
. (0000) “Cluster algebras of finite mutation type via unfoldings,”
International Mathematics Research Notices, Vol. 0000, Article ID rnn000, 24 pages.
doi:10.1093/imrn/rnn000

Cluster algebras of finite mutation type via unfoldings

Anna Felikson1, Michael Shapiro2, Pavel Tumarkin3

1 Independent University of Moscow, B. Vlassievskii 11, 119002 Moscow, Russia,
current address: School of Engineering and Science, Jacobs University Bremen, Campus Ring 1,
D-28759, Germany,
e-mail: felikson@mccme.ru;
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA,
e-mail: mshapiro@math.msu.edu;
3 School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759, Germany,
e-mail: p.tumarkin@jacobs-university.de

Correspondence to be sent to: Michael Shapiro, Department of Mathematics, MSU, East Lansing, MI 48824,

e-mail: mshapiro@math.msu.edu

We complete classification of mutation-finite cluster algebras by extending the technique derived by Fomin, Shapiro,

and Thurston to skew-symmetrizable case. We show that for every mutation-finite skew-symmetrizable matrix a

diagram characterizing the matrix admits an unfolding which embeds its mutation class to the mutation class of some

mutation-finite skew-symmetric matrix. In particular, this establishes a correspondence between a large class of

skew-symmetrizable mutation-finite cluster algebras and triangulated marked bordered surfaces.

1 Introduction

In the present paper, we continue investigation of cluster algebras of finite mutation type started in [5].
Cluster algebras were introduced by Fomin and Zelevinsky in the series of papers [9], [10], [2], [11]. Up

to isomorphism, each cluster algebra is defined by a skew-symmetrizable n× n integer matrix called exchange

matrix, where integer matrix B is skew-symmetrizable if there exists an integer diagonal n× n matrix D such
that BD is skew-symmetric. Exchange matrices admit mutations (see 1). Collection of all exchange matrices of
a cluster algebra form a mutation class of exchange matrices.

In [5], we classified all the skew-symmetric exchange matrices with finite mutation class. In this paper, we
complete classification of finite mutation classes of exchange matrices by presenting an answer in full generality.

The method we use is based on the following two main tools. The first main tool is the technique of
block decompositions introduced by Fomin, Shapiro, and Thurston in [4]. The results of [5] are primary based
on application of this technique. We combine this technique with studying of diagrams associated to skew-
symmetrizable matrices defined by Fomin and Zelevinsky in [10] by introducing s-decomposable diagrams. The
second main tool is a counterpart of the unfolding procedure introduced by Lusztig in [14] for generalized Cartan
matrices. Using the unfolding procedure, we assign to each diagram of a mutation-finite skew-symmetrizable
matrix a mutation-finite quiver. Due to results of [4] and [5], this allows us to relate a large class of skew-
symmetrizable mutation-finite matrices with 2-dimensional bordered marked surfaces.

We prove the following theorem (the precise definitions will be given in Sections 2 and 3).

Theorem 5.13. A skew-symmetrizable n× n matrix, n ≥ 3, that is not skew-symmetric, has finite mutation
class if and only if its diagram is either s-decomposable or mutation-equivalent to one of the seven types G̃2,

F4, F̃4, G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , F

(∗,∗)
4 shown on Fig. 1.

Remark. The diagrams G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , and F

(∗,∗)
4 are, actually, diagrams of extended affine root systems

(see [15]). Each of them corresponds to two extended affine root systems: G
(∗,+)
2 corresponds to root systems

Received
Communicated by

c© The Author 0000. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oxfordjournals.org.



2

2

2

2

2

2

2

3

3
3

33
4 4

4 4

G̃2 F4

F̃4

G
(∗,∗)
2

G
(∗,+)
2

F
(∗,+)
4 F

(∗,∗)
4

Fig. 1. Non-decomposable mutation-finite non-skew-symmetric diagrams of order at least 3

G
(1,3)
2 and G

(3,1)
2 (whose matrices are mutation-equivalent), F

(∗,+)
4 corresponds to root systems F

(1,2)
4 and F

(2,1)
4

(whose matrices are also mutation-equivalent up to change of all signs), G
(∗,∗)
2 corresponds to root systems G

(1,1)
2

and G
(3,3)
2 , and F

(∗,∗)
4 corresponds to root systems F

(1,1)
4 and F

(2,2)
4 (see Table 6 and [15, Table 1]).

We recall that mutation class of any 2× 2 skew-symmetrizable matrix is finite.
Combined with results of [5], Theorem 5.13 completes the classification of mutation-finite skew-

symmetrizable matrices.
Using Theorem 5.13, we prove the following theorem.

Theorem 6.1. Any s-decomposable diagram admits an unfolding to a diagram arising from ideal tagged
triangulation of a marked bordered surface. Any mutation-finite matrix with non-decomposable diagram admits
an unfolding to a mutation-finite skew-symmetric matrix.

Tagged triangulations corresponding to unfoldings of skew-symmetrizable matrices with s-decomposable
diagrams (constructed in Section 6.1) have special symmetry property: each of them contains a pair of edges
representing the same isotopy class (one tagged plain and the other tagged notched, we call them conjugate

pair of edges). In particular, we obtain a correspondence between s-decomposable diagrams and marked tagged
triangulations:

Theorem 7.2. There is a one-to-one correspondence between s-decomposable skew-symmetrizable diagrams
with fixed block decomposition and ideal tagged triangulations of marked bordered surfaces with fixed tuple of
conjugate pairs of edges.

In the correspondence above, one direction is provided by local unfoldings (see Section 6.1). The other
direction is provided by folding (see Section 7) of some of conjugate pairs of edges: due to the existence of
unfolding, this operation occurs to be well-defined. Under this correspondence, block-decomposable diagrams
correspond to triangulations with no conjugate pairs chosen.

Note also that the correspondence above is invariant under mutations (resp., composite flips): if the
triangulation T (S) corresponds to a diagram S, then the triangulation T (µx(S)) for a mutation µx(S) of a
diagram S in the vertex x can be obtained by performing flips in all the edges of T (S) corresponding to images
of x under local unfolding.

As in the skew-symmetric case (cf. [5, Theorem 7.5]), consideration of minimal mutation-infinite diagrams
gives rise to a polynomial-time algorithm to determine whether a large skew-symmetrizable matrix is mutation-
finite:

Theorem 8.5. A skew-symmetrizable n× nmatrix B, n ≥ 10, has finite mutation class if and only if a mutation
class of every principal 10× 10 submatrix of B is finite.

The paper is organized as follows. In Section 2, we recall necessary definitions and basic facts on cluster
algebras, exchange matrices, and their diagrams.

Section 3 is devoted to the technique of s-decomposable diagrams. We recall the basic facts from [4],
and reformulate the results of [4] in the language of diagrams. Further, we introduce new blocks and prove
several properties of block decompositions of diagrams. In particular, we show that s-decomposable diagrams
are mutation-finite.

In Section 4 we give a definition of unfolding of skew-symmetrizable matrices introduced by A. Zelevinsky
(personal communication), and extend it to a notion of unfolding of a diagram. This is the core construction
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of the paper. In general, an unfolding may not be unique. We construct a uniquely defined local unfolding for
any s-decomposable diagram. Making use of this construction, we show that s-decomposable diagrams carry the
same properties as block-decomposable quivers do.

Section 5 contains the proof of Theorem 5.13. In Section 6, we present a construction of unfolding for
non-decomposable mutation-finite skew-symmetrizable matrices.

Section 7 is devoted to applications of the results of Section 6 to construction of relations between s-
decomposable diagrams and triangulations of bordered surfaces.

Finally, in Section 8 we provide a polynomial-time algorithm which determines whether a skew-
symmetrizable matrix has finite mutation class.

We would like to thank B. Keller who attracted our attention to foldings, and V. Fock, A. Goncharov, and
S. Fomin for fruitful discussions and advices. We are especially grateful to A. Zelevinsky for introduction to
unfoldings and numerous stimulating discussions leading to appearing of the present paper. The first author
thanks the Max Planck Institute for Mathematics in Bonn for hospitality.

2 Cluster algebras, mutations, and diagrams

We briefly remind the definition of coefficient-free cluster algebra.

