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Late accretion of primitive, chondritic material to Earth, the Moon and Mars, after core formation
had ceased, can account for the absolute and relative abundances of highly siderophile elements
(HSEs) in their silicate mantles. Here we show that smaller planetesimals also possess elevated HSE
abundances in chondritic proportions. This demonstrates that late addition of chondritic material
was a common feature of all differentiated planets and planetesimals irrespective of when they
accreted; occurring <5 to 2150 Myr after the formation of the solar system. Parent-body size played
a role in producing variations in absolute HSE abundances amongst these bodies, however, the
oxidation state of the body exerted the major control by influencing the extent to which late-

accreted material was mixed into the silicate mantle rather than removed to the core.

Highly siderophile (iron-loving) elements (HSEs: Re, Os, Ir, Ru, Rh, Pt, Pd and Au) have low-pressure
metal-silicate partition coefficients that are extremely high (10’ to 10**) (e.g. 1, 2). Consequently,
these elements should have been substantially partitioned into the metallic cores of the Earth, and
other rocky planets, leaving their silicate mantles effectively stripped of HSEs. Yet the concentrations
of the HSEs in the Earth’s upper mantle (e.g. 3) and the martian mantle (4, 5) are much greater than

predicted from low pressure experimental data (Fig. 1 inset)(6). The siderophile behaviour of some



HSEs may, however, be greatly reduced under high pressure-temperature conditions, and on this
basis it has been suggested that high-pressure equilibration at the base of a deep molten silicate
layer, or ‘magma ocean’ (7, 8) may account for their abundances in Earth’s mantle. Nevertheless, the
large apparent range of partition coefficients for HSEs, even at the elevated temperatures
accompanying higher pressures in larger bodies (9-11), is not consistent with the chondritic (i.e.
primitive solar system) patterns of HSEs in both the terrestrial and martian mantles, and the
similarities in absolute abundances between the two bodies (12). This strongly suggests that high-

pressure equilibration was not the dominant process controlling their present concentrations.

The simplest explanation of both the absolute and relative abundances of HSEs in the terrestrial and
martian mantles is the late accretion of chondritic material following core formation, with material
being mixed into the mantle by convection (13, 14). Chondritic late addition of between 0.4 and 1%
of the mass of the terrestrial and martian mantles (12) is permitted by current dynamical models of
planetary accretion. However, the Moon poses a problem because, despite its smaller cross section
and much weaker gravitational field, its HSE concentrations (15, 16) are markedly lower than
predicted by a late accretion hypothesis (12). Stochastic late accretion offers a solution to this
problem, with late-stage material provided by impactors drawn from a leftover planetesimal
population dominated, in mass terms, by large bodies (17). With such a population, a limited number
of massive random impacts can deliver proportionally more material to Earth and Mars than to the

much smaller Moon.

The accretionary histories of Vesta and similar asteroids were different from those of the terrestrial
planets and the Moon, which accreted over timescales of 30-140 Myr (4, 18). The smaller asteroids
appear to have experienced rapid, efficient and relatively low-pressure metal-silicate equilibration
during global scale melting (19) within the first few million years of the solar system, with a relatively

short time window for late accretion between the end of core formation and crystallisation of the



magma ocean or crust (18). Given the short timescale, and a relative deficit of small planetesimals
available to be accreted (17, 20), it is reasonable to predict that the silicate portions of these
planetesimals possess extremely low HSE abundances, potentially with fractionated relative
proportions reflecting equilibration during core formation, without substantial late addition of

chondritic material.

Here we present HSE abundances and 870s/"%80s isotope data (21) for basaltic meteorites: the
eucrites and diogenites [part of the howardite-eucrite-diogenite (HED) suite generally believed, and
assumed here, to sample the asteroid 4 Vesta], anomalous eucrites [considered to be from distinct
Vesta-like parent bodies on the basis of their oxygen isotope compositions (22)], angrites (from an

unidentified parent body) and SNCs (believed to be from Mars).

Initial assessment of our data indicates that all the basaltic meteorites studied here have HSE inter-
element ratios (and Os isotope ratios) approaching those of chondrites (Figs. 1a and S1), with some
enrichment in Pt, Pd and Re. There is no evidence for the extreme mantle depletions of Pt and Ir
expected to accompany low-pressure metal-silicate equilibration (1, 6). The widespread enrichment
in Pt, Pd and Re reflects the incompatible behaviour of these elements during partial mantle melting
(23); that is, these elements preferentially enter the basaltic melt, relative to the mantle source.
Consequently, the absolute and relative abundance of HSEs in the basaltic meteorites studied here
are not the same as those of their mantle source. On Earth, HSE abundances in igneous rocks co-vary
with Mg content, and one approach that has been used to estimate HSE abundances in the mantles of
other planets is to compare their HSE-MgO co-variations with that of Earth (e.g. 15, 16; SOM). The
implicit assumption is that the conditions and mineral phases involved in melting and fractional
crystallisation are the same in all bodies. For eucrites and diogenites, however, both believed to be
from Vesta, this approach yields very different estimates of HSE concentrations in their mantle source

(Fig. S2). Given that the raw data indicate an approximately chondritic pattern (Fig. 1), an alternative



method is to use the relative compatibility of the HSEs themselves to determine their concentrations
in the melt source. For example, platinum behaves as a moderately incompatible element during
melting (entering the melt) whereas osmium is highly compatible (and is retained in the residual
mantle or cumulate rocks) resulting in higher Pt, and lower Os contents in basaltic melts, relative to
their mantle source (cf. 24). Consequently, Pt/Os ratios in magmatic rocks from the Earth and all
other parent bodies, define arrays that can be seen to evolve from inter-element ratios and
abundances that closely match those of their melt sources (Fig. 2 and SOM (23)). The slope of a given
array will depend on the HSE partition coefficients for that parent body, but the origin of the array

(source composition) is independent of this parameter.

