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SUMMARY

The boundary element method (BEM) is a popular techniquesée scattering problems given its inherent
ability to deal with infinite domains. Recently, the paditiof unity BEM, in which the approximation
space is enriched with a linear combination of plane wavas, bdeen developed; this significantly reduces
the number of degrees of freedom required per wavelengtadtbeen shown that the element ends are
more susceptible to errors in the approximation than the-etéchent regions. In this paper the authors
propose that this is due to the reduced order of continuitthénLagrangian shape function component
of the basis functions. It is demonstrated, using humeeggaimples, that choosing trigonometric shapes
functions, rather than classical quadratic shape funstiprovides accuracy benefits. It is also demonstrated
that the somewhat arbitrary choice of collocating at egusdaced points about the surface of a scatterer is,
in fact, the optimum choice of collocation scheme. Copyrigh0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite element method (FEM) and boundary element metigiM) have become well-
established techniques for finding solutions to a wide rasfgengineering problems. This paper
deals with the solution of frequency-domain, boundaryggbroblems in wave propagation and
scattering. The BEM is well suited to problems of this typeparticular, problems set in infinite
domains. The more prevalent FEM requires such domains toupeated and, to approximate
infinity, artificial boundary conditions to be set; in cordathe BEM automatically satisfies
boundary conditions at infinity and no domain truncatioreguired.

The BEM was first used to solve the Helmholtz by Banaugh andi€oith [1] who derived
the boundary integral equation (BIE) using Green'’s secdedtity; the authors’ derivation of the
boundary integral for acoustics does not differ greatliyfrBanaugh and Goldsmith’s approach.
Copley [2] noted that the BIE formulation suffered from algem of nonuniqueness at discrete
eigenfrequencies associated with the interior Dirichletbfem. Copley showed that a method
collocating only at internal points would provide a uniquéusion for all problems, though it was
less numerically stable. Schenck [3] overcame the nonemnigss by using a combination of the
classical BEM method with Copley’s internal points knowntlas Combined Helmholtz Integral
Equation Formulation (CHIEF). Other popular solutionstte honuniqueness problem include the
Burton and Miller approach [4].
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2 M. J. PEAKEET AL.

Conventional BEM schemes require the mesh to be refined agavelength )\, of the problem
decreases. Using a conventional, polynomial, shape fumétasis, there is a well-known heuristic
rule that prescribes a minimum of 10 degrees of freedom peelagth in each coordinate direction
in order to obtain an ‘engineering accuracy® {%). This is not unique to the BEM and similar
restrictions are found using the finite element and mesinhetkods. In effect, this places an upper
limit on the frequency that may be considered for a probleramga specific computational resource.
Much research over the last decade has been focused onsimgrdfais limit.

In a theme issue oPhilosophical Transactions of the Royal SocietyBkttess [5] provided
a review of the problem of shortwaves—"waves in which the &l@ngth is much smaller than
any other parameters in the problem”—and the techniqueslalged to address these. Readers are
directed to this theme issue for more details on some of theoaghes.

Abboudet al. [6] showed that, for a convex scatterer of size much greasan X, the scattered
potential may be approximated as the product of a slowlyimgriunction and the incident wave
impinging the scatterer. This varying function can then btamed by approximating it about
the boundary of the scatterer using a boundary element scHeranoet al. [7] have shown the
complexity of this approach to be independent of the waveérampresenting results for scatterers
of dimension10%); Langdon and Chandler-Wilde [8] have shown that this apgtda suitable
for polygonal scatterers; Dominguetal. [9] demonstrated that, to maintain a fixed error bound
for problems of asymptotically large wavenumbers, the iregunumber of degrees of freedom
increases only witl0k!'/?; Anandet al.[10] have extended the approach for problems of multiple
scatterers.

An extension of these ideas to consider a basis with mulpiglee waves, for an integral equation
approach, was introduced by de la Bourdonnaye [11]. ThetiBarof Unity Method (PUM),
introduced by Bubuska and Melenk [12], generalised theagh of using approximation spaces
enriched by a set of functions known to populate the solusjpece for any differential equation
under consideration; for wave problems, sets of plane wenare proposed. This approach was
applied to the FEM by Laghrouctet al. [13]. The parition of unity FEM (PUFEM) can also be
seen in the ultra weak variational formulation [14, 15], ¢h&continuous enrichment method [16],
and the Variational Theory of Complex Rays [17, 18].