An integer n× n matrix B is called skew-symmetrizable if there exists an integer diagonal n× n matrix
D = diag(d1, . . . , dn), such that the product BD is a skew-symmetric matrix, i.e., bijdj = −bjidi.

A seed is a pair (f,B), where f = {f1, . . . , fn} form a collection of algebraically independent rational
functions of n variables x1, . . . , xn, and B is a skew-symmetrizable matrix.

The part f of seed (f,B) is called cluster, elements fi are called cluster variables, and B is called exchange

matrix.

Definition 2.1. For any k, 1 ≤ k ≤ n we define the mutation of seed (f,B) in direction k as a new seed (f ′, B′)
in the following way:

b′ij =

{ −bij , if i = k or j = k;

bij +
|bik|bkj+bik|bkj |

2 , otherwise.
(1)

f ′
i =

{
fi, if i 6= k;
∏

bji>0 f
bji

j
+
∏

bji<0 f
−bji

j

fi
, otherwise.

(2)

We write (f ′, B′) = µk ((f,B)). Notice that µk(µk((f,B))) = (f,B). We say that two seeds are mutation-

equivalent if one is obtained from the other by a sequence of seed mutations. Similarly we say that two clusters
or two exchange matrices are mutation-equivalent.

Notice that exchange matrix mutation (1) depends only on the exchange matrix itself. The collection of all
matrices mutation-equivalent to a given matrix B is called the mutation class of B.

For any skew-symmetrizable matrix B we define initial seed (x,B) as ({x1, . . . , xn},B), B is the initial

exchange matrix, x = {x1, . . . , xn} is the initial cluster.

Cluster algebra A(B) associated with the skew-symmetrizable n× n matrix B is a subalgebra of
Q(x1, . . . , xn) generated by all cluster variables of the clusters mutation-equivalent to the initial seed (x,B).

Cluster algebra A(B) is called of finite type if it contains only finitely many cluster variables. In other words,
all clusters mutation-equivalent to initial cluster contain totally only finitely many distinct cluster variables.

In [10], Fomin and Zelevinsky proved a remarkable theorem that cluster algebras of finite type can be
completely classified. More excitingly, this classification is parallel to the famous Cartan-Killing classification of
simple Lie algebras.

Let B be an integer n× n matrix. Its Cartan companion C(B) is the integer n× n matrix defined as follows:

C(B)ij =

{
2, if i = j;
−|bij |, otherwise.

Theorem 2.2 ([10]). There is a canonical bijection between the Cartan matrices of finite type and cluster
algebras of finite type. Under this bijection, a Cartan matrix A of finite type corresponds to the cluster algebra
A(B), where B is an arbitrary skew-symmetrizable matrix with C(B) = A.
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The results by Fomin and Zelevinsky were further developed in [16] and [1], where the effective criteria for
cluster algebras of finite type were given.

A cluster algebra of finite type has only finitely many distinct seeds. Therefore, any cluster algebra that has
only finitely many cluster variables contains only finitely many distinct exchange matrices. Quite the contrary,
the cluster algebra with finitely many exchange matrices is not necessarily of finite type.

Definition 2.3. A cluster algebra with only finitely many exchange matrices is called of finite mutation type.

Example 2.4. The easiest example of infinite cluster algebra of finite mutation type is the algebra whose
exchange matrix is

(
0 2
−2 0

)

This cluster algebra is not of finite type, however, mutation in any direction leads simply to sign change of
exchange matrix. Therefore, the algebra is clearly of finite mutation type.

Remark 2.5. Since the orbit of an exchange matrix depends on the exchange matrix only, we may speak about
skew-symmetrizable matrices of finite mutation type.

Therefore, Theorem 5.13 describes all skew-symmetrizable integer matrices whose mutation class is finite.
Following [10], we encode an n× n skew-symmetrizable integer matrix B by a finite simplicial 1-complex

S with oriented weighted edges called diagram. The weights of a diagram are positive integers.
Vertices of S are labeled by [1, . . . , n]. If bij > 0, we join vertices i and j by an edge directed from i to j

and assign to this edge weight −bijbji. Not every diagram corresponds to a skew-symmetrizable integer matrix:
given a diagram S of a skew-symmetrizable integer matrix B, a product of weights along any chordless cycle of
S is a perfect square (cf. [12, Exercise 2.1]).

Distinct matrices may have the same diagram. At the same time, it is easy to see that only finitely many
matrices may correspond to the same diagram. All weights of a diagram of a skew-symmetric matrix are perfect
squares. Conversely, if all weights of a diagram S are perfect squares, then there exists a skew-symmetric matrix
B with diagram S.

As it is shown in [10], mutations of exchange matrices induce mutations of diagrams. If S is the diagram
corresponding to matrix B, and B′ is a mutation of B in direction k, then we call the diagram S′ associated to
B′ a mutation of S in direction k and denote it by µk(S). A mutation in direction k changes weights of diagram
in the way described in Figure 2 (see [10]).

a ab b

c d

kk

µk

±√
c±

√
d =

√
ab

Fig. 2. Mutations of diagrams. The sign before
√
c (resp.,

√
d) is positive if the three vertices form an oriented

cycle, and negative otherwise. Either c or d may vanish. If ab is equal to zero then neither value of c nor
orientation of the corresponding edge does change.

For given diagram, the notion of mutation class is well-defined. We call a diagram (resp., matrix) mutation-

finite if its mutation class is finite.

Remark 2.6. Note that the order of mutation class of a matrix may differ from the order of mutation class of
corresponding diagram (see Example 2.7 below). However, mutation class of a matrix is finite if and only if a
mutation class of the corresponding diagram is finite.

Example 2.7. The mutation class of the following matrix




0 2 −4
−1 0 2
1 −1 0



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consists of 6 matrices (up to simultaneous permutations of rows and columns). At the same time, the mutation
class of the corresponding diagram contains 4 diagrams only.

Due to Remark 2.6, we can reduce the problem of classification of exchange matrices of finite mutation type
to the following: find all mutation-finite diagrams.

The following criterion for a diagram to be mutation-finite is well-known. We present a short proof for the
convenience of the reader.

Theorem 2.8. A connected diagram S of order at least 3 is mutation-finite if and only if any diagram in the
mutation class of S contains no edges of weight greater than 4.

Proof . The sufficiency is evident. To prove the necessity, it is sufficient to show that any connected diagram of
order 3 containing an edge of weight at least 5 is mutation-infinite. For that we show that, in the assumptions
above, there always exists a sequence of at most two mutations increasing the sum of the three weights (we call
this sum total weight) and preserving the maximal weight.

Let S be a diagram of order 3 with weights (a, b, c), a ≥ b ≥ c, a ≥ 5. If S is cyclically oriented (i.e.,
S is an oriented cycle), then mutating in the common vertex of edges with weights a and b we get a triple
(a, b, (

√
ab−√

c)2), which has larger total weight since a ≥ b ≥ c and a ≥ 5 imply (
√
ab−√

c)2 > c.
Now let S be not cyclically oriented. Applying one mutation (without changing weights) if needed, we may

assume that the edges with weights a and b are oriented in the same way. Mutating in their common vertex, we
get a triple (a, b, (

√
ab+

√
c)2) which clearly has larger total weight than the initial triple did.

Remark 2.9. The case of mutation-acyclic diagrams was treated by Seven in [17]: it is proved there that mutation
class of a mutation-finite diagram S contains a diagram without oriented cycles if and only if S is mutation
equivalent to orientation of Dynkin (or extended Dynkin) diagram.

From now on, we use language of diagrams. The following notation will be used throughout the paper.
Let S be a diagram. A subdiagram S1 ⊂ S is a subcomplex of S. The order |S| is the number of vertices of

diagram S. If S1 and S2 are subdiagrams of diagram S, we denote by 〈S1, S2〉 the subdiagram of S spanned by
all the vertices of S1 and S2.

An edge is called simple if its weight is equal to one, and multiple otherwise.

