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Novel basis functions for the partition of unity boundary element
method for Helmholtz problems
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SUMMARY

The boundary element method (BEM) is a popular technique forwave scattering problems given its inherent
ability to deal with infinite domains. Recently, the partition of unity BEM, in which the approximation
space is enriched with a linear combination of plane waves, has been developed; this significantly reduces
the number of degrees of freedom required per wavelength. Ithas been shown that the element ends are
more susceptible to errors in the approximation than the mid-element regions. In this paper the authors
propose that this is due to the reduced order of continuity inthe Lagrangian shape function component
of the basis functions. It is demonstrated, using numericalexamples, that choosing trigonometric shapes
functions, rather than classical quadratic shape functions, provides accuracy benefits. It is also demonstrated
that the somewhat arbitrary choice of collocating at equally spaced points about the surface of a scatterer is,
in fact, the optimum choice of collocation scheme. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite element method (FEM) and boundary element method (BEM) have become well-
established techniques for finding solutions to a wide rangeof engineering problems. This paper
deals with the solution of frequency-domain, boundary-value problems in wave propagation and
scattering. The BEM is well suited to problems of this type; in particular, problems set in infinite
domains. The more prevalent FEM requires such domains to be truncated and, to approximate
infinity, artificial boundary conditions to be set; in contrast, the BEM automatically satisfies
boundary conditions at infinity and no domain truncation is required.

The BEM was first used to solve the Helmholtz by Banaugh and Goldsmith [1] who derived
the boundary integral equation (BIE) using Green’s second identity; the authors’ derivation of the
boundary integral for acoustics does not differ greatly from Banaugh and Goldsmith’s approach.
Copley [2] noted that the BIE formulation suffered from a problem of nonuniqueness at discrete
eigenfrequencies associated with the interior Dirichlet problem. Copley showed that a method
collocating only at internal points would provide a unique solution for all problems, though it was
less numerically stable. Schenck [3] overcame the nonuniqueness by using a combination of the
classical BEM method with Copley’s internal points known asthe Combined Helmholtz Integral
Equation Formulation (CHIEF). Other popular solutions to the nonuniqueness problem include the
Burton and Miller approach [4].
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2 M. J. PEAKEET AL.

Conventional BEM schemes require the mesh to be refined as thewavelength,λ, of the problem
decreases. Using a conventional, polynomial, shape function basis, there is a well-known heuristic
rule that prescribes a minimum of 10 degrees of freedom per wavelength in each coordinate direction
in order to obtain an ‘engineering accuracy’ (∼ 1%). This is not unique to the BEM and similar
restrictions are found using the finite element and meshlessmethods. In effect, this places an upper
limit on the frequency that may be considered for a problem given a specific computational resource.
Much research over the last decade has been focused on increasing this limit.

In a theme issue ofPhilosophical Transactions of the Royal Society A, Bettess [5] provided
a review of the problem of shortwaves—“waves in which the wavelength is much smaller than
any other parameters in the problem”—and the techniques developed to address these. Readers are
directed to this theme issue for more details on some of the approaches.

Abboudet al. [6] showed that, for a convex scatterer of size much greater thanλ, the scattered
potential may be approximated as the product of a slowly varying function and the incident wave
impinging the scatterer. This varying function can then be obtained by approximating it about
the boundary of the scatterer using a boundary element scheme. Brunoet al. [7] have shown the
complexity of this approach to be independent of the wavenumber, presenting results for scatterers
of dimension106λ; Langdon and Chandler-Wilde [8] have shown that this approach is suitable
for polygonal scatterers; Domı́nguezet al. [9] demonstrated that, to maintain a fixed error bound
for problems of asymptotically large wavenumbers, the required number of degrees of freedom
increases only withOk1/9; Anandet al. [10] have extended the approach for problems of multiple
scatterers.

An extension of these ideas to consider a basis with multipleplane waves, for an integral equation
approach, was introduced by de la Bourdonnaye [11]. The Partition of Unity Method (PUM),
introduced by Bubuška and Melenk [12], generalised the approach of using approximation spaces
enriched by a set of functions known to populate the solutionspace for any differential equation
under consideration; for wave problems, sets of plane waveswere proposed. This approach was
applied to the FEM by Laghroucheet al. [13]. The parition of unity FEM (PUFEM) can also be
seen in the ultra weak variational formulation [14, 15], thediscontinuous enrichment method [16],
and the Variational Theory of Complex Rays [17, 18].

