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Abstract In our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal
groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899-948], we established
a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with
local coefficients for local symmetric spaces X attached to real orthogonal groups of type (p, ). This
correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz
forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in X with
coefficients.

In this paper, we study the boundary behaviour of these theta functions in the non-compact case and
show that the theta functions extend to the Borel-Sere compactification X of X. However, for the Q-split
case for signature (p, p), we have to construct and consider a slightly larger compactification, the ‘big’
Borel-Serre compactification. The restriction to each face of X is again a theta series as in [J. Funke and
J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.

As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles
when passing to an appropriate finite cover of X. In particular, the (co)homology groups in question do
not vanish. We deduce as a consequence a sharp non-vanishing theorem for L2-cohomology.
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1. Introduction

The cohomology of arithmetic quotients X = I'\D of a symmetric space D associated
with a reductive Lie group G is of fundamental interest in number theory and for
the field of automorphic forms. For dual reductive pairs, one can apply the ‘geometric
theta correspondence’ (see below) obtained from the Weil representation to construct
cohomology classes on locally symmetric spaces associated with these groups. One very
attractive aspect of this method is that the classes obtained in this way often give rise to
Poincaré dual forms for geometrically defined, ‘special’ cycles arising via the embedding
H — G of suitable subgroups H.
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Let V be a rational quadratic space of signature (p,q) with, for simplicity, even
dimension m. Let G = SO(V) and let G = G (R)g = SOg(VRr). Let Dy = D = G/K be the
symmetric space of G of dimension pg with K a maximal compact subgroup. We let
g =t @ p be the associated Cartan decomposition of the Lie algebra of G.

Every partition A of a non-negative integer £’ into at most n parts gives rise to a
dominant weight A of GL(n). We write i(A) for the number of non-zero entries of A. We
explicitly realize the corresponding irreducible representation of highest weight A as the
image S;(C") of the Schur functor S, () associated with A applied to the tensor space
T (C"). We can apply the same Schur functor to Te/(V(c) to obtain the space S, (Vc),
and the harmonic ¢'-tensors in S, (V¢) give the irreducible representation Spj(Ve) for
G with highest weight X (under some restrictions). If i(A) < [5], then % has the same
non-zero entries as A (when A is expressed in coordinates relative to the standard basis
{ei} of [7], Planche IT and IV).

The Weil representation induces an action of Sp,(R) x O(Vgr) on S(Vg), the Schwartz
functions on V. The main point of our previous paper [11] is the construction of certain
(g, K)-cocycles

K
@ng.01 € {/\nq@?‘c) ®S(VR) ® S[A](Vc)}

with values in S(VR) ® Sj3(Vc). These classes generalize the work of Kudla and Millson
(e.g. [22]) to the case of non-trivial coefficient systems Spj(Ve). The cocycle %‘z/q,[,x]
corresponds to a closed differential ng-form ¢r‘t/q,[/\] on D with values in S(Vg) ® S (Vo).
For L a coset of a lattice in V", we define the theta distribution @ =", 8¢, where
8¢ is the delta measure concentrated at £. It is obvious that @, is invariant under
Stab(£) € G. Hence we can apply @, to @,‘fq’[/\] to obtain

_ ~V
e(pf‘z/c],[k] (E) - (@[n wnq,[k])s

which gives a closed ng-form on the finite volume quotient X = I'\D with values in (the
local system associated with) Spj(Ve). Here I' € Stab(£) is a congruence subgroup.

Furthermore, it is shown in [11] that 6,v o also gives rise to a non-holomorphic
nq,

vector-valued Siegel modular form for the representation S, (C") ® det”™’? on the Siegel

space H,,. We may then use Qwv o 8 the integral kernel of a pairing of Siegel modular
nq,

forms f with (closed) differential (p — n)g-forms n or ng-chains (cycles) C in X. The
resulting pairing in f, n (or C), and (possibly different) Schwartz cocycles ¢ we call the
geometric theta correspondence.

Special cycles Zy arise from the embedding Gy < G of the stabilizer of a positive
definite rational subspace U C V of dimension n. Hence Gy is an orthogonal group of
signature (p —n, q). The special cycles Zy for varying U give rise to a family of composite
cycles Zy parametrized by symmetric positive definite integral n x n matrices T. We
obtain (by Poincaré duality) classes [Zr] in H™ (X, Z), and in [11] we explain how to
attach Spj(V¢)-coeflicients to the cycles to obtain classes

[Zr, )] € Si(CH* @ H'(X, Spy (V). (1.1)
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Then the main result in [11] is that

] — Z[ZT’[)\]]E27”'1;I‘(T‘[) (12)

\4
Png.11]
>0

is a holomorphic vector-valued Siegel modular form with values in H" (X, S;(Vc)). Here
7 € H,. (We omit the definition of [Zr 5] for T semi-definite.) This result gives further
justification to the term geometric theta correspondence.

Recently, it has been shown [2] that, for 2n <m — [m/2] — 1, the geometric theta
correspondence using the Schwartz cocycle ¢ = ‘»"Xq,[x] induces on the adelic level an
isomorphism from the appropriate space of (direct limits of) classical Siegel modular
forms to H?,EZ(X, Sp(Ve)), the subspace of H’;‘,’S,,(X, Sp(Ve)) corresponding to the
special refined Hodge type n x g (see [2]). In particular, for any congruence quotient,
the cohomology groups Hfuxx,q,(X ,S[1(Vc)) are spanned by the cuspidal projections of the
Poincaré duals of special cycles. We note that for the case of hyperbolic space the space
H?L,XS,?(X ,S(Ve)) coincides with the entire cuspidal cohomology group H?gs,,(X Sp(Ve))
and for the case of signature (p, 2) it coincides with the usual cuspidal Hodge summand
H?uqs’,',lq (X, Spp(Ve)). Thus, in the first case, the cuspidal projections of special cycles span
the entire cuspidal cohomology and, in the second case, the span of cuspidal projections
of the special cycles (in this case the special cycles are algebraic cycles) coincides with
the span of the cuspidal projections of all algebraic cycles and furthermore this span is
the entire cuspidal cohomology group of type (ng, ng). Thus, the results of [2] highlight
the importance of the geometric theta correspondence which we analyse here.

It is therefore very natural to study 9¢ ] for non-compact X, and in particular to

\4
analyse its boundary behaviour. This is Whn;.t[xwe do in this paper.

We let P =P (R)qy be the connected component of the identity of the real points of
a rational parabolic subgroup P in G stabilizing a flag F of totally isotropic rational
subspaces in V. Conversely, for signature different to (p,p) all such flags give rise
to a unique rational parabolic. Then the Borel-Serre compactification X compactifies
X by adding to each rational P a face ¢'(P), which is a nilmanifold bundle over a
suitable quotient of the symmetric space associated with the semi-simple part of the
Levi subgroup of P; see [5,4]. This makes X into a manifold with corners.

However, for the Q-split case in signature (p, p), the rational parabolics are not in 1-1
correspondence with the stabilizers of rational totally isotropic flags in V (but rather
with so-called oriflammes). This turns out to be a critical issue for us. To remedy this
we consider instead the spherical building of proper rational parabolic subgroups for the
full (non-connected) orthogonal group O(p, p) instead. The space X does not change, but
now isotropic flags do parametrize parabolics. The resulting compactification we call the
big Borel-Serre compactification of X since it is (slightly) bigger. By abuse of notation
we denote the big compactification also by X. For an alternative construction of the big
X, we embed X =X, , into a locally symmetric space X,11, for signature (p + 1, p) and
then consider the closure of X}, , in X1 .

To illustrate the big Borel-Serre compactification, we consider the split case for
SO(2, 2), when X = X1 x Xa is the product of two modular curves. Then the Borel-Serre
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compactification of X is the product of the two individual compactifications X1 x Xo
which adds to each cusp of the modular curves a circle S;. Hence the corner at
the cusp (z1,z2) = (ioo, ico) of X is given by a 2-torus T2. Then the big Borel-Serre
compactification of X blows up the corner to T2 x Ry with the new coordinate
Im(z1)/Im(z2) € Ry measuring the ‘slope’ by which one enters the corner from the
interior. We explain the details of the big Borel-Serre compactification in § 10.

Let E be the largest element in the rational isotropic flag F with dimension ¢
corresponding to P. Set W = E1/E, which is naturally a quadratic space of signature
(p — £,q — £). Then a suitable arithmetic quotient Xy of the symmetric space Dw
associated with W occurs as a factor in the base of the nilmanifold bundle ¢'(P).

The main result of this paper is the following.

Theorem 1.1. (1) The form va(wr‘l/q’[k]) extends to a smooth differential form on the
(big) Borel-Serre compactification X considered as a smooth manifold with corners.
In fact, a stronger result holds. For each face ¢'(P), there exists a neighbourhood Up
in X such that the restriction of 0, ((p,‘l/q,[/\]) to Up is the sum of a rapidly decreasing
form and a special differential form in the sense of [16], p. 169, on Up.

(2) For a given face ¢'(P), let 7p be the restriction map from X to €' (P). Then there exists
a theta distribution EW for W such that

7P Oy @ng, )] = (22O, @nig—o), 10w,
Here tp is an embedding
T H"79 Xy, Sjea, 411 (We)) < H™ (€ (P), Spy(Ve)),

where @, = (1,...,1) is the n th fundamental weight for GL(n), so the Young
diagram associated with Lw, is an n by £ rectangle.

In particular, [7’p(9£v((pr‘l/q,[/\]))] =0 for n> min( , [%]) —L(ift=2)andn>p—1or
n>m—2—i) (if £=1).

Loosely speaking, the restriction formula of Theorem 1.1 can be summarized by
saying that the restriction of our theta series for SO(V) to a face of X is the theta series
for SO(W) of the same type corresponding to an enlarged coefficient system given by
placing an n by £ rectangle on the left of the Young diagram corresponding to A to
obtain a bigger Young diagram corresponding to £w, + A. The theta series Gﬁv((p,‘l/q,[k])
is termwise moderately increasing, so the statement of the theorem is rather delicate. To
capture the boundary behaviour we switch to a mixed model of the Weil representation.

As stated above, for the split SO(p, p)-case, the differential form 6, (¢1Yq,[x]) does not
extend to the usual Borel-Serre boundary.

Remark 1.2. We can also interpret our result in terms of weighted cohomology
[16]. More precisely, let r < min(p, g) be the non-zero Q-rank of G. Then our forms
O, ((pr‘;/z],[k]) define classes in the cohomology for the weight profile associated with the
weight nw, for G. In particular, the forms are square integrable if

2n+1<p+qg-—r.
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Non-vanishing at the boundary and sharp non-vanishing of the L?-cohomology. As an
easy and direct application of Theorem 1.1 we obtain a non-vanishing result for the
special (co)cycles.