3 Block decompositions of diagrams

First, we rephrase the definition 3.1 from [4] in terms of diagrams.
In [4], a block is a diagram isomorphic to one of the diagrams with black/white colored vertices shown

on Fig. 3, or to a single vertex. Vertices marked in white are called outlets, we call the remaining ones dead

ends. A connected diagram S is called block-decomposable if it can be obtained from a collection of blocks by
identifying outlets of different blocks along some partial matching (matching of outlets of the same block is not
allowed), where two simple edges with same endpoints and opposite directions cancel out, and two simple edges
with same endpoints and same directions form an edge of weight 4. A non-connected diagram S is called block-
decomposable either if S satisfies the definition above, or if S is a disjoint union of several mutually orthogonal
diagrams satisfying the definition above. If S is not block-decomposable then we call S non-decomposable.
Depending on a block, we call it a block of type I, II, III, IV, V, or simply a block of n-th type.

I II IIIa IIIb IV V

Fig. 3. Blocks. Outlets are colored in white, dead ends are black.
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Block-decomposable diagrams are in one-to-one correspondence with adjacency matrices of arcs of ideal
(tagged) triangulations of bordered two-dimensional surfaces with marked points (see [4, Section 13] for the
detailed explanations). Mutations of block-decomposable diagrams correspond to flips of triangulations. In
particular, this implies that mutation class of any block-decomposable diagram is finite, and any subdiagram of
a block-decomposable one is block-decomposable too.

Clearly, adjacency matrices of arcs of ideal triangulations are skew-symmetric. To adopt the technique of

blocks to general (skew-symmetrizable) case, we introduce new blocks of types ĨIIa, ĨIIb, ĨV, Ṽ1, Ṽ2, Ṽ12, and

ṼI shown in Table 1.

Table 1. New blocks and their local unfoldings (see Sections 4, 6.1). Vertex xi and the set Ei are marked in
the same way.

New blocks

2

ĨIIa

2

ĨIIb

22

ĨV

2

2

2

Ṽ1

2

2

2

Ṽ2

2 2

4

Ṽ12

2

2

2
2

ṼI

Unfoldings

Again, outlets are marked white. We keep the way of gluing (this remains well-defined since any edge with
two outlets as ends is simple). More precisely, gluing of two edges of weight one will result in either empty edge
(in case of distinct orientations) or an edge with weight 4.

Definition 3.1. A diagram is s-decomposable if it can be glued from blocks (both old and new).

We keep the term “block-decomposable” for s-decomposable diagrams corresponding to skew-symmetric
matrices.

Our aim is to prove that s-decomposable diagrams satisfy the same properties as block-decomposable
ones do. In particular, in Theorem 3.5 we show that the set of s-decomposable diagrams is invariant under
mutations (which implies that they are mutation-finite). In the next section we prove that any subdiagram of
s-decomposable diagrams is s-decomposable (see Corollary 4.10).

Let S be an s-decomposable diagram with fixed decomposition (we denote this by Sdec). We say that
x ∈ Sdec is an outlet if x is contained in exactly one block, and x is an outlet in that block. Further, suppose
that for some y ∈ Sdec the diagram µy(S) is s-decomposable. Then a block decomposition µy(S)dec of µy(S) is
y-good if all outlets of Sdec (probably, except y itself) are outlets of µy(S)dec.

If S is s-decomposable and a decomposition is fixed, we define Nx(Sdec) to be the union of all blocks
containing x. Note that Nx(Sdec) may not be a subdiagram of S.

Lemma 3.2. Let Sdec coincide with Nx(Sdec) (i.e. Sdec is composed of blocks B1 and B2, B2 may be empty),
x ∈ S, where x ∈ B1 ∩ B2 if B2 6= ∅. Then there exists an x-good block decomposition of µx(S).

Proof is straightforward: we need to examine 49 diagrams of gluings of two blocks.

Example 3.3. We illustrate the proof of lemma 3.2 on one example shown on Fig. 4, left. Here B1 is of type

II, and B2 is of type ĨV. Outlets of Sdec are y1, y2, and y3.
Then µx(S) has a block decomposition µx(S)dec shown on Fig. 4, right. Clearly, the vertices y1, y2, and y3

are outlets of µx(S)dec, so the decomposition is x-good.

Lemma 3.4. Suppose Nx(Sdec) = 〈B1,B2〉, B2 may be empty. Let x1, x2 be outlets of Nx(Sdec) (x1, x2 6= x).
Suppose also that Sdec consists of Nx(Sdec) and a block B, where x1 and x2 are outlets of B. Then µx(S) is
s-decomposable with block B, i.e.

〈µx(Nx(Sdec)),B〉 = µx(〈Nx(Sdec)),B〉)
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Sdec

2 2

x

y1

y2

y3

µx(S)dec

2

2

x

y1

y2

y3

Fig. 4.

The s-decomposability immediately follows from Lemma 3.2. The equality follows from the definition of
mutation, see Fig. 2.

As a corollary, we get the following theorem.

Theorem 3.5. Let S be s-decomposable. Then any mutation of S is s-decomposable.

Proof follows from Lemma 3.4. Indeed, given decomposition of S and x ∈ S, µx affects only Nx(Sdec) and
blocks with at least two points in common with Nx(Sdec). According to Lemma 3.2, µx(Nx(Sdec)) admits x-good
decomposition. By Lemma 3.4, we can construct a decomposition of µx(S) by attaching to x-good decomposition
of µx(Nx(Sdec)) the same blocks as in Sdec in the same way.

Corollary 3.6. All s-decomposable diagrams are mutation-finite.

Remark 3.7. As one can notice, the block ṼI has no outlets. However, it is essential: its mutation class consists

of 4 diagrams, 3 of them are s-decomposable (without making use of block ṼI), and the fourth one is block ṼI
itself (which cannot be decomposed in any other way).

4 Unfoldings of matrices and diagrams

Let B be an indecomposable n× n skew-symmetrizable integer matrix, and let BD be a skew-symmetric matrix,
where D = (di) is diagonal integer matrix with positive diagonal entries. Notice that for any matrix µi(B) the
matrix µi(B)D will be skew-symmetric.

We use the following definition of unfolding of a skew-symmetrizable matrix (communicated to us by
A. Zelevinsky).

Suppose that we have chosen disjoint index sets E1, . . . , En with |Ei| = di. Denote m =
n∑

i=1

di. Suppose also

that we choose a skew-symmetric integer matrix C of size m×m with rows and columns indexed by the union
of all Ei, such that

(1) the sum of entries in each column of each Ei × Ej block of C equals bij ;
(2) if bij ≥ 0 then the Ei × Ej block of C has all entries non-negative.
Define a composite mutation µ̂i =

∏
ı̂∈Ei

µı̂ on C. This mutation is well-defined, since all the mutations µı̂,
ı̂ ∈ Ei, for given i commute.

We say that C is an unfolding for B if C satisfies assertions (1) and (2) above, and for any sequence of
iterated mutations µk1 . . . µkm

(B) the matrix C′ = µ̂k1 . . . µ̂km
(C) satisfies assertions (1) and (2) with respect

to B′ = µk1 . . . µkm
(B).

Example 4.1. The matrix C below is an unfolding for the matrix B. Here d1 = 1, d2 = 2, E1 = {1}, E2 = {2, 3}.

B =

(
0 −1
2 0

)
C =



0 −1 −1
1 0 0
1 0 0




Example 4.2. The matrices B and C below satisfy the assertions (1) and (2) of the definition of the unfolding.
Here d1 = 2, d2 = 1, d3 = 2, E1 = {1, 2}, E2 = {3}, E3 = {4, 5}.

B =




0 2 −2
−1 0 1
2 −2 0


 C =




0 0 1 −2 0
0 0 1 0 −2
−1 −1 0 1 1
2 0 −1 0 0
0 2 −1 0 0



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However, the matrix C is not an unfolding for the matrix B. Indeed, after mutation µ2 of B (resp, µ3 of C),
the assertion (2) does not hold for block E1 × E3 of µ3(C).

If C is an unfolding of a skew-symmetrizable integer matrix B, it is natural to define an unfolding of a

diagram of B as a diagram of C. In general, we say that a diagram Ŝ is an unfolding of a diagram S if there exist
matrices B and C with diagrams S and Ŝ respectively, and C is an unfolding of B. This definition is equivalent
to the following one.