In boundary elements, the PUM has been applied to the Galerkin BEM by Bériotet al. [19] and
to the collocation BEM by Perrey-Debainet al. [20]. Perrey-Debainet al.showed that the partition
of unity boundary element method (PU-BEM) requires approximately 3 degrees of freedom per
wavelength, a marked reduction on the 10 prescribed for piecewise polynomial approximations.

Trevelyan and Coates [21] presented an adaptive basis for the collocation PU-BEM. They noted
that residual errors are largest at the ends of elements. It was suggested that this was due to the lack
of continuity in the quadratic shape functions used. This paper will introduce a novel set of shape
functions that provide greater continuity between elements and, thus, reduce these residual errors.

2. PARTITION OF UNITY BOUNDARY ELEMENT METHOD FOR THE HELMHOLTZ
EQUATION

2.1. Formulation of the Helmholtz boundary integral equation

LetΩ ⊂ R2 be a domain, with no exterior boundary and with a smooth internal scatterer of boundary
∂Ω = Γ. Assuming time dependence, the wave equation can be reducedto the Helmholtz equation,

∇2φ(P) + k2φ(P) = 0, φ ∈ C, P ∈ Ω, (1)

where∇2 is the Laplacian operator,φ(P) is the unknown potential field atP, andk = 2π/λ is the
wavenumber (λ is the wavelength).

Let the scatterer be impinged by an incident plane wave,

φI(P) = AI exp(ikdI ·P), (2)

whereAI is the plane wave amplitude anddI is a unit-vector pointing in the direction of propagation.
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Obtaining the boundary integral equation (BIE) from (1) using Green’s second identity is well
known [22] and yields

c(p)φ(p) =

∫

Γ

∂φ(q)

∂n
G(p,q) dΓq −

∫

Γ

φ(q)
∂G(p,q)

∂n
dΓq + φI(p), p,q ∈ Γ, (3)

wheren is the outward-pointing, unit normal at the integration pointq and, assuming the boundary is
smooth,c(p) = 1/2 at the evaluation pointp. Further,G(p,q) is the fundamental solution (Green’s
function), representing the effect experienced atq due to a unit source radiating atp (or vice versa).
In two-dimensional space, it is a cylindrical wave, given by

G(p,q) =
i

4
H

(1)
0 (kr), (4)

whereH(1)
0 (·) is a Hankel function of the first kind, order 0, andr := |p− q|.

A solution to (1) is sought, subject to a general Robin boundary condition,

∂φ(q)

∂n
= β(q)φ(q) + g(q) (5)

so that (3) may be reformulated as

c(p)φ(p) +

∫

Γ

[

∂G(p,q)

∂n
−G(p,q)β(q)

]

φ(q) dΓq =

∫

Γ

G(p,q)g(q), dΓq + φI(p). (6)

g is zero for passive boundary conditions and non-zero for active boundary conditions (radiation
problems). This approach is applicable for sound-soft and impedance boundary conditions; however,
for a compact presentation, the case of a perfectly reflecting (“sound-hard”) scatterer is considered
i.e.β(p) = g(p) = 0 and (6) is rewritten in the form

c(p)φ(p) +

∫

Γ

∂G(p,q)

∂n
φ(q) dΓq = φI(p). (7)

2.2. Direct collocation BEM

In the classical, direct collocation BEM,Γ is discretised intoE elements, such that

Γ =

E
⋃

e=1

Γe and Γe

⋂

Γj = ∅, e 6= j. (8)

Each element geometry is analytical and given by

Γe = {γe(ξ) : ξ ∈ [−1, 1]} , (9)

whereγe : R → R2. For any element, the mapping betweenq ∈ Γ andξ is unique and bidirectional,
hence it shall be assumed, from hereon, that any functionf(q) is equivalent tof(ξ). The variation
of potential on elemente can be formally expressed in a piecewise polynomial basis

φe(q) =

J
∑

j=1

Nj(ξ)φ
e
j , (10)

whereJ is the number of nodes on the element (and order of the variation), andNj andφe
j are the

shape function and unknown potential, respectively, for nodej. Substitution of (10) into (7) results
in the reformulated BIE,

c(p)φ(p) +

E
∑

e=1

J
∑

j=1

∫ +1

−1

∂G(p,q)

∂n
Nj(ξ)J

t(ξ) dξ φe
j = φI(p), (11)

whereJ t is the Jacobian of the mapping in (9). The integrals within (11) can be evaluated using
quadrature, taking care to use an appropriate scheme (e.g. [23, 24]) when considering the singular
integrals that arise.

