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ABSTRACT

Aims. We show how the build-up of magnetic gradients in the Sunfer® may be inferred directly from photospheric velocity
data. This enables computation of magnetic connectivitpsuees such as the squashing factor without recourse toatiadield
extrapolation.

Methods. Assuming an ideal evolution in the corona, and an initialifform magnetic field, the subsequent field line mapping is
computed by integrating trajectories of the (time-depat)deorizontal photospheric velocity field. The method iplagd to a 12
hour high-resolution sequence of photospheric flows déffiream Hinod¢SOT magnetograms.

Results. We find the generation of a network of quasi-separatrix yethe magnetic field, which correspond to Lagrangian co-
herent structures in the photospheric velocity. The vigadiern of these structures arises primarily from the diver part of the
photospheric flow, hiding theflect of the rotational flow component: this is demonstrated Isymple analytical model of photo-
spheric convection. We separate the diverging and rottmmmponents from the observed flow and show qualitativeeagent with
purely diverging and rotational models respectively. éaging the flow speeds in the model suggests that our obisealatesults
are likely to give a lower bound for the rate at which magngteadients are built up by real photospheric flows. Finallg,a@nstruct

a hypothetical magnetic field with the inferred topologwattban be used for future investigations of reconnectionesuealgy release.
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1. Introduction 1996, 1997; Mandrini et al. 1996; Gaizauskas et al. 1998;gNVan

) ) . etal. 2000). Magnetic reconnection is suggested to ocafepr
This paper proposes a stralghtforyvard method to study rime-ti entially at QSLs (Démoulin 2006; Santos et al. 2008).
dependent build up of structure in the Sun’s coronal magneti

field, based on observations of horizontal velocity fields in AlthoughQis defined solely by the connectivity of field lines
the solar photosphere. The ultimate objective is to deteemi(the mapping between photospheric footpoints), existindiss
whether the energy built up and released in the coronal nimgn&ave all calculate by first constructing a 3D magnetic field,
field as a result of photospheric convection iffisient to heat then tracing field lines to determine the mapping. Our method
the corona via the Parker mechanism (Parker 1972). In this tfletermines the field line mapping, and hefen a fundamen-
ory, footpoint braiding generates localised magnetic Wd tally different Way G.lven some |.n|t|a| field line mapping at_ tlme
and thin current sheets in the corona, leading to ubiquiteus to. and assuming an ideal evolution of the coronal magnetit, fiel
connection. There are two requirements that must be sattisfibe field line mapping at a later time depends only on the se-
by the observed motions if this is to work: (1) they must have@lence of photospheric footpoint motions. We propose te tak
tendency to create the required magnetic gradients, artigg) advantage of this fact to compute the field line mapping dyec
must do so quickly enough to generate #isient overall recon- from photospheric velocity data.

nection rate. The method proposed here aims to investigaset  The main advantage of our proposed method is that it avoids
questions in a practical way, given currently availableesba- he need to extrapolate a 3D magnetic field from photospheric
tions. magnetograms. This is problematic for studies of magnetic
Numerous studies have found that the topology and conn@gpology because standard techniques (such as potentis) fie
tivity of the coronal magnetic field play a primary role in €éet applied to a sequence of photospheric magnetograms will not
mining when and where magnetic reconnection will take plaggve the correct field line topology commensurate with araide
(Birn & Priest 2007). An increasingly popular means to ckaraevolution from one time to the next. To avoid this problem, a
terise the connectivity of 3D magnetic fields has been thnougumber of studies have used time-dependent 3D simulations t
the so-callegquashing factor @f the magnetic field line map- model how topological structure develops in response tplgim
ping (Titov et al. 2002). Quasi-separatrix layers (QSLEEYQ  boundary motions (Milano et al. 1999; Galsgaard et al. 2003;
is high, represent locations in the magnetic field with layg®  Aulanier et al. 2005; Masson et al. 2009) or to boundary mo-
dients in field line connectivity. They have been identifieithw tijons derived directly from observed magnetograms (Mackay
the locations of flares and X-ray bright points (Démoulirakt et al. 2011). But such time-dependent simulations inelyitsi-
fer from numerical dissipation, leading to inaccuraciesiag-
* Previously at Division of Mathematics, University of Durde netic topology. Our method avoids this.
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The main limitation of our proposed method is that it cal
not determine the initial field line mapping at tinig only
that resulting from subsequent footpoint motions. Theiahit
mapping will likely contain pre-existing magnetic struetiand
QSLs. Unfortunately, existing extrapolation techniquasarwot
uniquely determine this initial magnetic topology from dable
magnetogram observations. Note that this limitation isesthay
all of the studies cited in the previous paragraph, whichtralse
assume some initial magnetic field; typically a potentialdfie
extrapolation is used. A similar limitation applies to saslof
magnetic helicity using photospheric flows and magnetogra
(Démoulin & Pariat 2009). In this paper, we simply assume
uniform initial field, whose field line mapping is the idemtit
This is the most conservative choid@values derived from the
subsequent mappings will almost certainly be a lower boond —
the real coronal magnetic field.