Definition 4.3. Let S be a diagram with vertices x1, . . . , xn, and let d1, . . . , dn be positive integers. Let Ŝ

be a connected skew-symmetric diagram with vertices xı̂ indexed by sets Ei of order di, such that for each
i, j ∈ [1 . . . n] the following holds:

(A) there are no edges joining vertices inside Ei and Ej ;
(B) for all ı̂ ∈ Ei the sum of weights of all edges joining xı̂ with Ej is the same, and all the arrows are

oriented simultaneously either from Ei to Ej or from Ej to Ei;
(C) the product of total weight of edges joining xı̂ with Ej and total weight of edges joining x̂ with Ei

equals the weight of xixj .

Define a composite mutation µ̂i =
∏

ı̂∈Ei
µı̂ on Ŝ. As in the case of matrices, the mutation is well-

defined. We say that Ŝ is an unfolding of S if for any sequence of iterated mutations µi1 . . . µik a pair of

diagrams (µi1 . . . µikS, µ̂i1 . . . µ̂ikŜ ) satisfies the same conditions as the pair (S, Ŝ) does, i.e. for each i, j ≤ n the
assumptions (A), (B) and (C) hold.

The following example shows that an unfolding of a diagram may not be unique.

Example 4.4. Diagram
2

1 2 3

corresponds to two matrices




0 1 0
−1 0 1
0 −2 0


 and




0 1 0
−1 0 2
0 −1 0




with unfoldings, respectively,




0 1 0 0
−1 0 1 1
0 −1 0 0
0 −1 0 0


 and




0 0 1 0 0
0 0 0 1 0
−1 0 0 0 1
0 −1 0 0 1
0 0 −1 −1 0




It is easy to see that these two unfoldings correspond, respectively, to diagrams

1 2

3

4

and
1 23 45

Lemma 4.5. The diagrams in the second row of Table 1 are unfoldings of the corresponding blocks shown in
the first row of the table.

The proof consists of an elementary straightforward verification. We call the unfoldings of blocks shown in
the second row of Table 1 local unfoldings. They can be characterized as follows:

Definition 4.6. An unfolding is local if for any outlet xi of the initial skew-symmetrizable diagram, the
corresponding integer di is equal to one.

This allows us to define for each s-decomposable diagram S with fixed decomposition Sdec a skew-symmetric
diagram (denote it by τ(Sdec)) by gluing of unfoldings of corresponding blocks. Since all the local unfoldings of
blocks are skew-symmetric blocks, τ(Sdec) is block-decomposable diagram. In other words, we may understand τ

as a map from block decompositions of s-decomposable diagrams to block decompositions of block-decomposable
ones. Our current goal is to prove Theorem 4.9 which states that τ(Sdec) is an unfolding for S.
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Lemma 4.7. Let Sdec coincide with Nx(Sdec) (i.e. Sdec is composed of blocks B1 and B2, B2 may be empty),
x ∈ S, where x ∈ B1 ∩ B2 if B2 6= ∅. Suppose also that Sdec is different from ones shown on Fig. 5. Then there
exists an x-good decomposition of µx(S), such that

τ(µx(S)dec) = µ̂x(τ(Sdec))

2 2

22

2 2

Fig. 5. Exceptional s-decomposable diagrams. Dotted edges are the edges of blocks disappearing in the
diagram.

The proof considers the same cases as in the proof of Lemma 3.2 (in fact, this consideration includes proof
of Lemma 3.2 as a partial case).

Combining Lemmas 3.4 and 4.7, we get the following lemma.

Lemma 4.8. Let S be s-decomposable, and x ∈ Sdec. If Sdec is different from ones shown on Fig. 5, then there
exists a decomposition of µx(S), such that

τ(µx(S)dec) = µ̂x(τ(Sdec))

As a corollary, we obtain the unfolding theorem for diagrams.

Theorem 4.9. Every s-decomposable diagram has a block-decomposable unfolding.

Proof . For diagrams that are not mutation-equivalent to ones shown on Fig. 5 the statement follows from
Lemma 4.8 (note that these two diagrams have no outlets, so they do not affect other mutation classes). Now
consider the two mutation classes represented by the diagrams shown on Fig. 5.

The left diagram has another block decomposition: it can be glued from two blocks of type ĨII. Starting
from this decomposition, we get an unfolding according to Lemma 4.8.

Mutation class of the right diagram from Fig. 5 consists of three diagrams. Unfoldings are shown in Table 2.
All of them are block-decomposable: they can be glued either from two blocks of type IV (diagrams on the left
and on the right), or from four blocks of type II (the one in the middle).

Lemma 4.10. Subdiagram of s-decomposable diagram is s-decomposable.

To prove the lemma, it is sufficient to show a way to substitute any block B with a vertex x removed by some
s-decomposable diagram such that all outlets remain outlets. The choice of substitutions is shown in Table 3.

Remark 4.11. Lemma 4.10 can be considered as a corollary of Theorem 4.9. More precisely, Theorem 4.9 gives
a geometric interpretation of Table 3. It is known that any subdiagram S \ x of block-decomposable diagram
S is block-decomposable: to obtain the corresponding triangulation of a bordered surface we need to cut the
triangulation for S along the edge corresponding to x. It is easy to check that if a block B̂ is an unfolding of a
block B, and x ∈ B, then removing all the vertices of type x̂ from B̂ we are always left with a union of several
blocks, such that initial symmetries of the block B̂ are preserved. In other words, unfolding B̂ of block B with x̂

removed can be “folded back”.
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Table 2. Exceptional s-decomposable diagrams and their unfoldings

Diagrams

22

22

2 2

2 2

4

2

22

2

4

Unfoldings 4

Table 3. Block decompositions of blocks with one vertex removed.

Block B ĨV Ṽ1 Ṽ2 Ṽ12 ṼI

Decomposition
of B \ x ĨII or I

ĨV, III or
2 2

ĨV, III or
2 2

III or
Ṽ1, Ṽ2 or

5 Classification of mutation-finite diagrams and matrices

Our proof of Theorem 5.13 follows the proof of Theorem 6.1 from [5].

First, we define minimal non-decomposable diagram as a diagram which is not s-decomposable, but any its
subdiagram is s-decomposable. According to Corollary 4.10, a non-decomposable diagram of order n is minimal
if and only if any its subdiagram of order n− 1 is s-decomposable.

Then we prove the following generalization of [5, Theorem 5.2].

Theorem 5.1. Any minimal non-decomposable diagram contains at most 7 vertices.

The proof follows the proof of [5, Theorem 5.2]. The only difference is now we need to consider more types
of blocks. All essential tools remain the same. The complete list of refinements is contained in [6, Appendix A].

The further program is the same as in skew-symmetric case (see [5]).

Theorem 5.2. The only minimal non-decomposable mutation-finite diagrams with at least three vertices are
ones mutation-equivalent to one of the four diagrams E6, X6, G̃2 and F4 shown on Figure 6.

E6
X6

G̃2F4

44

32

Fig. 6. Minimal non-decomposable mutation-finite diagrams of order at least three
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Remark 5.3. Amongst diagrams of order two, there is exactly one non-decomposable diagram (called G2)
admitting an unfolding to a block-decomposable diagram (this diagram and corresponding unfolding D4 are
shown on Figure 7). Moreover, G2 is a unique non-decomposable diagram of order 2 that can be a subdiagram

of a mutation-finite diagram. Due to this fact, we may think G2 to be minimal non-decomposable instead of G̃2

(every mutation of which contains G2).

G2

3

D4

Fig. 7. G2 is a unique non-decomposable diagram of order two admitting an unfolding to a block-decomposable
diagram (which is D4).

Proof of Theorem 5.2. It is easy to see that the four diagrams shown on Figure 6 are mutation-finite and
non-decomposable (E6 and X6 are discussed in [5]). To prove the theorem, it is sufficient to show that all
other mutation-finite diagrams on at most 7 vertices either are s-decomposable, or contain subdiagrams which
are mutation-equivalent to one of G̃2, F4, E6 or X6. Due to Remark 5.3, instead of looking for subdiagrams
mutation-equivalent to G̃2 it is enough to find an edge of weight 3.

Let S be a minimal non-decomposable mutation-finite diagram. By Theorem 5.1, |S| ≤ 7. Since the mutation
class of S is finite, weights of edges of S do not exceed 4. The number of diagrams on at most 7 vertices with
bounded multiplicities of edges is finite. We use a computer [8] to list all diagrams, choose mutation-finite ones,
and check which of them are s-decomposable. The check is organized as in the proof of Theorem 5.11 from [5].