To find the potential onΓ, (11) is collocated at each of the element nodes to yield a system of
linear equations that can be solved in a conventional fashion.
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4 M. J. PEAKEET AL.

2.3. Partition of Unity BEM

To move from the the classical, direct collocation BEM to thePU-BEM, a plane wave expansion of
the potential on elemente is introduced such that (10) is replace by

φe(q) =

J
∑

j=1

Nj(ξ)

M
∑

m=1

Ae
jm exp

(

ikde
jm · q

)

,
∣

∣de
jm

∣

∣ = 1, (12)

whereM is the number of plane waves in the expansion per node and, respectively,de
jm ∈ R2 and

Ae
jm ∈ C are the prescribed directions and unknown amplitudes of theplane waves in the basis. As

with the classical direct collocation BEM, degrees of freedom at nodes that are shared by adjacent
elements are considered to have the same value for each element; thus,C0 continuity in potential
across element interfaces is obtained.

Substitution of (12) into (7) gives

c(p)φ(p) +

E
∑

e=1

J
∑

j=1

M
∑

m=1

∫ +1

−1

∂G(p,q)

∂n
Nj(ξ) exp(ikd

e
jm · q)J t(ξ) dξ Ae

jm = φI(p). (13)

This discretised form the of the BIE for the PU-BEM can be collocated, similar to before.
M may be chosen such that a requirement of the number of degreesof freedom per wavelength,

τ , is obtained, locally and globally. For FEM and BEM approximations,τ ≥ 10 is, generally,
required; however, it has been shown that, for PU-BEM,τ ≃ 3 is sufficient for an accuracy∼ 1%
[20]. Further, it is observed thatτ may be reduced towards2.0 ask increases and may become
considerably smaller for convex scatterers whenk is large. In this paper, the authors consider the
more challenging problem of a moderatek. In most PU-BEM literature, the plane wave directions
are defined to be equally distributed around the unit circle,i.e.

de
jm =

(

cos θejm, sin θejm
)

, θejm =
2π(m− 1)

M
+ θI, (14)

whereθI is the angle of incidence of the incident plane wave,φI. Since, for asymptotically large
k, the potentialφ in the illuminated zone takes a value of2φI, it is common to include the incident
wave direction in the approximation basis.

There are, then,M degrees of freedom associated with each node so collocationat each node
does not provide a sufficient number of equations with which to solve the system. More equations
are provided by collocating at a sufficient number of points over the boundary. This requires that the
potential at each collocation point,φ(p), to be expanded in a similar fashion to (12), thus

φ(p) =

J
∑

j=1

Nj(p)

M
∑

m=1

Aē
jm exp(ik dē

jm · p), (15)

whereē is the element on whichp lies.
Collocation yields a square system of equations,

[(1/2)C+H]{x} = {b}, (16)

where the sparse, square matrixC results from interpolations of the plane waves through (15)and
the square matrixH is fully populated with the boundary integrals contained in(13). The right-hand
side vector{b} contains the incident wave potentials, at the collocation points, defined in (2), and
the unknown vector{x} contains the amplitudes,Ae

jm.

2.4. Nonuniqueness

With this formulation, and the classical boundary collocation BEM, a method needs to be employed
to overcome the problem of nonuniqueness of the solution to (7) at the eigenfrequencies of the
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Figure 1. Comparison of shape functions with partition of unity

associated interior Dirichlet problem. The current authors use the CHIEF approach [3] for reasons
of computational efficiency.