Highly siderophile element abundances estimated in this way demonstrate that the fractionated
patterns preserved in these basaltic meteorites evolved from sources with inter-element ratios that
are broadly chondritic (Figs. 1b and 2), consistent with their 18705/1880s isotope compositions (Fig. S4,
Table S1). These data confirm that excess HSE concentrations (with respect to equilibrium core-
mantle partitioning) are a common feature of differentiated planets and asteroidal bodies in the inner
solar system; apparent both in meteorite parent bodies formed within 2-3 Myr of the beginning of the
solar system and large planets such as Earth where accretion may have continued for several hundred
million years. Several of the samples contain evidence for late-stage meteoritic contamination and
thus do not reflect the HSE contents of their source mantle (25), but these samples aside, a striking
feature of the data is that while each of these different parent-bodies possesses chondritic relative
proportions of HSEs, the absolute abundances vary considerably (Fig. 1b). The estimate for Vesta (13
samples, both eucrites and diogenites) is uniformly low compared to the angrite and Pasamonte

parent-bodies which are at least an order of magnitude more HSE-rich (26).

The principal controls on the HSE abundances in the silicate parts of these bodies must be, firstly, the

extent of initial segregation into the metallic core and secondly, the nature and timing of late



accretion. For differentiated asteroids, like Vesta and the angrite-parent body, early global-scale
melting (19) facilitated rapid and efficient core formation, consistent with core segregation ages that
range from 3-6 Myr after the start of the solar system (18). Furthermore, because the pressure at
which metal and silicate equilibrated during core segregation on Vesta was much lower (<2GPa) than
on Earth, Mars or the Moon, variable but almost complete depletion of the HSEs in the residual
mantle would be expected at the end of core formation (1, 27). Although very low absolute
abundances are observed for Vesta, indicating substantial removal to the metallic core, the relative
proportions of HSEs are chondritic, consistent with late accretion. For Earth, Mars and Vesta, HSE
abundances appear to relate to parent-body size (Fig. 3a), suggesting proportionally more late-
accreted material in larger bodies (~0.6% of the mantle mass for Earth, ~0.4% for Mars, ~0.01% for
Vesta). This suggests that the extent of HSE enrichment depends on the time interval after the end of
core formation and before complete solidification of the magma ocean, during which late-accreted
material could be added and mixed into the mantle. This time-window for addition depends on
cooling rate and hence on the size of the parent body. For Mars and Earth, in accord with the higher
levels of HSEs in their mantles, the period over which late impactors could be accreted and mixed into
the upper mantle was much longer and differed in timing (some 20 Myr for Mars after early core
formation (4, 18) and up to 100 Myr for Earth after the giant Moon-forming impact (18)). In addition,
plate tectonics may have provided a means of mixing late-accreted material into the Earth’s interior
even after complete magma ocean and crust solidification, but early Earth HSE contents were still
much higher than in Vesta and the Moon (28). For early planetesimals (Vesta, angrite-, Ibitira- and
Pasamonte-parent bodies) core formation ceased between 3-6 Myr after the formation of the CAls,
with magmatic crystallisation no more than a few million years later (e.g. 18) consistent with their
lower HSE contents. Nevertheless, the angrite parent body and the Moon possess much higher and

lower mantle HSE abundances, respectively, than might be expected on the simple basis of their sizes



(29). Itis apparent, therefore, that factors other than size were important in controlling HSE

abundances.

A much better co-variation exists between the HSE abundances of planets and meteorite parent
bodies and their oxygen fugacities, than between HSE abundance and size (Fig. 3b). This observation
suggests that in reduced bodies late-accreted metal was predominantly added to the core whereas in
oxidised bodies, such as Mars, Earth and the angrite parent body, metal was substantially mixed into
the mantle. This is a logical consequence of the higher ferric iron contents of oxidised bodies because
ferric iron provides the potential for the oxidation of metal and its dissolution in mantle silicates (e.g.
6, 30). During the principal phase of metallic core formation all bodies were saturated in metal and
hence highly reduced. Oxidation is believed to have occurred through the addition of more oxidised
materials towards the end of accretion (e.g. 31). In the cases of Earth and Mars there was an
additional mechanism for the production of ferric iron through the disproportionation of ferrous iron
into ferric iron plus Fe-metal (32, 33). This mechanism requires the stabilisation of silicate perovskite
at very high pressures in the lower mantle, a process which occurs widely on Earth, to a small extent

on Mars and not at all in smaller bodies.

It appears that late accretion was spatially and temporally widespread in the inner solar system, with
HSE abundances in differentiated asteroids and the terrestrial planets reflecting both the extent of
initial removal into the metallic core and the proportion of material added by late accretion. If
oxidation state exerted the dominant control on HSE abundances in the silicate mantles of all bodies,
including the Moon, it follows then that the oxidising conditions of the silicate mantles of the Earth
and Mars were established prior to, or synchronously with late accretion, although not necessarily at

the conditions seen at the present-day.
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Table 1. Average sample HSE concentrations and estimated mantle HSE concentrations for each parent body.

Os Ir Ru Pt Pd Re Total
ng/g _ng/se  ng/g  ng/g  ng/g ng/g ng/g
Earth (ref. 3) 3.92 350 7.11 7.74 7.21 0.32 29.8
Vesta (HED parent body)
Average diogenites 0.020 0.014 0.046 0.15 0.12 0.006
Average eucrites 0.025 0.022 0.038 0.10 0.21 0.006
Mantle estimate 0.07 0.07 0.10 0.12 0.04 0.004 0.40
High 0.18 0.18 0.25 0.35 0.10 0.016
Low 0.03 0.03 0.04 0.03 0.01 0.001
Angrite PB
Average 0.50 0.60 0.83 2.0 1.1 0.91
Mantle estimate 1.5 1.5 2 3 1.8 0.1 10
Pasamonte PB (n=1)
Average 0.424 0.629 133 1.69 1.29 0.054
Mantle estimate 1 1 1.5 2 1.2 0.08 7
Ibitira PB (n=1)
Average 0.018 0.019 0.029 - 0.018 <0.001
Mantle estimate 001 0.01 0.01 0.02 0.02 0.002 7
Mars®
Average 0.96 0.98 1.8 84 10.0 0.12
Mantle estimate 2.4 2.4 3 4 3 0.1 15
High 3.5 3.5. 4 5 4 0.2
Low 1.5 1.5 1.5 2.5 1.5 0.05
Moon®
Mantle estimate 0.07 0.07 0.10 0.10 0.03 0.004 0.37
High 0.13 0.13 0.15 0.15 0.04 0.005
Low 0.04 0.04 0.05 0.03 0.01 0.001
Moon - Estimate from ref. 12 0.1 0.1 0.1 0.2 0.1 0.01 0.6

NOTES: All mantle concentrations estimated by incompatible/compatible HSE ratio method (21), except published estimate for the
lunar mantle which was derived from regression of MgO vs. HSE. Estimated uncertainties are included except where the small number
of samples analysed makes such estimation impossible. Estimate for Vesta based on ‘undisturbed’ samples (21). Estimates for
Pasamonte and Ibitira based on inferred chondritic proportions and similar slopes in ratio plots to other parent body melts. * Mars

average and mantle estimate includes data from (5), ® Moon estimate used ‘undisturbed’ data from (15, 16).



