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Abstract. We show that for almost every ergodicS-integer dynamical system the radius
of convergence of the dynamical zeta function is no larger than exp(− 1

2htop) < 1. In the
arithmetic case almost every zeta function is irrational.

We conjecture that for almost every ergodicS-integer dynamical system the radius
of convergence of the zeta function is exactly exp(−htop) < 1 and the zeta function is
irrational.

In an important geometric case (theS-integer systems corresponding to isometric
extensions of the fullp-shift or, more generally, linear algebraic cellular automata on
the full p-shift) we show that the conjecture holds with the possible exception of at most
two primesp.

Finally, we explicitly describe the structure ofS-integer dynamical systems as
isometric extensions of (quasi-)hyperbolic dynamical systems.

1. Introduction
The S-integer dynamical systems were introduced in [3], and the question of typical
behaviour for one family of these systems was considered in [13] (though of course in
the arithmetic case such dynamical systems appear in the work of Rokhlin and Halmos).
We first define them: a complete description with references and examples is in [3].
They are an arithmetically natural class of isometric extensions of familiar maps like
toral endomorphisms or algebraic cellular automata.

Let k be anA-field (that is, an algebraic number field or a rational function field
with positive characteristic), with set of placesP(k) and infinite placesP∞(k). Let
S ⊂ P(k)\P∞(k) be a set of finite places, define

RS = {x ∈ k | |x|ν ≤ 1 for all ν /∈ S ∪ P∞(k)}

to be the associated ring ofS-integers, and letξ be any element ofRS\{0}. Then the
continuous endomorphismα = α(k,S,ξ) of the compact abelian groupX = X(k,S) = R̂S
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dual to the monomorphismx 7→ ξx of RS is theS-integer dynamical system associated
to the datak, S, ξ . The number of points with periodn underα is given by

fn(α) =
∏

ν∈S∪P∞(k)

|ξn − 1|ν (1)

so long asξ is not a root of unity ink (see§5 of [3]; this condition is equivalent to
ergodicity forα). Sincefn is finite for all n, the dynamical zeta function ofα,

ζα(s) = exp
∞∑

n=1

fn × sn

n

is a well-defined formal series. In fact, simple estimates (see§6 of [3]) show that the
radius of convergence of the zeta function lies in(0, 1] for any S-integer system.

The topological entropy ofα is found in [3],

htop(α) =
∑

ν∈S∪P∞(k)

log+ |ξ |ν .

From the complete description of the set of places of anA-field in Chapter III,§1 of
[14], the setP(k) is countably infinite and the setP∞(k) is finite. Givenξ ∈ k\{0} not
a unit root, letω1, . . . , ωs be all the finite places ofk for which |ξ |ωj

> 1. Write

P(k)\P∞(k) = {ω1, . . . , ωs, ν1, ν2, . . .}, (2)

and define a mapωk from the subsets ofP(k)\P∞(k) containing{ω1, . . . , ωs} to {0, 1}N

by ωk(S)(n) = 1 if and only if νn ∈ S. The (ρ, 1 − ρ)-independent measure on{0, 1}N

with ρ ∈ (0, 1) defines, via the bijectionωk, a probability measureµρ

k = µ
ρ

k,ξ on the set

�ξ(k) = {S | {ω1, . . . , ωs} ⊂ S ⊂ P(k)\P∞(k)}.
Let U : {0, 1}N → {0, 1}N be the add-and-carry odometer (or von-Neumann Kakutani

adding machine) which preserves the( 1
2, 1

2) independent measure on{0, 1}N and is
ergodic (by Theorem 1.9 in [12]: it is enough to know that the subgroup generated by 1
in the compact group{0, 1}N = Z2 of 2-adic integers is dense). LetV : �ξ(k) → �ξ(k)

be defined byV (S) = ω−1
k (Uωk(S)). Then V is a µ

1/2
k -preserving, invertible, ergodic

transformation on�ξ(k), called the odometer. We shall often be dealing only with
the symmetrical measure withρ = 1

2, so writeµk = µ
1/2
k . The phrase ‘almost every’

unadorned will be used for theρ = 1
2 measure only.

Recall that the places of the rational function fieldFp(t) are in one-to-one
correspondence with the irreducible polynomials together with one ‘infinite’ place with
valuation written| · |∞: this is non-Archimedean and has|t |∞ = p.

The periodic point behaviour for a givenξ is expected to behave as follows.

CONJECTURE. Givenξ not a unit root in theA-field k, for µ
ρ

k -almost everyS in �ξ(k),

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) = htop(α
(k,S,ξ)) > 0,

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) = 0,

and the dynamical zeta function is irrational.



Almost allS-integer dynamical systems have many periodic points 473

The excluded atomic measures given byρ ∈ {0, 1} give the two extremes with
exceptional behaviour. Forρ = 0, S = P(k)\P∞(k) and fn(α

(S)) = 1 for all n.
For ρ = 1, S = ∅ and the upper and lower limits are both equal to the entropy by
Lemma 5 (see the Appendix).