In boundary elements, the PUM has been applied to the GalBi&M by Bériotet al.[19] and
to the collocation BEM by Perrey-Debadt al. [20]. Perrey-Debaiet al. showed that the partition
of unity boundary element method (PU-BEM) requires apprmately 3 degrees of freedom per
wavelength, a marked reduction on the 10 prescribed foepiese polynomial approximations.

Trevelyan and Coates [21] presented an adaptive basisdardffocation PU-BEM. They noted
that residual errors are largest at the ends of elementasiswggested that this was due to the lack
of continuity in the quadratic shape functions used. Thizgpavill introduce a novel set of shape
functions that provide greater continuity between elemant, thus, reduce these residual errors.

2. PARTITION OF UNITY BOUNDARY ELEMENT METHOD FOR THE HELMHQTZ
EQUATION
2.1. Formulation of the Helmholtz boundary integral eqoati

LetQ) c R? be adomain, with no exterior boundary and with a smoothatescatterer of boundary
09 =T'. Assuming time dependence, the wave equation can be retlutieel Helmholtz equation,

V2p(P) + k*¢p(P) =0, ¢€C,PecQ, 1)

whereV? is the Laplacian operatop,(P) is the unknown potential field &, andk = 27/ is the
wavenumberX is the wavelength).
Let the scatterer be impinged by an incident plane wave,

' (P) = Alexp(ikd' - P), 2

whereA' is the plane wave amplitude addis a unit-vector pointing in the direction of propagation.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
Prepared usingimeauth.cls DOI: 10.1002/nme



NOVEL BASIS FUNCTIONS FOR THE PU-BEM 3

Obtaining the boundary integral equation (BIE) from (1)ngsiGreen’s second identity is well
known [22] and yields

c(p)o(p) = /F aq{;—(:l)G(p, q)dlq — /F qb(q)% dl'q + ¢'(p), p,q€l, 3)

wheren is the outward-pointing, unit normal at the integrationiej and, assuming the boundary is
smoothc(p) = 1/2 at the evaluation poini. Further,G(p, q) is the fundamental solution (Green’s
function), representing the effect experienceq dtie to a unit source radiating@at(or vice versa.

In two-dimensional space, it is a cylindrical wave, given by

G(p,a) = {H" (br), @)

whereH " (-) is a Hankel function of the first kind, order 0, and= |p — q|.
A solution to (1) is sought, subject to a general Robin boundandition,

3]
294 _ baola) + (@) ©)
so that (3) may be reformulated as

c(p)o(p) Jr/F [% - G(p,qw(q)} P(q)dl'q = /FG(p,q)g(q)vqu +¢'(p). (6)

g is zero for passive boundary conditions and non-zero favettoundary conditions (radiation
problems). This approach is applicable for sound-soft amgkidance boundary conditions; however,
for a compact presentation, the case of a perfectly refig¢tsound-hard”) scatterer is considered
i.e. 5(p) = g(p) = 0 and (6) is rewritten in the form

c(p)o(p) + / 96(p.a)

r On

¢(q)dlq = ¢'(p). @)

2.2. Direct collocation BEM

In the classical, direct collocation BEN,is discretised intd® elements, such that

E
I=[JT. and T.(I;=0, e#j (8)
e=1

Each element geometry is analytical and given by

Fe:{’ye(g) :§€ [_151]}5 (9)
wherey, : R — R2. For any element, the mapping betwega I' and¢ is unique and bidirectional,

hence it shall be assumed, from hereon, that any fungtign is equivalent tof (¢). The variation
of potential on element can be formally expressed in a piecewise polynomial basis

J
a) = > Ni(§)d5, (10)

whereJ is the number of nodes on the element (and order of the vamatindV; and¢$ are the
shape function and unknown potential, respectively, fatajo Substitution of (10) into (7) results
in the reformulated BIE,

+1
ey [ R v e o = '), )

e=1 j=1

where J! is the Jacobian of the mapping in (9). The integrals withih) (dan be evaluated using
guadrature, taking care to use an appropriate scheme 28,24]) when considering the singular
integrals that arise.