An advantage of taking the initial field to be uniform is tha
one may construct a hypothetical magnetic field with the cd
rect topology simply by taking the magnetic field lines to be t
trajectories of the velocity field. Examples of such trajeiets
are shown in Fig. 1, where time increases vertically. Thesro
sections show the magnitudeBffor this hypothetical magnetic
field; these may be thought of as the photospheric magnetsgra
at subsequent times. (See Appendix A for details of the talcu
tion.) The concentration of magnetic flux in a “network” ofrco
vective cell boundaries is evident. Of course, this hypiithe 000557
field does not represent a realistic extrapolation of thematg
field that would be seen on the Sun, since it starts from a tmifo
field atty, and only takes into account photospheric motions @
one end of the field lines. Rather, we envisage using it as g 1. A hypothetical magnetic field (Appendix A) whose field line
starting point for 3D MHD simulations investigating enemgy mapping matches that inferred from the observed velocity. fiehe
lease, with the advantage of having determined accurdately thagnetic field lines in this particular field are simply tcijries of
change in field line mapping. tracer particles in the 2D, time-dependent velocity fieldttfwime in-

To demonstrate the proposed method, we apply it to a ¢®asing vertically). Contour slices sh@yat differentzwith the colour
hour sequence of photospheric velocities derived by lomake scale in gauss: the initial distribution (on the lower boany)l is a uni-
lation tracking in Hinod¢gSOT (Solar Optical Telescope, Tsunetﬁérrn field B,(x y,0) = 88 G, which was the average field strength in
et al. 2008) magnetograms. The observed velocities are U region of the original SOT magnetogram.
scribed in Sect. 2, while the inferred magnetic field line map
ping is presented in Sect. 3. In addition@ we compute the
finite-time Lyapunov expone(fTLE) field o-. This measure is ties assigned to pixels below this threshold. The magnatogr
a popular method in fluid mechanics for identifying so-cdllepixels are binned (2x2) from.06” to 0.32”, consistent with
Lagrangian Coherent Structures (LCSs) in velocity fieldkeL SOT's Q3” diffraction limit at this wavelength. The cadence of
Q, o measures the maximum separation rate of initially nearlitye images is- 121s, and the sequence runs from 14:00UT on
trajectories, and we illustrate how QSLs in the field line piag 12 December to 02:58UT on 13 December 2006.
correspond to LCSs in the photospheric velocity field. IntS&c  The velocity field is extracted from the magnetograms using
we explain the pattern observed in fQer o fields using a sim- the Fourier local correlation tracking (FLCT) method (Vs
ple analytical model of photospheric convection. By vagfine et al. 2004; Fisher & Welsch 2008). The method has a num-
model parameters, we predict how the field line mapping woulér of parameters: optimum values have been determined by
be expected to change given observations at higher resoloti an autocorrelation analysis, aiming to maximise framér-doe
faster flows. Conclusions are given in Sect. 5. correlations and ensure robustness in the velocity estilfsate
Welsch et al. 2011). Here, the windowjagodization parameter
is set to 4 to avoid too much spatial averaging of small-scale
flows. The sampling time between subsequent frames is cho-
Our velocity data have been derived by local correlationkra sen asAt = 8 mins. This is small enough to avoid significant
ing in magnetograms, although the method could be applieddecorrelation, but large enough to allow for boxcar averggif
velocity fields from any source. Detailed analysis of theadat 5 magnetograms to produce each frame, which greatly reduces
duction procedure is given by Welsch et al. (2011). Brieflg, wnoise. We have repeated the calculations with= 4 mins with
use Stoked//l from Hinod¢NFI (Narrowband Filter Imager) qualitatively similar results.
observations in Fe | 6302A of active region 10930. These were For the analysis in this paper, we select a unipolar plage re-
calibrated to gauss following Equation (1) of Isobe et d0Q2), gion of size 124 Mm x 124 Mm (approximately 17 x 17”),
and the noise level estimated-atl7 G by fitting the core of his- away from the main sunspots, as shown in Fig. 2 (left). This is
togrammed field strengths (Hagenaar et al. 1999). In vielwef tto avoid the large-scale flow associated with emerging fluk an
subsequent reduction of noise by averaging in the tracking protation of the sunspots. Since the magnetic flux in our regio
cedure, a tracking threshold of 15 G was chosen, with no irelots concentrated in the supergranular lanes, there aretafodyi

