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Abstract We show that for almost every ergodieinteger dynamical system the radius
of convergence of the dynamical zeta function is no larger thane%@[op) < 1. Inthe
arithmetic case almost every zeta function is irrational.

We conjecture that for almost every ergodienteger dynamical system the radius
of convergence of the zeta function is exactly €xpp) < 1 and the zeta function is
irrational.

In an important geometric case (tleinteger systems corresponding to isometric
extensions of the fullp-shift or, more generally, linear algebraic cellular automata on
the full p-shift) we show that the conjecture holds with the possible exception of at most
two primesp.

Finally, we explicitly describe the structure df-integer dynamical systems as
isometric extensions of (quasi-)hyperbolic dynamical systems.

1. Introduction
The S-integer dynamical systems were introduced 3 fand the question of typical
behaviour for one family of these systems was considered3h(fhough of course in
the arithmetic case such dynamical systems appear in the work of Rokhlin and Halmos).
We first define them: a complete description with references and examples 3% in [
They are an arithmetically natural class of isometric extensions of familiar maps like
toral endomorphisms or algebraic cellular automata.

Let k be anA-field (that is, an algebraic humber field or a rational function field
with positive characteristic), with set of placéyk) and infinite placesP, (k). Let
S C P(k)\ Px (k) be a set of finite places, define

Rs={xek]||x],<1lforallv¢SU Py(k)}

to be the associated ring ¢tintegers, and let be any element ofkg\{0}. Then the
continuous endomorphisi = «%5% of the compact abelian group = X*9 = Ry
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dual to the monomorphism — &x of Ry is the S-integer dynamical system associated
to the datek, S, £&. The number of points with period undera is given by

h@= TJ] -1, (1)
vESUP (k)
so long ast¢ is not a root of unity ink (see§5 of [3]; this condition is equivalent to
ergodicity fora). Since f, is finite for all n, the dynamical zeta function of,
[e%s) s
a =ex n —
La(s) p; fax
is a well-defined formal series. In fact, simple estimates {&ef [3]) show that the
radius of convergence of the zeta function lieg@n1] for any S-integer system.
The topological entropy o is found in J],

hop(e) = Y log" [£],.
veSUPy (k)

From the complete description of the set of places of\dfield in Chapter Ill,§1 of
[14], the setP (k) is countably infinite and the sé®,, (k) is finite. Given& € k\{0} not

a unit root, letwy, ..., o, be all the finite places of for which |&],, > 1. Write
P(k)\Px(k) = {w1, ..., w5, v1, V2,...}, (2)
and define a mapy from the subsets o (k)\ P, (k) containing{ws, . .., w,} to {0, 1}

by wy(S)(n) = 1 if and only ifv, € S. The (p, 1 — p)-independent measure ¢, 1}
with p € (0, 1) defines, via the bijectiony, a probability measurg; = ,u,ff on the set

Qe (k) ={S | {w1, ..., 05} CS C P(k)\Pxo(k)}.

Let U : {0, 1} — {0, 1} be the add-and-carry odometer (or von-Neumann Kakutani
adding machine) which preserves th%, %) independent measure d@, 1} and is
ergodic (by Theorem 1.9 inlp]: it is enough to know that the subgroup generated by 1
in the compact grougo, 1} = Z, of 2-adic integers is dense). L&t: Q¢ (k) — Q¢ (k)
be defined byV (S) = a)k‘l(ka(S)). ThenV is au,f/z-preserving, invertible, ergodic
transformation on€2; (k), called the odometer. We shall often be dealing only with
the symmetrical measure with = % SO write u, = /Li‘/z. The phrase ‘almost every’
unadorned will be used for the = % measure only.

Recall that the places of the rational function fiely,(r) are in one-to-one
correspondence with the irreducible polynomials together with one ‘infinite’ place with
valuation written| - |«: this is non-Archimedean and h&$., = p.

The periodic point behaviour for a givénis expected to behave as follows.