The CHIEF approach requires collocation at, in addition to the boundary collocation points, a
number of interior coordinates. These yield a set of equations which can be appended to (16). The
system of equations now becomes

[

1
2C+H

HCHIEF

]

{

x
}

=

{

b

bCHIEF

}

, (17)

whereHCHIEF is populated with boundary integrals evaluated from an adapted version of (13) for
collocation points outside the solution domain:

E
∑

e=1

J
∑

j=1

M
∑

m=1

∫ +1

−1

∂G(p,q)

∂n
Nj(ξ) exp(ik d

e
jm · q)J t(ξ) dξ Ae

jm = φI(p), p 6∈ Ω,q ∈ Γ. (18)

bCHIEF is evaluated from (2). This is system is rectangular and, generally, ill-conditioned; in order
to solve it forx accurately, the current authors use Singular Value Decomposition (SVD). A more
cost effective solution would be to develop a bespoke preconditioner for PU-BEM systems; this is
a subject for further research.

3. TRIGONOMETRIC SHAPE FUNCTIONS

Polynomial shape functions have been commonly used in the both the FEM and BEM since the
1980s [25, 26]; however, no study of shape functions has beencarried out for the PU-BEM. It
has been previously noted [21] that errors in the PU-BEM are greatest at the end of the boundary
elements. A likely source of these errors is theC0 nature of quadratic shape functions. Figure 1a
shows the classical quadratic shape functions expressed by

N1(ξ) =
1

2
ξ(ξ − 1), N2(ξ) = (1 + ξ)(1 − ξ), N3(ξ) =

1

2
ξ(ξ + 1). (19)

Each of the shape functions has non-zero gradient at the element ends; this produces a discontinuity,
in the first derivative, between adjoining elements. Increasing the continuity between elements, in
order to reduce these errors, is the principal aim of the current work.

To design some continuous shape functions with the partition of unity property, the following
rules must be obeyed:

• Nj(ξ) = 1 at the nodej,

• Nj(ξ) = 0 at all other nodes,

•
∑

Nj(ξ) = 1 ∀ ξ.

(20)
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Trigonometric functions have well known smoothness andC∞ continuity. It can be assumed that
there is a set of shape functions of the form

N1(ξ) = α1 cos(πξ) + α2 sin
(π

2
ξ
)

+ α3,

N2(ξ) = α4 cos(πξ) + α5 sin
(π

2
ξ
)

+ α6,

N3(ξ) = α7 cos(πξ) + α8 sin
(π

2
ξ
)

+ α9.

(21)

Then, using the rules in (20), three sets of three simultaneous equations are obtained. When solved,
it is found that the shape functions are

N1(ξ) = −
1

4
cos(πξ) −

1

2
sin

(π

2
ξ
)

+
1

4
,

N2(ξ) =
1

2
cos(πξ) +

1

2
,

N3(ξ) = −
1

4
cos(πξ) +

1

2
sin

(π

2
ξ
)

+
1

4
.

(22)

These shape functions can be seen in Figure 1b. They have zerogradient at the element ends;
partition of unity can be easily proved by summing the three shape functions. The following section
provides some numerical results examining the effectiveness of using trigonometric shape functions.

4. NUMERICAL RESULTS WITH TRIGONOMETRIC SHAPE FUNCTIONS

The new trigonometric shape functions (22) can be used for a range of problems solved using the
PU-BEM. In the following examples, the sound-hard boundarycondition is used. Errors,E , are
evaluated usingL2-norms:

E =
‖Φ− Φex‖L2

‖Φex‖L2

, (23)

whereΦ is a vector of potentials, evaluated using the PU-BEM, on thesurface of the scatterer and
Φex is a vector of exact potentials evaluated analytically or bya converged solution.

4.1. Scattering by a circular cylinder

Consider a cylindrical scatterer of radiusa = 1, centred at(0, 0); the scatterer is impinged by a unit-
amplitude, incident plane wave propagating in the direction (1, 0). The analytical solution for the
total field, at any pointq, on the surface of the cylinder can be expressed by the following, adapted
from [27],

φ(q) =
2

πka

∞
∑

n=0

εn
in+1

H ′
n(ka)

cos(nθ), (24)

whereq = a(cos θ, sin θ), εn denotes the Neumann symbol (ε0 = 1; εn = 2 for n = 1, 2, 3, ...) and
H ′

n(ka) denotes the derivative ofHn(ka) with respect toka.
The quality of the solutionΦ for a range ofk is investigated. As the wavenumber is increased,

M is increased to maintainτ = 2MEλ/P ≈ 3, whereP is the length ofΓ andE is the number of
elements.