Theorem 1.3. Assume that the Q-rank and the R-rank of G coincide. Then for

pP—q X
L >2
i) <n< [ 2 ] e

p—1—-i)  ifqg=1,
there exists a finite cover X' of X such that

[0(@pg.12)] # 0.
Using (1.2) this gives [Zr ] # 0 for infinitely many T. In particular, (for n#0)
H" (X', Spyy(Ve)) # 0.

Finally, for the case of trivial coefficients, H™ (X', C) is not spanned by classes given by
invariant forms on D.

Combining this with Remark 1.2 we obtain the following corollary.

Corollary 1.4. Under the hypotheses of Theorem 1.3 and n< (p — 1)/2 if qg=1,
both the L2%-cohomology group Hg)(X’,S[;L](V@)) and its image H™ (X’,S[;L](V(c))@) mn
H™(X', Spp1(Ve)) do not vanish.

The basic idea for the proof of Theorem 1.3 is to study the restriction to a face of
X associated with a minimal rational parabolic subgroup. At such a face, the space W
is positive definite, and hence the restriction becomes a positive definite theta series for
which we establish non-vanishing.

There are numerous non-vanishing results in the literature, and we mention a few
related ones. In the case of non-trivial coefficients for compact hyperbolic manifolds,
Millson [27] proved the non-vanishing of the special cycles with coefficients in
codimension n in the range i(A) < n < p — i(A). Li [25] used the theta correspondence to
establish non-vanishing for the cohomology of orthogonal groups, again in the compact
(or L?) case (without giving a geometric interpretation of the classes). Speh and
Venkataramana [31] gave in general a criterion for the non-vanishing of certain modular
symbols in terms of the compact dual. In contrast to our result, their non-vanishing
occurs from classes defined by invariant forms on D.

From Section 9.4 and [32], § 8 it follows that for trivial coefficients all L2 cohomology
classes in degree less than ¢ arise from invariant forms. Hence the lower bound ¢ (known
for p + g > 8 even; see [25]) obtained with n =1 in Corollary 1.4 is sharp since the class
[ ((p;/ )] cannot be represented by an invariant form.

For non-trivial coefficients, the lower bound i()gq obtained with n =i(A) (and in
addition 2i() < p — 1 if g = 1) for non-vanishing of the L2-cohomology is also sharp, as
we now see. We have the following theorem.
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Theorem 1.5. Suppose 0 < i(A) < [p/2] and k < i(A)q. Then
2
H* (X', Spg (Ve = B (X', Spy (V) = 0.

This indeed implies the sharpness of our L?-non-vanishing result since we have
i) < [%] in the non-vanishing range of Corollary 1.4.

Vanishing at the boundary and the extension of the cohomological theta lift. We first
describe the general main motivation for our work. From (1.1) and (1.2) we see that the
theta series 02 (¢ng,0) (for simplicity, we only consider trivial coefficients for the moment)
gives rise to a map

Ang : HP™M4(X, C) > M)y (I7) (1.3)

from the cohomology with compact supports to the space of holomorphic Siegel modular
forms of degree n of weight m/2. We are interested in extending the lift (1.3) to other
cohomology groups of the space X which capture its boundary. The present paper
should be considered in this context, and is central to our efforts. This programme is in
particular motivated by the work of Hirzebruch and Zagier [18], which is the Q-rank 1
case for signature (2, 2) when X is a Hilbert modular surface, and the cycles in question
are the famous Hirzebruch-Zagier curves (n = 1).

Whenever the restriction of 6, (¢n,0) to X is cohomologically trivial, then such an
extension of the lift exists — at least in principle. Namely, in this case, one can utilize
a mapping cone construction to modify 0, (¢ug,0) to represent a class in the compactly
supported cohomology of X. However, there is a further problem beyond the homological
triviality of the restriction, that is explicitly constructing suitable primitives for the
restriction (again using the theta correspondence). Once this second problem is solved
one obtains an extension of A, to the full cohomology of X.

We have already carried this out in several instances. First and foremost, the
restriction vanishes in the Hirzebruch—Zagier case, and on the basis of this, we give in
[12] a new treatment and extension of the results in [18] using the theta correspondence.
The Q-rank 2 case when X is the product of two modular curves is of course highly
interesting as well. Now the boundary faces in the big Borel-Serre compactification
are no longer isolated, and in addition some subtle analytic complications arise when
constructing the primitives at the boundary. We will consider this case in the near
future.

The case which resembles the Hirzebruch—Zagier one most closely is the one for Picard
modular surfaces (quotients of U(2, 1); the results of this paper generalize to unitary
groups). Cogdell [8] considered this case in the spirit of Hirzebruch and Zagier. We will
consider this case from our point of view in a subsequent paper.

Another case is SO(2, 1), when X is a modular curve, and the cycles are geodesics.
For non-trivial coefficients, the restriction to the boundary vanishes. This case is
particularly attractive since one can interpret our classes as (co)homology classes for
even powers of the universal elliptic curve. We discussed this case in detail in [13].

Finally, we mention that [10] gives an introductory survey of the results obtained in
this paper.
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2. Basic notation

2.1. Orthogonal symmetric spaces

Let V be a rational vector space of dimension m =p + g and let (, ) be a non-degenerate
symmetric bilinear form on V with signature (p, g). We fix a standard orthogonal basis
€l,...,€p,ept1,...,ey of Vg such that (ey,ey) =1 for 1 <a <p and (ey,e,) =—1 for
p+ 1< u<m (We will use ‘early’ Greek letters to denote indices between 1 and p, and
‘late’ ones for indices between p 4+ 1 and m.) With respect to this basis the matrix of the
bilinear form is given by the matrix I, ; = (1” —1,)

We let G = SO(V) viewed as an algebraic group over Q. We let G := G (R)y be the
connected component of the identity of G(R) so G ~ SOq(p, g). We let K be the maximal
compact subgroup of G stabilizing span{ey; 1 < @ < p}. Thus K >~ SO(p) x SO(g). Let
D = G/K be the symmetric space of dimension pg associated with G. We realize D as the
space of negative g-planes in Vg:

D>~{zCcVr:dimz=gq; (, )|, <0} (2.1)

Thus zo = span{e,;p + 1 < u < m} is the base point of D. Furthermore, we can also
interpret D as the space of minimal majorants for (, ). That is, z € D defines a majorant
(,);, by (x,x),=—(x,x) if xez and (x,x), = (x,x) if x e 7zt We write (, )o for the
majorant associated with the base point zg.

The Cartan involution 8y of G corresponding to the base point zp is obtained by
conjugation with the matrix I, ;. We will systematically abuse notation below and write
Bo(v) for the action of the linear transformation of V with matrix I, , relative to the
above basis acting on v € V. Let g be the Lie algebra of G and ¢ be that of K. We obtain
the Cartan decomposition

g=tap, (2.2)
where
p=span{Xy, :=ey Aey; 1<a<p,p+1<pu<mh (2.3)
Here w A w' € A\?Vi is identified with an element of g via
wAW)Y®) = (w, W — W, v)w. (2.4)

We let {wq} be the dual basis of p* corresponding to {Xy,}. Finally note that we can
identify p with the tangent space T, (D) at the base point zg of D.

We let r be the Witt rank of V, i.e., the dimension of a maximal totally isotropic
subspace of V over Q and assume that r > 0. Let F be a totally isotropic subspace of
V of dimension £. Then we can describe the ¢-dimensional isotropic subspace 6g(F) as
follows. For U a subspace of V, let U+ (resp., UlO) be the orthogonal complement of U
for the form (, ) (resp., (, )g). Then 6p(F) = (FJ-)J'O. We fix a maximal totally isotropic
subspace E, and choose a basis uy, ua, ..., u, of E,. Let E. = 6y(E,). We pick a basis

! u} of E; such that (u;, u]’-) = 8. More generally, we let

Upy ...,

E¢ :=span{ui, ..., us}, (2.5)
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and we call E¢ a standard totally isotropic subspace. Furthermore, we set E, = 0y(E;) =
span(uy, ..., u}). Note that Ej, can be naturally identified with the dual space of E,. We
can assume that with respect to the standard basis of Vg we have ¢, = %(ua + u),) and

emil-a = %(ua —u,) fora=1,...,¢ Welet

W, = E /Eq, (2.6)

and note that Wy is a non-degenerate space of signature (p — £, g — £). We can realize W,
as a subspace of V through

We = (Ec ®E))", (2.7)
where the orthogonal complement is with respect to either (, ) or (, ). This gives
V=E, & W, EBEZ, (2.8)

a Op-invariant Witt splitting for V. Note that with these choices, 6p restricts to a Cartan
involution for O(W;). We obtain a Witt basis u1, ..., us, €e41, ..., em—e, Uy, ..., u} for
Vr. We will denote coordinates with respect to the Witt basis with y; and coordinates
with respect to the standard basis with x;.

We often drop the subscript £ and just write E, E’, and W.

2.2. Parabolic subgroups

We describe the rational parabolic subgroups of G.

2.2.1. Isotropic flags and parabolic subgroups. We let F be a flag of totally
isotropic subspaces F1 C Fo C - -+ C F of V over Q. Then we let P = Py be the parabolic
subgroup of G stabilizing the flag F:

Py ={g€G; gFi=Fi}, (2.9)

and write P = Pp = (Pp(R)), for the resulting rational parabolic in G. The first
fundamental fact is given in the following lemma.

Lemma 2.1. Assume that V is not a rational Q-split space of signature (p, p). Then the
assignment F + Pp defines a bijection between the rational totally isotropic flags in V
and rational parabolic subgroups in G. Furthermore, under this map isotropic subspaces
give rise to maximal parabolics.

In this situation, we can assume by conjugation that the flag F consists of standard
totally isotropic subspaces E; (2.5) and call such parabolics standard Q-parabolics.

However, if V is a rational Q-split space of signature (p, p), then the map from totally
isotropic flags to parabolics is surjective but not 1-1. We need a incidence relation
between totally isotropic subspaces more involved than inclusion to describe parabolic
subgroups which gives rise to a configuration called oriflammes; see e.g. [14], chapter 11.

Definition 2.2 (oriflammes). We define the incidence relation ~ on non-zero totally
isotropic subspaces of V of dimension different to p — 1 by Fy1 ~ F2 if either
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(i) F1 C Fa or Fo C F1, or
(ii) if dim F; = dim Fa = p, then F1 N F2 has dimension p — 1.