Our purpose here is to prove some weaker versions and special cases of this conjecture,
and to indicate a connection between the conjecture and a weak generalised version of
the Mersenne prime problem.

THEOREM 1. Let k be anA-field, and assume thatξ ∈ k\{0} is not a unit root. Then for
µk-almost everyS ∈ �ξ(k), the radius of convergence of the dynamical zeta function of
α(k,S,ξ) is no larger thanexp(− 1

2htop(α
(k,S,ξ))) < 1.

The detail of the proof of Theorem 1 depends on the characteristic ofk: when k

is an algebraic number field we call the corresponding systemsarithmetic, when k is
a rational function field we call themgeometric. Some basic estimates from [3] are
needed: for completeness these are reproduced in an appendix. The strategy of the proof
of Theorem 1 is as follows. First we assume that lim supf

1/n
n = 0 µk-a.e. A simple

argument using the Artin product formula shows that this leads to a contradiction. It
follows that the setE of thoseS for which lim supf 1/n

n is positive has positive measure.
On the other hand, the odometer transformation on�ξ(k) is µk-preserving and ergodic,
and preservesE. The conclusion is thatE is of full µk-measure.

A subsetS ⊂ P(k)\P∞(k) has densityδ if

1

n
|{j | ωk(S)(j) = 1, j ≤ n}| −→ δ asn → ∞.

COROLLARY 1. If a and b are coprime integers, then almost every subsetS of �a/b(Q)

has density1
2 and has

lim sup
n→∞

|an − bn|1/n ×
∏
p∈S

|an − bn|1/n
p ≥

√
max{|a|, |b|} > 1. (3)

If f andg are coprime elements ofFp[t ], then almost every subsetS of �f/g(Fp(t)) has
density1

2 and has

lim sup
n→∞

|f n − gn|1/n
∞ ×

∏
ν∈S

|f n − gn|1/n
ν ≥

√
max{pdeg(f ), pdeg(g)} > 1. (4)

Proof. Let k = Q, ξ = a/b. For any setU containing the finite setT = {ν | |b|ν 6= 1},

fn(α
(Q,U,ξ)) =

∣∣∣(a

b

)n

− 1
∣∣∣ ×

∏
ν∈T

∣∣∣(a

b

)n

− 1
∣∣∣
ν
×

∏
ν∈U\T

∣∣∣(a

b

)n

− 1
∣∣∣
ν

= |an − bn| ×
∏

ν∈U\T
|an − bn|ν

since for anyν ∈ U\T we have|b|ν = 1. The setS may therefore be chosen in the
intersection of the full measure set for which (3) holds (by Theorem 1) and the set of
thoseS for which ωQ(S) is a normal sequence.

The geometric case is proved in the same way. �
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For integers the order of quantifiers may be reversed: ifξ is an integer in theA-field
k, then�ξ(k) = �(k) = P(k)\P∞(k), so we may intersect over the sets in Corollary 1
for all integers.

COROLLARY 2. For almost every subsetS of the set of rational primes, and for every
integera 6= ±1,

lim sup
n→∞

|an − 1|1/n ×
∏
p∈S

|an − 1|1/n
p ≥

√
|a|.

For almost every subsetS of the set of finite places ofFp(t), and for every non-constant
polynomialf ∈ Fp[t ],

lim sup
n→∞

|f n − 1|1/n
∞ ×

∏
ν∈S

|f n − 1|1/n
ν ≥

√
pdeg(f ).

THEOREM 2. Let k be an algebraic number field, and assume thatξ ∈ k\{0} is not a
unit root. Then forµρ

k -almost everyS ∈ �ξ(k), the dynamical zeta function ofα(k,S,ξ) is
irrational.

Remark 1.(i) In [13] the casek = Q, ξ = 2, ρ = 1
2 is considered: forS = ∅ this is

the circle-doubling map. It is clear that the arithmetic of the caseξ = 2 is unique, since
expressions of the forman − 1 can only be prime ifa = 2. It is shown there that with
positiveµQ-probability the radius of convergence is smaller than one, and that if there
is a K for which there are infinitely many values ofn for which 2n − 1 has no more
thanK prime factors then withµQ-probability one the radius of convergence is exactly
1
2. This result is generalised in Theorem 4 below. In particular, if there are infinitely
many Mersenne primes (K = 1) then the radius of convergence is1

2. It is also shown
in [13] that the zeta function is almost surely irrational.

(ii) There are many setsS for which the radius of convergence is one: according to
Example 9.5 of [3], if k is an algebraic number field andS comprises all but finitely
many places, then the radius of convergence is one. The simplest instance of this is the
caseS = P(k)\P∞(k): by the Artin product formula (1) shows thatfn(α) = 1 for all n.

(iii) Is there a syndetic setS (that is, a set for which 1’s appear inωk(S) with bounded
gaps) with (3)?