To find the potential o, (11) is collocated at each of the element nodes to yield gesysf
linear equations that can be solved in a conventional fashio
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4 M. J. PEAKEET AL.

2.3. Partition of Unity BEM

To move from the the classical, direct collocation BEM to lié-BEM, a plane wave expansion of
the potential on elemeuatis introduced such that (10) is replace by

@)=Y Nj(€ ZA exp (ikd5,, - q), |dS,|=1, (12)

Jj=1 m=1

whereM is the number of plane waves in the expansion per node amkateely,ds,, € R2 and
A5, € Care the prescribed directions and unknown amplitudes gbidree waves in the basis. As
with the classical direct collocation BEM, degrees of fre@dat nodes that are shared by adjacent
elements are considered to have the same value for eachrajemes,C° continuity in potential
across element interfaces is obtained.

Substitution of (12) into (7) gives

+1
Yy | Ry explikds,, )€ de A5 = 0p). (1)

e=1 j=1 m=1

This discretised form the of the BIE for the PU-BEM can be @cdited, similar to before.

M may be chosen such that a requirement of the number of degiréegdom per wavelength,
7, IS obtained, locally and globally. For FEM and BEM approations,~ > 10 is, generally,
required; however, it has been shown that, for PU-BEM; 3 is sufficient for an accuracy 1%
[20]. Further, it is observed that may be reduced towards0 as k increases and may become
considerably smaller for convex scatterers when large. In this paper, the authors consider the
more challenging problem of a moderateln most PU-BEM literature, the plane wave directions
are defined to be equally distributed around the unit ciiae,
2w(m —1)

sin6s,,), 605, = ———=+0", (14)

d¢,, = (cos6f om %

jm jm>

where#' is the angle of incidence of the incident plane waye,Since, for asymptotically large
k, the potentialy in the illuminated zone takes a value®f', it is common to include the incident
wave direction in the approximation basis.

There are, then)/ degrees of freedom associated with each node so collocatieach node
does not provide a sufficient number of equations with whichdlve the system. More equations
are provided by collocating at a sufficient number of poimsrahe boundary. This requires that the
potential at each collocation point(p), to be expanded in a similar fashion to (12), thus

¢(p Z N] Z AJ’HL exp Zk djé"rn ’ p)7 (15)

Jj=1 m=1

wheree is the element on which lies.
Collocation yields a square system of equations,

[(1/2)C + H[{x} = {b}, (16)

where the sparse, square mafitixesults from interpolations of the plane waves through €
the square matriH is fully populated with the boundary integrals containe(li®). The right-hand
side vecto{b} contains the incident wave potentials, at the collocatioimgs, defined in (2), and
the unknown vectofx} contains the amplitudesl?,,, .

2.4. Nonuniqueness
With this formulation, and the classical boundary collimaBEM, a method needs to be employed
to overcome the problem of nonuniqueness of the solutio}@{ the eigenfrequencies of the
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NOVEL BASIS FUNCTIONS FOR THE PU-BEM 5
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(a) Quadratic shape functions (b) Trigonometric shape functions

Figure 1. Comparison of shape functions with partition atyun

associated interior Dirichlet problem. The current aushese the CHIEF approach [3] for reasons
of computational efficiency.

The CHIEF approach requires collocation at, in additionh® lboundary collocation points, a
number of interior coordinates. These yield a set of eqnatiwhich can be appended to (16). The
system of equations now becomes

;C+H - b
[HCHIEF] x} = {]OCHIEF}7 (7)

whereHcuier IS populated with boundary integrals evaluated from an edbyersion of (13) for
collocation points outside the solution domain:

0C1P ) v () explik s, @) (€) de 45, = 6'(p), p#Qacl. (19

SYY

J M +1
e=1j=1m=17"1

bcuier IS evaluated from (2). This is system is rectangular andegaly, ill-conditioned; in order
to solve it forx accurately, the current authors use Singular Value Decsitipo (SVD). A more
cost effective solution would be to develop a bespoke pritiomer for PU-BEM systems; this is
a subject for further research.