Then an oriflamme is a collection of such subspaces in which any two members are
incident.

One then has the following lemma (see e.g. [1,14], and also Example 10.6).

Lemma 2.3. Assume that V is a rational Q-split space of signature (p,p). Then the
rational parabolic subgroups in G are in 1-1 correspondence with the rational oriflammes
in V by taking the stabilizer of the oriflamme. Concretely:

(1) The mazimal parabolics are attached to totally isotropic subspaces of dimension
different to p — 1. The totally isotropic subspaces of dimension p — 1 do not give rise
to a maximal parabolic.

(2) All totally isotropic flags which do not include a constituent of dimension p — 1 give
rise to different standard parabolic subgroups.

(3) Let Fp—1 be a totally isotropic space of dimension p —1 and F=F1 C Fo C
- Fr CFp_1 be a totally isotropic flag. Since F;'_l/Fp_l is naturally a Q-split
space of signature (1,1) there are ezactly two totally isotropic spaces Fp1, Fp2
of (mazimal) dimension p which contain F,_1. Then the three flags F, F C F) 1,
F C Fp 2 are fized by the same parabolic in G. This parabolic fizes the oriflamme
(F15F27"‘7Fk5Fp,15Fp,2)'

Let Ey = E, =span(ui, ..., up—1, 4p) and E_ =span(ui,...up1, ”1/7)' Then we define
the standard Q-parabolics to be the ones given by fixing a suboriflamme of the maximal
oriflamme (E1, E2, ..., Ey,—2, E4, E_). We discuss the case where V is a rational Q-split
space of signature (p, p) in more detail in § 10.

2.2.2. The Langlands decomposition. We let Np be the unipotent radical of P. It
acts trivially on all quotients of the flag. We let Lp =N p\P and let Sp be the split centre
of Lp over Q. Note that Sp acts by scalars on each quotient. Let Mp = ﬂxex(éP)Ker(X%.
We let N =Np and L = Lp be their respective real points in G, and as before we set
M = Mp = (MB(]R))07 and A =Ap = (§E(R))0' We can realize Lp (and also Sp, Mp) as
fp-stable subgroups of P:

Lp=PN6o(P). (2.10)

Then Mp is the semi-simple part of the centralizer of Sp in P. We will often drop the
subscripts F, P, and P. We obtain the (rational) Langlands decomposition of P:

P=NAM~N x A x M, (2.11)

and we write n, a, and m for their respective Lie algebras. The map P - N x A x M is
equivariant with the P-action defined by

n'a'm' (n,a,m) = (W'Ad(d'm"Y(n), d'a, m'm). (2.12)
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2.2.3. The Levi. We let F be a standard rational totally isotropic flag 0 = Ey C E;; C
.-+ C E;j, = E; = E and assume that the last (biggest) totally isotropic space in the flag
F is equal to E; for some £. The reader will make the necessary adjustments when
considering an oriflamme in the Q-split SO(p, p)-case.

Let Uj; = span(u;_,+1, ...,u;) be the orthogonal complement of E; , in Ej; with
respect to (, )g and U,fj be the orthogonal complement of E,’] in El’.jJrl and let
W=W,=(E @E@)J‘. We obtain a refinement of the Witt decomposition of V such
that the subspaces U, Ulfs, and W are mutually orthogonal for (, )¢ and defined over Q:

k k
v=|Pu,|ewe [PU; |- (2.13)
ii=1 1

lj= lj=

Then Lp is the subgroup of P that stabilizes each of the subspaces in the above
decomposition of V. In what follows we will describe matrices in block form relative
to the above direct sum decomposition of V. We first note that we naturally have
O(W) x GL(E) C O(V) via

h che O(W), g e GL(E) p (2.14)

8

where § =Jg*J, g* =gl and J = . In particular, we can view the

1
corresponding Lie algebras o(WR) and gl(ERr) as subalgebras of g. Namely,
o(Wr) >~ spanfe; Aej; £ <i<j<m— £}, (2.15)
gl(ER) =~ span{u; A uj; i,j < £}, (2.16)
via g >~ /\2 Vr. We see that
8

k
h i heSOW), g =diag(gr..... g € [[GLWy), p.  (2.17)
g =1

It~
12

We now consider the isotropic flag F in V as a flag F(E) of subspaces inside E. We
let P’ be the parabolic subgroup of GL(E) stabilizing F(E). Then for the real points
P = (P'(R))g, we have

P = NpAMp, (2.18)
with unipotent radical Npr and Levi factor
k
Mp = H SL(Uj,(R)). (2.19)
j=1

Here A is as above, viewed as a subgroup of GL (Eg). Furthermore, we can view P’ and
its subgroups naturally as subgroups of P via the embedding of GL(E) into O(V) given
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by (2.14). We obtain

M =~ SOo(Wr) X Mp. (2.20)
We also define

Py =pNm=pwy @ pg, (2.21)
where pg = sl(E) N p and

pw=owNp=span{Xo, =es Aey; L +1<a<p,p+1<pu<m—4}. (2.22)
2.2.4. Roots. We let S be the maximal Q-split torus of G given by

diag(t1, ..., )
S=<a(t,..., t;):= 1 . (2.23)
diag(r;L, ..., 4
Note that (S(R))g = Ap,, where Py is the minimal parabolic contained in all
standard parabolics. We write t = (¢1,...,%) and t =tJ = (¢,,...,¢1). Note that

a@©,...,0,1,0,...,0) = eXp(uf A u;). The set of simple rational roots for G with respect
to S is given by A = A(S, G) = {a1, ..., &}, where

wil@) =ity (1<i<r—1) (2.24)
t if W, #£0

ar@=13" o 7 (2.25)
t_1ty if W, =0.

We write @ (P, Ap) for the positive roots of P with respect to Ap and A(P, Ap) for the
simple roots of P with respect to Ap, which are those « € A which act non-trivially on
Sp. We let O be the standard maximal parabolic stabilizing the totally isotropic rational
Sabspace Ey of dimension £ < r. We have Ag ={a(t,...,t,1,...1)} and A(Q,Ag) = {a¢}
except in the Q-split case for SO(p,p) and where Q stabilizes E_ in which case
Ag=Ha(t,... 1, t_l)} and A(Q, Ap) = {ap_1}. For general P, we have

AP Ap) ={aiy, ..., }; (2.26)
the reader will make the necessary adjustments in the Q-split case for SO(p, p).

2.2.5. The nilradical. With P and P’ as before, we can naturally view Np C SL(E) as a
subgroup of Np. We then have a semi-direct product decomposition

where Q is, as above, the maximal parabolic containing P. Furthermore, we let Z, be the
centre of Ny € Np. It is given by N

Zyp={z2b):= 1 J'bl=—by. (2.28)
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Then for the coset space N P /(N p X Zp), we have

Eg/(ﬁg X ZQ) = EQ/ZQ ~WQE (2.29)
as vector spaces. Explicitly, the basis of E gives rise to an isomorphism W ® E ~ W¢.
Then for (w1, ..., we) € W¢, the corresponding coset is represented by

Ie (w1 —wi
nwi, ..., wp) = ¢, we) _W% . (2.30)
Iy A T |
I

Here we write wi2 = %(wi, w;) for short. On the Lie algebra level, we let 39 be the centre
of ng € np, whence corresponding to (2.28), we have

2
50~ /\ Er. (2.31)

We let np be the Lie algebra of Np; thus np C Ep A Er = gl(Er). We can realize,
corresponding to (2.30), Wr ® ER as a subspace of n. Namely, we obtain an embedding

Wr ® ER < n, (2.32)
WwQu—wAu=:n,w), (2.33)

and we denote this subspace by ny, which we frequently identify with Wr ® ER.
Furthermore, this embedding is o(WRr) & gl(ERr)-equivariant, i.e.,

[X, ny(W)] = ny, (Xw) [Y, n,(w)] = ny,(w) (2.34)
for X € o(Wg) and Y € gl(ERr). We easily see that
exp(n,,(w)) =n(0, ..., w,...,0). (2.35)

A standard basis of ny is given by

Xyi i= ny;(eq) = ey A uj, Xyii=ny(ey) = ey A (2.36)
with 1 <i<l, €+ 1<a<p,and p+ 1< u<m— £ The dual space ny, we can identify
with Wr ® Ep, and we denote the elements of the corresponding dual basis by ve; =
eq Ay and vy = —ey Al

Summarizing, we obtain the following lemma.
Lemma 2.4. We have a direct sum decomposition (of vector spaces)
np=np @ nw D jp.

Furthermore, the adjoint action of o(WR) @ gl(ER) on np induces an action on the space
np/(np @ 30) = nw such that

ny >~ Wr ® ER
as 0o(WR) @ gl(ER)-representations.
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2.3. The Maurer—Cartan forms and horospherical coordinates

The Langlands decomposition of P gives rise to the (rational) horospherical coordinates
on D associated with P through

o=o0p:NxAxDp— D, (2.37)

o(n,a, m) =namzg.

Here Dp = Mp/Kp is the boundary symmetric space associated with P with Kp =M N K.
We note that Dp factors into a product of symmetric spaces for special linear groups and
one orthogonal factor, the symmetric space Dy associated with SO(W). We call Dy the
orthogonal factor in the boundary symmetric space Dp. We have

k
Dp = Dy x HDUI.], (2.38)
Jj=1
where DUZ./, denotes the symmetric space associated with SL(Uj).

We now describe the basic cotangent vectors wq, = (eq Aey)* € p* T;‘O (D) in NAM
coordinates. We extend o to N x A x M x K — G with o (n, a, m, k) = namk, and this
induces an isomorphism between the left-invariant forms on NAM (which we identify
with n* @ a* @ pj;) and the horizontal left-invariant forms on G (which we identify with
p*). Thus we have an isomorphism

o*ipf —n"da* Dpj. (2.39)

Lemma 2.5. Let 1 <i <. For the preimage under o* of the elements in ny, coming
from W4 ® E, we have
o* Dam+1—i = _%Vaiy (240)
where £ + 1 < a < p. Furthermore, for the ones coming from W_ ® E, we have
1
U*a)m = ﬁv,u-, (2.41)
where p+ 1< pu<m+1—2L. On py, the map o* is the identity. In particular, for
L4+ 1<a<pandany u=>p+1, we have
0*Way € Py B Ny (2.42)

The remaining elements of p* are of the form w;, with p+1< u<m+1— 2. These
elements are mapped under o* to 375, ® np @ a* O pg C /\2Eﬁ§ @ gl (Er)*.