Two sets of errors (boundary representation by two elementsand four elements) are displayed in
Figure 2. Results for a conventional (i.e. piecewise quadratic with τ ≈ 10) BEM have been included
to demonstrate the benefits of using the PU-BEM. The results for PU-BEM simulations are not only
more accurate by orders of magnitude; they also require far less memory and computational effort
due to a significantly reducedτ . For two-dimensional problems (and excluding CHIEF points), the
size of the system matrix is directly proportional toτ2; thus, the PU-BEM system is approximately
90% smaller than the conventional BEM system matrix. In spite of the increased requirement to
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Figure 2. Error analysis for the hard, unit-radius, circular cylinder problem:dI = (1, 0)
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Figure 3. Plots of absolute difference between PU-BEM and analytical solution for circular cylinder
problem,k = 50

evaluation of highly oscillatory integrals, the run time for PU-BEM models was, typically, only 5 to
20% of that required for the piecewise quadratic BEM approximation.

As k varies, the integerM is varied to keepτ ≈ 3. This produces large changes inτ , particularly
for smallerk; this leads to the oscillating errors of the PU-BEM. Figure 2displays clearly that
the trigonometric shapes functions provide an accuracy benefit; however, a plot of errors over the
surface of the cylinder is required to demonstrate where these accuracy improvements originate.

Figure 3 shows a comparison of the errors arising from each type of shape function. The
coordinates ∈ [0, 1] runs clockwise around the cylinder, starting at the cartesian coordinate(1, 0);
the dashed line represents an element end. Using quadratic shape functions, the error peaks are
greater at the end of the the two elements. Using the trigonometric shape functions has significantly
reduced the magnitude of the errors in this region; the maximum error is reduced by 80%.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme



8 M. J. PEAKEET AL.

Figure 4. Illustration of the internal reflections caused bythe five-cylinder geometry:λ = 0.25

4.2. Scattering by five circular cylinders

Consider a set of cylindrical scatters impinged by an incident plane wave. An analytical solution for
this problem, in the form of an infinite series, was presentedby Linton and Evans [28]; the solution
is valid for any cylinder radii and location, provided the cylinders do not overlap or touch. Linton
and Evans show that, for a set ofN cylinders, the velocity potential on thevth cylinder can be
expressed as

φ (av, θv) = −
2i

πkav

∞
∑

n=−∞

Av
n

H ′
n(kav)

einθv , (25)

whereAv
n are constants that are found by using the equation

Av
m +

∑

u=1
6=v

M
∑

n=−M

Au
nZ

u
ne

i(n−m)αuvHn−m (kRuv) = −Ive
im(π/2−θI),

v = 1, . . . , N, m = −∞, . . . ,∞,

(26)

whereαuv andRuv are the angle and distance between the centres of theuth andvth cylinder;Iv is
a phase factor associated with thevth cylinder and

Zu
n(≡ Zu

−n) = Hn(kru), (27)

whereru is the distances between the origin and the centre of theuth cylinder. (26) is truncated so
thatm = −M, . . . ,M and a square system ofN(2M + 1) can be solved. IncreasingM improves
the accuracy of the constants at the expense of computing time.

The problem presented here is that of five cylinders, of unit-radius, with centres distributed,
equally,r = 3 from the origin, i.e. at the polar coordinates(3, 2nπ/5) for n = 0, 1, 2, 3, 4. This
geometry is chosen as it creates internal reflections between the cylinders; this can be seen, for
λ = 0.25, in Figure 4.

Similarly to the single cylinder case, PU-BEM simulations were run, using quadratic and
trigonometric shapes functions, using two different meshes: boundary representation with two
elements and four elements. The parameterτ was approximately 3 for all simulations. Results are
displayed in Figure 5.