CONJECTURE Givené not a unit root in theA-field k, for u.7-almost everys in Q¢ (k),

. 1
lim sup= log f,, (@®5%)) = higp(@®59) > 0,
n

n—o00
1
liminf = log f, (@®5%) =0,
n—oo n

and the dynamical zeta function is irrational.
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The excluded atomic measures given pye {0, 1} give the two extremes with
exceptional behaviour. Fop = 0, S = P(k)\Px(k) and f,(a®) = 1 for all .
Forp =1, § = ¢ and the upper and lower limits are both equal to the entropy by
Lemma 5 (see the Appendix).

Our purpose here is to prove some weaker versions and special cases of this conjecture,
and to indicate a connection between the conjecture and a weak generalised version of
the Mersenne prime problem.

THEOREM 1. Let k be anA-field, and assume th#t € k\{O} is not a unit root. Then for
wi-almost evens e € (k), the radius of convergence of the dynamical zeta function of
a®55) is no larger thanexp(— 3hip(ar®59)) < 1.

The detail of the proof of Theorem 1 depends on the characteristic afhen k
is an algebraic number field we call the corresponding systaitismetic whenk is
a rational function field we call thergeometric Some basic estimates from3][are
needed: for completeness these are reproduced in an appendix. The strategy of the proof
of Theorem 1 is as follows. First we assume that Iim;ﬁ,ﬂfﬂ = 0 ux-a.e. A simple
argument using the Artin product formula shows that this leads to a contradiction. It
follows that the sef of thosesS for which lim supf,,l/" is positive has positive measure.
On the other hand, the odometer transformatiorfik) is w.-preserving and ergodic,
and preserveg. The conclusion is thak is of full u;-measure.

A subsetS C P(k)\ Py (k) has density if

1
;I{j |k ($)(j)=1,j <n}| — 8§ asn — oo.

COROLLARY 1. If a and b are coprime integers, then almost every sutief 22,,,(Q)
has density; and has

limsupla” — b"Y" x [ [ la" = b"[}/" =y/max([al. [b]} > 1. (3)

n—o00o peS

If f andg are coprime elements &f,[¢], then almost every subsgtof Q/, (F,(z)) has
density: and has

limsup| f" — g" %" x [T1/" — ¢"[i/" =y/maxpdean, pdeds)} > 1. (4)

n—00 ves

Proof. Let k = Q, & = a/b. For any setU containing the finite sel’ = {v | |b|, # 1},

£ @@UD) = ‘(%)ﬂ _ 1‘ x UE ‘(%)ﬂ -1 x VEIZ{T ‘(%)n -1

= la"=b"Ix ] la" = 2"l
veU\T

v v

since for anyv € U\T we have|b|, = 1. The setS may therefore be chosen in the
intersection of the full measure set for which (3) holds (by Theorem 1) and the set of
thoseS for which wg(S) is a normal sequence.

The geometric case is proved in the same way. O



474 T. B. Ward

For integers the order of quantifiers may be reversed:if an integer in the\-field
k, then Q¢ (k) = Q(k) = P(k)\ Px(k), SO we may intersect over the sets in Corollary 1
for all integers.

CoROLLARY 2. For almost every subsef of the set of rational primes, and for every
integera # +1,
limsupla" — 1Y x l_[ la" — 1|,1,/" >/ lal.

n— 00 pes

For almost every subset of the set of finite places @, (¢), and for every non-constant
polynomial f € IF,[7],

limsup| f" — 1|¥" x 1_[ |f7 = 1Y >/ pdedn.

n—o00 ves

THEOREM 2. Let k be an algebraic number field, and assume that k\{0} is not a
unit root. Then foru; -almost evenys e Q¢ (k), the dynamical zeta function aft-5:%) is
irrational.
Remark 1.(i) In [13] the casek = Q, § = 2, p = % is considered: forS = @ this is
the circle-doubling map. It is clear that the arithmetic of the dase2 is unique, since
expressions of the form” — 1 can only be prime it: = 2. It is shown there that with
positive ug-probability the radius of convergence is smaller than one, and that if there
is a K for which there are infinitely many values offor which 22 — 1 has no more
than K prime factors then withwg-probability one the radius of convergence is exactly
%. This result is generalised in Theorem 4 below. In particular, if there are infinitely
many Mersenne primesk( = 1) then the radius of convergence%js It is also shown
in [13] that the zeta function is almost surely irrational.