3. TRIGONOMETRIC SHAPE FUNCTIONS

Polynomial shape functions have been commonly used in thiethe FEM and BEM since the
1980s [25, 26]; however, no study of shape functions has lbaeted out for the PU-BEM. It
has been previously noted [21] that errors in the PU-BEM agatgst at the end of the boundary
elements. A likely source of these errors is thé nature of quadratic shape functions. Figure 1a
shows the classical quadratic shape functions expressed by

Ni©) = 36E -1, N =(1L+O(1-8), No() = 5E(€+1). (19)

Each of the shape functions has non-zero gradient at theealeands; this produces a discontinuity,
in the first derivative, between adjoining elements. Insieg the continuity between elements, in
order to reduce these errors, is the principal aim of theecwivork.

To design some continuous shape functions with the partitfounity property, the following
rules must be obeyed:

e N;(¢) =1 atthe nodg,
e N;(¢) = 0atall other nodes (20)

o« D N =1 V&
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6 M. J. PEAKEET AL.

Trigonometric functions have well known smoothness afiel continuity. It can be assumed that
there is a set of shape functions of the form

N1(§) = aq cos(m€) + ag sin ( 5) + as,

N3 (§) = ay cos(m€) + as sin (55) + g, (21)

R

N3(&) = az cos(m€) + ag sin (g§) + «g.

Then, using the rules in (20), three sets of three simultanequations are obtained. When solved,
it is found that the shape functions are

Ni(§) = —i cos(m§) — %sin (gg) + i,
N2 (§) = %cos(wf) + %7 (22)
Ns(§) = 1 cos(m€) + 3 sin <g§> + 7

These shape functions can be seen in Figure 1b. They haveggrt®nt at the element ends;
partition of unity can be easily proved by summing the thirggpe functions. The following section
provides some numerical results examining the effectisgpéusing trigonometric shape functions.

4. NUMERICAL RESULTS WITH TRIGONOMETRIC SHAPE FUNCTIONS

The new trigonometric shape functions (22) can be used fange of problems solved using the
PU-BEM. In the following examples, the sound-hard boundzowgdition is used. Errors;, are
evaluated usind..-norms:
[® — &1,
e T
(@]l ,

where® is a vector of potentials, evaluated using the PU-BEM, orstivéace of the scatterer and
®°* is a vector of exact potentials evaluated analytically oalmpnverged solution.

(23)

4.1. Scattering by a circular cylinder

Consider a cylindrical scatterer of radius= 1, centred a0, 0); the scatterer is impinged by a unit-
amplitude, incident plane wave propagating in the direc{ip 0). The analytical solution for the
total field, at any poing, on the surface of the cylinder can be expressed by the foifpvadapted

from [27],
2 > Z'7L+1
¢(Q> = % nzosn H;L(ka) COS(TLG), (24)
whereq = a(cos 6, sin 0), ,, denotes the Neumann symbe} < 1; &, = 2 forn =1,2,3,...) and
H) (ka) denotes the derivative df,,(ka) with respect tdca.

The quality of the solutior® for a range oft is investigated. As the wavenumber is increased,
M is increased to maintain= 2M EX/P = 3, whereP is the length of” and E is the number of
elements.

Two sets of errors (boundary representation by two elensrdgour elements) are displayed in
Figure 2. Results for a conventional (i.e. piecewise quadvath  ~ 10) BEM have been included
to demonstrate the benefits of using the PU-BEM. The resal8-BEM simulations are not only
more accurate by orders of magnitude; they also requireets memory and computational effort
due to a significantly reduced For two-dimensional problems (and excluding CHIEF pdirttse
size of the system matrix is directly proportionaktt thus, the PU-BEM system is approximately
90% smaller than the conventional BEM system matrix. Inespitthe increased requirement to
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NOVEL BASIS FUNCTIONS FOR THE PU-BEM 7

Unit cylinder problem, two elements, 7~3
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Figure 2. Error analysis for the hard, unit-radius, circaigdinder problemd! = (1, 0)
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Figure 3. Plots of absolute difference between PU-BEM analydéinal solution for circular cylinder
problem,k = 50

evaluation of highly oscillatory integrals, the run time RU-BEM models was, typically, only 5to
20% of that required for the piecewise quadratic BEM appration.

