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ABSTRACT

Aims. We show how the build-up of magnetic gradients in the Sun’s corona may be inferred directly from photospheric velocity
data. This enables computation of magnetic connectivity measures such as the squashing factor without recourse to magnetic field
extrapolation.
Methods. Assuming an ideal evolution in the corona, and an initially uniform magnetic field, the subsequent field line mapping is
computed by integrating trajectories of the (time-dependent) horizontal photospheric velocity field. The method is applied to a 12
hour high-resolution sequence of photospheric flows derived from Hinode/SOT magnetograms.
Results. We find the generation of a network of quasi-separatrix layers in the magnetic field, which correspond to Lagrangian co-
herent structures in the photospheric velocity. The visualpattern of these structures arises primarily from the diverging part of the
photospheric flow, hiding the effect of the rotational flow component: this is demonstrated bya simple analytical model of photo-
spheric convection. We separate the diverging and rotational components from the observed flow and show qualitative agreement with
purely diverging and rotational models respectively. Increasing the flow speeds in the model suggests that our observational results
are likely to give a lower bound for the rate at which magneticgradients are built up by real photospheric flows. Finally, we construct
a hypothetical magnetic field with the inferred topology, that can be used for future investigations of reconnection andenergy release.
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1. Introduction

This paper proposes a straightforward method to study the time-
dependent build up of structure in the Sun’s coronal magnetic
field, based on observations of horizontal velocity fields in
the solar photosphere. The ultimate objective is to determine
whether the energy built up and released in the coronal magnetic
field as a result of photospheric convection is sufficient to heat
the corona via the Parker mechanism (Parker 1972). In this the-
ory, footpoint braiding generates localised magnetic gradients
and thin current sheets in the corona, leading to ubiquitousre-
connection. There are two requirements that must be satisfied
by the observed motions if this is to work: (1) they must have a
tendency to create the required magnetic gradients, and (2)they
must do so quickly enough to generate a sufficient overall recon-
nection rate. The method proposed here aims to investigate these
questions in a practical way, given currently available observa-
tions.

Numerous studies have found that the topology and connec-
tivity of the coronal magnetic field play a primary role in deter-
mining when and where magnetic reconnection will take place
(Birn & Priest 2007). An increasingly popular means to charac-
terise the connectivity of 3D magnetic fields has been through
the so-calledsquashing factor Qof the magnetic field line map-
ping (Titov et al. 2002). Quasi-separatrix layers (QSLs),whereQ
is high, represent locations in the magnetic field with largegra-
dients in field line connectivity. They have been identified with
the locations of flares and X-ray bright points (Démoulin etal.
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1996, 1997; Mandrini et al. 1996; Gaizauskas et al. 1998; Wang
et al. 2000). Magnetic reconnection is suggested to occur prefer-
entially at QSLs (Démoulin 2006; Santos et al. 2008).

AlthoughQ is defined solely by the connectivity of field lines
(the mapping between photospheric footpoints), existing studies
have all calculatedQ by first constructing a 3D magnetic field,
then tracing field lines to determine the mapping. Our method
determines the field line mapping, and henceQ, in a fundamen-
tally different way. Given some initial field line mapping at time
t0, and assuming an ideal evolution of the coronal magnetic field,
the field line mapping at a later time depends only on the se-
quence of photospheric footpoint motions. We propose to take
advantage of this fact to compute the field line mapping directly
from photospheric velocity data.

The main advantage of our proposed method is that it avoids
the need to extrapolate a 3D magnetic field from photospheric
magnetograms. This is problematic for studies of magnetic
topology because standard techniques (such as potential fields)
applied to a sequence of photospheric magnetograms will not
give the correct field line topology commensurate with an ideal
evolution from one time to the next. To avoid this problem, a
number of studies have used time-dependent 3D simulations to
model how topological structure develops in response to simple
boundary motions (Milano et al. 1999; Galsgaard et al. 2003;
Aulanier et al. 2005; Masson et al. 2009) or to boundary mo-
tions derived directly from observed magnetograms (Mackay
et al. 2011). But such time-dependent simulations inevitably suf-
fer from numerical dissipation, leading to inaccuracies inmag-
netic topology. Our method avoids this.
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The main limitation of our proposed method is that it can-
not determine the initial field line mapping at timet0, only
that resulting from subsequent footpoint motions. The initial
mapping will likely contain pre-existing magnetic structure and
QSLs. Unfortunately, existing extrapolation techniques cannot
uniquely determine this initial magnetic topology from available
magnetogram observations. Note that this limitation is shared by
all of the studies cited in the previous paragraph, which must also
assume some initial magnetic field; typically a potential field
extrapolation is used. A similar limitation applies to studies of
magnetic helicity using photospheric flows and magnetograms
(Démoulin & Pariat 2009). In this paper, we simply assume a
uniform initial field, whose field line mapping is the identity.
This is the most conservative choice:Q values derived from the
subsequent mappings will almost certainly be a lower bound for
the real coronal magnetic field.