(i) There are many set§ for which the radius of convergence is one: according to
Example 9.5 of §], if k is an algebraic number field anfl comprises all but finitely
many places, then the radius of convergence is one. The simplest instance of this is the
caseS = P(k)\ P (k): by the Artin product formula (1) shows thé}(«) = 1 for all n.

(iii) Is there a syndetic sef (that is, a set for which 1's appear i (S) with bounded
gaps) with (3)?

The natural geometric analogue of the simplest arithmetic kaseQ, &€ = 2 is the
family of isometric extensions of the fuil-shift given byk = IF,(¢), £ = z. In this setting
the Mersenne prime problem becomes the following: is the polynorsiahl?+- - . 4"
irreducible ovelF, infinitely often? A consequence of Heath-Brown’s work on the Artin
conjecture is that this is almost solved, and using this work we show that the natural
conjectures can all be proved for this one geometric example. The argument immediately
extends to the family of isometric extensions of the linear cellular automata given by
k=F,(), &E =at+b (a € F,\{0}).

THEOREM 3. Letk = F, (1), € = at+b (a € F,\{0}), anda'® = «*59_ Then, excepting
at most two primegp, for u; -almost everys e 2 (k),

1
limsup=log f, (@) =log p = hp(a™),
n

n—oo
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oo 1
liminf = log f,(«®) =0,
n—oo n

and the dynamical zeta function @f* is irrational.

CoROLLARY 3. One of theS-integer systems given By= ¢, k = F,(z), F3(¢), or Fs(¢)
satisfies the conjecture.

That is, the property of isometric extensions described by the conjecture holds for one
of the full 2-, 3- or 5-shift.

The arithmetic case seems less accessible: Theorem BB shdws that for at least
one of the systems given biy= Q, & = 2, 3 or 5, there is an infinite set for which

imsup L 10g(, (o) = hp(a’™).

Thus the lim sup part of the conjecture holds for an uncountable(purull) set of S.

The first two parts of the basic conjecture would follow from the solution to a
generalization of the Mersenne prime problem. There does not, however, seem to be any
particular reason to expect such a statement to be true:14péof a survey of related
guestions for the case= Q, & = 2.

THEOREM 4. If, for any A-field k and& € k\{0} not a unit root, the set
Po={vePk]IE"-1,#1

is bounded in cardinality for infinitely many, then foru,-almost evens e Q¢ (k),

1
limsup=log £, (@“*9) = hp(a™>%) > 0
n

and 1
liminf = log f,(«®5%) = 0.
n

n—o0o

Finally, we describe explicitly the structure of afyinteger dynamical system as an
isometric extension of a (quasi-)hyperbolic base system. Non-hyperbolicity in the base
can only occur in the infinite places.

Recall from [7] that an ergodic toral endomorphism is called quasi-hyperbolic if the
corresponding integer matrix has an eigenvalue with unit modulus, and ftdhtHat
for each non-Archimedean plageof an A-field the corresponding completion has
a maximal compact subring, = {x € k, | |x|, < 1}. For consistency, we call an
ergodic S-integer system hyperbolic if it is expansive (this accords with hyperbolicity
meaning that the ‘eigenvalues’ are not of unit modulus) and quasi-hyperbolic if the only

unit modulus eigenvalues appear in the infinite places.
THEOREM 5. For anyk, S, & (£ not a unit root), let
H={vePk) |, #1}NS. (5)

Thena*-5:9) is an isometric extension af*:¥), The action on the fibre above the identity
is isometric to multiplication by on ]‘[ueS\H r,, and this map is an isometry. For each
v € HU Py (k), the mapx — & - x on the fieldk, is hyperbolic unless is infinite, in
which case the map may be quasi-hyperbolic.
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2. Proof of Theorem 1
Let P ={2,3,5,7,...} denote the rational primes.

LEmMMA 1. For any A-field k, and for& not a unit root ink, the set
. 1
E= {S | limsup = log f, (@®59) > o}
n—>oo;nepP

has positiveu,-measure.

Notice that the setf is measurable: since a given natural number (of periodic
points) is divisible by only finitely many primes, for fixedthe function sending to
2 log f, (™59 is continuous (with the product topology ¢8} identified with{0, 1}").
It follows that imsup_, ..., = log f,(«*5%) is a measurable function o, so the set
of points on which it is positive is a measurable set.