— 900
— 800
— 700
— 600
500
400
300
200
100

2. Photospheric Velocity Data



A. R. Yeates et al.: Photospheric flows and coronal magnetictsire

12-Dec-2006 14:04

Divergence Curl
12 12.8
150 10 8.6
8 4.3
g 00'7(,,
2 6 .0
> e
4 -4.3
2 -8.6
100
a -12.8
[} 2 4 6 8 10 12 2 4 6 8 10 12
8 X (Mm) x (Mm)
=
% Fig. 3. Snapshots ofA (left) and w (right) in the analysis region, at

14:04UT. The grey scale extends to the maximum absolutes vaflu
each quantity.
50

Figure 3 shows snapshots of the horizontal divergence of the
(filtered) velocity,

A =V -V =0vy/0X+ 0vy/dy, Q)

00 0 and vertical component of the vorticity,

o X (arcsec) w = ;- (VX V) = Oy /OX — Vy/Y. @)
S, 1.0f
:;—‘:’ 0.8F ] The root-mean-square (RMS) divergence over the whole 12 hou
9 ] dataset is D6 x 104s* (or 349 x 10*s™! before filtering),
9 06l ] while the RMSw is 1.97x 10451 (3.16x 104s™1 before filter-
3 I ] ing). Thus the divergence and curl of the velocity field arsmeo
3 04; . parable in magnitude. This will be important for understagd
El L N 1 the inferred magnetic field line mapping.
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02 04 06 08 1.0 3. Inferred Magnetic Field Line Mapping

velocity (km s™) The field line mapping is simply given by following trajecto-
Fig. 2. Left: Location of the 124 Mm x 124 Mm analysis region (black "€S (particle paths) in the observed time-dependent 2Bcityl
box) in the full SOT line-of-sight magnetogrant’(+ 725 km).Right: field. So a particle starting fromx§, yo) at timeto is mapped to
Histogram of measurep¥| in the analysis region, over the entire 1 (Xo, Yo,1t1) = (fx(Xo, Yo, t1), fy(Xo, Yo, t1)) at timet;, wheref is
hour dataset. The solid line shows the filtered data, whited&ished found by integrating
line shows the original unfiltered data. Each curve is noisedlby its

own maximum. W = Vv(f(xo, Yo, t)) (3)

fromt = tg to t = t1, for which we use a second-order method.
areas where the line-of-sight magnetic field is too weak éor r The observed velocity fields are interpolated using a lo@alt
liable estimation of the velocity. This particular regioastbeen bic method (Lekien & Marsden 2005) that also gives continu-
chosen to minimise this problem over the length of the time seus first derivatives of. Linear interpolation does not produce
quence, although there are several regions where the gelog§imooth enough trajectories for computing the Lagrangiarcst
sufers locally from high-frequency noise. We have removed thidres we are interested in. Equation (3) is integrated orica gr
noise with minimal disturbance to the well-resolved regiby Of 864x 864 starting points to give the 2D field line mapping at
applying a low-pass (Butterworth) filter to the velocity fislin @ given end-timé,. The high resolution is needed to accurately
Fourier space. Histograms of the velocities both with anithwi determine the ando fields, which typically vary on a smaller
out filtering are shown in Fig. 2 (right). The mean flow speegcale than the velocity field itself (see Shadden 2011).
is of the order Ol kms, which is rather lower than reported ~ To analyse the resulting time sequence of mappings for dif-
speeds for granular flows (1 km s, Rieutord & Rincon 2010). ferentt;, we compute two measures of the mapping gradient:
There are a number of possible reasons for this. Firstlyethdhe squashing factd@ and the FTLE fieldr. The former is fre-
is a likely averaging fect due to the convective cells beingquently used to characterise 3D magnetic field structurdewh
close to our spatial resolution of3'. In addition, comparative the latter is used to characterise particle paths in tinpeddent
tests show that FLCT has a bias toward underestimating spedB Velocity fields. In fact, both are rather similar measures
(Welsch et al. 2007). However, it should be noted that the FLGhe local rate of stretching at a given point, and both arendsfi
method tracks coherent magnetic features, which are eaghet in terms of the Jacobian matrix
move more slowly than surrounding plasma due to suppression OF. 1% It/d b
of convection (Title et al. 1992; Berger et al. 1998). Thegioe J(Xo, Yo, t1) = x/ 0% 01x/0Yo =(2 . (4)