The natural geometric analogue of the simplest arithmetic casek = Q, ξ = 2 is the
family of isometric extensions of the fullp-shift given byk = Fp(t), ξ = t . In this setting
the Mersenne prime problem becomes the following: is the polynomial 1+t+t2+· · ·+tn

irreducible overFp infinitely often? A consequence of Heath-Brown’s work on the Artin
conjecture is that this is almost solved, and using this work we show that the natural
conjectures can all be proved for this one geometric example. The argument immediately
extends to the family of isometric extensions of the linear cellular automata given by
k = Fp(t), ξ = at + b (a ∈ Fp\{0}).
THEOREM 3. Letk = Fp(t), ξ = at+b (a ∈ Fp\{0}), andα(S) = α(k,S,ξ). Then, excepting
at most two primesp, for µ

ρ

k -almost everyS ∈ �ξ(k),

lim sup
n→∞

1

n
logfn(α

(S)) = logp = htop(α
(S)),
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lim inf
n→∞

1

n
logfn(α

(S)) = 0,

and the dynamical zeta function ofα(S) is irrational.

COROLLARY 3. One of theS-integer systems given byξ = t , k = F2(t), F3(t), or F5(t)

satisfies the conjecture.

That is, the property of isometric extensions described by the conjecture holds for one
of the full 2-, 3- or 5-shift.

The arithmetic case seems less accessible: Theorem 9.3 in [3] shows that for at least
one of the systems given byk = Q, ξ = 2, 3 or 5, there is an infinite setS for which

lim sup
n→∞

1

n
log(fn(α

(S))) = htop(α
(S)).

Thus the lim sup part of the conjecture holds for an uncountable (butµk-null) set ofS.
The first two parts of the basic conjecture would follow from the solution to a

generalization of the Mersenne prime problem. There does not, however, seem to be any
particular reason to expect such a statement to be true: see [11] for a survey of related
questions for the casek = Q, ξ = 2.

THEOREM 4. If, for any A-field k and ξ ∈ k\{0} not a unit root, the set

Pn = {ν ∈ P(k) | |ξn − 1|ν 6= 1}
is bounded in cardinality for infinitely manyn, then forµk-almost everyS ∈ �ξ(k),

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) = htop(α
(k,S,ξ)) > 0

and

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) = 0.

Finally, we describe explicitly the structure of anyS-integer dynamical system as an
isometric extension of a (quasi-)hyperbolic base system. Non-hyperbolicity in the base
can only occur in the infinite places.

Recall from [7] that an ergodic toral endomorphism is called quasi-hyperbolic if the
corresponding integer matrix has an eigenvalue with unit modulus, and from [14] that
for each non-Archimedean placeν of an A-field the corresponding completionkν has
a maximal compact subringrν = {x ∈ kν | |x|ν ≤ 1}. For consistency, we call an
ergodicS-integer system hyperbolic if it is expansive (this accords with hyperbolicity
meaning that the ‘eigenvalues’ are not of unit modulus) and quasi-hyperbolic if the only
unit modulus eigenvalues appear in the infinite places.

THEOREM 5. For anyk, S, ξ (ξ not a unit root), let

H = {ν ∈ P(k) | |ξ |ν 6= 1} ∩ S. (5)

Thenα(k,S,ξ) is an isometric extension ofα(k,H,ξ). The action on the fibre above the identity
is isometric to multiplication byξ on

∏
ν∈S\H rν , and this map is an isometry. For each

ν ∈ H ∪ P∞(k), the mapx 7→ ξ · x on the fieldkν is hyperbolic unlessν is infinite, in
which case the map may be quasi-hyperbolic.
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2. Proof of Theorem 1
Let P = {2, 3, 5, 7, . . .} denote the rational primes.

LEMMA 1. For anyA-field k, and forξ not a unit root ink, the set

E =
{
S | lim sup

n→∞;n∈P

1

n
logfn(α

(k,S,ξ)) > 0

}

has positiveµk-measure.

Notice that the setE is measurable: since a given natural number (of periodic
points) is divisible by only finitely many primes, for fixedn the function sendingS to
1
n

logfn(α
(k,S,ξ)) is continuous (with the product topology on{S} identified with{0, 1}N).

It follows that lim supn→∞;n∈P
1
n

logfn(α
(k,S,ξ)) is a measurable function ofS, so the set

of points on which it is positive is a measurable set.