It is clear, again, that the trigonometric shape functions,due to the increased continuity between
elements, provide an accuracy benefit for the majority of thesimulations.
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Figure 5. Error analysis for the hard, unit-radius, circular cylinders problem:dI = (0.707, 0.707)

4.3. Scattering by a capsule

An area of interest is the blending point between different types of geometry component, e.g. a line
and an arc; since this presents a geometry with onlyC1 continuity, these regions are susceptible to
errors. To investigate the ability of trigonometric shape functions to capture accurately the solution
overC1 boundaries, a capsule shape was designed consisting of two semi-circular arcs (unit-radius)
and two lines.

Figure 6 displays the capsule geometry discretised by threeelements of equal length. The element
ends, ats = 0, 1/3, 2/3, are represented by lines across the boundary. The coordinates show the
origin, arc centres and blend points between lines and arcs.Elements of equal length make the
trigonometric shape functions provide the greatest continuity; this provides the best approximation
of potential along the surface of the scatterer. As geometrypoints are taken analytically, this does
not impact the evaluation of the integral kernels.

Similar to the previous test cases, PU-BEM simulations wererun, using quadratic and
trigonometric shapes functions. The parameterτ was approximately 3 for all simulations. There
is no analytical solution for this problem so a converged solution using the method of fundamental
solutions (MFS) [29] was used as an exact solution.

Figure 7 shows the errors,E , over a range of wavenumbers. The trigonometric shape functions
produce accuracy benefits at lower wavenumbers; however, athigher wavenumbers, the benefits are
reduced. The current authors suggest that this is because, at high wavenumbers, there are a large
number of plane waves in the expansion which become the most dominant part of the basis. For
example, consider the capsule problem and unit-cylinder problem fork = 100. The potential on
each node in the unit-cylinder problem is expanded as a linear combination of 63 plane waves;
for the capsule problem, the potential at each node is expanded as a linear combination of 82
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Figure 6. Capsule discretised by three equal-length elements
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plane waves. With 30% more plane waves in each expansion, these dominate the enrichment for
the capsule problem and reduce the observable effect of using trigonometric shape functions.

Figure 8 shows the absolute difference, along the surface ofthe scatterer, between the PU-BEM
solution and the converged MFS solution. As before, there are significant errors at the element
ends that are reduced by the trigonometric shape functions;the maximum error is reduced by 60%.
There are also significant errors at the blend points betweenthe lines and arcs; these errors have
been reduced but are still large in comparison to the errors over the rest of the boundary. Clearly, the
trigonometric shape functions, though continuous throughthese points, are not sufficient to describe,
ideally, theC1 geometry’s effect on the potential in those areas.

4.4. Time to run simulations

It may be expected that the computational resources required to evaluate the trigonometric
shape functions would exceed those required to compute the corresponding quadratic shape
functions. Modern processors and programming packages, however, have significantly reduced this
computational burden. Also, the computational time of the PU-BEM is dominated by the calculation
of the Hankel functions rather than shape functions. Table Icompares some normalised times of
simulations run for the capsule problems for a selection of wavenumbers. The trigonometric shape
functions clearly do not increase the time taken to run a simulation; indeed, they appear to slightly
reduce the time. It is evident, therefore, that the introduction of trigonometric shapes functions does
not induce a computational burden.
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Figure 8. Plots of absolute difference of PU-BEM against converged MFS solution for capsule problem,
k = 25

Table I. Comparison of simulation times using quadratic andtrigonometric shape functions

System build (s/8.675) System solve (s/7.429)

k=30, Quadratic 0.042 0.015
k=30, Trigonometric 0.041 0.015

k=70, Quadratic 0.206 0.135
k=70, Trigonometric 0.206 0.133

k=150, Quadratic 1.000 1.000
k=150, Trigonometric 0.988 0.997

5. ALTERNATIVE COLLOCATION STRATEGIES

To the authors’ knowledge, the choice of collocation strategy with the PU-BEM is somewhat
arbitrary and has not been formally investigated. For a polynomial basis BEM, it is sufficient to
collocate the boundary integral at each element node; for the PU-BEM, the boundary integral
has, generally, been collocated at a sufficient number of equally spaced points on the boundary.
In adaptive basis schemes, such as [21], additional collocation points are added between existing
collocation points; however, the current authors consideronly an initial array of collocation points.