: : ofy/oxg 0f,/0y, cd

effect of faster flows is explored in Sect. 4. y y/9yo
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3.1. Quasi-separatrix Layers ; ‘ ‘ ‘ ‘ ‘ ]
_ _ _ _ &E 120F slope: 7.80 ]
The sqluashlng factor at a poing(yo) of the mapping from time S Lok .
fototy is 5 : O
Q(Xo, Yo, t1) = |TE|’ (5) 8’3 slopes: 4.45, 4.75]
°
Q
whereT = Tr(J7J) = a?+b?+c?+d? andD = det()) = ad—bc. It ©  40f :
is a dimensionless measure of the local degree of streteimdg é’ 2ok 1
squashing of a magnetic flux tube under the field line mapping ~ of ‘ ‘ ‘ ‘ ‘ ]
(Titov et al. 2002). Large values @ signify the locations of P 4 6 8 10 12
strong gradients in the mapping. We find computatio@aob be Time (hrs)

more robust using the equivalent form
Fig. 6. Integrated squashing fact(frjog10 Q dxdyas a function of time

1 for the observed velocity field (thick lines) and analyticabdels of
Q=R+ R’ (6) sect. 4 (thin lines). The solid lines correspond to the olesky and
combined model 3. Dotted and dashed lines correspond r@sggco
whereR = +A,/A is the ratio of singular values of (i.e., Viv (or mpdel 1)_ and/,o; (or model 2). The given slopes are for a least-
1. are the eigenvalues of the positive-definite madfig; Titoy ~Sduares linear fit to the observed data.
et al. 2002; Richardson & Finn 2011).
We have compute as a function ot; using the inferred
field line mapping, and the resulting distribution of Jg@ is the matrixJ"J (which is the Cauchy-Green tensor of the de-
shown in Fig. 4 at two dferent times. The logarithmic scalingformation imposed by the field-line mapping). The quan@y
is introduced because certain trajectories typically beeex- uses the Frobenius norm of the matrix, whereases the spec-
ponentially separated in time: these are precisely theitots tral norm. They difer further in thato- includes the logarithm
of strong gradients in the resulting field line mapping. Ehesn its definition, and has units of inverse time, wher€ais di-
thin “ridges” of highQ, usually known as quasi-separatrix laymensionless. In the particular case tBat 1, it follows, in the
ers (QSLs), are visible at a number of locations in the 12-hohigh-Q layers, thatQ ~ |1,|, so that we may make the direct
snapshot. They are interspersed with mofude regions o). correspondence @ ~ 2Jt; — to|o.
As a simple measure of the overall structure, we show the time The distribution ofo is shown in Fig. 5, for the same two
variation offloglonxdyas the thick, solid curve in Fig. 6. timest; as Fig. 4. We see the development of thin ridges of large
This shows an approximately linear increase through thévewe (positive)o-, which represent the locally strongest repelling ma-
hours of observations. terial surfaces in the flow. These are interspersed by regitn
All of our figures are shown in the “initial” framexg, yo), negativer, indicating converging trajectories. The ridges in Fig.
so that QSLs correspond to unstable manifolds (Richardson5&coincide precisely with the quasi-separatrix layers ig. B
Finn 2011). By definitionQ is independent of the direction ofin the fluid dynamical context they are known as Lagrangian
mapping along a particular field line, but when calculated f@&Coherent Structures (Haller & Yuan 2000; Shadden et al. 2005
the inverse mapping and plotted @k (Xo, Yo, t1), fy(Xo, Yo,t1)), They are termed “lagrangian” because they are defined by the
the pattern would dier and the apparent QSLs would then cofluid motion rather than an instantaneous snapshot, andcefeoh
respond to stable manifolds. These stable manifolds teta toent” because they have distinguished stability comparethter
visible observationally because they form the “networldrej nearby material surfaces. Analysis of such structureséesrhe
which magnetic flux concentrates over time. Thifeet is visi- an important tool in fluid dynamics because they often reveal
ble in Figure 1. Conversely, we would expect an anti-cotimta the mechanisms underlying transport in complex fluid flows:
between the pattern of photospheric magnetic flux at tina@d for example, the patterns traced out by visual markers sach a
the locations of QSLs in Figure 4, which correspond to uristaldye. With our assumption of ideal MHD, the coronal magnetic
manifolds. field inherits these topological structures directly frdme pho-
tospheric flow.