Proof. Let § = S U P, (k), and assume thaf has zero measure. Then by (1) we have
for a.e.S

1
li —1 "—1|, =0.
n—>olon;-711€77 n Ogg |éj | 0 (6)

By Lemma 5, we know that
1
H - n__ _ _ (k,S,&)
,Jim ~log _]"[ 1E" — 1], = h = higpla®5) > 0. 7)
ves;|El#L
Now define a new set of places by
S={peS|EL#LUfve Pk)UPxk)|veSs, g, =1}

By the product formula, for any € k\{0}
l_[|77|v anmv: 1_[ |77|v~ (8)
ves§ veS veS:|gl,#1

Now (6)—(8) together imply that for a.€,

1
im =lo "—1,=h>0. 9
n—)olo;neP n g 16_5[” |%— | = ( )

The mapS — S’ induces (by restriction to the finite placesuga-preserving involution
on Q¢ (k), so (9) contradicts (6). We conclude that

1
uk<{S | limsup = log f,(a%*5%) > O}) > 0. O

n—oo;neP

Notice thatE does not contain any seét with w;(S)(n) = 1 for all n. So without
loss of generality, any st € E may be written

S = {Vn@), Vn@> V@ - - -1
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with n(1) < n(2) < n(3) < --- andn(j) = j only finitely often, forj = 1,...,r say.
Then

V(S) = {vn@> Vm@s V(@ - - -}
where m(1) = n(r) + L m(®) = n(r + £ —1) for ¢ > 2 if n() = 1, and
ml) =1, m@®) =n—1) for ¢ > 2 if n(1) > 1. By assumption, for any§ € E
there is a sequencg — oo in P for which

1 log [] €% -1, — ho>0. (10)

nj veSUPa (k)

Assume first thak (1) = 1. Then
1
—log ] -1,

i ev$) P
1 , 1 . 1
= —log [] 1 -1—=log [] 1& =1L, + = loglg" —1l,,, .
i esuPL k) i =1y nj

By the basic estimates in the Appendix (Lemma 6 and Lemma 7), we see that the last
two terms above converge aloito zero, so the left-hand side converges al@hdp
ho > 0 by (10), showing thav (S) € E.

If n(1) > 1, then

1 _ 1 _ 1 _
—log [[ ©Ev-1==log ] [£" -1, +=loglg” —1,,,.
o ev($)UPk) i esSUPL() nj
and the basic estimates in the Appendix show that the last term convergesFalang
zero, showing again that (S) € E.
Indeed,V preserves the value of the upper limit, so it is almost everywhere constant.

If 1 1

limsup = log f,(«%5%) < Zh,

n—oo;neP 2

then by (7) and (8)

1 1 1
Sh< lminf ~log f,(@®*%) < limsup ~log f, (@)
n

n—ooine n—oo;neP

almost everywhere.
This proves Theorem 1.

Remark 2(i) The second part of the proof of Theorem 1 depends only on the following:
Lemma 6 and Lemma 7 say that modifying the Sein finitely many places does not
affect the upper and lower growth rates. Thus the ergepdigpreserving action of the
finitary symmetric group oif2; (k) also preserves the upper limit. Thus, if

: 1
limsup=log f,(@®5%) = hp(a®59)
n—oo N

on a positiveu; -measure set, then the same is trfealmost everywhere, and so

1
liminf = log f,(@®59) =0
n—-oo n
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i -almost everywhere. Similarly, if

1
liminf = log f,(«®*5%) =0
n

n— 00

on a positiveu; -measure set, then the same is tpfealmost everywhere, and

. 1
lim sup= log £, (@®5%)) = hygp(a®59)
n—oo N
u,f_p -almost everywhere.
(i) Similarly, if

lim sup} log f,, (@®5%)) < hygp(a®59) = Z log" |£],
n

n—00 veSUP., (k)

for a positiveu; -measure set, then
iminf L (k.5.8)
liminf —log f, (¢'*>%’) > 0
n—-oo n

for a positiveu, “-measure set.