Figure captions

Fig. 1. (A) Mean HSE concentrations for each achondrite group, normalised to Cl chondrite; (B) Mantle HSE
concentrations in each parent body estimated using the HSE ratio method (Fig. 2; 21); (Inset) HSE
concentrations in Earth’s mantle compared with calculated mantle abundances remaining after low-pressure
(applicable to Vesta) and high-pressure equilibrium metal-silicate partitioning during core formation [upper
bound of high-pressure partitioning is displayed, but a greater discrepancy between calculated and observed
concentrations for some elements is likely (21)]. Relative HSE proportions in the silicate mantles of the various
parent bodies are all broadly chondritic, but the absolute concentrations vary by 2 orders of magnitude. Lunar
mantle melts (15) shown for comparison in A; Cl chondrite values from (40). Earth’s mantle from (3). For lunar

and martian mantle estimates see Table 1 notes.

Fig. 2. Estimation of parent body mantle HSE abundances using incompatible/compatible HSE ratios (21).
Platinum is more incompatible than Os during mantle melting. High melt fractions have low Pt/Os ratios and
high Os that approach the HSE content of the source mantle. Large symbols for HED indicate the least
‘disturbed’ samples in terms of having broadly chondritic initial Os isotope compositions and smooth HSE

patterns (21), faint HED field encompasses all samples. For data sources see Fig S2.

Fig. 3. Total HSE concentration estimated for each parent body mantle relative to (A) parent body mass; (B)
oxidation state (defined in log units relative to the iron-wistite buffer) (41). While the oxidation state for the
Earth (present-day upper mantle) and Mars do not necessary reflect conditions at the time of late accretion,
there is strong evidence for pre-4 Gyr establishment of present-day levels of oxidation (42, 43), and an increase
in oxygen fugacity during core formation is required to account for moderately siderophile element
abundances in the Earth’s mantle (32). A linear relationship in (B) provides a good fit, but a non-linear
relationship is also plausible, with low mantle HSE contents below the IW buffer and a rapid increase in
oxidation of late-accreted metal, and hence mantle HSE concentration, once a threshold oxygen fugacity is
exceeded. For lunar and martian mantle HSE concentration estimates see Table 1 notes. Uncertainty for

angrite PB assumed to be the same as for Mars.
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Supplementary Online Material

SOM - Materials and methods

Samples chosen were mostly “falls’ rather than ‘finds’ (see sample details below), i.e. meteorites which had
been observed falling to Earth rather than found without knowledge of the length of time on Earth. This limits
the possible effects of terrestrial alteration and weathering. Oxygen isotope data confirm that significant
terrestrial alteration has not occurred (see ‘notes on samples’ below). While all HEDs display a degree of
brecciation, there is no oxygen isotope evidence for meteoritic contamination except in the case of Dhofar 007,
which has a non-HED oxygen isotope composition (44). This precludes significant contamination by
differentiated HSE-poor material, but does not altogether preclude HSE contamination by chondritic or metal-
rich impactors which have much higher HSE concentrations, and therefore much smaller contributions are
required to affect HSE contents. However, if any samples in this study contained significant HSE from such
impactors, the resulting HSE patterns would be chondritic and would not display the platinum-group
PGE/iridium-group PGE fractionation found in most samples. Johnstown, NWA2999 and Dhofar007 are
exceptions which all have unfractionated HSE patterns and are all known to have high metal contents, and
contain Ni-rich metal, indicating direct addition of impactor material after crystallisation. These three samples
have been omitted from estimates and discussion. In the unlikely event that other HEDs did contain an HSE-
rich contaminant, this would merely further strengthen our findings that the HED parent body has very low HSE
contents. If any form of alteration and contamination has occurred, it is difficult to reconcile this with the array
formed by samples in HSE ratios plots (e.g. Fig S3 and see below)

Nevertheless, some samples do have Re and Os concentrations that are not consistent with a chondritic initial
Os isotope composition, even accounting for the not inconsiderable effect of analytical uncertainty on low-level
measurements which are then time-integrated over approximately 4500 Myrs (e.g. gamma Os values that are
more than 100 units from chondrite). In these cases, samples have been omitted from estimates, although the
data are still plotted on figures. Furthermore, as this effect is likely due to Re mobility (e.g. 45), emphasis has
instead been placed on HSE ratio plots that do not involve Re, for example Pt/Os, which should be more robust
both analytically (higher Pt concentrations than Re by 5-500 times) and geologically, as Pt is less susceptible to
alteration and mobilisation.

Notes on Samples

Agoult (Find 2000), very fresh, unbrecciated, granulitic-textured eucrite. Shows no geochemical evidence of
weathering, such as high Ba and Sr abundances, positive Ce anomalies or perturbed Th/U ratios (46). Oxygen
isotope analysis of Agoult gave a mean A0 value of -0.239 + 0.034 %o(20) (46), which is identical to the
average HED A"0 value of -0.239%. + 0.014 (20) (19). This result is consistent with the evidence that Agoult is
both un-weathered, and uncontaminated by meteoritic material.

Bereba (Fall 1924), monomict eucrite. As a monomict eucrite, Bereba is unlikely to contain any significant
amount of meteoritic contamination. Mean A'’0 value of -0.240 + 0.044 %o(20) (19), which is indistinguishable
from the HED average (19). This result is consistent with Bereba being pristine with respect to terrestrial

contamination (i.e. a fall), with no evidence of meteoritic contamination.