3.2. Lagrangian Coherent Structures

An alternative measure of the mapping gradient is given by th. Interpretation

finite-time Lyapunov exponent or FTLE (Haller 2001; Shadde . -
et al. 2005; Shadden 2011), defined as ‘Phe spatlal patterns o and o in Figs. 4 ar]d 5 reveal the
topological structure of the coronal magnetic field gerestat
In VA4, by the observed photospheric velocities. We can understand
o (Xo, Yo, t1) = (7)  the origin of this structure using a simple analytical moatl

It = tol two-dimensional convection, similar to that of Simon & Weis
where as beforg, is the largest eigenvalue df J. The quantity (1989). We will demonstrate thefects of both diverging and ro-
o gives the separation rate between two initially nearbyetraj tational flows, before using the model to predict how therirefe
tories: if two points are initially separated by a small arste field Ime_mappmg might dfer using higher-resolution velocity
|€ol at timeto, then their separation at a later timewill be observations.
[€1] = explo(ty — to)]l&yl. We shall use only the forward time
FTLE, although one may define also a backward FTLE using; Analytical Model
the inverse mapping.

In fact, comparing the definition of to that ofQ in Equation We present three models, each computed on a grid of size
(5) shows that both quantities measure essentially the mérm12 Mmx 12 Mm.
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1. Diverging flow Here the velocity fields is a superposition where .Y is the centre of thei™ vortex, r; =

of convective “plumes” V(x=X)2 + (y - Y;)2, and the vortex has an azimuthal ve-
N (x—X) N v-Y) locity
X=X y— i O 2
Vy = Vi, vy = Vi,  (8) o AT r
X ; - hi y ; I'i ri Vyi = Texp(—ﬁ ) (12)
where ;.Y) is the centre of thei™ plume, ri = Now w # 0 andA = 0. We chooséN = 81 vortices, with
VJ(x=X)2+ (y- Y2, and the plumes have a purely radial ~centres X, Y;) on an extended grid as in model 1. Since
velocity with respect to their centre of w andA are observed to have comparable scales (Sect. 2),
5 the widthsR; are again selected from a normal distribution
v os5i o with (R) = 1Mm and sdR) = 0.3 Mm. The strength$;
Vi = Vi V2e R exp( RZ) ©) are selected from a normal distribution with zero mean and
sd@;) = 0.00048s!. The latter value makes the RMS
Thusw = 0 andA # 0. The centres);,Y)) of theN = 81 i, the box approximately equal to the RMSin model 1
plumes are selected at random from a uniform distribution, (approximately 2« 10*s1). Again, a constant pattern of
over a larger domair-3 < X < 15,-3 < Y; < 1510 vortices is applied for each coherence time.

avoid boundary fects. To approximate the observationsg pjverging and rotational flowThe velocity field is the su-
the peak velocitie¥,; are selected from a normal distribu- perposition of those from models 1 and 2.

tion with mean(V,) = 0.1kms! and standard deviation
sd(v;) = 0.03kms™%, while the widthsR are selected from In each model, an initial grid of 864864 tracer points has been
a normal distributionlR) = 1Mm and sdR) = 0.3Mm. integrated in the same way as for the observational datayfel
For computational convenience, the same pattern of plunigg trajectories of the model flows. The resultingfields for
is used for a “coherence time” of 15 minutes, before a ne@&ch model after 6 hours (corresponding to 24 coherencs)ime
pattern is chosen. (Qualitatively similar results are wietd are shown in Fig. 7a—c. The time evolutionf)fogloQ dxdyis
if plumes are given a Gaussian profile in time, with randomishown by the thin lines in Fig. 6 for models 1 (dotted), 2 (ahh
distributed peak times.) The choice of 15 minutes is consighd 3 (solid). Note that the combined model 3 leads to a linear
tent with the observations of Welsch et al. (2011) for flowicrease at a rate comparable to the observed flow (thicll soli
on this spatial scale. line). This rate is approximately double that of models 1.or 2