An advantage of taking the initial field to be uniform is that
one may construct a hypothetical magnetic field with the cor-
rect topology simply by taking the magnetic field lines to be the
trajectories of the velocity field. Examples of such trajectories
are shown in Fig. 1, where time increases vertically. The cross-
sections show the magnitude ofBz for this hypothetical magnetic
field; these may be thought of as the photospheric magnetograms
at subsequent times. (See Appendix A for details of the calcula-
tion.) The concentration of magnetic flux in a “network” of con-
vective cell boundaries is evident. Of course, this hypothetical
field does not represent a realistic extrapolation of the magnetic
field that would be seen on the Sun, since it starts from a uniform
field at t0, and only takes into account photospheric motions at
one end of the field lines. Rather, we envisage using it as the
starting point for 3D MHD simulations investigating energyre-
lease, with the advantage of having determined accurately the
change in field line mapping.

To demonstrate the proposed method, we apply it to a 12
hour sequence of photospheric velocities derived by local corre-
lation tracking in Hinode/SOT (Solar Optical Telescope, Tsuneta
et al. 2008) magnetograms. The observed velocities are de-
scribed in Sect. 2, while the inferred magnetic field line map-
ping is presented in Sect. 3. In addition toQ, we compute the
finite-time Lyapunov exponent(FTLE) field σ. This measure is
a popular method in fluid mechanics for identifying so-called
Lagrangian Coherent Structures (LCSs) in velocity fields. Like
Q, σ measures the maximum separation rate of initially nearby
trajectories, and we illustrate how QSLs in the field line mapping
correspond to LCSs in the photospheric velocity field. In Sect. 4
we explain the pattern observed in theQ orσ fields using a sim-
ple analytical model of photospheric convection. By varying the
model parameters, we predict how the field line mapping would
be expected to change given observations at higher resolution of
faster flows. Conclusions are given in Sect. 5.

2. Photospheric Velocity Data

Our velocity data have been derived by local correlation track-
ing in magnetograms, although the method could be applied to
velocity fields from any source. Detailed analysis of the data re-
duction procedure is given by Welsch et al. (2011). Briefly, we
use StokesV/I from Hinode/NFI (Narrowband Filter Imager)
observations in Fe I 6302Å of active region 10930. These were
calibrated to gauss following Equation (1) of Isobe et al. (2007),
and the noise level estimated at∼ 17 G by fitting the core of his-
togrammed field strengths (Hagenaar et al. 1999). In view of the
subsequent reduction of noise by averaging in the tracking pro-
cedure, a tracking threshold of 15 G was chosen, with no veloci-

Fig. 1. A hypothetical magnetic field (Appendix A) whose field line
mapping matches that inferred from the observed velocity field. The
magnetic field lines in this particular field are simply trajectories of
tracer particles in the 2D, time-dependent velocity field (with time in-
creasing vertically). Contour slices showBz at differentzwith the colour
scale in gauss: the initial distribution (on the lower boundary) is a uni-
form field Bz(x, y, 0) = 88 G, which was the average field strength in
this region of the original SOT magnetogram.

ties assigned to pixels below this threshold. The magnetogram
pixels are binned (2x2) from 0.16′′ to 0.32′′, consistent with
SOT’s 0.3′′ diffraction limit at this wavelength. The cadence of
the images is∼ 121 s, and the sequence runs from 14:00UT on
12 December to 02:58UT on 13 December 2006.

The velocity field is extracted from the magnetograms using
the Fourier local correlation tracking (FLCT) method (Welsch
et al. 2004; Fisher & Welsch 2008). The method has a num-
ber of parameters: optimum values have been determined by
an autocorrelation analysis, aiming to maximise frame-to-frame
correlations and ensure robustness in the velocity estimate (see
Welsch et al. 2011). Here, the windowing/apodization parameter
is set to 4 to avoid too much spatial averaging of small-scale
flows. The sampling time between subsequent frames is cho-
sen as∆t = 8 mins. This is small enough to avoid significant
decorrelation, but large enough to allow for boxcar averaging of
5 magnetograms to produce each frame, which greatly reduces
noise. We have repeated the calculations with∆t = 4 mins with
qualitatively similar results.