Camel Donga (Find 1984), fresh monomict eucrite, with most specimens covered in primary black fusion crust
(47). Camel Donga shows no evidence of either terrestrial or meteoritic contamination.

Juvinas (Fall 1821), monomict eucrite. Mean A0 value of -0.230%o + 0.012 (20) (19), within error of the HED
average (19). In keeping with its monomict character, this result indicates that Juvinas is free of any meteoritic
contamination.



Millbillillie (Fall 1960), monomict eucrite. Mean A*O value of -0.246%o + 0.036 (20) (19), within error of the
HED average (19). This result, and its monomict character, precludes significant contamination by meteoritic
material.

Stannern (Fall 1808), monomict eucrite. Mean A*0 value of -0.245%o + 0.018 (20) (19), which is within error of
the HED average (19). Given its monomict character, this result suggests that Stannern is uncontaminated by
meteoritic material.

Talampaya (Fall 1995), brecciated cumulate eucrite (48). Although this sample is both brecciated and
metamorphosed, there is no evidence that it has been contaminated by non-HED meteoritic material.

Bilanga (Fall 1999), diogenite. Extensively brecciated and contains a range of different lithologies (49). Mean
AY0 value of -0.239%o + 0.044 (20) (19), in agreement with the HED average (19). Despite the brecciated
nature of this sample, there is no evidence to suggest that it has been significantly contaminated by non-HED
meteoritic material (50).

Dhofar 700 (Find 2002), unbrecciated diogenite with a granular texture (50, 51). Slightly weathered and
displays some fractures filled with secondary carbonates and Fe-hydroxides (50). A mean A0 value of -0.25%o
+ 0.02 (20) was obtained on an EATG-washed fraction of Dhofar 700 (50), within error of the HED average (19).
This result indicates that Dhofar 700 is free of significant meteoritic contamination.

Johnstown (Fall 1924), brecciated diogenite containing centimetre-sized clasts (35, 50). Displays a wide range
of Ni and Co abundances (Ni = 37-460 pg/g, Co = 12-85 ug/g) (50). This large range in values has been
interpreted, although disputed (50), as being due to an externally-derived meteoritic component (35).

Shalka (Fall 1850), diogenite. Mean A0 value of -0.242%o + 0.032 (20) (19), within error of the mean for the
HED group (19). There is no evidence that Shalka has experienced either terrestrial or meteoritic
contamination.

Tatahouine (Fall 1931), diogenite. A unique diogenite in that it fell as single orthopyroxene crystals, other
diogenites being essentially fragmental breccias (52). Mean A0 value of -0.239%. + 0.030 (20) (19), within
error of HED mean (19). There is no evidence that Tatahouine has experienced either terrestrial or meteoritic
contamination.

NWA 1877 (Find 2003), olivine-rich diogenite. Coarse-grained rock with an olivine content of approximately
45% and shows only minor evidence of terrestrial contamination (53). Oxygen isotope analysis of acid washed
mafic silicates gave A*0 values (53) close to HED average values (19). NWA 1877 shows no evidence for
meteoritic contamination.

NWA 2629 (Find 2004), olivine-rich diogenite. Probably paired with NWA 1877.

Ibitira (Fall 1957), monomict eucrite. Along with NWA 011, a wide range of geochemical evidence now exists to
indicate that Ibitira is from a distinct parent body to that of the HEDs (21). There is no evidence that Ibitira has
been contaminated by meteoritic material.

Pasamonte (Fall 1933), polymict eucrite. Considered to be from a distinct parent body to the other HEDs (22).
An alternative possibility that it is a normal HED with approximately 3% contamination by an ordinary chondrite
impactor (19) was rejected on the basis that Ni and Ir in Pasamonte are far too low to be explained by such a
scenario (22).

Dhofar 007 (Find 1999), cumulate eucrite. Complex polymict breccia, with possible affinities to the
mesosiderites (54). Dhofar 007 has an oxygen isotope composition that plots outside the normal HED range
(19). Dhofar 007 has a highly elevated siderophile content, with one clast containing 929 ppm Ni (54). Thus,



Dhofar 007 shows clear evidence of having experienced significant meteoritic contamination. It shows only
minor evidence of terrestrial contamination.

Chassigny (Fall 1815), Martian chassignite. One of only two currently identified chassignites (the other being
NWA 2737). Dunite consisting predominantly of Fe-rich olivine, with various minor phases including pigeonite,
augite, alkali feldspar, chromite, ilmenite and rutile (55).

Nakhla (Fall 1911), Martian nakhlite. The type nakhlite, Nakhla consists predominantly of magnesian augite
with subordinate Fe-rich olivine, set in a microcrystalline matrix (55).

Shergotty (Fall 1865) and Zagami (Fall 1962), Martian basaltic shergottites. Both relatively fine-grained rocks,
consisting predominantly of augite and pigeonite, with subordinate maskelynite, titanomagnetite, ilmenite,
whitlockite and accessory apatite, quartz, fayalite and mesostasis (55).

D’Orbigny (Find 1979), angrite. Vesicular, unshocked and unmetamorphosed igneous lithology composed of Al-
Ti-rich clinopyroxene, Ca-rich olivine, kirschsteinite, anorthite and a range of accessory phases (56).

NWA 2999 (Find 2004), angrite. Coarse-grained, polygonal-granular texture similar to that seen in the angrites
Angra dos Ries and LEW 86010. Compared to other angrites, NWA 2999 shows very high Niand Co
concentrations, which have been interpreted as indicating that the meteorite contains a high chondritic
component (57).

Sahara 99555 (Find 1999), angrite. Vesiculated, igneous-textured lithology, which shows many similarities to
D’Orbigny in terms of its chemical composition and mineralogy (56).