2. Rotational flow Here the velocity field/ is a superposition

of vortices 4.2. Origin of the Observed Pattern

N v N o
Vy = Z _- Yi)\~,¢i, v = Z (x= Xa)%i’ (10) From thes fields for the three analytical models in Fig. 7, we can
=1

— fi fi see that the qualitative structure of thieservedr field (Fig. 5)
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Fig. 7. Finite-time Lyapunov exponent (FTLE) field after 6 hours for photospheric flows in the analytical modeéth (a) diverging flow only,
(b) rotational flow only, and (c) both diverging and rotatbfiow.

reflects predominantly the influence of divergercin the ve- Fig. 8. This confirms our qualitative picture from the analyt
locity field. This is responsible for generating the visiblgge cal model of the rather fferento fields for the two types of
network of LCSs (or QSLs), interspersed with regions whefow. The thick dotted and dashed curves in Fig. 6 show that
o < 0. Note that this network ffiers from that of the magneticflogloQ dxdyfor bothvg, andv,q increases at about half the
flux distribution (Fig. 1): the latter collects along thelsitaman- rate of that for the combined velocity, again in accordanite w
ifolds rather than the unstable manifolds. the model.

Model 2, with purely rotational flow (Fig. 7b), generates a
very differento-field: there are still localised ridges, but these are .
more difuse and space-filling than in the diverging flow. Ther8-3- Predicted Structure from Faster Flows

are no regions ofr < 0. When both flows are superimposedince our method relies on the photospheric velocity field
(Fig. 7c), theo field visually resembles that of the diverging,y y 1) as input, the inferred magnetic structure is necessarily
flow, with the contribution of vorticity being to locally peIrb  4gected by limitations in the velocity observations used ddia
the ridge network and to infill some of the < 0 regions with 5, 1o the limited spatial resolution of SOT (which has firaic-
new ridges (although, in facf, log,, Q dxdyincreases at twice tjon limit of approximately ("), the velocities we report have
the rate of model 1). This model, whefeandw are compara- peen averaged in both space and time in order to reduce moise i
ble in magnitude, corresponds most closely with the observghe |ocal correlation tracking. Previous studies of granabn-
velocity field. _ “vection on the Sun report cells of size&5@ 2 Mm with typical

Although rotational component of the combined flow has litifetimes of ~ 10 minutes, and velocities from®- 1.5 kms?
tle visual dfect on the LCBISL pattern, this does not mean thafrieutord & Rincon 2010). While the “cells” we find are compa-
itis incapable of leading to gradients and subsequent remn raple to the larger end of this size range, our velocitieg.(Eb)
tion in the coronal magnetic field. Rather, the superpasitioa  are a factor of 5- 10 smaller due to thefkect of the averaging.
diverging flow has perturbed the picture of h@ndQ fields so To predict the magnetic structure that would arise fromefiast
as to mask the contribution from. It may therefore prove use-figws. we re-run the analytical model with plume velocity in-
ful for future analysis to extract the two components from theregsed first t@Vi) = 0.3kms? and then taVi) = 0.5kmsT.
observed yglocity field. This may be done through a Helmholiz, keep the RMS vorticity comparable to the RMS divergence,
decomposition we also increase sf¥() to 0.00144 s and 00024 s respec-

V = Vv + Vrot, (12) tively. The resultingr fields in models 1, 2 and 3 after 6 hours

wherevay = Vé andvir = V x (&), for scalar functions &€ shown in Fig. 9. The results are striking: in model 1 (di-