2.4. Borel-Serre compactification

We now briefly describe the Borel-Serre compactification of D and of X = I'\D. For
a more detailed discussion see also the last section where we discuss the Q-split case
for SO(p, p) in detail. In that situation the Borel-Serre compactification is not the
right compactification for our purposes, and we need to work with a slightly larger
compactification.
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We follow [4], TI1.9. We first partially compactify the symmetric space D. For any
rational parabolic P, we define the boundary component

e(P) =Np x Dp >~ P/ApKp. (243)
Then as a set the (rational) Borel-Serre enlargement D» =Dis given by

D=DU][Je®). (2.44)
P

where P runs over all rational parabolic subgroups of G. As for the topology of D,
we first note that D and e(P) have the natural topology. Furthermore, a sequence of
yj = op(nj, aj, zj) € D in horospherical coordinates of D converges to a point (n, z) € e(P)
if and only if n; — n, z; — z and a(a;) — oo for all roots a € @ (P, Ap). For convergence
within boundary components, see [4], T11.9.

With this, D has a canonical structure of a real analytic manifold with corners.
Moreover, the action of G(Q) extends smoothly to D. The action of g = kp = kman €
KMAN = G on e(P) is given by

g- (1, 7) =k (Ad(am)(nn'), m7) € e(Ad(k)P) = e(Ad(g)P) (2.45)
with k- (1, 7') = (Ad(k)n, Ad(kymKaqqp) € e(Ad(k)P). Finally,
X:=I\D (2.46)

is the Borel-Serre compactification of X = I'\D to a manifold with corners. If Py, ..., P,
is a set of representatives of I'-conjugacy classes of rational parabolic subgroups of G,
then
k
MD=r\bDU[] Ip\e®). (2.47)
i=1
with I'p, = I' N P;. We will write e/ (P) = I'p\e(P). We write Iy for the image of I'p
under the quotient map P — P/N. Furthermore, I'p acts on Eﬁg /ERr, and we denote this
transformation group by I'y. Note that I'y; and I'y when viewed as subgroups of P
contain I' " M and I N SOg(WRr) respectively as subgroups of finite index.
We now describe Siegel sets. For t € Ry, let

Ap;={acAp;a(a) > tfor all« € A(P, Ap)}, (2.48)
and for bounded sets U C Np and V C Dp, we define the Siegel set
GP,U,I,V =U x Ap’t X VCNp x Ap x Dp. (249)

Note that for r sufficiently large, two Siegel sets for different parabolic subgroups are
disjoint. Furthermore, if Pq,..., Py are representatives of the G(Q)-conjugacy classes
of rational parabolic subgroups of G, then there are Siegel sets S; associated with P;
such that the union |7 (S;) is a fundamental set for I". Here m denotes the projection
7:D— I'\D.
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3. A review of representation theory for general linear and orthogonal groups

In this section, we will briefly review the construction of the irreducible finite
dimensional (polynomial) representations of GL(C") and O(V). Here, in this section,
we assume that V is an orthogonal complex space of dimension m. Basic references are
[9], 8§4.2 and 6.1 and [15], §§9.3.1-9.3.4, to which we refer the reader for details.

3.1. Representations of GL,(C)

Let A = (b1, ..., by) be a partition of £’ with the b; arranged in decreasing order. We will
use D(A) to denote the associated Young diagram. We identify the partition A with the
dominant weight A for GL(n) in the usual way. A standard filling A of the Young diagram
D()) with the elements of the set [¢']={1,2,---,£'} is an assignment of each of the
numbers in [¢'] to a box of D(1) such that the entries in each row strictly increase when
read from left to right and the entries in each column strictly increase when read from
top to bottom. A Young diagram equipped with a standard filling will be also called a
standard tableau.

We let s;;) be the idempotent in the group algebra of the symmetric group Sy
associated with a standard tableau with £’ boxes corresponding to a standard filling #(\)
of a Young diagram D(L). Note that Sy acts on the space of ¢/-tensors Tzl((C”) in the
natural fashion on the tensor factors. Therefore s(¢(1)) gives rise to a projection operator
in End(Te/ (C")), which we also denote by s;5,). We write

St (C™) = s,0(TF (C)). (3.1)

We have a direct sum decomposition

() =P P s . (3.2)

PRNTPS)

where A runs over all partitions of £’ and () over all standard fillings of D()). This gives
the decomposition of T (C") into irreducible constituents, i.e. for every standard filling
t(1), the GL(C")-module S;;)(C") is irreducible with highest weight A. In particular,
Siy(C") and Sy (;)(C") are isomorphic for two different standard fillings #(1) and #'(1).
We denote this isomorphism class by S;(C") (or if we do not want to specify the
standard filling).

Explicitly, we let A be the standard filling of a Young diagram D(A) corresponding to
the partition A with less than or equal to n rows and £ boxes obtained by filling the rows
in order beginning at the top with 1,2, ..., . We let R(A) be the subgroup of Sy which
preserves the rows of A and C(A) be the subgroup that preserves the columns of A. We
define elements r4 and c4 in the group ring of Sy by

rA = Z s and ¢4 = Z sgn(s)s. (3.3)

seR(A) seC(A)
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Let h(A) be the product of the hook lengths of the boxes in D(A); see [9], p. 50. Then the
idempotent s4 is given by

. (3.4
= ——CA¥A. .
SA hA) CATA
We will also need the ‘dual’ idempotent s given by s% = Wi)rACA' We let e1,...,¢&,
denote the standard basis of C" and 01, ..., 8, € (C")* be its dual basis. We set
g4 = 81171 ® - @ebn (3.5)

and let 64 be the corresponding element in Tt (C"*. Then sa(ea) is a highest weight
vector in S4(C"); see [15], §9.3.1. We have the following lemma.

Lemma 3.1. Let |R(A)| be the order of R(A). Then

¥ _|R(A)|
SAQA(SA(S‘A) = W
Proof. We compute
. _ 2 _R(A)| _ |R(A)|
5404 (5a84) = 0a(s464) = O0a(5484) = A Oalcaca) = A 0a(ea).

The last equation holds because 64(ge4) = 0 for any non-trivial ¢ in the column group
of A as the reader will easily verify. We have used rqes = |R(A)|ea (since all elements of
R(A) fix e4) and s4 = ﬁcArA. O

3.2. Enlarging the Young diagram
We let B = B, ¢ be the standard tableau with underlying shape D(B) an n by € rectangle
with the standard filling obtained by putting 1 to £ in the first row, £ + 1 to 2¢ in the
second row etc. Then D(B) is the Young diagram corresponding to the dominant weight
Lw,. Here w, = (1,1, ...,1) is the nth fundamental weight for GL(n). We note that we
have sp=€! @ - @ €l and O =0{ @ - -- ® 6.
Lemma 3.2. The space sgT"(C") is one dimensional, and
SBTnZ ((Cn) = (CSB£B

as GL(n, C)-modules. Correspondingly, ng’”Z (C™* is one dimensional and

sET™ (C")* = Csy0p.

In particular,
S;}Tne ((Cn)* ~ (/\" ((Cn)*)@l

We let A be the standard filling of the Young diagram D()) as above. Then B|A
denotes the standard tableau with underlying shape D(BJA) given by making the shape
of A abut B (on the right), using the above filling for B and filling A in the standard way
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(as above) with n€ + 1 to nf + ¢'. For example, if

213 513 ‘ 112 3)10 |11 |12
B=|4|5]|6| and A= , then B|JA=|4|5|6 |13 | 14
718

We have an idempotent spj4 in the group ring of S,,1¢ and eps € T+ (CM), which give
rise to a highest weight vector spja&pja in spja (T"”e/ (C™)). Note that

EBlA = EB ® €a. (3.6)

Lemma 3.3. There is a positive number c(A, B) such that

sBEB ® saca = c(A, B)spa¢B)A-

Proof. Since the Young diagrams D(B) and D(A) are abutted along their vertical
borders, we see that
cpla = (g ® 1y) o (1 ® ca) = (1ne ® ca) o (¢ ® 1yr). (3.7)
Also r(C)ec = |R(C)|ec. Then we easily compute (using (3.6) and (3.7))
h(B|A) |R(B)|IR(A)]

= . g
SBEB B A= L Byn(A) |R(BIAY] PHEA

Corollary 3.4. Under the identification of T"(C") ® Te/((C") — T"Z“'[/(C”) given by
tensor multiplication, we have the equality of maps

SB @ SA = SBIA-
That is,
Sp(C") ® Sa(C") = Spa(C")

as (physical) subspaces of T+ (C"). The same statements hold for the dual space
; x
Shia (CMHEY" ege.

Proof. Since Sp(C") is one dimensional, the tensor product Sg(C") ® Ss(C") defines
an irreducible representation for GL,(C") (under the tensor multiplication map
T(C") ® TY(C") inside T+ (C"). But by Lemma 3.3 it has non-zero intersection
with the irreducible GL,(C)-representation Spj4(C") inside T"Hel((C”). Hence the two
subspaces coincide. O

3.3. Representations of O(V)

We extend the bilinear form (, ) on V to T[/(V) as the ¢/-fold tensor product and note
that the action of Sy on T (V) is by isometries. We let V1] be the space of harmonic
¢'-tensors (which are those £’-tensors which are annihilated by all contractions with the
form (, )). We let ‘H be the orthogonal projection H : Te/(V) — VI¥1 onto the harmonic
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¢-tensors of V. Note that V¢! is invariant under the action of Sy. We then define for A
as above the harmonic Schur functor Sy;;(V) by

St (V) = HSiay (V). (3.8)

If the sum of the lengths of the first two columns of D(}) is at most m, then Sy, (V)
is a non-zero irreducible representation for O(Vc); see [9] §19.5. Otherwise, it vanishes.
Of course, for different fillings #(1) of D(L), these representations are all isomorphic
and we write Sp;j(V) for the isomorphism class. Furthermore, it is also irreducible
when restricted to G unless m is even and i(A) = %5, in which case it splits into two
irreducible representations. If i(A) < [5], then the corresponding highest weight A for the
representation Sp(V) of G has the same non-zero entries as A.

4. The Weil representation

We review different models of the Weil representation. In this section, V denotes a real
quadratic space of signature (p, ¢) and dimension m.