Methods

Digestion and purification. Samples were all hand-crushed and ground in an agate pestle and mortar. Powders
(see Table S1 for weights) were placed in quartz high-pressure asher (HPA) vessels together with a mixed **°Os-
185Re-PRu-1°Pd-""Ir-**Pt-enriched spike and inverse aqua regia: 1 - 2.5 mL 12 mol L* HCI, 2 - 5 mL 16 mol L*
HNO; (quantity depending on sample mass). The vessels were placed in an Anton Paar HPA at 300°C for at
least 12 hours, in order to extract the HSE and achieve full sample-spike equilibration. Osmium was extracted
using CCl,, back-extracted into 9 mol I'* HBr, and then microdistilled (58, 59). The inverse aqua regia was dried
and prepared for purification of Re, Ir, Pt, Ru and Pd using AG1X-8 (100-2004#) anion-exchange resin (60). Due
to the isobaric interference of ZrO" on Pd*, the solvent N-benzoyl-N-phenyl-hydroxylamine was mixed with and
extracted from the final sample solutions in order to extract any remaining Zr after column separation (61). A
further modification to the previous protocol was the addition of H,0, during preparation for anion-exchange
separation in order to reduce any Cr®" formed during digestion. This step leads to more efficient Cr elution
prior to HSE collection during chromatographic separation, and consequently reduces potential isobaric
interferences of multi-oxide Cr species with Ru isotopes during mass spectrometry.

Mass spectrometry. Os was loaded onto Pt filaments and measured as OsOs" ions by negative-thermal
ionisation mass spectrometry (N-TIMS) using the ThermoFinnigan Triton at Durham University. Raw data were
corrected offline for O isotope interference, mass fractionation (using **>0s/**30s = 3.08271) and spike
unmixing. Interference from *’Re05 was insignificant (<2 cps). Analyses of 1 and 10 pg aliquots of the Durham
Romil Os standard solution (DROsS) gave a mean *’0s/*®0s of 0.16106 + 0.00138 (~0.8% 2 RSD, n=19) for the
period of analysis, December 2008 - January 2011. These values are in good agreement with a value of
0.160924 * 4 for 10-100 ng/g aliquots measured on the same mass spectrometer in Faraday cup mode (62).
Rhenium, Ir, Ru, Pt, Pd were analysed by inductively-coupled plasma mass spectrometry (ICP-MS) on a
ThermoFinnigan® Element 2. Standard HSE, Hf, Zr, Y and Mo solutions (all 1 ppb) were analysed at the start,

middle and end of each session to quantify the degree of mass fractionation and the production rates of HfO",



ZrO", YO and MoO" (<0.6, <1.5, <0.8, <0.2%, respectively) which have equivalent masses to isotopes of Ir", Pt"
and Pd".

Blanks. Average blanks (n=4) were as follows (with 2sd in parentheses): 0.1 pg Os (0.07), 0.35 pg Ir (0.4), 2.5 pg
Ru (3.1), 5.6 pg Pt (4.4), 7.1 pg Pd (17.5), 1.4 pg Re (1.3), with a mean ¥’0s/**0s of 0.21 + 0.07. These quoted
uncertainties are probably overestimated because they include blanks measured in different analytical sessions
with different reagent batches. For this reason, blank correction was made using blanks for each analytical
period. With the exception of one very HSE-poor olivine diogenite, the contribution of the blank to the analysis
was <5% for Os, and typically <8% for Ir (max 32%), <23% for Ru (32%), <16% for Pt (23%), <30% for Pd (75%)
and <40% for Re (65%). The difference between measured and corrected **’0s/**®0s was never greater than
10%.

Reproducibility. The uncertainties on individual measurements are typically low (<5%), but the overall
uncertainty for the concentration of HSE in a given sample (i.e. duplicate analyses of aliquots of the same
powder) is significantly higher and, due to the limited amount of available sample, is not precisely constrained
in this study. Duplicate analyses (n=7 x 1 g) of a CANMET basaltic reference material, TDB-1, indicates
reproducibility of 7% for Re concentration, 17-25% for Os, Ir, Pt and Pd and 34% for Ru - which is thought
largely to be due to heterogeneity within the powder rather than analytical uncertainty as concentrations and
elemental ratios are significantly more reproducible for some other samples with similar HSE abundances, for
instance 4-12% for all HSE ratios (n=3) in a terrestrial gabbro (63). Duplicate analyses of two achondrites
indicate variable reproducibility (at sub-1g powder mass), depending on the sample and the element in
question, but all standard deviations are less than 60%, e.g. Os, Ir and Re are reproducible for the diogenite
Tatahouine (standard deviation within 25%), while Pt is less so (s.d. ~50%, see Table S1 and Fig. S1). Regardless
of the absolute reproducibility for the achondrites, duplicate analyses confirm chondritic proportions of HSE in
the melt source and give consistent estimates of mantle source HSE abundance when using the
incompatible/compatible HSE ratio method below.

Supporting Online Text - Estimation of parent body mantle HSE abundances

Using MgO vs [HSE]

Previous work (e.g. 15) has utilised the positive co-variation of MgO and HSE concentrations in terrestrial
samples to extrapolate from relatively MgO-poor crustal samples (e.g. 8 wt% MgO) towards the MgO content
of typical mantle (~35 wt%). The central tenet of this method is that the HSE behave similarly during melting of
different planetary mantles as they do on Earth. Given known differences in pressure and temperature of
melting, and good evidence for differing oxygen fugacity, sulphur contents, mineralogy and bulk composition in
the mantles of the various parental bodies (PBs), it seems unlikely that this assumption of similar behaviour is
robust. Eucrites and diogenites, both thought to be from the asteroid 4-Vesta, have similar HSE contents
despite very different MgO (~8 wt% and ~20-30 wt%, respectively, Fig. S3). This results in disparate estimates
for mantle concentrations from the two suites if taken individually. In addition, too few data and/or data with
little spread in MgO preclude estimation of some PB mantle abundances. For these reasons we instead use the
method below to estimate mantle HSE abundances.