#(x v, 1), w(x Y, 1). This decomposition is not unique but we cayerging flow), the &ect of faster flows is to sharpen the LCSs,

fix a particular solution by specifying the boundary corati Ncreasing the maximum value ofbut maintaining the overall
thatn - Vit = O on the boundary of our square region, where pattern. By contrast, in model 2 (rotational flow), fastemfo

is the unit normal to the boundary. Thenn = vgy - n on the lead not only to sharper LCSs but also to greater filling otepa

boundary. The functiog is determined by solving the PoissonVith these structures. Inte(estingly, model 3 (combineWébp
equationv?¢ = A with the Neumann boundary conditions thaf€€S not only the sharpeningeet of model 1 but also an in-
n- V¢ = n - v on the boundary. The functiahis determined by creased infilling of ther < 0 regions with new LCSs resulting

solving the Poisson equation from the vortices. - _ N
The infilling arises because, with strong enough vorticity,

VoY = —w, (13) LCSs “wind up” around centres in the flow pattern. This is par-
ticularly evident in regions where the vorticity is strongt ithe
in this case with the Dirichlet condition of constafton the divergence is weak; for example, compare the region around
boundary. x = 1,y = 1.5in Figs. 9d-f. This “wind up” phenomenon was
Givenw from the observed velocity, we calculate¢k,y,t) found by Démoulin et al. (1996) who computed QSLs in analyt-
at each time slice by solving Equation (13) using a standsst fical flux tubes of increasing twist. Similarly, Birn et al.989)
Poisson solver (van Loan 1992). Thefields were then calcu- found that field line connectivity in a 3D plasmoid varies on
lated forvg, andv separately, and are shown at 02:24UT ismaller and smaller scales as the axial field is reducedvwelat
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to the azimuthal field, with the boundaries between regidns ideal evolution in the corona, this enables us to infer the re
different connectivity wrapping round and round the flux tubsulting magnetic field line mapping between photospheiit-fo

axis. points, and therefore the squashing fadfpof this mapping.
The initial rate of increase irfloglOQ dxdy (correspond- The method has been demonstrated using a particular segjuenc
ing to the slopes in Fig. 6) increases from8 when(V;) = of observed flows derived from Hinode SOT magnetograms, al-

0.1kms?! to ~ 44 when(V;) = 0.3kms? and~ 91 when though it applies equally to any velocity data and does not re
(V;) = 0.5kms?, although the rate of increase slows considjuire magnetic information. Since the inferred field linepma
erably in the latter case during the 6 hours. This may cooedp ping results directly from the observed photospheric flavasi-
to a “saturation” of the infilling evident in models 2 and 3 encseparatrix layers in the coronal magnetic field corresporsibt
the o field has become homogenised, in accordance with preealled Lagrangian Coherent Structures in the flow. These are
ous studies of LCSs in turbulent convection (Lapeyre 2082). ridges of high finite-time Lyapunov exponemtwhere neigh-
this stage, magnetic field lines in the whole region will heee bouring trajectories diverge most strongly.
come mixegbraided in a manner likely to promote reconnection With a simple analytical model, we have demonstrated that
and subsequently heating of the coronal plasma. A satargtio the pattern of the- (or equivalentlyQ) field differs significantly
also seen in the maximum value of and this occurs after a between a flow composed of irrotational convective plumes an
shorter time for higher flow speed. This may be due to the LGfie composed of purely incompressible vortices. The diverg
widths falling below the tracing grid scale, but it is unelednat ing flow pattern in the first case leads to a network of long thin
other dfects might cause such saturation; this bears further inESs, whereas the vortical flow leads to a space-filling patté
vestigation. shorter LCSs that look priori more favourable for widespread
Note that certain consequences of a faster plume velocitgconnection. The observed velocity field is found to have-co
namely (i) sharper LCS with higher peaksafand (ii) a faster parablgV-v|and|V xv|, and the observed field is in qualitative
rate of increase irfloglOQ dxdy would also result if one left agreement with a combined model incorporating bdiaats. In
the plume velocities unchanged but increased their coberetthe combined case, the appearance otbitlaadQ fields follows
time. This is demonstrated in Fig. 10, which shows model r#at of the diverging flow model: the diverging part of theael
sults after six hours with a single velocity pattern, rattiem ity acts to quickly stretch and deform the picture. Howeteae,
changing the pattern every 15 minutes. The pedk.f. Fig. 7) rate of increase of integrated Igd in the combined model is
and slope of thef log, , Q dxdycurve (not shown) become com-double that of the original model, and we hypothesise that th
parable to the run witV;) = 0.3kms™. Yet there are fewer vortical structure remains “hidden” in the magnetic fielpab
LCS, filling less of the area. This illustrates how the pattafic- °9Y- We have demonstrated how the vortical part may be ex-

depends on the time history of the flow, not just on its patsrn racted from an observed velocity field, but further studyess
any given instant. quired to determine whether the vortical part is a more ampro