We let V' be a real symplectic space of dimension 2n. We denote by G’ = Mp(n, R) the
metaplectic cover of the symplectic group Sp(V’) = Sp(n, R) and let g’ be its Lie algebra.
We let K’ be the inverse image of the standard maximal compact U(n) C Sp(n, R)
under the covering map Mp(n, R) — Sp(n, R). Note that K’ admits a character det!/ 2,
i.e., its square descends to the determinant character of U(n). The embedding of U(n)

into Sp(n,R) is given by A + iB (fB ﬁ). We write W,y for (an abstract model

of) the K'-finite vectors of the restriction of the Weil representation of Mp(V' ® V) to
Mp(n, R) x O(V) associated with the additive character r > €27,

4.1. The Schrédinger model

We let V] be a Lagrangian subspace of V'. Then V ® V] is a Lagrangian subspace of
V ® V/ (which is naturally a symplectic space of dimension 2nm). The Schrédinger model
of the Weil representation consists of the space of (complex-valued) Schwartz functions
on the Lagrangian subspace Vi ® V =~ V". We write S(V") for the space of Schwartz
functions on V" and write w = wy,y for the action.

The Siegel parabolic P = M’N’ has Levi factor

M = {m/(a) = (a . 0_1> ;a e GL(n, R)} (4.1)
0 ‘a
1 b

N = {n’(b) = <0 1) ibe Symn(R)} ) (4.2)

and unipotent radical
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It is well-known that we can embed P’ into Mp(n, R), and the action of P’ on S(V") is
given by
w (m/(a)) o(x) = (det a)"’? ¢(xa) (deta > 0), (4.3)
o (7 (b)) p(x) = g (x) (44)

with x = (x1, ..., x,) € V". The orthogonal group G acts on S(V") via

w(9ex) = ¢(g %), (4.5)

which commutes with the action G’. The standard Gaussian is given by
po(x) = e 7T EXg ¢ §(VHK . (4.6)

Here (x, x) is the inner product matrix (x;, xj)l.j.

We let S(V") be the space of K'-finite vectors inside the space of Schwartz functions on
V. It consists of those Schwartz functions of the form p(x)@g(x), where p is a polynomial
function on V".

4.2. The mixed model and local restriction for the Weil representation

We let P be a standard parabolic of G stabilizing a totally isotropic flag in V with E = E,
the largest constituent of the flag and the associated Witt decomposition V=E® W E'.

We describe a different model for the Weil representation, the so-called mixed model.
Furthermore, we will define a ‘local’ restriction r%v from S(V") to the space of Schwartz
functions S(W") for W, a subspace of signature (p — ¢, g — £).

4.2.1. The mixed model. We let E = E; be one of the standard totally isotropic
subspaces of V; see (2.5). As before, we identify the dual space of E with E’. Accordingly,
we write x = xl:y for x € V", where u € E", u' € (E")", and xy € W". We then have an
isomorphism of ”;WO models of the Weil representation given by
SV — S(EN) @ S(W") @ S((E)") (4.7)
pr—9

given by the partial Fourier transform operator

& u
A :/Enw xw | e 2@ gy (4.8)
u u

with & € (E)", xy € W*, u' € (E')". We need some formulas relating the action of w in the
two models. A straightforward calculation gives the following lemma.

Lemma 4.1. Let £ € (E", xyw € W*, u' € (E")".

(1) Let n € Nog and write n (u')y for the image of n(u') under the orthogonal projection
onto W. Then

ng ('€, xw, u)) = e (tr(n(xw +u'), §)) 9 (&, xw +n @)y, u).
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(ii) For g € SL(E) C G (in particular, g € Np or g € Mpr) we have
go(' & xw. 1) = 9( @& xw. 2 'u))
with g =Jg*J and g* ="g~ 1.
(iii) For t = (11, ..., 1), set t =tJ = (tg, ..., 11) and |[t| =11 -t2---1;. Then
a®)p( € xw, 1) = [t]" §( (&, xw, tu)).
(iv) For h € SOo(W) C M, we have
ho( (6, xw. 1) = §( (&, h  xw, u))).

(v) For m'(a) = (g ,091) € M’ C Sp(n, R) with a € GL} (R),

M (@)@) (&, xw. 1)) = (deta)2 L (' (Ea*, xwa. v a)).

(Vi) For n'(b) = (; ‘1’) € N' C Sp(n, R) with b e Sym,,(R),
(fﬁb)\fp)(t(g, xw,u')) =e (W <b(xu/2xw)>> o((& —u'b, xw, u)).

We obtain the following proposition.
Proposition 4.2. Let ¢ € S(V"). Then the restriction of ¢ to W",

@ = @lwn,

defines a G' x MN intertwiner from S(V") to S(W"). Here, we identify W with E*/E
to define the action of MN on W. In particular, N and Mp (see (2.20)) act trivially on
S(WH).

4.2.2. Weil representation restriction.

Definition 4.3. Let ¢ € S(V") and let P be the parabolic as before. We define the
‘local’ restriction r}.fv () € S(W") with respect to P for the Schréodinger model of the Weil
representation W by

W (@) = Glwn.

We now describe this restriction on a certain class of Schwartz functions on V”. For
Xl,

x=(x1,...,x,) € V", we write : for the standard coordinates of x;. We define a
Xmj
family of commuting differential operators on S(V") by
1 9
H,: = L , 4.9
7 <er o axrj> (4.9)

where 1 <r <m and 1 <j < n. Define a polynomial Hy by

Hy(x) = (27) ™% Hy(v/27), (4.10)
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where Hy(x) = (=1)¥ & jx—ie_)‘z is the k th Hermite polynomial. Then

Hfi00(x) = Hi(x,)g0(x). (4.11)

where @o(x) is the standard Gaussian; see (4.6). We let A € Myxn(Z) = (&) be
an integral matrix with non-negative entries and split A into Ay € Mpy,(Z) and
A_ € Myx,(Z) into its ‘positive’ and ‘negative’ parts, where A, consists of the first
p rows of A and A_ of the last ¢q. (Recall that m = p + g.) We define operators

8ij daj Suj
Ha= ]I #j Har= ] e Ha= [I Hij
1<r<m 1<a<p p+H1<u<m

1<i<n 1<j<n 1<j<n

so Ha =Ha, Ha_. Here again we make use of our convention to use early Greek letters
for the ‘positive’ indices of V and late ones for the ‘negative’ indices.

Definition 4.4. For A as above, we define the Schwartz function ¢4 by

0a®) =Hago®) = [ Hsy@ap)Hs,; (xu))90(x).
1<a<p
pH1<pu<sm
1<<n

Similarly, we set g, (x) = Ha, ¢o(X).
We now describe (p‘A/ in the mixed model. The superscript V emphasizes that the

Schwartz function is associated with the space V. We begin with some auxiliary
considerations. The following fact will be crucial for us.

Lemma 4.5. For a Schwartz function f € S(R), let ]A”(S) = fRf(y)e_zmyédy be its Fourier
transform. Let g (y) = ﬁk(—%)e_”yz. Then

Gu(E) = (—v/2ig) e

Proof. We use induction and differentiate the equation @k\)(—y) = ﬁk(%)e_”ﬁ. The

assertion follows from the recursion Flk+1(y) = 2yltlk(y) — %ITI,’((y)7 which is immediate
from the definition of Hy. The claim also follows easily from [23], (4.11.4). O

Remark 4.6. Recall that on the other hand I,Lvl,r((y)e_”y2 is an eigenfunction under
the Fourier transform with eigenvalue (—i)*; see [23], (4.12.3). This fact underlies the
automorphic properties of the theta series associated with the special forms @3-

The Gaussian is given in standard coordinates by ¢} (x) = exp(—n 27:1 S x?j). In
Witt coordinates, we have x,; = %(yrj = Yn—r)) and xgu—pj = %(yrj + Ym—r;); thus
x?j + x%m_r)’j = ygj + y%m_r)j for r < £. Thus

u

n £
o) | xw | =exp [ -7 Z Z(y% + y%m_,)j) o (xw). (4.12)

I/t/ j=1r=1
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We write, slightly abusing notation,

u n
b)) =pf [0 | =exp | -7 Z Z(y% + y(Qm_r)j) . (4.13)
I/t/ j=1r=1

We let A’ be the truncated matrix of size (m — 2€) x n given by eliminating the first
and the last £ rows from A. We let A” be the matrix of these eliminated rows. Note
that H, now defines an operator on S(W") and H,» on S((E @ E)"). We also obtain
matrices A/, of size (p — £) x n and A of size (¢ — £) x n by eliminating the first £ and
the last £ rows from Ay and A_ respectively. Similarly we obtain A’} and A”. We define
goZV,(H x) =H A ol (x) and <p£2:r ) x)=H A(H%E (%) as before.

With this notation we obtain the following lemma.

Lemma 4.7.

3

() ok | xw | = o4 Gw)ek, &, u).

/
u

@) (%) Gw) = oV (xw)ek, (0. 0).

In our applications all entries of A_ will be zero, so A = A; (by abuse of the
notation).

Lemma 4.8.

ok, &0 = | [T T ~v2iea™ | o . 0.

j=la=1

In particular, if in addition all entries of Al vanish, then

§
oh, | xw | =0}, wefE. 0).
0
Proof. This follows from applying Lemma 4.5. ]

We conclude the following proposition.
Proposition 4.9. (i) Assume that one of the entries of A”_ is non-zero; then
Y (ph,) =0.

(ii) If all of the entries of A vanish, then
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Remark 4.10. Analogous results hold for r%v ((pXﬁ). However, a general formula for the

restriction of r%v (<p‘A/) is more complicated (and is not needed in this paper).

4.3. The Fock model

It will be convenient to also consider the Fock model F = F,y of the Weil
representation. For more details on F; v, see the appendix of [11].

There is an intertwining map ¢ : S(V*) — P(C"P*9) from the K’-finite Schwartz
functions to the infinitesimal Fock model of the Weil representation acting on the space
of complex polynomials P(C*P+9) in n(p + ¢) variables such that ((¢g) = 1. We denote
the variables in P(C"?*+9) by z4; (1 <« <p)and zy (p+1< pu<p+q) withi=1,...,n.
Moreover, the intertwining map ¢ satisfies

19\, 1 1o\ ., 1
U Xgi — — U= —zgis |y —— | = ——zy;.
o Ok 2i W om ax 27

By a slight abuse of notation, we use the same symbol for corresponding objects in the
Schrodinger and Fock models. In the Fock model, <p‘A/ looks as follows.

1 8aj 1 Suj
Vv
b= T () (zew)

1<a<p
pH1<pusm
1gjsn

Lemma 4.11.

Proposition 4.9 translates to the following proposition.