As a result, besides skew-symmetric diagrams, we get 7 mutation classes of non-decomposable mutation-
finite diagrams of order at least two: 1 of order three, 3 of order four, 1 of order five, and 2 of order six. All these
diagrams are shown on Figure 1. Furthermore, a short straightforward check (using Java applet [13]) shows
that any diagram which is mutation-equivalent to any of these 7 ones contains either an edge of weight 3 (and a

subdiagram mutation-equivalent to G̃2) or a subdiagram mutation-equivalent to F4. The minimality is evident.

Corollary 5.4. Every non-decomposable mutation-finite diagram contains an edge of weight 3 or subdiagram
mutation-equivalent to one of F4, E6 and X6.

Remark 5.5. As it follows from computations made in the proof of Theorem 5.1, any non-decomposable mutation-
finite diagram of order 7 is skew-symmetric. In other words, for any non-decomposable diagram S of order 7
containing an edge of weight 2 or 3, and any diagram S′ containing S as a subdiagram, S′ is mutation-infinite.
We will use this to show that there are no other non-decomposable diagrams except ones listed above.

The same computations show that any mutation-finite diagram containing an edge of weight 3 is of order
at most 4. Clearly, all such diagrams are non-decomposable (since no block contains an edge of weight 3).

Theorem 5.6. A connected non-decomposable mutation-finite diagram of order greater than 2 is mutation-

equivalent to one of the eleven diagrams E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, X6, X7, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 shown on Figure 8,

or to one of the seven diagrams G̃2, F4, F̃4, G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , F

(∗,∗)
4 shown on Figure 1.

As we have already shown (see the proof of Theorem 5.2), all these diagrams have finite mutation class and
are non-decomposable (for skew-symmetric ones see [5]). We need to prove completeness of the list.

The following two lemmas are evident.

Lemma 5.7 ([5], Lemma 6.4). Let S1 be a proper subdiagram of S, let S0 be a diagram mutation-equivalent
to S1. Then there exists a diagram S′ which is mutation-equivalent to S and contains S0.

Lemma 5.8 ([5], Lemma 6.2). Let S be a non-decomposable diagram of order d ≥ 7 with finite mutation class.
Then S contains a non-decomposable mutation-finite subdiagram S1 of order d− 1.
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4

4

4

4

4

4

4

4

E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

E
(1,1)
6

E
(1,1)
7

E
(1,1)
8

X6

X7

Fig. 8. Non-decomposable mutation-finite skew-symmetric diagrams of order at least 3

Corollary 5.9. Suppose that for some d ≥ 7 there are no non-decomposable mutation-finite diagrams of order
d. Then order of any non-decomposable mutation-finite diagram does not exceed d− 1.

Proof of Theorem 5.6. In the proof of Theorem 5.1 we listed all non-decomposable mutation-finite diagrams of
order at most 7. Now we want to show that all non-decomposable mutation-finite diagrams of order at least 8
(in fact, at least 7, see Remark 5.5) are skew-symmetric.

Suppose that S is a non-decomposable mutation-finite diagram of order at least 8, and S is not skew-
symmetric. Then S contains a minimal non-decomposable mutation-finite subdiagram S1 which is mutation-
equivalent to a diagram of one of the four types shown on Fig. 6 (Theorem 5.1). If S1 is mutation-equivalent to

G̃2 or F4 then, taking any connected subdiagram S′ ⊂ S of order 7 we see that S′ is mutation-infinite, which
implies that S is mutation-infinite, too. Therefore, S1 is mutation-equivalent to E6 or X6.

Notice that any connected subdiagram S′ ⊂ S of order 7 containing S1 is skew-symmetric (otherwise S′

is mutation-infinite due to Remark 5.5), so it is mutation-equivalent to one of E7, X7, and Ẽ6. According to

Lemma 5.7, we may assume that S′ coincides with E7, X7, or Ẽ6.

Suppose that |S| = 8, and consider the unique vertex x ∈ S \ S′. If x is joined with some vertex of S1, then
S2 = 〈S1, x〉 is of order 7, so S2 is skew-symmetric. This implies that the only edge which breaks skew-symmetry
of S is one joining x with S′ \ S1. Therefore, this edge cannot be contained in any cycle: otherwise S is not
skew-symmetrizable. In particular, x is not joined with any vertex of S1.

In X7 and Ẽ6 every vertex is contained in some X6 or E6 respectively, so there is no way to add a vertex
to X7 or Ẽ6 to get a mutation-finite diagram that is not skew-symmetric. In E7 there is a unique vertex not
contained in E6. Attaching to that vertex an edge of weight 2 or 4 we get mutation-infinite diagrams [13]
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(weight 3 is prohibited by Remark 5.5). Thus, all non-decomposable mutation-finite diagrams of order 8 are
skew-symmetric.

Now we proceed in the same way for diagrams of order 9. Any such non-decomposable mutation-finite
diagram is mutation-equivalent to one (denote it by S) containing E6 or X6. As it was proved, any connected
subdiagram of S of order 8 containing E6 or X6 is skew-symmetric, so, performing some mutations, we can

assume that S contains S′ equal to one of E
(1,1)
6 , Ẽ7, E8, and the remaining vertex of S is not joined with any of

E7 and Ẽ6 contained in S′. Again, any vertex of E
(1,1)
6 and Ẽ7 belongs to some Ẽ6 or E7, and there is a unique

vertex of E8 not contained in E7. Attaching to that vertex an edge of weight 2 or 4 we get mutation-infinite
diagrams, so all non-decomposable diagrams of order 9 are skew-symmetric.

We repeat the same procedure for diagrams of order 10 without any new results (here we attach a node

to Ẽ8, while any vertex of E
(1,1)
7 belongs to some Ẽ7), and then for diagrams of order 11 (here any vertex of

E
(1,1)
8 belongs to some Ẽ8). Finally, we see that there are no non-decomposable diagrams of order 11. In view

of Corollary 5.9, this completes the proof.

Now we will reformulate the result of this section in terms of matrices. We recall two evident statements
about exchange matrices and their diagrams.

Lemma 5.10. Diagram of mutation-finite matrix is mutation-finite.

Lemma 5.11. Any diagram is represented only by a finite number of skew-symmetrizable matrices.

Combining Lemmas 5.10 and 5.11, we get the following lemma.

Lemma 5.12. A skew-symmetrizable matrix is mutation-finite if and only if its diagram is mutation-finite.

As an immediate corollary of Lemma 5.12 and Theorem 5.6, we obtain the following theorem.

Theorem 5.13. A skew-symmetrizable n× n matrix, n ≥ 3, that is not skew-symmetric, has finite mutation
class if and only if its diagram is either s-decomposable or mutation-equivalent to one of the seven types G̃2,

F4, F̃4, G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , F

(∗,∗)
4 shown on Fig. 1.

6 Unfoldings of mutation-finite matrices and diagrams

In this section we complete the construction of unfoldings for all mutation-finite diagrams, and specify the
corresponding matrices. We also construct unfoldings for all mutation-finite matrices with non-decomposable
diagrams.

First, we consider mutation-finite matrices admitting local unfoldings. As it is shown in Section 4, this
leads to a block-decomposable unfolding for every s-decomposable diagram. All these unfoldings appear to be
block-decomposable. Next, we show examples of non-local unfoldings for matrices with s-decomposable diagrams.
Finally, we present unfoldings for all mutation-finite matrices with non-decomposable diagrams. These unfoldings
are also mutation-finite but have (usually) non-decomposable diagrams. In particular, we obtain the following
generalization of the results of Section 4.

Theorem 6.1. Any s-decomposable diagram admits an unfolding to a diagram arising from ideal tagged
triangulation of a marked bordered surface. Any mutation-finite matrix with non-decomposable diagram admits
an unfolding to a mutation-finite skew-symmetric matrix.

6.1 Local unfoldings

In Section 4 we constructed a local unfolding for every s-decomposable diagram. Let us describe the choice of
matrices B and C corresponding to a diagram S and its local unfolding Ŝ respectively.