For the analysis in this paper, we select a unipolar plage re-
gion of size 12.4 Mm × 12.4 Mm (approximately 17′′ × 17′′),
away from the main sunspots, as shown in Fig. 2 (left). This is
to avoid the large-scale flow associated with emerging flux and
rotation of the sunspots. Since the magnetic flux in our region
is concentrated in the supergranular lanes, there are inevitably
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Fig. 2. Left: Location of the 12.4 Mm× 12.4 Mm analysis region (black
box) in the full SOT line-of-sight magnetogram (1′′ = 725 km).Right:
Histogram of measured|v| in the analysis region, over the entire 12
hour dataset. The solid line shows the filtered data, while the dashed
line shows the original unfiltered data. Each curve is normalised by its
own maximum.

areas where the line-of-sight magnetic field is too weak for re-
liable estimation of the velocity. This particular region has been
chosen to minimise this problem over the length of the time se-
quence, although there are several regions where the velocity
suffers locally from high-frequency noise. We have removed this
noise with minimal disturbance to the well-resolved regions by
applying a low-pass (Butterworth) filter to the velocity fields in
Fourier space. Histograms of the velocities both with and with-
out filtering are shown in Fig. 2 (right). The mean flow speed
is of the order 0.1 km s−1, which is rather lower than reported
speeds for granular flows (∼ 1 km s−1, Rieutord & Rincon 2010).
There are a number of possible reasons for this. Firstly, there
is a likely averaging effect due to the convective cells being
close to our spatial resolution of 0.3′′. In addition, comparative
tests show that FLCT has a bias toward underestimating speeds
(Welsch et al. 2007). However, it should be noted that the FLCT
method tracks coherent magnetic features, which are expected to
move more slowly than surrounding plasma due to suppression
of convection (Title et al. 1992; Berger et al. 1998). The possible
effect of faster flows is explored in Sect. 4.
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Fig. 3. Snapshots of∆ (left) andω (right) in the analysis region, at
14:04UT. The grey scale extends to the maximum absolute value of
each quantity.

Figure 3 shows snapshots of the horizontal divergence of the
(filtered) velocity,

∆ ≡ ∇ · v = ∂vx/∂x+ ∂vy/∂y, (1)

and vertical component of the vorticity,

ω ≡ ez · (∇ × v) = ∂vy/∂x− ∂vx/∂y. (2)

The root-mean-square (RMS) divergence over the whole 12 hour
dataset is 2.06× 10−4 s−1 (or 3.49× 10−4 s−1 before filtering),
while the RMSω is 1.97×10−4 s−1 (3.16×10−4 s−1 before filter-
ing). Thus the divergence and curl of the velocity field are com-
parable in magnitude. This will be important for understanding
the inferred magnetic field line mapping.

3. Inferred Magnetic Field Line Mapping

The field line mapping is simply given by following trajecto-
ries (particle paths) in the observed time-dependent 2D velocity
field. So a particle starting from (x0, y0) at timet0 is mapped to
f(x0, y0, t1) =

(

fx(x0, y0, t1), fy(x0, y0, t1)
)

at time t1, wheref is
found by integrating

df(x0, y0, t)
dt

= v
(

f(x0, y0, t)
)

(3)

from t = t0 to t = t1, for which we use a second-order method.
The observed velocity fields are interpolated using a local tricu-
bic method (Lekien & Marsden 2005) that also gives continu-
ous first derivatives ofv. Linear interpolation does not produce
smooth enough trajectories for computing the Lagrangian struc-
tures we are interested in. Equation (3) is integrated on a grid
of 864× 864 starting points to give the 2D field line mapping at
a given end-timet1. The high resolution is needed to accurately
determine theQ andσ fields, which typically vary on a smaller
scale than the velocity field itself (see Shadden 2011).

To analyse the resulting time sequence of mappings for dif-
ferent t1, we compute two measures of the mapping gradient:
the squashing factorQ and the FTLE fieldσ. The former is fre-
quently used to characterise 3D magnetic field structure, while
the latter is used to characterise particle paths in time-dependent
2D velocity fields. In fact, both are rather similar measuresof
the local rate of stretching at a given point, and both are defined
in terms of the Jacobian matrix

J(x0, y0, t1) =

(

∂ fx/∂x0 ∂ fx/∂y0
∂ fy/∂x0 ∂ fy/∂y0

)

≡
(

a b
c d

)

. (4)
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3.1. Quasi-separatrix Layers

The squashing factor at a point (x0, y0) of the mapping from time
t0 to t1 is

Q(x0, y0, t1) =
T
|D|

, (5)

whereT = Tr(JT J) ≡ a2+b2+c2+d2 andD = det(J) ≡ ad−bc. It
is a dimensionless measure of the local degree of stretchingand
squashing of a magnetic flux tube under the field line mapping
(Titov et al. 2002). Large values ofQ signify the locations of
strong gradients in the mapping. We find computation ofQ to be
more robust using the equivalent form

Q = R+
1
R
, (6)

whereR =
√
λ+/λ− is the ratio of singular values ofJ (i.e.,

λ± are the eigenvalues of the positive-definite matrixJT J; Titov
et al. 2002; Richardson & Finn 2011).