3. Zeta functions in the arithmetic case

Let k be a fixed algebraic number field ada non-zero element df that is not a unit
root. For each finite place of k, the valuation| |, restricted toQ C k is equivalent to
a p-adic valuation| |, for a unique rational primg € P; in this case writev|p. By
Theorem 1, Chapter IlI§1 of [14] there are only finitely many places with v|p for
a fixed p; indeed by Chapter 11134 of [14] the number of places above a givenis
bounded by £ : Q].

LEMMA 2. If
py (S € Qe (k) | ¢y isirrational}) < 1

then there is a functiog for which

{$€Q:k) | Lo =8}

has positiveu; -measure.

As in the discussion after Lemma 1, it should be pointed out that the set in question
is measurable. By the same argument, after identifying the sStsofvith {0, 1} and
the set of dynamical zeta functions with' (both with product topology), the function
S — &, (+) is continuous. On the other hand, there are only countably many rational zeta
functions by [], so the set of irrational ones is measurable.

Proof. According to [L] there are only countably many rational dynamical zeta functions.

It follows that the complement of the s@f € Q¢ (k) | ¢, is irrationa} has positive
n;-measure and is a countable union of sets on which the dynamical zeta function is
constant (and rational). One of these sets must therefore have positive measufe.



Almost all S-integer dynamical systems have many periodic points 479

LEMMA 3. In any positiveu; -measure subset 6 (k) there are elementsSy, S; for which
) and oY have distinct dynamical zeta functions.

Proof. Let C C (k) haveu; (C) > 0. Since the number of above eaclp is globally
bounded by = [k : Q], the independent sets

A, ={S | 3 exactly onev € S, v|p}
all haveu? (A,) € (dp?, 1]. It follows that
wi ({S | 3 Py infinite such thatvp € Py 3 exactly onev € S, v|p}) =1
by Borel-Cantelli. It follows that inC we may findSo with the property that
Po={peP|3oneve Sy,vp}

is infinite. Then by Borel-Cantelli, the séf € Q¢ (k) | Vp € Py, Jv € S, v|p}is a null
set. So there is a s&4 € C, and infinitely many primeg for which there is exactly
one placev € Sy with v|p but there is no place € S; with v|p. Pick any one of these
primes and consider the distinguished pla¢g of k for whichv € Sp andv ¢ S;.

If |€], > 1 then since& € Rg, N Rs, we havev € Sp N S1, which is impossible by
construction.

If £], < 1then|é" —1|, = 1 for alln > 1. This means that the-part of the periodic
point data for the two systems is identical. In this case, move to the next prime
the infinite set constructed above. Sirce| |£], < 1} is finite for anyé € k\{0}, this
process must terminate withwafor which |£], > 1.

If |&], = 1, then choose a prime elemente k, and write

£ =ag+ a1 + apm? 4 - -

where eacty; € F,, the residue class field df,. SinceF; is cyclic, it follows that
£~ =14 ¢, with |e], < 1.

It is clear that|¢" — 1], is some (rational) power op, so in either case the prime
decomposition off,, shows that the zeta functions are distinct. O

Theorem 2 follows.

4. Extensions of linear cellular automata on the fpHshift

Notice that the dynamical systems givenkoy F (1), & = at+b (a € F,\{0}) comprise

a family of isometric extensions of linear algebraic cellular automata. To see this, recall
from [14] that IF,(t) has one distinguished ‘infinite’ place (so-called despite the fact
that the corresponding completion is non-Archimedean) labettédthe corresponding
valuation hast|,-» = p. For § = @, «*5:9) is the map given by

(a®59x), = ax,+1+bx, on{0,1,...,p— . (12)

For S = {t71}, a®5% is the map given by

(k,5.8)

(x X)p = axgs1+bx, on{0,1,....,p— 1% (12)

For other setsS, «%5% is an isometric extension of the map (11) (ift ¢ ) or the
map (12) (ifz~* € S).
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Proof of Theorem 3First assume that = 1, b = 0, so& = ¢; by equation (1) we need
to understand the irreducible factors of the polynomial

1 —1=@—DA+t+24 -+ =t — D, (1)

for various values of. Assume thayg is prime. By Theorem 2.47 irf], the polynomial
cq (1) splits overF, into ((¢ — 1)/f) irreducible factors, wher¢ is the least positive
integer for whichp/ = 1 modg. Using the result of Heath-Brown im], eliminate two
possible primeg for which the Artin conjecture may fail; we may then assume that if
is one of the remaining primes, then for infinitely many valueg,gp is a primitive root
modg, soc,(t) is irreducible ovetF, infinitely often. The first two parts of Theorem 3
now follow from Theorem 4; to motivate that argument we prove it here for this simple
case.