Proof. Let S̄ = S ∪ P∞(k), and assume thatE has zero measure. Then by (1) we have
for a.e.S

lim
n→∞;n∈P

1

n
log

∏
ν∈S̄

|ξn − 1|ν = 0. (6)

By Lemma 5, we know that

lim
n→∞;n∈P

1

n
log

∏
ν∈S̄;|ξ |ν 6=1

|ξn − 1|ν = h = htop(α
(k,S,ξ)) > 0. (7)

Now define a new set of places̄S ′ by

S̄ ′ = {ν ∈ S̄ | |ξ |ν 6= 1} ∪ {ν ∈ P(k) ∪ P∞(k) | ν /∈ S̄, |ξ |ν = 1}.
By the product formula, for anyη ∈ k\{0}∏

ν∈S̄ ′
|η|ν ×

∏
ν∈S̄

|η|ν =
∏

ν∈S̄;|ξ |ν 6=1

|η|ν . (8)

Now (6)–(8) together imply that for a.e.S,

lim
n→∞;n∈P

1

n
log

∏
ν∈S̄ ′

|ξn − 1|ν = h > 0. (9)

The mapS̄ → S̄ ′ induces (by restriction to the finite places) aµk-preserving involution
on �ξ(k), so (9) contradicts (6). We conclude that

µk

({
S | lim sup

n→∞;n∈P

1

n
logfn(α

(k,S,ξ)) > 0

})
> 0. �

Notice thatE does not contain any setS with ωk(S)(n) = 1 for all n. So without
loss of generality, any setS ∈ E may be written

S = {νn(1), νn(2), νn(3), . . .},
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with n(1) < n(2) < n(3) < · · · andn(j) = j only finitely often, forj = 1, . . . , r say.
Then

V (S) = {νm(1), νm(2), νm(3), . . .},
where m(1) = n(r) + 1, m(`) = n(r + ` − 1) for ` ≥ 2 if n(1) = 1, and
m(1) = 1, m(`) = n(` − 1) for ` ≥ 2 if n(1) > 1. By assumption, for anyS ∈ E

there is a sequencenj → ∞ in P for which

1

nj

log
∏

ν∈S∪P∞(k)

|ξnj − 1|ν −→ h0 > 0. (10)

Assume first thatn(1) = 1. Then

1

nj

log
∏

ν∈V (S)∪P∞(k)

|ξnj − 1|ν

= 1

nj

log
∏

ν∈S∪P∞(k)

|ξnj − 1|ν − 1

nj

log
∏

`=1,...,r

|ξnj − 1|νn(`)
+ 1

nj

log |ξnj − 1|νm(1)
.

By the basic estimates in the Appendix (Lemma 6 and Lemma 7), we see that the last
two terms above converge alongP to zero, so the left-hand side converges alongP to
h0 > 0 by (10), showing thatV (S) ∈ E.

If n(1) > 1, then

1

nj

log
∏

ν∈V (S)∪P∞(k)

|ξnj − 1|ν = 1

nj

log
∏

ν∈S∪P∞(k)

|ξnj − 1|ν + 1

nj

log |ξnj − 1|νm(1)
,

and the basic estimates in the Appendix show that the last term converges alongP to
zero, showing again thatV (S) ∈ E.

Indeed,V preserves the value of the upper limit, so it is almost everywhere constant.
If

lim sup
n→∞;n∈P

1

n
logfn(α

(k,S,ξ)) <
1

2
h,

then by (7) and (8)

1

2
h < lim inf

n→∞;n∈P
1

n
logfn(α

(k,S,ξ)) < lim sup
n→∞;n∈P

1

n
logfn(α

(k,S,ξ))

almost everywhere.
This proves Theorem 1.

Remark 2.(i) The second part of the proof of Theorem 1 depends only on the following:
Lemma 6 and Lemma 7 say that modifying the setS in finitely many places does not
affect the upper and lower growth rates. Thus the ergodicµ

ρ

k -preserving action of the
finitary symmetric group on�ξ(k) also preserves the upper limit. Thus, if

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) = htop(α
(k,S,ξ))

on a positiveµρ

k -measure set, then the same is trueµ
ρ

k -almost everywhere, and so

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) = 0
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µ
1−ρ

k -almost everywhere. Similarly, if

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) = 0

on a positiveµρ

k -measure set, then the same is trueµ
ρ

k -almost everywhere, and

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) = htop(α
(k,S,ξ))

µ
1−ρ

k -almost everywhere.
(ii) Similarly, if

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) < htop(α
(k,S,ξ)) =

∑
ν∈S∪P∞(k)

log+ |ξ |ν

for a positiveµ
ρ

k -measure set, then

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) > 0

for a positiveµ
1−ρ

k -measure set.

3. Zeta functions in the arithmetic case
Let k be a fixed algebraic number field andξ a non-zero element ofk that is not a unit
root. For each finite placeν of k, the valuation| |ν restricted toQ ⊂ k is equivalent to
a p-adic valuation| |p for a unique rational primep ∈ P; in this case writeν|p. By
Theorem 1, Chapter III,§1 of [14] there are only finitely many placesν with ν|p for
a fixed p; indeed by Chapter III,§4 of [14] the number of places above a givenp is
bounded by [k : Q].

LEMMA 2. If
µ

ρ

k ({S ∈ �ξ(k) | ζα(S) is irrational}) < 1

then there is a functionζ for which

{S ∈ �ξ(k) | ζα(S) = ζ }
has positiveµρ

k -measure.