We have computedQ as a function oft1 using the inferred
field line mapping, and the resulting distribution of log10 Q is
shown in Fig. 4 at two different times. The logarithmic scaling
is introduced because certain trajectories typically become ex-
ponentially separated in time: these are precisely the locations
of strong gradients in the resulting field line mapping. These
thin “ridges” of highQ, usually known as quasi-separatrix lay-
ers (QSLs), are visible at a number of locations in the 12-hour
snapshot. They are interspersed with more diffuse regions ofQ.
As a simple measure of the overall structure, we show the time
variation of

∫

log10 Q dxdyas the thick, solid curve in Fig. 6.
This shows an approximately linear increase through the twelve
hours of observations.

All of our figures are shown in the “initial” frame (x0, y0),
so that QSLs correspond to unstable manifolds (Richardson &
Finn 2011). By definition,Q is independent of the direction of
mapping along a particular field line, but when calculated for
the inverse mapping and plotted at

(

fx(x0, y0, t1), fy(x0, y0, t1)
)

,
the pattern would differ and the apparent QSLs would then cor-
respond to stable manifolds. These stable manifolds tend tobe
visible observationally because they form the “network” along
which magnetic flux concentrates over time. This effect is visi-
ble in Figure 1. Conversely, we would expect an anti-correlation
between the pattern of photospheric magnetic flux at timet1 and
the locations of QSLs in Figure 4, which correspond to unstable
manifolds.

3.2. Lagrangian Coherent Structures

An alternative measure of the mapping gradient is given by the
finite-time Lyapunov exponent or FTLE (Haller 2001; Shadden
et al. 2005; Shadden 2011), defined as

σ(x0, y0, t1) =
ln
√
λ+

|t1 − t0|
, (7)

where as beforeλ+ is the largest eigenvalue ofJT J. The quantity
σ gives the separation rate between two initially nearby trajec-
tories: if two points are initially separated by a small distance
|ξ0| at time t0, then their separation at a later timet1 will be
|ξ1| ≈ exp[σ(t1 − t0)]|ξ0|. We shall use only the forward time
FTLE, although one may define also a backward FTLE using
the inverse mapping.

In fact, comparing the definition ofσ to that ofQ in Equation
(5) shows that both quantities measure essentially the normof
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Fig. 6. Integrated squashing factor,
∫

log10 Q dxdyas a function of time
for the observed velocity field (thick lines) and analyticalmodels of
Sect. 4 (thin lines). The solid lines correspond to the observed v and
combined model 3. Dotted and dashed lines correspond respectively to
vdiv (or model 1) andvrot (or model 2). The given slopes are for a least-
squares linear fit to the observed data.

the matrixJT J (which is the Cauchy-Green tensor of the de-
formation imposed by the field-line mapping). The quantityQ
uses the Frobenius norm of the matrix, whereasσ uses the spec-
tral norm. They differ further in thatσ includes the logarithm
in its definition, and has units of inverse time, whereasQ is di-
mensionless. In the particular case thatD = 1, it follows, in the
high-Q layers, thatQ ≈ |λ+|, so that we may make the direct
correspondence lnQ ≈ 2|t1 − t0|σ.

The distribution ofσ is shown in Fig. 5, for the same two
timest1 as Fig. 4. We see the development of thin ridges of large
(positive)σ, which represent the locally strongest repelling ma-
terial surfaces in the flow. These are interspersed by regions of
negativeσ, indicating converging trajectories. The ridges in Fig.
5 coincide precisely with the quasi-separatrix layers in Fig. 4;
in the fluid dynamical context they are known as Lagrangian
Coherent Structures (Haller & Yuan 2000; Shadden et al. 2005).
They are termed “lagrangian” because they are defined by the
fluid motion rather than an instantaneous snapshot, and “coher-
ent” because they have distinguished stability compared toother
nearby material surfaces. Analysis of such structures has become
an important tool in fluid dynamics because they often reveal
the mechanisms underlying transport in complex fluid flows:
for example, the patterns traced out by visual markers such as
dye. With our assumption of ideal MHD, the coronal magnetic
field inherits these topological structures directly from the pho-
tospheric flow.