By Borel-Cantelli, foru;-almost everyS € (k) there is an infinite sequence of
primesg; with the property that the place corresponding to the irreducible polynomial
cq; (1) lies in S for all j, so

@) =TT =1l = p? x p= @Y xe;,

ves

wheree; = p~* or 1 depending on whether the place correspondind.te ¢) lies in S
or not. In either case,

o1 .1 . 1
liminf = log f,(@®) < lim —log f,, (@) = lim —=loge; =0,
n—>oo n J—>00 q] : J—>o0 q]

which proves the second statement in Theorem 3.
Equally, we may find an infinite sequengeof primes with the property that the place
corresponding to the irreducible polynomigl(r) does not lie inS for any j, so

f @) =TI =10, =p" xej.

vesS

and therefore

i 1 ) 1 ) 1 r
limsup—log f, (@) > lim —log f,, (¢*’) = lim —log(p” x e;) = logp,
n oot j—oor;

n—o0o J

proving the first statement in Theorem 3.
Now consider the dynamical zeta functionof.

LEMMA 4. If
i (S € Qe (k) | Lo is rational}) > 0

then there is a pair, d of integers with no common factor with the property that the set
{g € F,[1] | g dividest"*¢ — 1 for somen € N}

is finite and, for infinitely many, the polynomiak.,,,(¢) is irreducible.

The conclusion of Lemma 4 is clearly absurd, so the third statement in Theorem 3
follows.
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Proof. By the argument used for the liminf above, we know thet;almost surely, there

is an infinite sequence of primes with the property thaf; («®)) = p or 1 for all ;.

It follows that, with positiveu,-probability, the zeta function is rational and there is an
infinite sequence of primesg for which f; («®) = A for all j, whereA is one of p

or 1. It follows by the Mahler—Lech theorer8][or [2, p. 88], thatf; («') = A for alll

k in some arithmetic progression taking on some prime valuesksaycn + d. That

is, for everyS in some positiveu; -measure set, there is a co-prime paid for which

all (if A = 1) or all but one (ifA = p) of the factors ofr*+¢ — 1 lie in S for all n.
Since there are only countably many such arithmetic progressions, it follows that there
is a single pairc, d with the property that everg in a set of positive measure has the
property that all (ifA = 1) or all but one (ifA = p) of the factors oft*+¢ — 1 lie in §

for all n. By Borel-Cantelli, this can only be possible if the set of factors‘ef? — 1

for all n is itself finite. O

For the general casg= at + b, the same proof works sineg (at + b) is irreducible
if and only if ¢, (¢) is irreducible. This completes the proof of Theorem 3. O

5. Proof of Theorem 4
Fix k and &, and letn; — oo be a sequence with the property tha, | = L for
j=12,.... Choose, if possible, a subsequemee = n;q), mo = nj@), ... with the
property that

Pu\\J Pn, # 0 (13)

<k

for all k. If this is not possible, the ), P, is finite, and therefore with positive
1t -probability the setS does not intersect ang,,, so on a set of positive? -measure

fu@ =TT 1&" =1,
vilEl,#L
and hence

lim sup} log £, (@®59) = hygp(a®5:5)) (14)
n

n—o00
by Lemma 5. It follows by Remark 2(j) that (14) holds fef -almost everys. Similarly,
with positive . -probability the setS contains all theP,,, so on a set of positive
u,f—measurefnj (e) = 1, and hence

oo 1
liminf = log f,(«*5%) =0
n—oo n

and the lower limit is zero almost everywhere by Remark 2(i) again.
So we may assume (13). Let

So={v e P(k) | v € P,, infinitely often};

by (13),|So| < L.
Let P, = Py, \So, and choose a further subsequenge= my ), s2 = my), . .. With
the property that
P.n|JP, =0 (15)
l<j
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By construction,
1<L—|Sl<|P|=<L (16)

for all k. By (15) the sets
Aj = {o(S) | ok (S)(n) = 1 if and only if v, € PX’/}

are independent, and by (16 (4,) € [p*, p], so by the Borel-Cantelli lemma, for
w;-almost everysS there is a sequenag ) = Sk, such thatt(j) — oo asj — oo and
SN P/, = forall j.

