
graphs. Information Processing Letters, 87(3):153–161, 2003.

[6] M.C. Golumbic and A.N. Trenk. Tolerance graphs. Cambridge University Press,
Cambridge, 2004.

[7] A.V. Carrano. Establishing the order to human chromosome-specific DNA fragments.
In A. D. Woodhead and B. J. Barnhart, editors, Biotechnology and the Human
Genome, pages 37–50. Plenum Press, New York, 1988.

[8] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

[9] U.I. Gupta, D.T. Lee, and J.Y.T. Leung. Efficient algorithms for interval graphs and
circular-arc graphs. Networks, pages 459–467, 1982.

[10] Ju Yuan Hsiao and Chuan Yi Tang. An efficient algorithm for finding a maximum
weight 2-independent set on interval graphs. Inf. Process. Lett., 43(5):229–235, 1992.



16 George B. Mertzios and Walter Unger

[11] M.S. Chang, S.L. Peng, and J.L. Liaw. Deferred-query - an efficient approach for
problems on interval and circular-arc graphs (extended abstract). In WADS, pages
222–233, 1993.

[12] S.R. Arikati and C.P. Rangan. Linear algorithm for optimal path cover problem on
interval graphs. Information Processing Letters, 35(3):149–153, 1990.

[13] G.S. Adhar and S. Peng. Parallel algorithms for path covering, hamiltonian path and
hamiltonian cycle in cographs. In International Conference on Parallel Processing,
volume 3, pages 364–365, 1990.

[14] R. Lin, S. Olariu, and G. Pruesse. An optimal path cover algorithm for cographs.
Comput. Math. Appl., 30:75–83, 1995.

[15] R. Srikant, R. Sundaram, K.S. Singh, and C.P. Rangan. Optimal path cover problem
on block graphs and bipartite permutation graphs. Theoretical Computer Science,
115:351–357, 1993.

[16] M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar hamiltonian circuit problem
is np-comlete. SIAM J. Comput., 5:704–714, 1976.

[17] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57. Annals
of Discrete Mathematics, Amsterdam, The Netherlands, 2004.

[18] H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics,
156:291–298, 1996.

[19] A.A. Bertossi and M.A. Bonucelli. Finding hamiltonian circuits in interval graph
generalizations. Information Processing Letters, 23:195–200, 1986.

[20] R.W. Hung and M.S. Chang. Solving the path cover problem on circular-arc graphs
by using an approximation algorithm. Discrete Applied Mathematics, 154(1):76–105,
2006.

[21] P. Damaschke. Paths in interval graphs and circular-arc graphs. Discrete Mathemat-
ics, 112:49–64, 1993.

[22] K. Asdre and S.D. Nikolopoulos. A linear-time algorithm for the k-fixed-endpoint
path cover problem on cographs. Networks, 50:231–240, 2007.

[23] K. Asdre and S.D. Nikolopoulos. A polynomial solution to the k-fixed-endpoint path
cover problem on proper interval graphs. In 18th International Conference on Com-
binatorial Algorithms (IWOCA’07), Newcastle, Australia, 2007.

[24] G.B. Mertzios. A matrix characterization of interval and proper interval graphs.
Applied Mathematics Letters, 21(4):332–337, 2008.

George B. Mertzios
Department of Computer Science
RWTH Aachen University
Ahornstr. 55
52074 Aachen
Germany

e-mail: mertzios@cs.rwth-aachen.de



The k-Fixed-Endpoint Path Cover on Proper Interval Graphs 17

Walter Unger
Department of Computer Science
RWTH Aachen University
Ahornstr. 55
52074 Aachen
Germany
e-mail: quax@cs.rwth-aachen.de