Using [HSE,] vs HSE,/HSE, plots (e.g. [Os] vs Pt/Os)

An alternative method for the estimation of mantle abundances is by comparison of concentrations of two HSE
of differing compatibility. At low degrees of melting incompatible/compatible HSE ratios will be high, and as
melting degree increases such ratios will decrease, until at high melting degrees the ratio will be approximately
equal to the source. This gives a negative co-variation between the ratio and the concentration of the
denominator (Fig S4a-b); e.g. Re is moderately incompatible, Os is compatible, so low-degree melting produces



high Re/Os and low Os concentrations, whereas high-degree melting produces low Re/Os and high Os
concentrations. This method is independent of partitioning behaviour; any difference in HSE compatibility
(compared to Earth), due to differing source mineralogy and melting conditions, may alter the slope of a trend
but the same origin will be retained. This should also hold for cumulate rocks, such as some of the HEDs
studied here, where partitioning may differ from that in a melt, but the array origin will remain the same. This
is illustrated by terrestrial cumulate gabbros (63), which define a lesser slope but with the same primitive
mantle origin. It is possible, however, that a cumulate rock may fall on an array which derives from a point on
the mantle melt array (the main trend) but diverges from this trend due to different elemental partitioning in
an isolated melt system. Accumulation of a greater proportion of a certain mineral may also affect the
partitioning behaviour and lead to the sample plotting off the main trend. The cumulate nature of some HED
samples, particularly the diogenites, may thus contribute to the scatter of the data, and give rise to a greater
uncertainty on the Vestan mantle estimate. But the presence of a trend with a termination at chondritic Pt/Os
(for example) suggests this effect is relatively minor, and that this method of estimation is valid. Once the
criterion of non-disturbance is implemented (i.e. ‘disturbed’ samples are omitted), five of the seven diogenites
are discarded from the estimate, whereas four of the seven eucrites are retained, none of which are cumulates.
This means that the estimate is weighted towards non-cumulate samples, and the greater scatter of diogenites
(Fig. S3) is largely circumvented in the estimate. In order to fully assess our uncertainties, we have calculated
error envelopes for the Pt/Os and Re/Os data using the method of Ludwig (64). The entire range of possible
HSE concentrations for Vesta is between 20 and 100 times lower than the Earth’s mantle.

In sample suites with a range of MgO (and therefore HSE contents) approaching the composition of mantle, the
mantle HSE concentration can be estimated to be the terminus of the trend at the highest concentration.
However, as discussed for the MgO-HSE method above, some suites do not possess such a range of MgO
contents. In these cases, the mantle concentration can be estimated by extension of the trend towards higher
concentrations (of the denominator), to the point where the incompatible/compatible HSE ratio is equal to that
found in chondrites. In these cases, the method assumes chondritic proportions of the HSE — while this is
somewhat circular, it is supported by the measured HSE concentrations in almost all achondrites. Measured
concentrations do not show significant fractionation of HSE from chondritic proportions, except the relatively
minor Pt, Pd and Re enrichment which reflects differing compatibility during partial mantle melting (Fig. S1).
Broadly chondritic Os isotopes are also consistent with this assumption (Figs. S4). In addition, although there is
a degree of uncertainty as to whether the true origin of each array is well-represented by the data available
(i.e. it could fall at lower Re/Os or Pt/Os and higher Os concentration) it is notable that there are very few
achondrite samples measured which fall below the chondrite reference line. This again confirms that parent
body HSE proportions are approximately chondritic. For the anomalous eucrites (Ibitira and Pasamonte), there
is only one sample for each parent body. Thus, estimates of mantle abundances are largely unconstrained and
rely on the assumption of chondritic proportions and a slope similar to that for the Earth. The estimates for the
anomalous eucrites have been included in Table 1 but not plotted in Figs. 1b or 3.

Given that there is considerable variation on incompatible/compatible HSE plots within most achondrite suites,
perhaps reflecting incomplete mixing of the PB mantle, estimates of mantle abundances in this way (as with
the other method) carry considerable uncertainties. However, the differences between estimated mantle
abundances of the various parent bodies span orders of magnitude compared with uncertainties which are less
than a factor of six, even for the scattered Pt/Os data for the HED suite.

Comparison of parent body mantle HSE estimates using the two methods

Estimates of mantle HSE concentrations for Vesta cannot be reliably made using MgO-HSE co-variations
because the eucrites and diogenites have similar HSE contents despite very different MgO (~8 wt % and ~20-30
wt%, respectively, Fig. S3). This would result in disparate estimates for mantle concentrations from the two



suites if taken in isolation. By accepting the assumption that concentrations in the MgO-rich diogenites
approach those of the Vesta mantle, one could estimate Ir and Os abundances to be of the order of 0.03 ng/g.
This compares to a far more robust estimate of 0.07 ng/g Os derived from the array in
incompatible/compatible HSE plots. Either way, the estimate is up to two orders of magnitude lower than
abundances in Earth’s mantle (~3.5 ng/g Os (3, 65)).

The concentrations of Os and Ir in the lunar mantle have been estimated previously, using the MgO-HSE
method, to be ~0.1 ng/g (15)(Fig S2). Applying the HSE ratio method to the same data we estimate
concentrations which are slightly lower, but within uncertainty of this value: Ir and Os of ~0.07 ng/g in the lunar
mantle. Using MgO-HSE systematics, the Martian samples in this study, with one exception (Shergotty), are in
broad agreement with previous estimates that HSE contents of the Martian mantle are only slightly lower than
Earth (Os and Ir: ~2.5 ng/g (e.g. 5, 66)). This value is consistent with the HSE ratio method, illustrating that in
some cases the two methods agree. However, by using the MgO-HSE method, anomalously low HSE
concentrations in ALH84001 (66) would suggest a source more than an order of magnitude poorer in HSE than
the other SNCs, whereas the HSE ratio method indicates that the source possibly had lower HSE
concentrations, but within a factor of two of the other SNCs. This confirms that conditions and mineralogy
during melting are key processes which preclude the use of MgO-HSE systematics in estimating parent body
mantle abundances. Only two samples can be used for the angrite estimate, as the third angrite analysed is
known to contain a high proportion of impactor metal, which accounts for its extremely high abundances of
HSE (=chondrite). However, both angrites are consistent with a source containing somewhat lower HSE
concentrations (~1.5 ng/g Os) than Mars. As the angrites possess a very large range of HSE concentrations over
a very limited range of MgO contents, no estimation of mantle abundance is possible using MgO vs HSE.