SinceSy is finite, it follows that there is a positive,-measure set on whickN Sy = @
and the above sequence exists. For sucl§,det

Im= ] 1§ -1, and Jey= T[] I&"~1h.
I&],#1 vesigl,=1
Notice that £, («%*5)) = I (n) x J(n) since for theses, S N Sy = .
By Lemma 5,

1
lim =log 7 (n) = hp(a®59).

n—oon
On the other hand, along the sequencg), we haveJ(¢(j)) = 1 since the sefy has
been removed. It follows that
1

lim — lo . (k,S,&) =h (k,S,&)

jmoo 1(j) gft(])(a ) top(“ )
for all S in a set of measure at legst. By Remark 2(i) this implies that the upper limit
is hiop(a©5:9)) and the lower limit is Ou} -almost everywhere.

Remark 3.The subsequence with (13) does always exist though there does not seem
to be a short proof of this fact: in the arithmetic case it follows from Zsigmondy’'s
theorem 1L5] or the result in 9.

6. S-integer systems as isometric extensions
To prove Theorem 5, first notice that by (B) C S, so there is a canonical embedding

Ry — Rs. (17)

Dual to the monomorphism (17) there is a surjective homomorphisnx %) — x &)
with 7a® = o™ 5. This map realiseg*” as a factor ofx': it remains to identify
whata looks like and the action af(® restricted to the fibr& = 7~ 2(1ywm).

If HU P (k) C{vePk)]I|&|, # 1}, then by Corollary 4.2 of3] the mapa*’ is
hyperbolic (notice thait|, for all » above a given place’ is determined by the value
of |£], for any one place abovev’ except for the infinite places of an algebraic number
field). If HU Py (k) ¢ {v € P(k) | ||, # 1} then there must be an infinite placefor
which |£], = 1, and there®) is quasi-hyperbolic.

The action on the fibre is found as follows. The dual of the kernet @ given by
the co-kernel oft : Ry — Rs, SOY = Rs/Rpy. Using the methods of3] §3], one may
show that(m) =R} C Ry and then that

Y = Rs/Rp) = [] -
veS\H
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On each of the factors, with v € S\H, «® acts via multiplication by, which is an
isometry sincgé|, =1 forv € S\ H.

Example 1.To illustrate Theorem 5 some explicit examples follow.

() Fk=Q,&=2,8S=0,thenH =0 soa® =o' is the circle-doubling map and
Y is trivial.

(i) If k=Q, & =2,5=(3},thenH = @, so the hyperbolic base mag" is the
circle-doubling map. The fibr& = Z3 (3-adic integers), and‘® restricted toY is
the isometryx — 2x on Zs.

(i) The general case when= Q (that is, systems living on a one-dimensional solenoid)
has the following structure. i = r/s in lowest terms, therH is the set ofp-adic
valuations corresponding to primes that divide The action on the fibre is the
isometryx +— (r/s) - x on

Y = 1_[ p.
{peSipfrs)

(iv) A non-hyperbolic base map in the arithmetic case is given by Lind’s example from

[6, §3] (see also Example 2.2(5) and Example 6.1(1)3}). [Let

E=V2—1+iy2vV2-2,

k=Q(), andS = 9. ThenH =@, Ry = Z + €7 + £°7Z + £37Z, anda) = o®
is the quasi-hyperbolic automorphism of the 4-torus corresponding under duality to
the integer matrix

0O 1 0 0
0 0 1 0
0 0 0 1
1 -4 2 -4

If S were non-empty, the#/ would still be empty, and” would be a product over
S of rings of integers on whickx> acts as an isometry.
(v) Letk =TF3(t), & =1+1)/2+1), andS = {1+1¢,2+1¢,1+1?}. Then

H={1+12+1},
anda™ is quasi-hyperbolic because of the infinite place where

141
24t

-1
The fibre action is given by the isometry— ((1+ ¢)/(2 + #))x on the compact
rng ras2) C Fa(t) 1)
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Appendix
There are three basic estimates used. These may be extracted from pragjfswe [
briefly prove them again here for completeness.