Proposition 4.12. If one of the entries of A’ is non-zero, then
Y (pn,) =0.
If all of the entries of A”[ vanish, then

1\
W, V
r'p (‘PA+)= H (27‘L'izaj> .

{+1<a<p
1gj<n

5. Differential graded algebras associated with the Weil representation

In this section, we construct certain differential graded algebras C}, and Ap and define
a local restriction map rp from C}, to Ap. Again V will denote a non-degenerate real
quadratic space of dimension m and signature (p, g).

5.1. Relative Lie algebra complexes

For the convenience of the reader, we briefly review some basic facts about relative Lie
algebra complexes; see, e.g., [6]. For this subsection, we deviate from the notation of the
paper and let g be any real Lie algebra g and let £ be any subalgebra. We let (U, 7) be a
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representation of g. We set

C?(g, & U) = [Hom (\" (/0. U)]E ~[N'ew e U]E, (5.1)

where the action of € on A%(g/€) is induced by the adjoint representation. Then in the
setting of [A?(g/®)* ® UJ', the differential d is given by

d= Zi:A(wi) ® 7 (X;) + % Zi:A(wi)ad*(Xi) ® 1. (5.2)

Here A(w;) denotes the left multiplication with w; in A°®(g/€)*, and ad*(X) is
the dual of the adjoint action on A®(g/®)*, that is, (ad*(X)(@))(Y1,...,Yy) =
?:1 a(Y1,...,[¥;, X], ..., Y,). We easily see the following lemma.

Lemma 5.1. Consider two relative Lie algebra complezes C*(g, & U) and C*(g/,¥; U’).
Then given

(i) p:g— ¢, a Lie algebra homomorphism such that p(€) C ¥,
(ii) T: U — U, an intertwining map with respect to p(i.e., T(p(X) -u') =X - TW') for
Xeg)

we obtain a natural map of complexes
C*(g, ¥;U)— C*(g, & U)
given by
or—>Togpop.
On realizing ¢ as an element [/\q @/e) ® U’] E/, the map is given by
¢ (0" ®T)(9),
where p* : (g /¥)* — (g/8)* is the dual map.

Now let G be any real Lie group with Lie algebra g and let K be a closed connected
subgroup of G (not necessarily compact) with Lie algebra £. For U a smooth G-module,
we let A9(G/K; U) be the U-valued differential g-forms on G/K (with the usual exterior
differentiation). The G-action on A4(G/K; U) is given by

(g0 W) (X) = g(@g-1.,(g" - X)), (5.3)

for w € A9(G/K; U), x € G/K, and X € T{(G/K). Then evaluation at the base point of
G/K gives rise to an isomorphism of complexes

A (G/K; U)Y ~ C*(g, & U) (5.4)
of the G-invariant forms on G/K with C*(g, & U).

5.2. The differential graded algebra C},

We begin this section by defining a differential graded (but not graded commutative)
algebra Cy,. The complex Cy, is essentially the relative Lie algebra complex for O(V)
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with values in W, v tensored with the tensor algebra of V¢ and twisted by some factors
associated with C". To be precise, it is the complex given by

- ) P—gq - K'xK xSk
cyt = {TJ(U) {—2} T (C) @Wuy ® N\ pE® T"(V@]

. P—gq K’ xG xSk
~ {T’(U) {—2} QT (CH)* W,y @ A"(D) ® Tk(VC)]

Here j, r, k are non-negative integers and A"(D) denotes the space of complex-valued
differential r-forms on D. We let U = A" (C")*, and we define the action of K’ on
Tj(U)[’%] by requiring K’ to act through the character det~="2" on T/(U). Thus K’

acts by algebra homomorphisms shifted by the character det™"2". We will usually drop
the [1%] in what follows. The differential is the usual relative Lie algebra differential
for the action of O(V). The group K’ acts on the first three factors, while the maximal
compact subgroup Ky = K of SOg(V) fixing the base point zg acts on the last three
factors. Finally, the symmetric group Sy acts on the second and the last factor.

We now give the complex Cj, an associative multiplication. In order to give the
complex the structure of a graded algebra we choose, as a model for the Weil
representation that has an algebra structure, the Fock model F, y, the multiplication
law is multiplication of polynomials. However, it is important to observe that K’ does
not act on F, v by algebra homomorphisms (but rather by homomorphisms twisted by

the character detp%q). Now the vector space underlying Cy, is a subspace (of invariants
under a group action) of a tensor product of graded algebras. Thus it remains to prove
that the group acts by homomorphisms of the product multiplication.

Lemma 5.2. The group K' x K xS acts by algebra homomorphisms on the tensor product
of algebras T*(U) @ T* (C")* @Wh,v @ A*pi ® T* (Vo).

Proof. The statement is obvious except possibly for the action of the group K’. The
group K’ acts on the algebra F, v by algebra homomorphisms twisted by the character
det"2". Tt acts on the tensor product T*(U) by algebra homomorphisms twisted by the

inverse character det™ "z ; see e.g. [11] Lemma A.1. The two twists cancel on the tensor
product and we find that K’ acts by algebra homomorphisms. O

. o . . . i rk .
Sometimes it is more convenient to view an element ¢ € C‘J, as an element in

. K’ xK xSy
[Hom (Tk(C"); T @ Wiy ® \ bt ® T"(V(c))} . (5.5)
For w € T*(C"), we write ¢(w) for its value in 7V(U) ® Wy @ N'pe ® TF(Ve).
By Schur-Weyl theory (see [9], Lecture 6), we have the decomposition
TH(C")* = @D 51y (TH (C)) ® V. (5.6)

A

Here the sum is over the Young diagrams A with k boxes and no more than n rows, (1)
is a chosen standard filling of A for each A and Vj is the irreducible representation of Si
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corresponding to A. We also have the corresponding decomposition
T (Ve) =~ @ sv (TF (V) ® V. (5.7)
%

Combining the two decompositions we obtain

K’ xK xS

/ rk o EB [TJ(U) R Siny (CH* VY @ Wav ® /\ P ® Sy (Vo) ® Vi . (5.8)
Aot
Noting that
0 ifr£pu
Vi@ V)% ~ 5.9
Vi 2 {(C ifA=u, (5.9)
we obtain the following lemma.
Lemma 5.3.
xK

J rk @ {TJ(U) ® S/ CH* @ W,y ® /\ Pe® St()\)(VC)}
Py

We have assumed (as we may do) that the fillings t(k) and #(A) are the same. For the
summands in the lemma we write Cy; gt (or just Cv * if we do not want to specify the
filling). The application of the Schur functor St(k)( ) on T* (C")*, or equivalently applying

St () on Tk(V(C), gives rise to a projection map
Ty 1 CHF — '), (5.10)
That is,
T = 1v & S0 cnyr @ I,y @ 1y ® 1y
=1ly®@1c» ® 1anv [ lp* [ StV y- (5.11)

Here we use subscripts to indicate which spaces the respective identity transformations 1
operate on. We apply the harmonic projection Hy (see (3.8)) on the last factor to obtain

Sio1(Ve), and we obtain a complex Cy; L (or Cy [)\]) and a projection map

)] - C{;r’k SNy RA U} (5.12)
That is,
oo = 1u @ 1or ® 1w,y @ 1px @ sy (5.13)

Remark 5.4. We can interpret an element ¢ € C‘/}’ "k as a K x K x Sk-invariant
homomorphism from T¥(C") to TV(U) ® Wy ® N'pE® T*(Ve); see (5.5). In this setting,
we can interpret ms;) ¢ as the restriction of the homomorphism ¢ to the S;;)(C").
From this point of view, Lemma 5.3 states that the homomorphism ;)¢ on S;;)(C")
automatically takes values in W, vy ® /\rp?é ® S (Vo).
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5.3. The face differential graded algebra A and the map rp

In this section we assume that P is the stabilizer of a standard flag E;; C E;, C--- C
E;, = E; = E and Np is the unipotent radical of P. We let Q be the stabilizer of E. We
will now construct a differential graded algebra Ajp, which is the relative Lie algebra
version of a differential graded subalgebra of the de Rham complex of the face e(P) of
the Borel-Serre enlargement of D. We will continue with the notation of § 2.
We define the differential graded algebra A} associated with the face e(P) of the
Borel-Serre boundary corresponding to P by
Ayt = [P er @ ewwe \ memiertve]

:| K’ xNM x S,

~ [Tj(U) ® TF (CY* @W,w ® A (e(P)) ® TH(Ve) (5.14)

Furthermore, we define A;;)" and Ay M1 as for Cy.

Definition 5.5. The ‘local’ restriction map of de Rham algebras with coefficients
rp:Cy — Ap
of de Rham algebras with coefficients is given by
1910 @rel.

Here ¢ : n & m < g is the underlying Lie algebra homomorphism, and the map from the
coefficients of C}, to the coefficients of A} is given by the tensor product

1919y ®1,

where r}.fv Wy = Wyw is the restriction map of the Weil representation (see
Definition 4.3). By Lemma 5.1 we therefore see that rp is a map of complexes. We
note that r}.fv is not a ring homomorphism so rp is not a map of algebras. Since rp
commutes with the action of the symmetric group Si, we obtain maps C;,’A — A;;A and
Cy N Ay [} a5 well, which we also denote by rp.

Note that the induced map * : (g/&)* ~ p* - (n®mM)/Ey)* =~ (WD py)* is the
composition of the isomorphism o* :p* — M@ a® py)™ (see (2.39)), with the
restriction M@ a ® py)* — (n® py)*.

Finally observe that on the level of homogeneous spaces, the map rp arises by realizing
e(P) as the orbit of the base point zg under the group NM. So in this setting, we are no
longer thinking of e(P) as being at the boundary of D; we have pushed e(P) far inside D.

6. Aspects of nilpotent Lie algebra cohomology and the map tp

6.1. An explicit constituent in the Lie algebra cohomology of np

In what follows, we discuss some aspects of the Lie algebra cohomology of the nilpotent
Lie algabra np which we need later. Some parts that we develop here could have been
deduced from the general work of Kostant [19]. However, our concern here is proving
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that certain explicit cocycles are (non-)zero rather than computing the cohomology
itself.

As before, we let P be a standard parabolic subgroup of G. Recall that we have
the decomposition of vector spaces np = np @ np, where Q is the maximal parabolic
containing P. For the two-step nilpotent algebra ng, we have the central extension
30 — ng — ny with 3o ~ /\2E and niy >~ W ® E. On the other hand, np is a nilpotent
subgroup of sI(E) CE' Q E.

We assume for the following subsections that V, W, np etc are defined over C. We let

= Nwperiv)

be the complex for the nilpotent cohomology with coefficients in T¢ (V) and define
analogously C"* = C"4 and " = "] for S, (V) and Sia(V) respectively.