As in the discussion after Lemma 1, it should be pointed out that the set in question
is measurable. By the same argument, after identifying the set ofS’s with {0, 1}N and
the set of dynamical zeta functions withNN (both with product topology), the function
S 7→ ζα(·) is continuous. On the other hand, there are only countably many rational zeta
functions by [1], so the set of irrational ones is measurable.

Proof. According to [1] there are only countably many rational dynamical zeta functions.
It follows that the complement of the set{S ∈ �ξ(k) | ζα(S) is irrational} has positive
µ

ρ

k -measure and is a countable union of sets on which the dynamical zeta function is
constant (and rational). One of these sets must therefore have positive measure.�
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LEMMA 3. In any positiveµρ

k -measure subset of�ξ(k) there are elementsS0, S1 for which
α(S0) andα(S1) have distinct dynamical zeta functions.

Proof. Let C ⊂ �ξ(k) haveµ
ρ

k (C) > 0. Since the number ofν above eachp is globally
bounded byd = [k : Q], the independent sets

Ap = {S | ∃ exactly oneν ∈ S, ν|p}
all haveµ

ρ

k (Ap) ∈ (dρd, 1]. It follows that

µ
ρ

k ({S | ∃ P0 infinite such that, ∀p ∈ P0 ∃ exactly oneν ∈ S, ν|p}) = 1

by Borel–Cantelli. It follows that inC we may findS0 with the property that

P0 = {p ∈ P | ∃ oneν ∈ S0, ν|p}
is infinite. Then by Borel–Cantelli, the set{S ∈ �ξ(k) | ∀p ∈ P0, ∃ν ∈ S, ν|p} is a null
set. So there is a setS1 ∈ C, and infinitely many primesp for which there is exactly
one placeν ∈ S0 with ν|p but there is no placeν ∈ S1 with ν|p. Pick any one of these
primes and consider the distinguished placeν|p of k for which ν ∈ S0 andν /∈ S1.

If |ξ |ν > 1 then sinceξ ∈ RS0 ∩ RS1 we haveν ∈ S0 ∩ S1, which is impossible by
construction.

If |ξ |ν < 1 then|ξn −1|ν = 1 for all n ≥ 1. This means that thep-part of the periodic
point data for the two systems is identical. In this case, move to the next primep in
the infinite set constructed above. Since{ν | |ξ |ν < 1} is finite for anyξ ∈ k\{0}, this
process must terminate with aν for which |ξ |ν ≥ 1.

If |ξ |ν = 1, then choose a prime elementπ ∈ kν and write

ξ = a0 + a1π + a2π
2 + · · ·

where eachaj ∈ Fq , the residue class field ofkν . SinceF∗
q is cyclic, it follows that

ξ (p−1) = 1 + ε, with |ε|ν < 1.
It is clear that|ξn − 1|ν is some (rational) power ofp, so in either case the prime

decomposition offn shows that the zeta functions are distinct. �
Theorem 2 follows.

4. Extensions of linear cellular automata on the fullp-shift
Notice that the dynamical systems given byk = Fp(t), ξ = at +b (a ∈ Fp\{0}) comprise
a family of isometric extensions of linear algebraic cellular automata. To see this, recall
from [14] that Fp(t) has one distinguished ‘infinite’ place (so-called despite the fact
that the corresponding completion is non-Archimedean) labelledt−1; the corresponding
valuation has|t |t−1 = p. For S = ∅, α(k,S,ξ) is the map given by

(α(k,S,ξ)x)n = axn+1 + bxn on {0, 1, . . . , p − 1}N. (11)

For S = {t−1}, α(k,S,ξ) is the map given by

(α(k,S,ξ)x)n = axn+1 + bxn on {0, 1, . . . , p − 1}Z. (12)

For other setsS, α(k,S,ξ) is an isometric extension of the map (11) (ift−1 /∈ S) or the
map (12) (if t−1 ∈ S).
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Proof of Theorem 3.First assume thata = 1, b = 0, soξ = t ; by equation (1) we need
to understand the irreducible factors of the polynomial

tq − 1 = (t − 1)(1 + t + t2 + · · · + tq−1) = (t − 1)cq(t)

for various values ofq. Assume thatq is prime. By Theorem 2.47 in [5], the polynomial
cq(t) splits overFp into ((q − 1)/f ) irreducible factors, wheref is the least positive
integer for whichpf ≡ 1 modq. Using the result of Heath-Brown in [4], eliminate two
possible primesp for which the Artin conjecture may fail; we may then assume that ifp

is one of the remaining primes, then for infinitely many values ofq, p is a primitive root
mod q, socq(t) is irreducible overFp infinitely often. The first two parts of Theorem 3
now follow from Theorem 4; to motivate that argument we prove it here for this simple
case.