SOM - Calculation of mantle HSE concentrations after equilibrium metal-silicate
partitioning and calculation of fraction of late veneer addition

Depletion factors for the silicate mantle were calculated using the following equation:
Depletion factor = 1/(Dmet/silx Fcore + Fsilicate)

Where D is the distribution coefficient of an element between liquid metal and silicate melt and Fcye and Fgjjicate
are the fractions of core and silicate mantle, respectively, assumed in all cases to be 70% silicate - broadly
equivalent to the mass ratio of metal and silicate in the Earth. Depletion factors were calculated for both low-
and high-pressure metal-silicate equilibration (for D values see Table S2), and the model silicate mantle
concentrations of HSE were then calculated by multiplying the depletion factor by an average chondrite
concentration (12). High-pressure equilibration was assumed for Earth, both a high- and low-pressure model
was used for Mars, and the angrites (unknown parent body size), though the difference is insignificant. Vesta
must have formed by low-pressure equilibration. A low pressure model was also used for the Moon, although
its formation may be complex given its creation from a giant impact on Earth. Chondritic material was then
mixed with the depleted silicate mantles after core formation, until HSE concentrations best matched the
estimated values in Fig. 1. Assessment of best fit was achieved by the lowest sum of the deviations between
calculated and estimated values for each element (average deviation for Os, Ir, Pt and Pd was between 0.1 and
0.2, Ru and Re were not included due to a lack of a high-pressure partition coefficient for the former and the
extremely low concentrations of Re).
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Figure S1. Measured HSE concentrations for all achondrites normalised to Cl chondrite. Lunar mantle melt
fields are shown for comparison (15). Eucrites and diogenites are thought to be from Vesta; anomalous eucrites
—unknown parent bodies (PB); angrites — unknown PB; SNCs — Mars. Area above dashed line in the MORB field
is the typical range, whole shaded area is complete range. Johnstown, NWA2999 and Dhofar007 are all known
to have high metal contents, and Ni-rich metal, indicating direct addition of impactor material after
crystallisation. Thus, they are not thought to reflect their mantle source abundances and have been omitted
from calculations and discussions in this paper.
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Figure S2. Estimation of parent body mantle HSE abundances by applying the co-variation of MgO and HSEs in
terrestrial mantle-derived melts (15) to other planetary bodies, and extrapolating to ~35 wt% MgO. Estimates
are not possible for Vesta or the angrite parent body due to similar HSE concentrations at differing MgO in the
former and a lack of MgO variation in the latter. Other estimates for the Moon and Mars also require
significant extrapolation. The incompatible/compatible HSE ratio method is instead preferred and used here.
References for terrestrial samples: (67-74). Johnstown, NWA2999 and Dhofar 007 omitted due to evidence for
post-crystallisation meteoritic contamination (25).
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Figure S3. Estimation of parent body mantle HSE abundances using incompatible/compatible HSE ratios.
Platinum is more incompatible than Os during mantle melting, thus high Pt/Os ratios are produced by low melt
fractions, while the Os concentration is low. At high melt fractions the Pt/Os ratios and Os concentrations are
similar to those of the source and thus reflect the HSE content of the source mantle. Any difference in HSE
compatibility (compared to Earth), due to differing source mineralogy, pressure, temperature or oxygen
fugacity, will only change the slope of the array, while still retaining the same origin. This is in contrast to the
HSE vs. MgO method in Fig S2 which may be dependent on these factors. Johnstown, NWA2999 and
Dhofar007 omitted due to evidence for post-crystallisation meteoritic contamination (25). Only ‘undisturbed’
lunar and HED samples used for estimation (latter shown as larger yellow symbols). For HED, samples were
omitted if they have initial Os isotope compositions more than 90 gamma Os units from chondrite and if their
HSE patterns are not smooth. For lunar samples see (15, 16), Mars literature data from (5). References for
terrestrial samples: (67-74).
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Figure S4. Histogram of measured Os isotopes of individual samples indicating broadly chondritic evolution.
Initial ratios are not plotted due to the difficulties in age-correcting for *’Os ingrowth in Re- and Os-poor
samples over time periods of up to 4.5 Ga for some samples. Chondrite averages from (75).



Table S1. HSE concentrations and Os isotopes in achondrite meteorites: Eucrites, diogenites and olivine
diogenites (proposed parent body: 4-Vesta), anomalous eucrites (unknown PBs), SNCs (Mars), angrites
(unknown PB).