We are interested in certain cohomology classes arising from A"nj,. By Lemma 2.4,
njy ~ W Q E as O(W) x GL(E)-modules. Furthermore (see e.g. [9], p. 80),

N @i =/\ (W E) =S, oSy E). (6.1)
I

as O(W) x GL(E)-modules. Here the sum extends over all partitions u of » with at most
dim W =m — 2¢ rows and at most dimE = £ columns, and u' denotes the conjugate
partition of .

We will be mainly interested in the case r = nf. Then we can take yu = {lw, =
(£, ¢,...,0), and so u' =nwy = (n,n,...,n) and Sy (E) = (/\ZE’>®H ~ C is the trivial
(one-dimensional) SL(E)-module. We obtain

:| SL(E)

nt SL(®) nt
Sp(W) ® Sp/(E') ~ [/\ We® E’)} ~ {/\ () e (6.2)

as O(W) x SL(E)-modules. Here B = B, ¢ is the filling of the Young diagram associated
with u described in § 3.2.
To realize this isomorphism, we define a GL(W) x GL(E) intertwining map

Lo TN RT' W) QT (E)» \ WoE)oT! (V) c ™! (6.3)

given by
oW ® - @w)®WR® (M ® - @v)=W1R®V)A--AWQV) W,

where w € Te/(W). We also write 7, for 7, 0. We immediately see the following lemma.
Lemma 6.1. The map t, ¢ s O(W) x SL(E) x S,¢ X Sy-equivariant. Here the action of
the symmetric group Syv¢ (resp., Sy) is on the tensor factors involving W (resp., E').

For r = nf, the map t,¢ realizes the isomorphism (6.2). Furthermore, we have the
following lemma.

Lemma 6.2. Let w € T (W) and v/ € T"(E'). Then

SL(E)
Toe. o (sBA(W) ® V') € " .
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We view from now on 1,4 ¢ as a map of T”ZM/(W) by setting
Tat,o0 (W) =T o (W® () ® -~ @ u))").

We let VI (W) be the space of harmonic k-tensors in V (W), i.e., the tensors which
are annihilated by all the contractions Cj;. We let EX(V) c T*(V) be the orthogonal
complement of the harmonic tensors. Thus E¥(V) is the sum of the images of the
insertion maps Ej(gy) : TF2(V) — T*(V),1 <i <j < k, with the metric gy of V.
Similarly, we define EK(W) c T*(W). Note that Spy(W) C Sppy(V). However note that
if w e T (W) is a non-zero tensor in the orthogonal complement of T (W) (i.e., spanned
by tensors in the image of the inclusion with the metric for 5(,(W)), then w does
not necessarily lie in the orthogonal complement in T[Z/](V) (since the metric of V is
different).

Proposition 6.3. Let B again be the given filling of the Young diagram associated with
Lwy, and A be a filling for A.

(1) Let w € Sgja(W). Then T, (W) defines a cocycle in et More precisely, we obtain
a map

Sa(W) — H" (np, S4(V))>H®.
(ii) Let n < [dl%w} and let w € Spjaj(W). Then the cohomology class

[tae.e (W)] € H" (np, Spa (V))5®)
does not vanish. Thus we obtain an embedding
Staia)(W) < H™ (np, Sja(V)SHE
(iii) Let w € Spa(W) N EMFHU (W) be in the orthogonal complement of Sipa)(W) inside
Spia(W). Then
[714] © Tne,r (W)] =0

in H™(np, Sia1(V)). Here mpa; is the natural projection from H®(np,Sa(V)) to
H*(np, Sja1(V)) induced by the orthogonal projection Sa(V) — Sja1(V). In particular,
for w € Spja (W), we have

(77141 © Tne.er (W) ] = [Tue o (7718141 (W) ].
The next section will be concerned with proving this proposition.

6.2. Proof of Proposition 6.3

We give V the positive definite Hermitian metric coming from the majorant (, ). This
induces positive definite metrics on /\2E, WQ®E, and E' ® E and hence an admissible
metric on the entire Lie algebra complex C"e/, which we also denote by (, )g. Using
(, )o we obtain an adjoint d* to the differential d on C®. We then have the finite



30 J. Funke and J. Millson

dimensional analogues of Hodge theory. Namely, we define the Laplacian A = dd* + d*d
and say that a form in C® is harmonic if it is in the kernel of Delta. It is immediate that

ker A = kerd N ker d*.

We let H"** be the harmonic forms of degree r, given by the intersection ker A N C” Y In
particular, we have the Hodge decomposition.

Lemma 6.4. The space C™* is the orthogonal direct sum of the exact forms Imd, the
coexact forms Imd* and the harmonic forms. Furthermore, the map H"™®* — H"™ (np, o) is
an isomorphism.

The Lie algebra complex C*Y is in fact triple graded via

et = NweE)e \' (/\2E/> ® \'np @ (V)

and we define analogously C**"** and C"*"* for U =S; (V) and U = S3)(V) respectively.
Here again we have used the form (, ) to identify W* >~ W and E* ~ F’.

We now give explicit formulas for the Lie algebra differential d and its adjoint d* on C.
We omit the proofs. We write d = d,, + dy with a ‘Lie algebra part’ d,, and a ‘coefficient’
part dy. That is,

dn=dn, +dn, and dy=d) +di+d) (6.4)
with
1 1
dng = 5 > Alea ® upad* (ea A uj) + 5 > A A upad* (ui A up) (6.5)
o, 1<i<j<t
and

d&V:ZA(ea@)u;)@p(ea/\ui) and df = Z Adu; A up) ® p(ui A ).

a,i 1<i<j<t

Here p denotes the action of np on the coefficient system TE/(V). Finally, dn,, + d‘\}” " is the
part of the differential arising from np. (We do not need it more precisely.)

Since [nw, nw] C 30, we first note that an has triple degree (2, —1, 0). In particular,
all elements of degree (r, 0, 1) are dy,-closed. Accordingly, dn, is determined by its values
on C%%0* Tn fact, it suffices to consider s = 1.

Lemma 6.5. Let v,vyp € E and v € T¢ (V). Then

dng (Vi A V) ® V) = —T2(E1,2(8)y) ® (V] @ V5)) ® V.

It suffices to compute the dual dy , on basic forms.
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Lemma 6.6.
di, (WL ® VD) A A (W @ V) ® V)
=D DT Wi w1 @ V) A A Wi ® V) A AW @V A+ A (W ® V)
i<j

® (Vi A v;)} ® V.

For the np-contribution, we have the following lemma.

Lemma 6.7. The differential dy, + d;‘m has triple degree (0,0, 1). The adjoint action of

np Csl(E) onng=(WQ®E) D /\2E arises from the natural action of sl(E) on E. Hence

/ . s SL(E .
dn, + d;” vanishes on (C"59¢) ( ). In particular,

(dup + Ay ) Ta. e (spa (W) =0
for we T (W, Finally, the dual dﬁp, + (d?,”/)* vanishes on C"5:0:¢
We now turn our attention to dy and dj. It suffices to consider the case ¢’ = 1.

Lemma 6.8. (i) Let we TX(W), w e W, and v' € T*(E'). Then

¢
dy (1w @wev)) = 1 (Wew) ® U, ®V)) @ u.
i=1

(ii) Let we TK(W), v/ € TX(E'), and u' € E'. Then

&Y (W@ V)@ u) = —ti111 (ELis1 (€ (W) @ (1 @ V).

Lemma 6.9. Let w € TK(W), w e W, and v/ € TK(E'). Then
dy (1 (W @w®Vv))
= > DT W (WL @ V) A AW @ V) A A Wk @ V))) ® Vi
i=1,...k

We obtain as a consequence of Lemmas 6.6, 6.9 and 6.7 the following proposition.

Proposition 6.10. Let w € W] be o harmonic (k + £')-tensor. Then for any
v/ € TX(E"), we have

d*fk,[/ (w®v)=0.

We are now ready to prove Proposition 6.3. For (i), first note that the action
of o € Sy on the coefficients TZ,(V) commutes with the differentiation d, that is,
do(1®0 ®1)=(1Q® 0 ® 1) od. Furthermore, in the first factor T"¢(W), The,e/
factors through cp, the column anti-symmetrizer for Young tableau B, that is,
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Tpe, 0 0(CBROL) = Typ pr- Combining this with Lemma 6.1 gives Toe,e0(cBla) = (1®ca)oTue
on T"+'(W). Therefore it suffices to show that Tue, e (rpa(w)) is closed. Indeed, we
have

d(Tpe,e (sB1aA(W))) = d((1 ® ca) © Tye, o (rBa(W))) = (1 ® ca) o d(Tpe e (r1a(W))).

Furthermore, it suffices to establish closedness for n = 1. Indeed, if the Young diagram
A arises from the partition (¢7, £5, ..., £;) of £, we write w=w1®---®w, € T (W) with
w,eT'(W)yand w=w1 ® --- @ W, with w; € TEQ(W). We then have a natural product
decomposition

Tue, ot (W@ W) =Ty ¢t (WL @ W1) A -+ ATy g (Wy @ W2), (6.6)

for which d acts as a graded derivation. Also note that dn, vanishes on the image of 7, ¢
and by Lemma 6.7 so does the np-contribution. Now for n =1, using Lemma 6.8(i), we
see that applying dy to t¢ ¢ (W) with w Sym‘*+* (W) gives rise to a map

4
Syml+e/(W) N @/\€+1(W®E/) ® (El/ ® TZ/,I(W))
i=1

t
= PP ScW) @Sc(E) @ (E; @ T 1(W)). (6.7)
i=1 C

Here E; = Cuj, and the sum extends over all Young diagrams C of size £ 4+ 1, which have
at least two rows (otherwise the dual diagram C" would have at least £ 4+ 1 rows, which
is impossible as dim £’ = £). By the Littlewood—Richardson rule we now see that in the
decomposition of Sc(W) ® Tel_l(W) into irreducibles, only Young diagrams with at least
two rows can occur. Hence Sym”z,(W) does not occur on the right hand side of (6.7),
and the map vanishes identically. This proves Proposition 6.3(i).

Proposition 6.3(ii) now follows immediately from Proposition 6.10 and Lemma 6.4.