As k varies, the integed/ is varied to keep = 3. This produces large changesrnparticularly
for smallerk; this leads to the oscillating errors of the PU-BEM. Figurdi&plays clearly that
the trigonometric shapes functions provide an accuracefitehowever, a plot of errors over the
surface of the cylinder is required to demonstrate whersetlagcuracy improvements originate.

Figure 3 shows a comparison of the errors arising from eaple tf shape function. The
coordinates € [0, 1] runs clockwise around the cylinder, starting at the caatesbordinatg1, 0);
the dashed line represents an element end. Using quadnaiie $unctions, the error peaks are
greater at the end of the the two elements. Using the trigetracrshape functions has significantly
reduced the magnitude of the errors in this region; the mawirarror is reduced by 80%.
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8 M. J. PEAKEET AL.

Figure 4. lllustration of the internal reflections causedh®yfive-cylinder geometryx = 0.25

4.2. Scattering by five circular cylinders

Consider a set of cylindrical scatters impinged by an intigdane wave. An analytical solution for
this problem, in the form of an infinite series, was presebietinton and Evans [28]; the solution
is valid for any cylinder radii and location, provided thdiogers do not overlap or touch. Linton
and Evans show that, for a set &f cylinders, the velocity potential on théh cylinder can be
expressed as

2 — AL
Y 01} - _ n znev’ 25
¢ (a ) ) ﬂ_kav nzz_:oo H,'{L(kav) € ( )

whereA? are constants that are found by using the equation

M
AV + Z Z A;;Z:;ei(n—m)aan_m (kRuv) _ _Iveim(n/Q_al)’
u;l n=—M (26)

v

v=1,...,N, m=—o0,...,00,

wherea,,, andR,, are the angle and distance between the centres afthh@nduth cylinder; 7, is
a phase factor associated with tita cylinder and

Zy(=2Y,) = Ho(kry), (27)

wherer, is the distances between the origin and the centre ofitiheylinder. (26) is truncated so
thatm = —M, ..., M and a square system of(2M + 1) can be solved. Increasing improves
the accuracy of the constants at the expense of computirg tim

The problem presented here is that of five cylinders, of tadfus, with centres distributed,
equally,» = 3 from the origin, i.e. at the polar coordinaté$ 2nr/5) for n = 0,1, 2, 3,4. This
geometry is chosen as it creates internal reflections betwes cylinders; this can be seen, for
A = 0.25, in Figure 4.

Similarly to the single cylinder case, PU-BEM simulationgre run, using quadratic and
trigonometric shapes functions, using two different mestmundary representation with two
elements and four elements. The parameteas approximately 3 for all simulations. Results are
displayed in Figure 5.

Itis clear, again, that the trigonometric shape functiol® to the increased continuity between
elements, provide an accuracy benefit for the majority otheilations.
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NOVEL BASIS FUNCTIONS FOR THE PU-BEM 9

Five cylinder problem, two elements per cylinder, 73
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Figure 5. Error analysis for the hard, unit-radius, circaidinders problemd! = (0.707, 0.707)

4.3. Scattering by a capsule

An area of interest is the blending point between differgpes of geometry component, e.g. aline
and an arc; since this presents a geometry with 6Hlgontinuity, these regions are susceptible to
errors. To investigate the ability of trigonometric shapedtions to capture accurately the solution
overC'! boundaries, a capsule shape was designed consisting oétaiecgcular arcs (unit-radius)
and two lines.

Figure 6 displays the capsule geometry discretised by tlezeents of equal length. The element
ends, ats = 0,1/3,2/3, are represented by lines across the boundary. The cotedishow the
origin, arc centres and blend points between lines and &tesnents of equal length make the
trigonometric shape functions provide the greatest caittinthis provides the best approximation
of potential along the surface of the scatterer. As geonmimts are taken analytically, this does
not impact the evaluation of the integral kernels.