The motivation for this part of the work is to investigate andreduce errors that may be associated
with the collocation strategy. In view of the fact that the work considers frequency domain wave
scattering, where waves can be modelled as sine curves, uniformly spaced collocation points have
the potential to act like a digital filter.

Three alternative approaches to the choice of collocation points are suggested here. In all cases,
the sound-hard cylinder problem (Section 4.1) is used as thetest case; the results for trigonometric
shape functions are displayed.

5.1. Collocating using roots of polynomials

When examining the absolute error plots (Figures 3 and 8), itcan be seen that the the errors approach
zero at a number of points along each element; these points correspond with the collocation points
on each element. If collocation points are clustered towards on area on an element, this reduces
the absolute errors in that region. Applying this approach,clustering collocation points towards the
ends of elements, is one way to reduce errors at the element ends; however, this will, subsequently,
increase errors at regions of less clustered collocation points.

One way in which to produce a ‘clustered’ collocation schemeis to use the roots of classical
orthogonal polynomials. Here, the authors provide resultsfor three, well-known polynomials:
Chebyshev and Legendre (both special types of Jacobi polynomial), and Hermite polynomial. In
each case, a number of roots can be found which can then be mapped onto the local coordinate
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Figure 9. Uniform, Chebyshev, Legendre and Hermite collocation points in[−1, 1] for 32 collocation points
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Figure 10. Comparison of collocation strategies based on polynomial roots

ξ ∈ [−1, 1]; collocation can be guaranteed atξ = ±1. Figure 9 shows how the collocation schemes
differ for a specific number of collocation points.

Figure 10 shows the errors,E , when these polynomials were used as the collocation schemefor
the unit cylinder problem, over a range of wavelengths. It isclear that none of the above collocation
schemes are effective at improving the accuracy of the solution. The uniform spacing provides
a greater accuracy. Compared to the Chebyshev and Legendre schemes (clustering collocation
towards the elements ends), the uniform spacing provided anaccuracy benefit between one and
four orders of magnitude in most cases. Indeed, the best alternative scheme to uniformly spaced
collocation points was the Hermite roots.

5.2. Consideration of the Fock domain

Consider a cylinder approximated by four, equal-length elements. If one element faces the
impinging wave, it is said to be in the illuminated zone; the element on the opposite side of the
cylinder is in the shadow zone. The remaining two elements, that lie between the illuminated and
shadow zone, are said to be in the Fock domain.
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Figure 11. Comparison of collocation strategies with consideration of Fock domain

For asymptotically high wavenumbers, the wave potential inthe illuminated zone approaches
2φ/rmI ; the wave potential in the shadow zone can be considered to be0. The Fock domain is,
therefore, a transition region between these two zones where grazing incidents and high gradients
of potential can lead to difficulties in the numerical modelling of the domain.

If there areP collocation points per element, a collocation point can be removed from the
illuminated and from the shadow zone and added to the Fock domains. Then theP − 1 collocation
points in the illuminated and shadow zones can be collocateduniformly; similarly, theP + 1
collocation points in the Fock domains can be collocated uniformly.

Figure 11 shows the errors for simulations, over a range of wavenumbers, when adding or
removing points from the Fock domain. In either case, it is clear, that uniformly spaced collocation
over the entire boundary provides the best accuracy.

6. CONCLUSIONS

Using the collocation form of the PU-BEM for wave scatteringsimulations, errors are found
to be at a maximum at the element ends. This is due to a lack of continuity, at the element
ends, associated with Lagrangian shape functions. It has been shown that trigonometric shape
functions increase the continuity at the element ends and, thereby, improve the approximation of
potential in such problems. It should be noted that these accuracy gains are not replicable for
conventional BEM schemes, i.e. trigonometric shape functions do not improve upon piecewise
quadratic approximations unless a plane wave basis is used.

For geometries with geometry blends, the PU-BEM is susceptible to errors at points where
different segments blend together. More continuity is required for improve the accuracy in these
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areas. One possible solution is to use non-uniform rationalB-splines (NURBS) which would also
describe the geometry of circular arcs analytically.

The choice of collocating the boundary integral equation atequally spaced points around the
boundary of the scatterer has been shown to be the most effective approach to collocation.
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