By Borel–Cantelli, forµρ

k -almost everyS ∈ �ξ(k) there is an infinite sequence of
primesqj with the property that the place corresponding to the irreducible polynomial
cqj

(t) lies in S for all j , so

fqj
(α(S)) =

∏
ν∈S

|tqj − 1|ν = pqj × p−(qj −1) × ej ,

whereej = p−1 or 1 depending on whether the place corresponding to(1 − t) lies in S

or not. In either case,

lim inf
n→∞

1

n
logfn(α

(S)) ≤ lim
j→∞

1

qj

logfqj
(α(S)) = lim

j→∞
− 1

qj

logej = 0,

which proves the second statement in Theorem 3.
Equally, we may find an infinite sequencerj of primes with the property that the place

corresponding to the irreducible polynomialcrj (t) does not lie inS for any j , so

frj (α
(S)) =

∏
ν∈S

|t rj − 1|ν = prj × ej ,

and therefore

lim sup
n→∞

1

n
logfn(α

(S)) ≥ lim
j→∞

1

rj
logfrj (α

(S)) = lim
j→∞

1

rj
log(prj × ej ) = logp,

proving the first statement in Theorem 3.
Now consider the dynamical zeta function ofα(S).

LEMMA 4. If
µ

ρ

k ({S ∈ �ξ(k) | ζα(S) is rational}) > 0

then there is a pairc, d of integers with no common factor with the property that the set

{g ∈ Fp[t ] | g dividest cn+d − 1 for somen ∈ N}
is finite and, for infinitely manyn, the polynomialccn+d(t) is irreducible.

The conclusion of Lemma 4 is clearly absurd, so the third statement in Theorem 3
follows.
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Proof. By the argument used for the lim inf above, we know that,µ
ρ

k -almost surely, there
is an infinite sequencesj of primes with the property thatfsj (α

(S)) = p or 1 for all j .
It follows that, with positiveµk-probability, the zeta function is rational and there is an
infinite sequence of primessj for which fsj (α

(S)) = A for all j , whereA is one ofp
or 1. It follows by the Mahler–Lech theorem [8] or [2, p. 88], thatfk(α

(S)) = A for all
k in some arithmetic progression taking on some prime values; sayk = cn + d. That
is, for everyS in some positiveµρ

k -measure set, there is a co-prime pairc, d for which
all (if A = 1) or all but one (ifA = p) of the factors oft cn+d − 1 lie in S for all n.
Since there are only countably many such arithmetic progressions, it follows that there
is a single pairc, d with the property that everyS in a set of positive measure has the
property that all (ifA = 1) or all but one (ifA = p) of the factors oft cn+d − 1 lie in S

for all n. By Borel–Cantelli, this can only be possible if the set of factors oft cn+d − 1
for all n is itself finite. �

For the general caseξ = at + b, the same proof works sincecq(at + b) is irreducible
if and only if cq(t) is irreducible. This completes the proof of Theorem 3. �

5. Proof of Theorem 4
Fix k and ξ , and let nj → ∞ be a sequence with the property that|Pnj

| = L for
j = 1, 2, . . . . Choose, if possible, a subsequencem1 = nj(1), m2 = nj(2), . . . with the
property that

Pmk
\
⋃
`<k

Pm`
6= ∅ (13)

for all k. If this is not possible, then
⋃

j∈N Pnj
is finite, and therefore with positive

µ
ρ

k -probability the setS does not intersect anyPnj
, so on a set of positiveµρ

k -measure

fnj
(α) =

∏
ν:|ξ |ν 6=1

|ξn − 1|ν

and hence

lim sup
n→∞

1

n
logfn(α

(k,S,ξ)) = htop(α
(k,S,ξ)) (14)

by Lemma 5. It follows by Remark 2(i) that (14) holds forµ
ρ

k -almost everyS. Similarly,
with positive µ

ρ

k -probability the setS contains all thePnj
, so on a set of positive

µ
ρ

k -measurefnj
(α) = 1, and hence

lim inf
n→∞

1

n
logfn(α

(k,S,ξ)) = 0

and the lower limit is zero almost everywhere by Remark 2(i) again.
So we may assume (13). Let

S0 = {ν ∈ P(k) | ν ∈ Pmk
infinitely often};

by (13), |S0| < L.
Let P ′

mk
= Pmk

\S0, and choose a further subsequences1 = mk(1), s2 = mk(2), . . . with
the property that

P ′
sj

∩
⋃
`<j

P ′
s`

= ∅. (15)
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By construction,
1 ≤ L − |S0| ≤ |P ′

sk
| ≤ L (16)

for all k. By (15) the sets

Aj = {ωk(S) | ωk(S)(n) = 1 if and only if νn ∈ P ′
sj
}

are independent, and by (16)µ
ρ

k (Aj ) ∈ [ρL, ρ], so by the Borel–Cantelli lemma, for
µ

ρ

k -almost everyS there is a sequencet (j) = sk′
j

such thatt (j) → ∞ as j → ∞ and
S ∩ P ′

t (j) = ∅ for all j .
SinceS0 is finite, it follows that there is a positiveµk-measure set on whichS∩S0 = ∅

and the above sequence exists. For such anS, let

I (n) =
∏

|ξ |ν 6=1

|ξn − 1|ν and J (n) =
∏

ν∈S:|ξ |ν=1

|ξn − 1|ν .