Similar to the previous test cases, PU-BEM simulations wene, using quadratic and
trigonometric shapes functions. The parametavas approximately 3 for all simulations. There
is no analytical solution for this problem so a convergedisoh using the method of fundamental
solutions (MFS) [29] was used as an exact solution.

Figure 7 shows the errorg§, over a range of wavenumbers. The trigonometric shapeitursct
produce accuracy benefits at lower wavenumbers; howeugglaer wavenumbers, the benefits are
reduced. The current authors suggest that this is becauighawavenumbers, there are a large
number of plane waves in the expansion which become the noosindnt part of the basis. For
example, consider the capsule problem and unit-cylindeblpm fork = 100. The potential on
each node in the unit-cylinder problem is expanded as arlioeabination of 63 plane waves;
for the capsule problem, the potential at each node is exgghad a linear combination of 82
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10 M. J. PEAKEET AL.
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Figure 6. Capsule discretised by three equal-length eleanen

Capsule problem, three elements, 73
T T T T T I

— Quadratic shape functions

103k 1 -= Trigonometric shapes functions
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L, error (against MFS), &

n n n n n n n | n
30 40 50 60 70 80 90 100 200
Wavenumber, k (m™)

Figure 7. Error analysis for the hard capsule probldm= (0.5, v/3/2)

plane waves. With 30% more plane waves in each expansiose th@minate the enrichment for
the capsule problem and reduce the observable effect af trajonometric shape functions.

Figure 8 shows the absolute difference, along the surfatieec$catterer, between the PU-BEM
solution and the converged MFS solution. As before, theeesignificant errors at the element
ends that are reduced by the trigopnometric shape functibasnaximum error is reduced by 60%.
There are also significant errors at the blend points betwleetines and arcs; these errors have
been reduced but are still large in comparison to the erngstbe rest of the boundary. Clearly, the
trigonometric shape functions, though continuous thrahgke points, are not sufficient to describe,
ideally, theC''* geometry’s effect on the potential in those areas.

4.4. Time to run simulations

It may be expected that the computational resources ratuoeevaluate the trigonometric
shape functions would exceed those required to compute dhesponding quadratic shape
functions. Modern processors and programming package&ves, have significantly reduced this
computational burden. Also, the computational time of tbeBEM is dominated by the calculation
of the Hankel functions rather than shape functions. Taldlenhpares some normalised times of
simulations run for the capsule problems for a selection@femumbers. The trigonometric shape
functions clearly do not increase the time taken to run a kitimn; indeed, they appear to slightly
reduce the time. It is evident, therefore, that the intraidmoof trigonometric shapes functions does
not induce a computational burden.
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NOVEL BASIS FUNCTIONS FOR THE PU-BEM 11

Quadratic shape functions Trigonometric shape functions
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Figure 8. Plots of absolute difference of PU-BEM againstveoged MFS solution for capsule problem,
k=25

Table I. Comparison of simulation times using quadratic igbnometric shape functions

|| System build (§/8.675) | System solve (§/7.429)

k=30, Quadratic 0.042 0.015
k=30, Trigonometric 0.041 0.015
k=70, Quadratic 0.206 0.135
k=70, Trigonometric 0.206 0.133

k=150, Quadratic 1.000 1.000
k=150, Trigonometric 0.988 0.997

5. ALTERNATIVE COLLOCATION STRATEGIES

To the authors’ knowledge, the choice of collocation sgatevith the PU-BEM is somewhat
arbitrary and has not been formally investigated. For ampmtyial basis BEM, it is sufficient to
collocate the boundary integral at each element node; ferP-BEM, the boundary integral
has, generally, been collocated at a sufficient number odlfgepaced points on the boundary.
In adaptive basis schemes, such as [21], additional caitotaoints are added between existing
collocation points; however, the current authors consiaddy an initial array of collocation points.

The motivation for this part of the work is to investigate aaduce errors that may be associated
with the collocation strategy. In view of the fact that therlvoonsiders frequency domain wave
scattering, where waves can be modelled as sine curvesyrmhyfspaced collocation points have
the potential to act like a digital filter.