These matrices can be easily reconstructed by looking at the local unfoldings of blocks, see Table 4. To
each edge of weight 4 we assign a skew-symmetric submatrix. To each new block we assign a submatrix in such
a (unique) way that for each outlet xi the number di is a unit. In terms of matrix elements, this means that for
any outlet xi and entry bij 6= −bji the inequality |bij | < |bji| holds if and only if i < j. The local unfoldings of
blocks are diagrams of unfoldings of these matrices with coprime numbers di.
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Table 4. Local unfoldings of blocks

Block Diagram Matrix Unfolding
Diagram
unfolding

ĨIIa
2

(

0 −1
2 0

)

(

0 −1 −1
1 0 0
1 0 0

)

ĨIIb
2

(

0 −2
1 0

)

( 0 0 −1
0 0 −1
1 1 0

)

ĨV
22

(

0 1 −1
−1 0 1
2 −2 0

)

(

0 1 −1 −1
−1 0 1 1
1 −1 0 0
1 −1 0 0

)

Ṽ1
2

2

2
(

0 1 −1 1
−1 0 1 0
2 −2 0 −2
−1 0 1 0

)





0 1 −1 −1 1
−1 0 1 1 0
1 −1 0 0 −1
1 −1 0 0 −1
−1 0 1 1 0





Ṽ2

2

2

2

(

0 2 −2 2
−1 0 1 0
1 −1 0 −1
−1 0 1 0

) ( 0 0 1 −1 1
0 0 1 −1 1
1 1 0 1 0
1 1 −1 0 −1
1 1 0 1 0

)

Ṽ12

2 2

4

(

0 2 −2
−1 0 1
2 −2 0

)





0 0 1 −1 −1
0 0 1 −1 −1
−1 −1 0 1 1
1 1 −1 0 0
1 1 −1 0 0





ṼI
2

2

2

2





0 1 0 1 −1
−1 0 −1 0 1
0 1 0 1 −1
−1 0 −1 0 1
2 −2 2 −2 0











0 1 0 1 −1 −1
−1 0 −1 0 1 1
0 1 0 1 −1 −1
−1 0 −1 0 1 1
1 −1 1 −1 0 0
1 −1 1 −1 0 0







Now we take any block decomposition of a diagram S, assign to each block Sj a matrix Bj defined above
(for skew-symmetric blocks the matrix is uniquely defined), and then glue all them in a natural way to obtain
matrix B with diagram S. In terms of matrices “gluing” is equivalent to summation of matrices, composed of
Bj at corresponding place and zeros outside. Since di = 1 for any outlet xi, after gluing we still have |bij | < |bji|
if and only if i < j and bij 6= −bji.

To obtain an unfolding C of B we take unfoldings Cj of all matrices Bj and glue them along outlets. Again,
this procedure is well-defined since for every outlet xi the number di is equal to one.

Example 6.2. Consider a diagram S shown on Fig. 9, left. It has a block decomposition shown in the middle
of the figure.

2 2
2

2 2
2

S Sdec Ŝ

Fig. 9. Diagram S with block decomposition Sdec and unfolding Ŝ

Let S1 and S2 be blocks of type ĨV and ĨIIb respectively. Then the corresponding matrices are

B1 =




0 1 −1
−2 0 2
1 −1 0


 and B2 =

(
0 1
−2 0

)
,
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so we can write down the matrix

B =




0 1 −1 0
−2 0 2 0
1 −1 0 1
0 0 −2 0




corresponding to diagram S. Unfoldings of B1 and B2 are

C1 =




0 1 1 −1
−1 0 0 1
−1 0 0 1
1 −1 −1 0


 and C2 =




0 1 1
−1 0 0
−1 0 0




Gluing them together, we obtain an unfolding C of B,

C =




0 1 1 −1 0 0
−1 0 0 1 0 0
−1 0 0 1 0 0
1 −1 −1 0 1 1
0 0 0 −1 0 0
0 0 0 −1 0 0




The diagram Ŝ of C is shown on Fig. 9 on the right.

Remark 6.3. By construction, diagrams of all the unfoldings described in the section are block-decomposable.
This proves the first statement of Theorem 6.1.

6.2 Matrices with s-decomposable diagrams

Now consider arbitrary skew-symmetrizable matrix B with s-decomposable diagram S. Let x1, . . . , xn be vertices
of S. We can assume numbers d1, . . . , dn to be coprime (otherwise, divide all of them by the common divisor).
Take any block decomposition of S.

Lemma 6.4. For any two blocks S1 and S2 and any outlets xi ∈ S1 and xj ∈ S2 the numbers di and dj are
equal.

Proof . Looking at the list of blocks, it is easy to see that for any block S′ and any matrix B′ representing this
block all outlets in S′ have the same numbers d′i, where d′i are entries of diagonal matrix D′ skew-symmetrizing
B′. Further, for any xi the number di is a product of d′i and some number d(S′) which is the same for all vertices
of S′. Thus, any two outlets in one block of Sdec have the same di. Now we are left to observe that for any
outlets xi, xj ∈ Sdec there exists a sequence of outlets xi1 = xi, xi2 , . . . , xik = xj , such that any two consecutive
entries belong to one block.

Given S, B, and block decomposition of S, Lemma refequal allows us to define the weight of Sdec as the
number w = di for any outlet xi of any block. We call by a regular part of Sdec a union of blocks represented either
by skew-symmetric matrices, or by matrices admitting a local unfolding. Regular part may not be connected,
and every connected component of regular part always admits a local unfolding. Blocks of regular part are called
regular blocks. The union of blocks admitting no local unfolding is called irregular part of Sdec. Blocks of this
part are irregular blocks.

Lemma 6.5. Either w = 1 and B admits a local unfolding, or w = 2.

Proof . If w = 1 then we are in assumptions of previous section, so B admits a local unfolding. Now suppose
that w > 1. Looking at the list of blocks (see Table 1), we see that w is at most two times larger than the
minimal value of di. Moreover, all di are powers of two. In view of GCD equal to one, this implies that the
minimal value is also one, so w = 2.
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Table 5. Unfoldings of irregular blocks
Block
number

Diagram Matrix Unfolding
Diagram
unfolding

ĨIIa
2

(

0 −2
1 0

)

( 0 0 −1
0 0 −1
1 1 0

)

ĨIIb
2

(

0 −1
2 0

)

(

0 −1 −1
1 0 0
1 0 0

)

ĨV
22

(

0 1 −2
−1 0 2
1 −1 0

)





0 0 1 0 −1
0 0 0 1 −1
−1 0 0 0 1
0 −1 0 0 1
1 1 −1 −1 0





Ṽ1
2

2

2
(

0 1 −2 1
−1 0 2 0
1 −1 0 −1
−1 0 2 0

)









0 0 1 0 −1 1 0
0 0 0 1 −1 0 1
−1 0 0 0 1 0 0
0 −1 0 0 1 0 0
1 1 −1 −1 0 −1 −1
−1 0 0 0 1 0 0
0 −1 0 0 1 0 0









Ṽ2
2

2

2

(

0 1 −1 1
−2 0 1 0
2 −1 0 −1
−2 0 1 0

)









0 1 1 −1 −1 1 1
−1 0 0 1 0 0 0
−1 0 0 0 1 0 0
1 −1 0 0 0 −1 0
1 0 −1 0 0 0 −1
−1 0 0 1 0 0 0
−1 0 0 0 1 0 0









Ṽ12
2 2

4

(

0 1 −1
−2 0 1
4 −2 0

)









0 1 1 −1 −1 −1 −1
−1 0 0 1 0 1 0
−1 0 0 0 1 0 1
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0









Ṽ12

2 2

4

(

0 2 −4
−1 0 2
1 −1 0

)









0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
−1 0 −1 0 0 0 1
0 −1 0 −1 0 0 1
1 1 1 1 −1 −1 0









Ṽ12

2 2

4

(

0 1 −2
−2 0 2
2 −1 0

)

(

0 1 1 −2
−1 0 0 1
−1 0 0 1
2 −1 −1 0

)

4

Now we construct unfoldings for all matrices representing irregular blocks. The proof of the following lemma
is straightforward.

Lemma 6.6. The third column of Table 5 contains all possible matrices representing irregular blocks. Matrices
in the fourth column are unfoldings of ones on the left.