Notice thatfn(α
(k,S,ξ)) = I (n) × J (n) since for theseS, S ∩ S0 = ∅.

By Lemma 5,

lim
n→∞

1

n
logI (n) = htop(α

(k,S,ξ)).

On the other hand, along the sequencet (j), we haveJ (t (j)) = 1 since the setS0 has
been removed. It follows that

lim
j→∞

1

t (j)
logft(j)(α

(k,S,ξ)) = htop(α
(k,S,ξ))

for all S in a set of measure at leastρL. By Remark 2(i) this implies that the upper limit
is htop(α

(k,S,ξ)) and the lower limit is 0µρ

k -almost everywhere.

Remark 3.The subsequence with (13) does always exist though there does not seem
to be a short proof of this fact: in the arithmetic case it follows from Zsigmondy’s
theorem [15] or the result in [9].

6. S-integer systems as isometric extensions
To prove Theorem 5, first notice that by (5)H ⊂ S, so there is a canonical embedding

RH ↪→ RS. (17)

Dual to the monomorphism (17) there is a surjective homomorphismπ : X(k,S) → X(k,H)

with πα(S) = α(H)π . This map realisesα(H) as a factor ofα(S): it remains to identify
what α(H) looks like and the action ofα(S) restricted to the fibreY = π−1(1X(k,H) ).

If H ∪ P∞(k) ⊂ {ν ∈ P(k) | |ξ |ν 6= 1}, then by Corollary 4.2 of [3] the mapα(H) is
hyperbolic (notice that|ξ |ω for all ω above a given placeν ′ is determined by the value
of |ξ |ν for any one placeν aboveν ′ except for the infinite places of an algebraic number
field). If H ∪ P∞(k) 6⊂ {ν ∈ P(k) | |ξ |ν 6= 1} then there must be an infinite placeν for
which |ξ |ν = 1, and thenα(H) is quasi-hyperbolic.

The action on the fibre is found as follows. The dual of the kernel ofπ is given by
the co-kernel ofπ̂ : RH → RS , so Ŷ ∼= RS/RH . Using the methods of [3, §3], one may
show that ̂(RS/RH ) ∼= R⊥

H ⊂ R̂S and then that

Y ∼= ̂(RS/RH ) ∼=
∏

ν∈S\H
rν.
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On each of the factorsrν with ν ∈ S\H , α(S) acts via multiplication byξ , which is an
isometry since|ξ |ν = 1 for ν ∈ S\H .

Example 1.To illustrate Theorem 5 some explicit examples follow.
(i) If k = Q, ξ = 2, S = ∅, thenH = ∅ so α(S) = α(H) is the circle-doubling map and

Y is trivial.
(ii) If k = Q, ξ = 2, S = {3}, thenH = ∅, so the hyperbolic base mapα(H) is the

circle-doubling map. The fibreY = Z3 (3-adic integers), andα(S) restricted toY is
the isometryx 7→ 2x on Z3.

(iii) The general case whenk = Q (that is, systems living on a one-dimensional solenoid)
has the following structure. Ifξ = r/s in lowest terms, thenH is the set ofp-adic
valuations corresponding to primes that dividers. The action on the fibre is the
isometryx 7→ (r/s) · x on

Y =
∏

{p∈S | p |6 rs}
rp.

(iv) A non-hyperbolic base map in the arithmetic case is given by Lind’s example from
[6, §3] (see also Example 2.2(5) and Example 6.1(1) in [3]). Let

ξ =
√

2 − 1 + i

√
2
√

2 − 2,

k = Q(ξ), andS = ∅. ThenH = ∅, RS = Z + ξZ + ξ2Z + ξ3Z, andα(H) = α(S)

is the quasi-hyperbolic automorphism of the 4-torus corresponding under duality to
the integer matrix 


0 1 0 0
0 0 1 0
0 0 0 1

−1 −4 2 −4


 .

If S were non-empty, thenH would still be empty, andY would be a product over
S of rings of integers on whichα(S) acts as an isometry.

(v) Let k = F3(t), ξ = (1 + t)/(2 + t), andS = {1 + t, 2 + t, 1 + t2}. Then

H = {1 + t, 2 + t},
andα(H) is quasi-hyperbolic because of the infinite place where∣∣∣∣1 + t

2 + t

∣∣∣∣
t−1

= 1.

The fibre action is given by the isometryx 7→ ((1 + t)/(2 + t))x on the compact
ring r(1+t2) ⊂ F3(t)(1+t2).
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484 T. B. Ward

Appendix
There are three basic estimates used. These may be extracted from proofs in [3]; we
briefly prove them again here for completeness.