Three alternative approaches to the choice of collocatmntp are suggested here. In all cases,
the sound-hard cylinder problem (Section 4.1) is used atetiiecase; the results for trigonometric
shape functions are displayed.

5.1. Collocating using roots of polynomials

When examining the absolute error plots (Figures 3 and &itbe seen that the the errors approach
zero at a number of points along each element; these poiresspond with the collocation points
on each element. If collocation points are clustered towand area on an element, this reduces
the absolute errors in that region. Applying this approatistering collocation points towards the
ends of elements, is one way to reduce errors at the elemdsit leowever, this will, subsequently,
increase errors at regions of less clustered collocatiamnso

One way in which to produce a ‘clustered’ collocation schemt use the roots of classical
orthogonal polynomials. Here, the authors provide resfdtsthree, well-known polynomials:
Chebyshev and Legendre (both special types of Jacobi paliaty and Hermite polynomial. In
each case, a number of roots can be found which can then beechappo the local coordinate
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Figure 9. Uniform, Chebyshev, Legendre and Hermite cotlongoints in[—1, 1] for 32 collocation points
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Figure 10. Comparison of collocation strategies based gmpmial roots

¢ € [—1,1]; collocation can be guaranteedéat +1. Figure 9 shows how the collocation schemes
differ for a specific number of collocation points.

Figure 10 shows the error§, when these polynomials were used as the collocation scf@ame
the unit cylinder problem, over a range of wavelengths. dtéar that none of the above collocation
schemes are effective at improving the accuracy of the isoluThe uniform spacing provides
a greater accuracy. Compared to the Chebyshev and Legecitzenas (clustering collocation
towards the elements ends), the uniform spacing providedcanracy benefit between one and
four orders of magnitude in most cases. Indeed, the beshatiee scheme to uniformly spaced
collocation points was the Hermite roots.

5.2. Consideration of the Fock domain

Consider a cylinder approximated by four, equal-lengthmelets. If one element faces the
impinging wave, it is said to be in the illuminated zone; thengent on the opposite side of the
cylinder is in the shadow zone. The remaining two elemehtd, lte between the illuminated and
shadow zone, are said to be in the Fock domain.
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Figure 11. Comparison of collocation strategies with cdesition of Fock domain

For asymptotically high wavenumbers, the wave potentighm illuminated zone approaches
2¢/7™! the wave potential in the shadow zone can be considered o Bee Fock domain is,
therefore, a transition region between these two zonesendrazing incidents and high gradients
of potential can lead to difficulties in the numerical moatgjlof the domain.

If there are P collocation points per element, a collocation point can &moved from the
illuminated and from the shadow zone and added to the FoclagiemThen the® — 1 collocation
points in the illuminated and shadow zones can be collocatefbrmly; similarly, the P + 1
collocation points in the Fock domains can be collocatetbamily.

Figure 11 shows the errors for simulations, over a range ofemambers, when adding or
removing points from the Fock domain. In either case, itéaclthat uniformly spaced collocation
over the entire boundary provides the best accuracy.

6. CONCLUSIONS

Using the collocation form of the PU-BEM for wave scatterisignulations, errors are found
to be at a maximum at the element ends. This is due to a lack mtfneaty, at the element
ends, associated with Lagrangian shape functions. It has bbown that trigonometric shape
functions increase the continuity at the element ends dredeby, improve the approximation of
potential in such problems. It should be noted that theseracg gains are not replicable for
conventional BEM schemes, i.e. trigonometric shape fonstido not improve upon piecewise
guadratic approximations unless a plane wave basis is used.

For geometries with geometry blends, the PU-BEM is susbkpto errors at points where
different segments blend together. More continuity is nefufor improve the accuracy in these
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areas. One possible solution is to use non-uniform ratiBrgplines (NURBS) which would also
describe the geometry of circular arcs analytically.

The choice of collocating the boundary integral equatioegually spaced points around the
boundary of the scatterer has been shown to be the mostiedfegiproach to collocation.
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