From now on we can assume w = 2. We will use matrices from Table 5 together with local unfoldings (see
Table 4) as a construction set for the following procedure. In the case the matrix has s-decomposable diagram

containing only regular blocks and irregular blocks of types Ṽ12 (listed in the last row of Table 5) and ĨII, the
procedure gives rise to an unfolding. We will generalize this construction and prove the existence of unfoldings
in [7] using a geometric description in terms of triangulations of underlying orbifolds.

We describe the procedure in terms of diagrams, then it can be easily translated to the language of matrices.
First, for each connected component S′ of regular part we take its local unfolding Ŝ′. Then we take two

copies of Ŝ′ and paint one of them in black, and the other in red. Now, looking at the list of unfoldings of
irregular blocks (Table 5) one can note the following two properties: in all but one block there is exactly one
vertex xi with di = 1 (the exception is the last one, where unfolding contains two such vertices xi and yi), and
the unfolding consists of two similar blocks (of type I, II, or IV) glued along xi (or xi and yi). In other words,
blocks contained in the unfolding of irregular part form pairs.
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Therefore, we can do the following. For each irregular block S′′ we take the corresponding unfolding Ŝ′′

from Table 5, and paint one half of it (which is a skew-symmetric block) in black, and the other in red (we are
interested in the color of outlets only, so the vertices xi and yi may remain uncolored). Now for every irregular

block S′′ and every outlet x ∈ S′′, glue the unfolding Ŝ′′ to red copy of the regular part of Sdec along red copy
of x̂, and to black copy of the regular part of Sdec along black copy of x̂. In this way we get a diagram Ŝ.
Performing the same operations with corresponding matrices, we obtain a matrix C.

Example 6.7. We show an example of a non-local unfolding provided by the construction above. Consider a
diagram S shown on Fig. 10, left, with block decomposition shown at the center of the figure.

2 2 2 2

S Sdec Ŝ

Fig. 10. Diagram S with block decomposition Sdec and non-local unfolding Ŝ

Let both blocks S1 and S3 of type ĨII be irregular. Then the corresponding matrices are

B1 =

(
0 1
−2 0

)
and B3 =

(
0 −2
1 0

)

The regular part B2 with diagram S2 consists of skew-symmetric matrix

B2 =

(
0 1
−1 0

)

The matrix B representing S will look like

B =




0 1 0 0
−2 0 1 0
0 −1 0 −2
0 0 1 0




Unfoldings of B1 and B3 are

C1 =




0 1 1
−1 0 0
−1 0 0


 and C3 =



0 0 −1
0 0 −1
1 1 0




Gluing two copies of regular part with C1 and C3, we obtain the matrix

C =




0 1 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
0 −1 0 0 0 −1
0 0 −1 0 0 −1
0 0 0 1 1 0




The diagram Ŝ of C is shown on Fig. 10 on the right. A direct verification by checking all mutations in the
complete mutation class shows that C is an unfolding of B.

6.3 Matrices with non-decomposable diagrams

According to Theorem 5.13, the number of mutation-finite matrices with non-decomposable diagrams is finite,
and the number of mutation classes is small. In Table 6 we present unfoldings for all matrices with non-
decomposable mutation-finite diagrams. The straightforward proof makes use of Keller’s Java applet [13] and
elementary C++ code [8].

Remark 6.8. As we can see from Table 6, all the unfoldings constructed are mutation-finite. Together with
Remark 6.3, this completes the proof of Theorem 6.1.
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Table 6. Unfoldings of matrices with non-decomposable mutation-finite diagrams

Diagram Matrix Unfolding Diagram unfolding
Mutation class

of the unfolding

G̃2
3

( 0 3 0
−1 0 1
0 −1 0

)





0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
−1 −1 −1 0 1
0 0 0 −1 0





block-

decomposable

G̃2
3

(

0 1 0
−3 0 1
0 −1 0

)









0 1 1 1 0 0 0
−1 0 0 0 1 0 0
−1 0 0 0 0 1 0
−1 0 0 0 0 0 1
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0









Ẽ6

F4

2

(

0 1 0 0
−1 0 2 0
0 −1 0 1
0 0 −1 0

)







0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 1 0
0 −1 0 0 1 0
0 0 −1 −1 0 1
0 0 0 0 −1 0






E6

G
(∗,+)
2

(G
(1,3)
2 or G

(3,1)
2 ) 3

3

4

(

0 1 0 0
−1 0 3 −3
0 −1 0 2
0 1 −2 0

)











0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−1 0 0 0 0 0 1 −1
0 −1 0 0 0 0 1 −1
0 0 −1 0 0 0 1 −1
0 0 0 −1 −1 −1 0 2
0 0 0 1 1 1 −2 0











4 E
(1,1)
6

G
(∗,∗)
2

(G
(3,3)
2 )

3

34

(

0 −1 2 −1
1 0 −1 0
−2 1 0 1
3 0 −3 0

)







0 −1 2 −1 −1 −1
1 0 −1 0 0 0
−2 1 0 1 1 1
1 0 −1 0 0 0
1 0 −1 0 0 0
1 0 −1 0 0 0







4

block-

decomposable
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Table 6. Cont.

Diagram Matrix Unfolding Diagram unfolding
Mutation
class of the
unfolding

G
(∗,∗)
2

(G
(1,1)
2 )

4

3

3

(

0 −1 2 −3
1 0 −1 0
−2 1 0 3
1 0 −1 0

)

















0 0 0 −1 0 0 1 0 1 −1
0 0 0 0 −1 0 1 1 0 −1
0 0 0 0 0 −1 0 1 1 −1
1 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 −1 0
−1 −1 0 1 0 0 0 0 0 1
0 −1 −1 0 1 0 0 0 0 1
−1 0 −1 0 0 1 0 0 0 1
1 1 1 0 0 0 −1 −1 −1 0

















E
(1,1)
8

F̃4

2





0 1 0 0 0
−1 0 2 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 0













0 0 1 0 0 0 0
0 0 0 1 0 0 0
−1 0 0 0 1 0 0
0 −1 0 0 1 0 0
0 0 −1 −1 0 1 0
0 0 0 0 −1 0 1
0 0 0 0 0 −1 0









Ẽ6

F̃4
2





0 1 0 0 0
−1 0 1 0 0
0 −2 0 1 0
0 0 −1 0 1
0 0 0 −1 0















0 1 0 0 0 0 0 0
−1 0 1 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0











Ẽ7
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Table 6. Cont.

Diagram Matrix Unfolding Diagram unfolding
Mutation
class of the
unfolding

F
(∗,+)
4

(F
(1,2)
4

or

F
(2,1)
4 )

2

2

4







0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 2 −2 0
0 0 −1 0 2 −1
0 0 1 −2 0 1
0 0 0 1 −1 0



















0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 −1 0 0 0 1 −1 0
0 0 0 −1 0 0 1 −1 0
0 0 0 0 −1 −1 0 2 −1
0 0 0 0 1 1 −2 0 1
0 0 0 0 0 0 1 −1 0













4 E
(1,1)
7

F
(∗,∗)
4

(F
(2,2)
4 )

4

2

2







0 1 0 0 0 0
−1 0 1 −1 0 0
0 −1 0 2 −1 0
0 1 −2 0 1 0
0 0 2 −2 0 −1
0 0 0 0 1 0

















0 1 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0
0 −1 0 2 −1 −1 0 0
0 1 −2 0 1 1 0 0
0 0 1 −1 0 0 −1 0
0 0 1 −1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0











4
E

(1,1)
6

F
(∗,∗)
4

(F
(1,1)
4 )

2

2

4







0 1 0 0 0 0
−1 0 1 −1 0 0
0 −1 0 2 −2 0
0 1 −2 0 2 0
0 0 1 −1 0 −1
0 0 0 0 1 0





















0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 −1 0 0 0
0 −1 0 0 0 1 0 −1 0 0
0 0 −1 0 0 0 1 1 −1 0
0 0 0 −1 0 0 1 1 −1 0
0 0 1 0 −1 −1 0 0 1 0
0 0 0 1 −1 −1 0 0 1 0
0 0 0 0 1 1 −1 −1 0 −1
0 0 0 0 0 0 0 0 1 0















E
(1,1)
8
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7 Triangulations of bordered surfaces and s-decomposable diagrams

In this section we discuss relations between s-decomposable diagrams and triangulations of bordered surfaces.
In Section 6, we have shown that for any s-decomposable diagram S there is a matrix admitting an unfolding
with a block-decomposable diagram Ŝ. Abusing notation, we will call the original matrix B (resp., diagram S)

folding of C (resp, Ŝ). Every time we use notion of folding we keep in mind a fixed unfolding. Further, if a vertex

x of s-decomposable diagram S corresponds to vertices x1, . . . , xk of its unfolding Ŝ we say that x is a folding

of x1, . . . , xk, and mutation of S in the vertex x is called the folding of the composite mutation µ̂x, which is a
k-tuple of corresponding mutations of Ŝ in vertices x1, . . . , xk.