4. Interpretation

The spatial patterns ofQ andσ in Figs. 4 and 5 reveal the
topological structure of the coronal magnetic field generated
by the observed photospheric velocities. We can understand
the origin of this structure using a simple analytical modelof
two-dimensional convection, similar to that of Simon & Weiss
(1989). We will demonstrate the effects of both diverging and ro-
tational flows, before using the model to predict how the inferred
field line mapping might differ using higher-resolution velocity
observations.

4.1. Analytical Model

We present three models, each computed on a grid of size
12 Mm× 12 Mm.

4



A. R. Yeates et al.: Photospheric flows and coronal magnetic structure

Fig. 4. Contours of log10 Q after six and twelve
hours (at 20:24UT and 02:24UT respectively),
with initial time t0 at 14:04UT (available as a
movie).

Fig. 5. Finite-time Lypanunov exponent
(FTLE) fieldσ at times 20:24UT and 02:24UT
(available as a movie).

1. Diverging flow. Here the velocity fieldv is a superposition
of convective “plumes”

vx =

N
∑

i=1

(x− Xi)
r i

vri , vy =

N
∑

i=1

(y− Yi)
r i

vri , (8)

where (Xi ,Yi) is the centre of theith plume, r i =
√

(x− Xi)2 + (y− Yi)2, and the plumes have a purely radial
velocity with respect to their centre of

vri = Vi

√
2e0.5 r i

Ri
exp













−
r2
i

R2
i













. (9)

Thusω = 0 and∆ , 0. The centres (Xi,Yi) of the N = 81
plumes are selected at random from a uniform distribution,
over a larger domain−3 ≤ Xi ≤ 15, −3 ≤ Yi ≤ 15 to
avoid boundary effects. To approximate the observations,
the peak velocitiesVi are selected from a normal distribu-
tion with mean〈Vi〉 = 0.1 kms−1 and standard deviation
sd(Vi) = 0.03 kms−1, while the widthsRi are selected from
a normal distribution〈Ri〉 = 1 Mm and sd(Ri) = 0.3 Mm.
For computational convenience, the same pattern of plumes
is used for a “coherence time” of 15 minutes, before a new
pattern is chosen. (Qualitatively similar results are obtained
if plumes are given a Gaussian profile in time, with randomly
distributed peak times.) The choice of 15 minutes is consis-
tent with the observations of Welsch et al. (2011) for flows
on this spatial scale.

2. Rotational flow. Here the velocity fieldv is a superposition
of vortices

vx =

Ñ
∑

i=1

− (y− Ỹi)
r̃ i

ṽφi , vy =

Ñ
∑

i=1

(x− X̃i)
r̃ i

ṽφi , (10)

where (X̃i, Ỹi) is the centre of theith vortex, r̃ i =
√

(x− X̃i)2 + (y− Ỹi)2, and the vortex has an azimuthal ve-
locity

ṽφi =
Ω̃ir i

2
exp













−
r̃2
i

R̃2
i













. (11)

Now ω , 0 and∆ = 0. We chooseÑ = 81 vortices, with
centres (̃Xi , Ỹi) on an extended grid as in model 1. Since
ω and∆ are observed to have comparable scales (Sect. 2),
the widthsR̃i are again selected from a normal distribution
with 〈R̃i〉 = 1 Mm and sd(̃Ri) = 0.3 Mm. The strengths̃Ωi

are selected from a normal distribution with zero mean and
sd(Ω̃i) = 0.00048 s−1. The latter value makes the RMSω
in the box approximately equal to the RMS∆ in model 1
(approximately 2× 10−4 s−1). Again, a constant pattern of
vortices is applied for each coherence time.

3. Diverging and rotational flow. The velocity field is the su-
perposition of those from models 1 and 2.

In each model, an initial grid of 864×864 tracer points has been
integrated in the same way as for the observational data, follow-
ing trajectories of the model flows. The resultingσ fields for
each model after 6 hours (corresponding to 24 coherence times)
are shown in Fig. 7a–c. The time evolution of

∫

log10 Q dxdyis
shown by the thin lines in Fig. 6 for models 1 (dotted), 2 (dashed)
and 3 (solid). Note that the combined model 3 leads to a linear
increase at a rate comparable to the observed flow (thick solid
line). This rate is approximately double that of models 1 or 2.