Sample MgO  Os Ir Ru Pt Pd Re Re* '¥0s/'"®0s '®Re/ "0s/'®0s
mass Wt%  ng/g ng/g ng/g ng/g ng/g ng/g ng/g "¥0s___initial*
Eucrites
Agoult 0.3226 6.8 0.009 (1) 0.014(2) ~0.07 0.121(23) 0.112(24) 0.003 (1) 0.001  0.13369 (26) 1.39 -
Bereba 0.7997 6.8 0.024(1) 0.023(2) 0.046(19) 0.113(7) 0.154(17) 0.007(2) 0.002 0.12702 (21) 1.52 0.010
dupl. 0.5758 - 0.01000) 0.017(1) - 0.156(12) - 0.016(2)  0.001 0.13187 (32) 7.81 -
C. Donga 0.5873 6.3 0.090(2) 0.061(4) 0.101(6) 0.168(10) 0.743(26) 0.006(1) 0.009 0.13118 (63) 0.327 0.106
Juvinas BM 0.5092 7.3 0.007(1) 0.006(1) 0.021(3) 0.062(5) 0.061(11) 0.005(2) <0.001 0.12358 (17) 3.84 -
Millbillillie 0.8896 7.4 0.011(0) 0.009(1) 0.018(2) 0.030(4) 0.072(9) 0.002(0) 0.002 0.15412 (41) 1.05 -
Stannern 0.2788 7.0 0.038(1) 0.002(1) 0.004(4) 0.048(7) 0.054(17) 0.012(2) 0.033 0.44169 (27) 1.53 0.321
Talampaya 0.7410 13.0 0.004(1) 0.041(2) ~0.02 0.168(8) 0.004(4) 0.005(1) <0.001  0.14775 (38) 6.29 -
Diogenites
Bilanga 1.0016 29.7 0.024(1) 0.023(1) ~0.05 0.091(5) 0.147(10) 0.002(1) 0.001 0.11764 (19) 0.415 0.086
Dhofar 700 0.5849 23.0 0.015(1) 0.026 (2) ~0.10  0.231(17) 0.191(19) 0.016 (2) 0.002 0.14144 (13) 5.14 -
Johnstown 0.8014 26.2 1.84(4) 1.73(4)  2.54(6) 3.41(7) 3.20(7) 0.193(4) 0.131  0.12208 (6) 0.503 0.083
Shalka 0.3717 258 0.054(2) 0.004(1) 0.005(4) 0.461(13) 0.004(4) 0.001(1) 0.003 0.11626 (72) 0.075 0.110
Tatahouine 1.0066 28.2 0.019(1) 0.015(1) 0.024(2) 0.044(3) 0.036(5) 0.004(1) 0.002 0.13095 (16) 0.872 0.062
dupl. 0.9062 - 0.015(0) 0.022(1) - 0.093(7) - 0.003(1) 0.001  0.13216 (19) 0.913 0.060
Olivine diogenites
NWA 1877 0.1286 - 0.001(1) <0.001 - 0.014(12) - 0.008 (3) <0.001 0.20417 (67) 33.6 -
NWA 2629 0.4904 - 0.010(1) 0.013(2) - 0.042(14) 0.028(10) 0.005 (1) 0.001 0.12743 (21) 2.51 -
Anomalous eucrites
Ibitira 0.4212 7.6 0.018(1) 0.019(1) 0.029(4) - 0.018(15) <0.001 0.002 0.12795 (18) 0.132 0.118
Pasamonte 0.7123 6.5 0.424(9) 0.629(41) 1.33(12) 1.69(4) 1.29(7) 0.054(2) 0.034 0.12562 (6) 0.616 0.077
Dhofar 007 0.5421 - 57.3(50) 68.3(95) 75.9(90) 93.2(21) 64.8(15) 4.24(9) 5.01 0.12826 (1) 0.356 0.100
- metal® 0.00127 - 3473(65) 3205(110) 4785(780)  6367(910) 6356(900) 280(40) 315 0.12951 (5) 0.388 0.100
SNCs
Chassigny 0.1528 31.6 0.568(16) 0.637(22) - 2.53(7) 0.25(11) 0.021(3) 0.028  0.12403 (11) 0.177 0.120
Nakhla 0.2075 121 0.037(3) 0.053(6) 0.190(35) 2.73(19) 1.27(16) 0.022(3) 0.017 0.16681 (17) 2.92 0.103
Shergotty 0.1556 9.5 0.441(13) 0.693(98) 1.98(51) 42.3(5.8) 61.3(11) 0.093(9) 0.015 0.12757 (5) 1.02 0.125
Zagami 0.1413 125 0.060(4) 0.037(6) 0.247(52) 6.7(5) 4.4(10) 0.033(4) 0.130 0.15868 (13) 2.65 0.151
Angrites
D'Orbigny 0.1780 6.5 0.947(18) 1.09(3) 1.47(4) 2.72(7) 1.78(15) 0.045(3) 0.06 0.11909 (11) 0.227 0.101
NWA 2999 0.1619 - 206(4) 211(5) 333(13) 371(8) 238(5) 17.4(4) 18.0 0.12831 (8) 0.408 0.096

Sahara99555 0.1181 7.0 0.055(3) 0.107(8) 0.246(27) 1.37(5) 0.36(15) 1.78(13) 0.017  0.21080 (17) 157 -

Reference materials ¥

TDB-1 101 - 0.104 0.059 0.188 4.63 24.7 - 0.9688 (3) 415
TDB-1 1.00 - 0.120 0.063 0.195 4.92 225 - 0.9359 (9) 36.3
TDB-1 1.01 - 0.117 0.067 0.206 4.89 245 - 0.9076 (3) 39.8
TDB-1 1.00 - - 0.061 0.251 5.82 21.9 0.98 - -
TDB-1 1.00 - 0.094 0.056 0.258 4.43 215 1.00 1.0531 (3) 57.8
TDB-1 1.00 - 0.103 0.059 0.296 4.65 22.4 1.07 0.9733 (4) 552
TDB-1 1.00 - 0.100 0.050 0.221 3.86 18.9 1.00 1.0633 (2) 53.9
NOTES:

Re* - concentration estimated from "®’0s/*®0s composition and age, assuming chondritic initial.

- Initial *®’0s/*®80s corrected for ingrowth of ¥70s.

# - The deviation of the initial *®’0s/*®0s from the O-chondrite evolution curve: ((18705/188051/18705/
18705/1880s = 0.1283, **’Re/™%0s = 0.422 (76).
— hand-picked separate metal fraction from Dhofar 007
¥ —TDB-1 is a CANMET doleritic reference material.
The greatest sources of uncertainty in low-level measurements are powder heterogeneity and blank composition. Blank composition

188 O chondrite)-1) *100. Present day

chondrite:

(and standard deviation) is given in Methods, although the total uncertainty quoted for the blank composition is overestimated as it
includes analyses from different analytical sessions, using different reagent batches. The precise uncertainty on the blank is therefore
difficult to estimate. The limited sample material available did not allow for numerous replicate analyses, but repeat analyses of the
reference material TDB-1 gave uncertainties typically of the order of: 7% for Re concentration, 17-25% for Os, Ir, Pt and Pd and 34% for
Ru.

MgO data from refs. (50, 56, 66, 77, 78)



Os Ir Ru Pt Pd Re

Metal/silicate low-P 10% > 10" 10%? 10%- 10" 10’ 10%

Metal/silicate high-P ~ 10°- 10® 10’ - 10*°-10° 300-10° 200-440

Table S2. Range of metal-silicate partition coefficients (D) at low- and high-pressure conditions. Lowest

available D values used for calculations to cover the range of possibilities, but due to the potential for sampling

micro-nuggets formed in experimental work with HSE, the true values are more likely to match the highest
values. References: (1, 2, 7, 9-11, 27, 79-85).