LEMMA 5. Letk be anyA-field, & not a unit root, andS any set of finite places for which
& € Rg\{0}. Then

1
“log [ 1" =1 — hep@®y = >~ log* €], > 0.
veSU P (k); €], #1 vESU P (k)

Proof. The convergence is clear: there can be only finitely many places for which
|&], # 1, and at each of these

1
. log|" — 1|, — log* [£],.

In the arithmetic case the limit must be positive by Kronecker’s theorem. In the geometric
case, if|¢], < 1 for all infinite v, then& € I, (¢) is of the formc/p(¢) for some constant

¢ and polynomialp(t) € F,[t]. Since¢ € Rs\{0}, there must be & € S with |£], > 1
unlessp(r) is a constant, which is precluded by requiring thatot be a unit root. [

LEMMA 6. Let k be an algebraic number field, not a unit root, andrl" any finite set of
places with|&|, = 1forv € T. Then

1
=1 "1,
~log[[1&" -~ 1, — 0

veT

asn — oQ.

Proof. We follow the proof of Theorem 6.1 ir8]. If v is Archimedean, then by Baker’'s
Theorem (seell, p. 281]) we have positive constanigh with [£" — 1| > a/n’. It
follows that

}Iog|§” -1 -0 (18)
n

asn — o0.

Assume therefore that is a finite place lying above the plageof Q with &, =1
and with|¢€" — 1|, < 1. LetQ, be the usual completion of the algebraic closureQof
underv; the v-adic logarithm is defined by

log, (1+x) = Y (=)',
i=1

convergent for allk with |x|, < 1. Then

11_12 n_13
0g, 6" = "~ 1~ CoP  EED

and sollog, ("], < |&" — 1],. Since we always have for some constant

5 < |nlog, &)], = | log, ("),
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this shows that
<|E"-1, <1 (19)

S| o

for all n.
Since the sef is finite, (18) and (19) together show that

1
“log[]1g" - 11, —
log] |18 v 0

veT

asn — oo. O

LEMMA 7. Let k be a rational function field¢ not a unit root, andT any finite set of
places with|&|, = 1forv € T. Then
. 1 n

n»lc!or;r}lep ; Iogg " = h = 0
Proof. Following the proof of Theorem 6.2 ir8], split the setT into disjoint subsets
A={veT||E-1,=1andB={veT]||§-1|, <1}. Foreachv € A, write
£ = ap+a1m +an?+--- whererr € k has org(r) = 1/e, e is the index of ramification
and the coefficienta; come from the residue class field Let d be the multiplicative
order ofag in L*; d > 2 clearly. Then a simple calculation shows thgt — 1|, = 1
if and only if d does not divide:. SinceA is finite, we deduce that there is a finite set

{di1,...,d,} of integers each greater than or equal to one with the property that
[TE -1.=1
veT
whenevem is not divisible by any ofdy, ..., d,,. We conclude that
1
im =lo "—1],=0. 20
n—oo;neP n g‘g |$ | ( )
The setB is also finite; letB = {v,, ..., v,}. For eachj € {1,2,..., ¢} write
00 .
E =1+ Zaiﬂ;
i=1

with a; andr; as above, anfk — 1|, = p~¥ wheres; = %min{i | a; # 0}. Then

1 1¢ 1¢ B B
;Ejlog|s"—1|v_, = ;}jlog|§—1|u,.+;§jlog|s” Lren g+,
j=1 j=1 j=1

1 o1

= =Y log|m;ly + =) log
n < n <
j=1 j=1

for coefficientsb; (j) € k,, with [b;(j)|,, < 1 for alli andj. This expression converges
to zero so long ap, the characteristic of, does not divide:. We deduce that

1
lim Zlog[]l1&" -1, =0,

n—oo;n€P n VeA

o
n+ Y bi(j)m;
i=1

vj

which together with (20) gives the result. O
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