4.2. Origin of the Observed Pattern

From theσ fields for the three analytical models in Fig. 7, we can
see that the qualitative structure of theobservedσ field (Fig. 5)
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Fig. 7. Finite-time Lyapunov exponent (FTLE) fieldσ after 6 hours for photospheric flows in the analytical modelswith (a) diverging flow only,
(b) rotational flow only, and (c) both diverging and rotational flow.

reflects predominantly the influence of divergence∆ in the ve-
locity field. This is responsible for generating the visibleridge
network of LCSs (or QSLs), interspersed with regions where
σ < 0. Note that this network differs from that of the magnetic
flux distribution (Fig. 1): the latter collects along the stable man-
ifolds rather than the unstable manifolds.

Model 2, with purely rotational flow (Fig. 7b), generates a
very differentσ field: there are still localised ridges, but these are
more diffuse and space-filling than in the diverging flow. There
are no regions ofσ < 0. When both flows are superimposed
(Fig. 7c), theσ field visually resembles that of the diverging
flow, with the contribution of vorticity being to locally perturb
the ridge network and to infill some of theσ < 0 regions with
new ridges (although, in fact,

∫

log10 Q dxdyincreases at twice
the rate of model 1). This model, where∆ andω are compara-
ble in magnitude, corresponds most closely with the observed
velocity field.

Although rotational component of the combined flow has lit-
tle visual effect on the LCS/QSL pattern, this does not mean that
it is incapable of leading to gradients and subsequent reconnec-
tion in the coronal magnetic field. Rather, the superposition of a
diverging flow has perturbed the picture of theσ andQ fields so
as to mask the contribution fromω. It may therefore prove use-
ful for future analysis to extract the two components from the
observed velocity field. This may be done through a Helmholtz
decomposition

v = vdiv + vrot, (12)

wherevdiv = ∇φ and vrot = ∇ × (ψez), for scalar functions
φ(x, y, t), ψ(x, y, t). This decomposition is not unique but we can
fix a particular solution by specifying the boundary conditions
thatn · vrot = 0 on the boundary of our square region, wheren
is the unit normal to the boundary. Thenv · n = vdiv · n on the
boundary. The functionφ is determined by solving the Poisson
equation∇2φ = ∆ with the Neumann boundary conditions that
n · ∇φ = n · v on the boundary. The functionψ is determined by
solving the Poisson equation

∇2ψ = −ω, (13)

in this case with the Dirichlet condition of constantψ on the
boundary.

Givenω from the observed velocity, we calculatedψ(x, y, t)
at each time slice by solving Equation (13) using a standard fast
Poisson solver (van Loan 1992). Theσ fields were then calcu-
lated forvdiv andvrot separately, and are shown at 02:24UT in

Fig. 8. This confirms our qualitative picture from the analyti-
cal model of the rather differentσ fields for the two types of
flow. The thick dotted and dashed curves in Fig. 6 show that
∫

log10 Q dxdyfor bothvdiv andvrot increases at about half the
rate of that for the combined velocity, again in accordance with
the model.

4.3. Predicted Structure from Faster Flows

Since our method relies on the photospheric velocity field
v(x, y, t) as input, the inferred magnetic structure is necessarily
affected by limitations in the velocity observations used. In addi-
tion to the limited spatial resolution of SOT (which has a diffrac-
tion limit of approximately 0.3”), the velocities we report have
been averaged in both space and time in order to reduce noise in
the local correlation tracking. Previous studies of granular con-
vection on the Sun report cells of size 0.5− 2 Mm with typical
lifetimes of∼ 10 minutes, and velocities from 0.5− 1.5 km s−1

(Rieutord & Rincon 2010). While the “cells” we find are compa-
rable to the larger end of this size range, our velocities (Fig. 2b)
are a factor of 5− 10 smaller due to the effect of the averaging.

To predict the magnetic structure that would arise from faster
flows, we re-run the analytical model with plume velocity in-
creased first to〈Vi〉 = 0.3 kms−1 and then to〈Vi〉 = 0.5 kms−1.
To keep the RMS vorticity comparable to the RMS divergence,
we also increase sd(Ω̃i) to 0.00144 s−1 and 0.0024 s−1 respec-
tively. The resultingσ fields in models 1, 2 and 3 after 6 hours
are shown in Fig. 9. The results are striking: in model 1 (di-
verging flow), the effect of faster flows is to sharpen the LCSs,
increasing the maximum value ofσ but maintaining the overall
pattern. By contrast, in model 2 (rotational flow), faster flows
lead not only to sharper LCSs but also to greater filling of space
with these structures. Interestingly, model 3 (combined flows)
sees not only the sharpening effect of model 1 but also an in-
creased infilling of theσ < 0 regions with new LCSs resulting
from the vortices.