As we mentioned above block-decomposable diagrams are in one-to-one correspondence with adjacency
matrices of arcs of ideal tagged triangulations of bordered two-dimensional surfaces with marked points. Below
we identify diagram of unfolding (with fixed block decomposition) and the corresponding triangulation. We refer
to [4] for background on tagged triangulations.

New blocks of types ĨII− ṼI admit local unfoldings into block-decomposable diagrams shown in Table 4.
These unfoldings are in one-to-one correspondence with the triangulations shown on Figure 7. The last one is a
tagged triangulation of a sphere (the exterior is also a triangle). The others are tagged triangulations of a disk.

Remark 7.1. The triangulation corresponding to the local unfolding of block ṼI has no decomposition into
surfaces representing blocks of type I−V, and thus, does not correspond to any block decomposition of the
unfolding diagram. Therefore, this triangulation occurs to be an exclusion from the theory derived in [4].

In fact, similarly to block ṼI, its local unfolding diagram has no outlets, so it cannot be used in any
construction of further diagrams. This is the reason the authors of [4] have made no use of that diagram as a

block. For completeness of our theory, it is convenient to define the local unfolding of block ṼI (see Table 1 or 4)
to be a skew-symmetric block of type VI.

Note that any such local unfolding (except the last one) corresponds to the triangulation with two edges
inside a digon (or monogon) representing the same isotopy class: one tagged plain and the other tagged notched.
Let us call such pair of edges conjugate. Conjugate pair of edges represents two vertices of the unfolding diagram
whose folding in s-decomposable diagram is exactly one vertex. Mutation of the folding vertex corresponds to
the flips of the both edges from the conjugate pair. These flips do commute, and as a result we obtain again a
triangulation where the corresponding edges form a conjugate pair.

Similar to the notion of composite mutation for an unfolding diagram, we define a composite flip of a
triangulation corresponding to an unfolding diagram as a collection of flips in all edges representing vertices
whose folding is the same vertex. An example of a composite flip is a sequence of two flips in conjugate edges.
Note that individual flips in a composite flip always mutually commute.

Given an s-decomposable diagram Sdec with fixed block decomposition (different from block ṼI), the
considerations above allow us to construct a unique tagged triangulation of a marked bordered surface with
chosen tuple of conjugate pairs. This surface (with triangulation) can be obtained by gluing of surfaces
corresponding to local unfoldings of blocks of Sdec, and we mark every conjugate pair that corresponds to one
vertex in S. This construction is invariant under mutations of S: mutating S, the corresponding triangulation
can be obtained from the initial one by corresponding composite flips.

Conversely, looking at tagged triangulations containing conjugate pairs (different from block VI), one can
easily see that every conjugate pair lies either inside a digon, or inside a monogon. Recalling the definition of
block-decomposable diagram, this implies that the first case corresponds to blocks of types III and IV, and the
latter corresponds to blocks of type V (in this case there is another conjugate pair inside the same monogon). In
other words, every such triangulation with arbitrary chosen tuple of conjugated pairs of edges can be obtained
via local unfolding from some s-decomposable skew-symmetrizable diagram.

Furthermore, every such triangulation with chosen conjugate pairs may come from a unique s-decomposable
diagram (with fixed block decomposition) only. Indeed, given a triangulation, there is a unique way to distribute
triangles, digons and monogons amongst blocks, which implies uniqueness of block decomposition of folding.

The case of block ṼI can be easily treated separately. Folding one of the three conjugate pairs of the

triangulation corresponding to block VI leads to the diagram of block ṼI.
Summarizing the discussion above, we come to the following statement.

Theorem 7.2. There is a one-to-one correspondence between s-decomposable skew-symmetrizable diagrams
with fixed block decomposition and ideal tagged triangulations of marked bordered surfaces with fixed tuple of
conjugate pairs of edges.

The correspondence above is invariant under mutations: mutating a skew-symmetrizable diagram, the
corresponding triangulation can be obtained from the initial one by corresponding composite flips.
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Table 7. Triangulations of blocks corresponding to local unfoldings
Diagram Unfolding Triangulation
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boundary
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u v
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boundary u
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2 2
u w
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uw
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u w
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uw
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p r
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8 Minimal non-decomposable diagrams

In this section we provide a polynomial-time criterion for a diagram to be mutation-finite by proving Theorem 8.3.
The considerations are identical to ones used in [5, Section 7].

Definition 8.1. A minimal mutation-infinite diagram S is a diagram that

• has infinite mutation class;
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• any proper subdiagram of S is mutation-finite.

Any minimal mutation-infinite diagram is connected. Notice that the property to be minimal mutation-
infinite is not mutation invariant. Note also that minimal mutation-infinite diagram of order at least 4 does not
contain edges of multiplicity greater than 4.

We will deduce the criterion from the following lemma.

Lemma 8.2. Any minimal mutation-infinite diagram contains at most 10 vertices.

Proof . Let S be a minimal mutation-infinite diagram.
First, we prove a weaker statement, i.e. we show that |S| ≤ 11. In fact, this bound follows immediately from

Theorems 5.1 and 5.6. Indeed, either all the proper subdiagrams of S are block-decomposable, or S contains
a proper mutation-finite non-decomposable subdiagram of order |S| − 1 (we can assume that this diagram is
connected: if it is not connected but non-decomposable, it contains a non-decomposable connected component
S0, and any connected subdiagram of S of order |S| − 1 containing S0 is non-decomposable). In the former
case |S| ≤ 7 according to Theorem 5.1 (again, we emphasize that we did not require S to be mutation-finite in
the assumptions of Theorem 5.1). In the latter case |S| − 1 ≤ 10 due to Theorem 5.6, which proves inequality
|S| ≤ 11.

Now suppose that |S| = 11. Then S contains a proper finite mutational non-decomposable subdiagram S′

of order 10. According to Theorem 5.6, S′ is mutation-equivalent to E
(1,1)
10 . The mutation class of E

(1,1)
10 consists

of 5739 diagrams, which can be easily computed using Keller’s Java applet [13]. In other words, we see that S
contains one of 5739 diagrams of order 10 as a proper subdiagram.

Hence, we can list all minimal mutation-infinite diagrams of order 11 in the following way. To each of 5739
diagrams above we add one vertex in all possible ways (we can do that since the weight of edge is bounded by 4;
the sources codes can be found in [8]). For every obtained diagram we check whether all its proper subdiagrams
of order 10 (and, therefore, all the others) are mutation-finite. However, the resulting set of the procedure above
is empty: every obtained diagram has at least one mutation-infinite subdiagram of order 10, so it is not minimal.

As a corollary of Lemma 8.2, we get the criterion for a diagram to be mutation-finite.

Theorem 8.3. A diagram S of order at least 10 is mutation-finite if and only if all subdiagrams of S of order
10 are mutation-finite.

Proof . According to Definition 8.1, every mutation-infinite diagram contains some minimal mutation-infinite
diagram as a subdiagram. Thus, a diagram is mutation-finite if and only if it does not contain any minimal
mutation-infinite subdiagram. By Lemma 8.2, this holds if and only if all subdiagrams of order at most 10 are
mutation-finite. Since a subdiagram of a mutation-finite diagram is also mutation-finite, the latter condition, in
its turn, holds if and only if all subdiagrams of order 10 are mutation-finite, which completes the proof.

Remark 8.4. The bound in Lemma 8.2 is sharp: as it was mentioned in [5], there exist skew-symmetric minimal
mutation-infinite diagrams of order 10.

Reformulating Theorem 8.3 in terms of matrices, we obtain the following result.

Theorem 8.5. A skew-symmetrizable n× n matrix B, n ≥ 10, has finite mutation class if and only if a mutation
class of every principal 10× 10 submatrix of B is finite.
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