For simplicity, the models here are limited to convectiv8t® Predictor of subsequent reconnection. _
cells with a single spatial scale, flow speed and lifetime. On Due to the limitations of the observational technique used f
the real Sun, convection seems to operate simultaneously ofi€ demonstration in this paper, the typical flow speeds ueds
range of scales. Experiments with superimposing a “supargrWere only 01 kms™, a factor of 5- 10 slower than real granular
ular” flow in the model (cells 10 times larger, with slower sfe flows. From investigation of the anal_yt|cal mo_del_, we prethat
and longer lifetimes) indicate that the LCS pattern andease faster flow speeds (for the same size and lifetime of grajules
of f log,, Q dxdyare determined primarily by the original, faste?N'" resultin S|_gn|_f|cantly fa_st_e_r development of strongdients
flow component. The supergranular flow can generate loclidB the magnetic field. Our initial results are therefore verych

magnetic gradients only over a longer timescale of manysou@ lower bound for the complexity that we expect to develop in
the coronal magnetic field over this time. The model also-indi

cates that, if the real vorticity is also larger, then the borad
5. Conclusion o field will show greater infilling of LCSs. In this case, the mix
ing of trajectories is dficient that the model begins to show a
We have proposed a practical method for inferring the tagylo process of “homogenisation” of the field as found in simula-
of the 3D coronal magnetic field not by extrapolation (as [ ty tions of turbulence (Lapeyre 2002). A proper investigatibthe
ically used) but rather by integrating trajectories of aseted rate of this mixing will require higher resolution velocitiata,
sequence of horizontal flows in the photosphere. Assuming laut the simple model indicates that it is likely to beetive on
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only, (b) rotational flow only, and (c) both diverging andatidnal flow.

timescales much shorter than the observed 12 hours. Realigthas the significant advantage over existing extrapalasch-

numerical simulations of photospheric convection (e.teir5&

Nordlund 1998; Gudiksen & Nordlund 2005) could also give

tighter constraints on the expected magnetic structure.

Finally, the method proposed here—which assumes a p
fectly ideal evolution in the corona—will break down if an

when stficiently high magnetic gradients have formed for mag-
netic reconnection to set in. Determining this threshoidrés

nigues of having the correct field line topology.
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Appendix A: Magnetic Field Construction

2011,

to makeB divergence-free and match a given normal component
B.(x,y, 0) on the lower boundary. From- B = 0 we find

i _

dz
where thez-derivative is taken along a magnetic field line and
A = V-v as before. Integrating from= 0 tot = zalong the field

line f(Xo, Yo, t) gives

fﬂ da fz ( )
— =— | A{f(xo,Yo.1))dt,
B.(%¥0.0) 4 0

so at the pointX, y, 2) = f(Xo, Yo, 2) we can integrate to find

A, (A.2)

(A.3)

A(X, Y, 2) = BAXo, Yo, 0) exp(— fo ZA(f(xo, Yo, t)) dt). (A.4)

Notice that the magnetic field is entirely determined by kimgwv
both its magnetic field lines and the distribution Bf on the
lower boundary. The magnetic field in Fig. 1 was construated i
this way from the observed velocity field.

The method outlined in this paper infers the magnetic field li
mapping from a photospheric flow. However, the field line map-
ping defines the 3D magnetic fieRlonly up to an ideal defor-
mation. In particular, a hypothetical plasma flow in the vody
which vanishes on the photospheric boundaries, can defform
while leaving the field line mapping invariant. Converseiyo
fieldsB resulting from applying the same photospheric footpoint
motions to the same initial magnetic field carffeli at most by
an ideal deformation.

It would be useful for future investigations to generate ia pa
ticular magnetic field of the required topology. Here we pris
a general method for constructing such a field. Given a vioci
field v(x,y, t), the strategy is to set

B(X,y,2) = Ax Y, z)(vx(x, Y, D&+ W(X. Y, 2 + ez) (A1)
so that the field lines oB are simply the trajectories of with
z corresponding to time. The scalar functigns then adjusted