The infilling arises because, with strong enough vorticity,
LCSs “wind up” around centres in the flow pattern. This is par-
ticularly evident in regions where the vorticity is strong but the
divergence is weak; for example, compare the region around
x = 1, y = 1.5 in Figs. 9d-f. This “wind up” phenomenon was
found by Démoulin et al. (1996) who computed QSLs in analyt-
ical flux tubes of increasing twist. Similarly, Birn et al. (1989)
found that field line connectivity in a 3D plasmoid varies on
smaller and smaller scales as the axial field is reduced relative
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Fig. 8. Finite-time Lyapunov exponent (FTLE)
fieldσ at 02:24UT for the (a) diverging compo-
nentvdiv and (b) the rotational componentvrot

of the Helmholtz-decomposed observed veloc-
ity field.

to the azimuthal field, with the boundaries between regions of
different connectivity wrapping round and round the flux tube
axis.

The initial rate of increase in
∫

log10 Q dxdy (correspond-
ing to the slopes in Fig. 6) increases from∼ 8 when〈Vi〉 =
0.1 kms−1 to ∼ 44 when〈Vi〉 = 0.3 km s−1 and ∼ 91 when
〈Vi〉 = 0.5 km s−1, although the rate of increase slows consid-
erably in the latter case during the 6 hours. This may correspond
to a “saturation” of the infilling evident in models 2 and 3 once
theσ field has become homogenised, in accordance with previ-
ous studies of LCSs in turbulent convection (Lapeyre 2002).At
this stage, magnetic field lines in the whole region will havebe-
come mixed/braided in a manner likely to promote reconnection
and subsequently heating of the coronal plasma. A saturation is
also seen in the maximum value ofσ, and this occurs after a
shorter time for higher flow speed. This may be due to the LCS
widths falling below the tracing grid scale, but it is unclear what
other effects might cause such saturation; this bears further in-
vestigation.

Note that certain consequences of a faster plume velocity,
namely (i) sharper LCS with higher peaks ofσ, and (ii) a faster
rate of increase in

∫

log10 Q dxdy, would also result if one left
the plume velocities unchanged but increased their coherence
time. This is demonstrated in Fig. 10, which shows model re-
sults after six hours with a single velocity pattern, ratherthan
changing the pattern every 15 minutes. The peakσ (c.f. Fig. 7)
and slope of the

∫

log10 Q dxdycurve (not shown) become com-
parable to the run with〈Vi〉 = 0.3 kms−1. Yet there are fewer
LCS, filling less of the area. This illustrates how the pattern ofσ
depends on the time history of the flow, not just on its patternat
any given instant.

For simplicity, the models here are limited to convective
cells with a single spatial scale, flow speed and lifetime. On
the real Sun, convection seems to operate simultaneously ona
range of scales. Experiments with superimposing a “supergran-
ular” flow in the model (cells 10 times larger, with slower speeds
and longer lifetimes) indicate that the LCS pattern and increase
of

∫

log10 Q dxdyare determined primarily by the original, faster
flow component. The supergranular flow can generate localised
magnetic gradients only over a longer timescale of many hours.

5. Conclusion

We have proposed a practical method for inferring the topology
of the 3D coronal magnetic field not by extrapolation (as is typ-
ically used) but rather by integrating trajectories of an observed
sequence of horizontal flows in the photosphere. Assuming an

ideal evolution in the corona, this enables us to infer the re-
sulting magnetic field line mapping between photospheric foot-
points, and therefore the squashing factorQ of this mapping.
The method has been demonstrated using a particular sequence
of observed flows derived from Hinode SOT magnetograms, al-
though it applies equally to any velocity data and does not re-
quire magnetic information. Since the inferred field line map-
ping results directly from the observed photospheric flow, quasi-
separatrix layers in the coronal magnetic field correspond to so-
called Lagrangian Coherent Structures in the flow. These are
ridges of high finite-time Lyapunov exponentσ where neigh-
bouring trajectories diverge most strongly.