LEMMA 5. Let k be anyA-field, ξ not a unit root, andS any set of finite places for which
ξ ∈ RS\{0}. Then

1

n
log

∏
ν∈S∪P∞(k);|ξ |ν 6=1

|ξn − 1|ν −→ htop(α
(k,S,ξ)) =

∑
ν∈S∪P∞(k)

log+ |ξ |ν > 0.

Proof. The convergence is clear: there can be only finitely many places for which
|ξ |ν 6= 1, and at each of these

1

n
log |ξn − 1|ν → log+ |ξ |ν .

In the arithmetic case the limit must be positive by Kronecker’s theorem. In the geometric
case, if|ξ |ν ≤ 1 for all infinite ν, thenξ ∈ Fq(t) is of the formc/p(t) for some constant
c and polynomialp(t) ∈ Fq [t ]. Sinceξ ∈ RS\{0}, there must be aν ∈ S with |ξ |ν > 1
unlessp(t) is a constant, which is precluded by requiring thatξ not be a unit root. �

LEMMA 6. Let k be an algebraic number field,ξ not a unit root, andT any finite set of
places with|ξ |ν = 1 for ν ∈ T . Then

1

n
log

∏
ν∈T

|ξn − 1|ν −→ 0

asn → ∞.

Proof. We follow the proof of Theorem 6.1 in [3]. If ν is Archimedean, then by Baker’s
Theorem (see [10, p. 281]) we have positive constantsa,b with |ξn − 1| > a/nb. It
follows that

1

n
log |ξn − 1| → 0 (18)

asn → ∞.
Assume therefore thatν is a finite place lying above the placep of Q with |ξ |ν = 1

and with |ξn − 1|ν < 1. Let �ν be the usual completion of the algebraic closure ofQ

underν; the ν-adic logarithm is defined by

logν(1 + x) =
∞∑
i=1

(−1)i+1xi/i,

convergent for allx with |x|ν < 1. Then

logν(ξ
n) = (ξn − 1) − (ξn − 1)2

2
+ (ξn − 1)3

3
− · · ·

and so| logν(ξ
n)|ν ≤ |ξn − 1|ν . Since we always have for some constantc

c

n
≤ |n logν(ξ)|ν = | logν(ξ

n)|ν,
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this shows that
c

n
≤ |ξn − 1|ν ≤ 1 (19)

for all n.
Since the setT is finite, (18) and (19) together show that

1

n
log

∏
ν∈T

|ξn − 1|ν −→ 0

asn → ∞. �

LEMMA 7. Let k be a rational function field,ξ not a unit root, andT any finite set of
places with|ξ |ν = 1 for ν ∈ T . Then

lim
n→∞;n∈P

1

n
log

∏
ν∈T

|ξn − 1|ν = 0.

Proof. Following the proof of Theorem 6.2 in [3], split the setT into disjoint subsets
A = {ν ∈ T | |ξ − 1|ν = 1} and B = {ν ∈ T | |ξ − 1|ν < 1}. For eachν ∈ A, write
ξ = a0+a1π +a2π

2+· · · whereπ ∈ k has ordν(π) = 1/e, e is the index of ramification
and the coefficientsai come from the residue class fieldL. Let d be the multiplicative
order of a0 in L∗; d ≥ 2 clearly. Then a simple calculation shows that|ξn − 1|ν = 1
if and only if d does not dividen. SinceA is finite, we deduce that there is a finite set
{d1, . . . , dm} of integers each greater than or equal to one with the property that∏

ν∈T

|ξn − 1|ν = 1

whenevern is not divisible by any ofd1, . . . , dm. We conclude that

lim
n→∞;n∈P

1

n
log

∏
ν∈A

|ξn − 1|ν = 0. (20)

The setB is also finite; letB = {ν1, . . . , ν`}. For eachj ∈ {1, 2, . . . , `} write

ξ = 1 +
∞∑
i=1

aiπ
i
j

with ai andπj as above, and|ξ − 1|ν = p−sj wheresj = 1
e

min{i | ai 6= 0}. Then

1

n

∑̀
j=1

log |ξn − 1|νj
= 1

n

∑̀
j=1

log |ξ − 1|νj
+ 1

n

∑̀
j=1

log |ξn−1 + ξn−2 + · · · + ξ + 1|νj

= 1

n

∑̀
j=1

log |πj |sjνj
+ 1

n

∑̀
j=1

log

∣∣∣∣n +
∞∑
i=1

bi(j)πj
i

∣∣∣∣
νj

for coefficientsbi(j) ∈ kνj
with |bi(j)|νj

≤ 1 for all i andj . This expression converges
to zero so long asp, the characteristic ofk, does not dividen. We deduce that

lim
n→∞;n∈P

1

n
log

∏
ν∈A

|ξn − 1|ν = 0,

which together with (20) gives the result. �
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