With a simple analytical model, we have demonstrated that
the pattern of theσ (or equivalentlyQ) field differs significantly
between a flow composed of irrotational convective plumes and
one composed of purely incompressible vortices. The diverg-
ing flow pattern in the first case leads to a network of long thin
LCSs, whereas the vortical flow leads to a space-filling pattern of
shorter LCSs that looka priori more favourable for widespread
reconnection. The observed velocity field is found to have com-
parable|∇·v| and|∇×v|, and the observedσ field is in qualitative
agreement with a combined model incorporating both effects. In
the combined case, the appearance of theσ andQ fields follows
that of the diverging flow model: the diverging part of the veloc-
ity acts to quickly stretch and deform the picture. However,the
rate of increase of integrated log10 Q in the combined model is
double that of the original model, and we hypothesise that the
vortical structure remains “hidden” in the magnetic field topol-
ogy. We have demonstrated how the vortical part may be ex-
tracted from an observed velocity field, but further study isre-
quired to determine whether the vortical part is a more appropri-
ate predictor of subsequent reconnection.

Due to the limitations of the observational technique used for
the demonstration in this paper, the typical flow speeds measured
were only 0.1 kms−1, a factor of 5−10 slower than real granular
flows. From investigation of the analytical model, we predict that
faster flow speeds (for the same size and lifetime of granules)
will result in significantly faster development of strong gradients
in the magnetic field. Our initial results are therefore verymuch
a lower bound for the complexity that we expect to develop in
the coronal magnetic field over this time. The model also indi-
cates that, if the real vorticity is also larger, then the combined
σ field will show greater infilling of LCSs. In this case, the mix-
ing of trajectories is sufficient that the model begins to show a
process of “homogenisation” of theσ field as found in simula-
tions of turbulence (Lapeyre 2002). A proper investigationof the
rate of this mixing will require higher resolution velocitydata,
but the simple model indicates that it is likely to be effective on
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Fig. 9. Effect of an increased flow speed in the analytical model. In panels (a)–(c) the mean plume velocity is 0.3 km s−1, while in panels (d)–(f) it
is 0.5 km s−1. As in Fig. 7, theσ field is shown after 6 hours for models 1 (left column), 2 (middle), and 3 (right).

Fig. 10. Finite-time Lyapunov exponent (FTLE) fieldσ after 6 hours of a stationary velocity field in the analyticalmodels with (a) diverging flow
only, (b) rotational flow only, and (c) both diverging and rotational flow.

timescales much shorter than the observed 12 hours. Realistic
numerical simulations of photospheric convection (e.g., Stein &
Nordlund 1998; Gudiksen & Nordlund 2005) could also give
tighter constraints on the expected magnetic structure.

Finally, the method proposed here—which assumes a per-
fectly ideal evolution in the corona—will break down if and
when sufficiently high magnetic gradients have formed for mag-
netic reconnection to set in. Determining this threshold for re-
connection will likely require detailed study of numericalMHD
simulations. To this end, we have proposed a method for recon-
structing a 3D magnetic field with the inferred field line map-
ping. This field is neither unique nor (likely) in equilibrium, but

it has the significant advantage over existing extrapolation tech-
niques of having the correct field line topology.
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Appendix A: Magnetic Field Construction

The method outlined in this paper infers the magnetic field line
mapping from a photospheric flow. However, the field line map-
ping defines the 3D magnetic fieldB only up to an ideal defor-
mation. In particular, a hypothetical plasma flow in the volume,
which vanishes on the photospheric boundaries, can deformB
while leaving the field line mapping invariant. Conversely,two
fieldsB resulting from applying the same photospheric footpoint
motions to the same initial magnetic field can differ at most by
an ideal deformation.

It would be useful for future investigations to generate a par-
ticular magnetic field of the required topology. Here we present
a general method for constructing such a field. Given a velocity
field v(x, y, t), the strategy is to set

B(x, y, z) = λ(x, y, z)
(

vx(x, y, z)ex + vy(x, y, z)ey + ez

)

(A.1)

so that the field lines ofB are simply the trajectories ofv with
z corresponding to time. The scalar functionλ is then adjusted

to makeB divergence-free and match a given normal component
Bz(x, y, 0) on the lower boundary. From∇ · B = 0 we find

dλ
dz
= −λ∆, (A.2)

where thez-derivative is taken along a magnetic field line and
∆ ≡ ∇·v as before. Integrating fromt = 0 to t = zalong the field
line f(x0, y0, t) gives

∫ λ

Bz(x0,y0,0)

dλ
λ
= −

∫ z

0
∆
(

f(x0, y0, t)
)

dt, (A.3)

so at the point (x, y, z) = f(x0, y0, z) we can integrate to find

λ(x, y, z) = Bz(x0, y0, 0) exp

(

−
∫ z

0
∆
(

f(x0, y0, t)
)

dt

)

. (A.4)

Notice that the magnetic field is entirely determined by knowing
both its magnetic field lines and the distribution ofBz on the
lower boundary. The magnetic field in Fig. 1 was constructed in
this way from the observed velocity field.
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