For (iii), it suffices to show that for any w e T"*¢=2  the form ) o
Tne, ¢ (sBIA (Ei j(g3) (W))) is exact. For this, it suffices to show that 7, ¢ (rgja(E;;(g5)(W)))
is exact up to terms involving the inclusion of the metric gj, into the coefficient system.
The product decomposition (6.6) reduces the claim to the cases of n =1 (if the metric
gy occurs in one factor for (6.6)) or n =2 (if gy occurs in two factors). It is not
too hard but a bit tedious to explicitly construct primitives for these cases. We omit
this.

6.3. The map (p

We now assume again that all objects are defined over R. We construct a map
tp: Cyy = Ap of complexes.

We let U, U’ be two representations of G and T : U’ — U be a G-intertwiner. We let
C*(np, U) = (A°njp) ® U be the complex computing the nilpotent cohomology H*(np, U),

and we let C2) . 4(np, U) be the subspace of cocycles in C*(np, U).
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Lemma 6.11. Define a map

[ Nene (N ev)]” [N ehenmeu]”
by
15 (0 ® (09 @ 1)) = (0" A 0®) @ TW).
Then n™* induces a map of relative Lie algebra complexes
01 Co M, £p: Cypgeq(mp, U)) —> C* (p, tp1 U)
and the induced map in cohomology factors through H® (m, Ep; HS (np, U’)).

Proof. This essentially is [17], Lemma 2.6 (see also [29], § 2), together with the standard
spectral sequences argument in this context. Note that Harder actually considers
instead of cocycles in C(np, U’) the nilpotent cohomology group H*(np, U’) realized
as a subspace in C(np, U’) by harmonic forms as discussed in § 6. O

Definition 6.12. We define the map tp on Cj’Wr’k as follows. In fact, it is defined on the
underlying tensor spaces without taking the group invariants. First we set (p to be zero if
k < nt. If k > n€ we split the two tensor factors:

Tk (Cn)* — Tn[ ((Cn)* ®Tk—n£ ((Cn)* and Tk(W(C) — THZ(W(C) ® Tk—nf(W(c).

We define tp on tensors which are decomposable relative to these two splittings. We let
uj =01 A--- AB, be the standard generator of U = A" (C")* (with the twisted K'-action).
Let ”]1 Rx®f ®w®w be a single tensor component of an element in C{l}r’k and assume
that k > nf. Assume that x and w are decomposable, that is

x=x1 @xp € " (CY* QT (C)*  and w=w; ® wy € T (We) @ TF " (We).
Then we define
LP(L{/1 RIS RwRW)
= (~DMCEEETED () © 500) @ 02 © f ® @ ® T (w1) ® wa)
e THWU) @ T (@) @ Waw ® N\ @ie® N () 8T (We).
Note here that by Lemma 3.2, we see that Sp(C")* = ng’“Z (CH* ~ THU)[0] and

therefore ujl ® sp(x1) lies in TjH(U)[—pz;q] and is zero if and only if s5(x1) = 0.

Proposition 6.13. (p is a map of complexes

1.k j+L.r+nt k—nt
wp:Cyy —>A'fp+ rbntkent

Proof. In view of Lemma 6.11, it suffices to show that the map on Cj’Wr’k to

cr (m, tp: ™ (np, T* " (We)) ® T (U) {_p;q] ® Wn,w) (6.8)
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induced by

W @x@f@w@wr (i) ®s5(x1) ®x2 ®f ® 0 ® Tue(w1) ® wa (6.9)

gives a cocycle for the nilpotent np-complex. Going through the proof of
Proposition 6.3(i), we see that the composition of the np-differential with (6.9) factors
when viewed as a map on T*(We) through representations S¢(W¢) with C havmg at
least n + 1 rows. But now by Lemma 5.3 such representations do not occur in C’ (]

The reader can easily check from the definition that ¢p satisfies the following
properties.

Lemma 6.14. (1) tpis a [T(U) @ Wyw ® /\p’{y]K/XKW-module homomorphism. That is,
P 0 O ) =0 0 tp (] )
for (p}‘,/r,’o € C];‘}r/’g and (pﬂ’k € C{)’Vr’k.
(2) LP(QDJ-“; ) is zero if k <nt.

(3) Suppose that g}, € Ci;"" with k > nt and ¢}, , € """ Then
LP((Pj,,’k . (0/'/’,,/,2/) = LP((pj‘j[;,k) . (pj‘;‘,/r’,f"

(4) Let x € T" (C"* and w e T"(Wc). Then
p(ly@xR1r® 1p’§v QW) =x(ep) (@ 1len 1 ® 1p’§v ® Tie(W) ® lr(vp))-

Proposition 6.15. Let k =nt + £’ as above. Let A be a dominant weight of GL,(C), and
we let A be a standard filling of the associated Young diagram D(L). We let B|A be the
associated filling for the weight La, + A; see § 3.

JjH+L,r+nl A J.r\BIA .

(i) Then the preimage of under tp lies in ;e

—1, 4+, r+nt,A J.r,B|A
tp (Ap )=Cy "

Cj,r,n(i—M j+0,r+nt t
w

Moreover, if tp(¢') = ¢ for ¢’ € and ¢ € Ay , then

7A(p) = tp(mpa(@)).

. Yy g nl+e J.r,B|A .
Here w4 is the projection from Cy, to Cy," " (see (5.10)), and w4 is that from
: ) : A
A§)+l,r+n€,€ to A§)+l,r+n6, ]

(ii) Let ¢ GAJI.DM’HM’[A] be a closed form such that 1p(¢") = ¢ for some ¢’ € Cj’Wr’BlA.
Let mipja) be the projection from CJ’Wr‘B‘A to C]’Wr'lBlA]. Then the cohomology class [¢]

satisfies

(@] = [tp (Bl (@))].



Boundary behaviour of special cohomology classes 35

Proof. (i) We first observe that tp is invariant under sp in the T"¢(W)-factor and also
s(B*)-invariant in the 7 (C")*-factor, that is,
lp=1LpoO (1(] ® lTne (Cry* &® 1Te’ (Cmy* ® 1W ® lpjlfv Rsp® IT‘/(W))
=1po(ly ® s(B) ® Lo emr ® Ty @ Lys & Lyneyy ® 1o )

Taking the Sy-invariance into account, we see that (p maps

j N * N Tk K'xKy
[T/ @85(C")" @ 8a(C)" @ Waw @ \ (i) ® Sp(We) @ S4(We)| (6.10)
to A/H26r+ntA Byt now we have the following lemma.

Lemma 6.16.

/

[T/W) ®85(C")" @A) @ Waw ® \ () ® Sp(We) ® S4 (W)

X Kyw

=, (6.11)

Proof. In (6.11), we first observe that Sp(C")* @ SA(C")* = Spa(C")* as subspaces
of T”ZH/((C”); see Corollary 3.4. But then by Schur—-Weyl theory (see Lemma 5.3 or
Remark 5.4), we can now replace Sp(Wc) ® Sa(Wc) with its subspace Spia(We) in (6.11),

that is, the left hand side in (6.11) is equal to Cj’Wr’BlA. O

From this we obtain Proposition 6.15(i). Proposition 6.15(ii) follows from
Proposition 6.3(iii) and Lemma 6.11. O

7. Special Schwartz forms

Again V will denote a real quadratic space of dimension m and signature (p, q).

7.1. Construction of the special Schwartz forms
We recall the construction in [11] of the special Schwartz forms @ug ¢, @ng,s, and @ug, (2],

which define cocycles in C"/e/, cy’, and C;,’[’\] respectively. It will be more convenient to
use the model C3, consisting of homomorphisms on T (C™") (and its subspaces Sy (C"));
see (5.5) and Remark 5.4. We will initially use the Schrédinger model S(V™).

In [11], we construct for n < p a family of Schwartz forms @,y on V" such that
onper € CL" Y So

fng.e € [Hom(T! (), TYU) ® S(V") ® (D) @ TV (Ve - ¥

~ [Hom(T" (€, T'W) & SV & N ) & T Venl . (7.1)

These Schwartz forms are generalizations of the Schwartz forms considered by Kudla
and Millson [20-22]. Under the isomorphism in (7.1), the standard Gaussian ¢g(x) =

1®e ™ &X ¢ 10 ® S(V”)]K,XK corresponds to

Po(x.2) =1® e ™" ¢ [T0(1) @ S(V") @ (D) 7.
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Definition 7.1. Let n < p. The form ¢,4,0 with trivial coefficients is given by applying
the operator

1 g n  ptq p 1 9
D - WA(M:[) ® H H Z <xai - E axai> ®A(a)ozu)

i=1 p=p+1 La=1

to @o:

n K,XK
0nq.0 =Dlwo) € "0 = [T1) @ SV @ N\ (08|

Here as before A(-) denotes left multiplication and uj is the generator of U = A"(C™")*.
Furthermore, Theorem 3.1 of [20] implies that ¢,q,0 is indeed K’-invariant.

For T(V¢), we define another K-invariant differential operator D} which acts on

svme N\ eh e Tve) (7.2)
by
=13 (- L 2 ) @ 10400 (73
T2 UM 2m O o '

Let I=(1,...,ip) e{l,..., n}[ be a multi-index of length £’ and write
& = 8[1 ® M ® <C/‘l'e/ (74)

for the corresponding standard basis element of T (C™). Then for ¢ € T (C™), we define
an operator by

Ty(e)) =Dj, 0-- 0D (7.5)

l[/
extending 7, linearly to T¢ (€.

Definition 7.2. Define
tnge € C"Y = Home (10, TU0) @ S0 @ \ ot @ 7 (V) )
by
Png.er W) = Tor(W)Pnq,0

for w e T (C"). We put @ng,er =0 for £ < 0. Here the Sy-invariance of ¢, ¢ is shown in
Proposition 5.2 in [11], while the K’-invariance is Theorem 5.6 in [11].

Using the projections myp) and 7)) (see (5.10) and (5.12)), we can therefore give the
following definitions.

Definition 7.3. For any standard filling #(1) of D(L), we define

q,nq, A
Ong,t(0) = () Png,er € Cy 77,

ng,[A
Prg110] = TG Png.e € CH P,
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We write @41 and @, (5 if we do not want to specify the standard filling.

Proposition 7.4 (Theorem 5.7 [11]). The form @uq ¢ is closed. That is, for w e T (CM)
and x € V", the differential form

Pug o)) € [ (D377 o))

1s closed.

7.2. Explicit formulas

We give more explicit formulas for ¢, ¢ in the various models of the Weil

representation.
7.2.1. The Schroédinger model We introduce multi-indices o; = (o1, ..., aiq) of
length g (typically) with 1 <i<n and B = (B1,...,Br) of length £ (typically) with

values in {1, ..., p} (typically). Note that we suppressed their length from the notation.
We also write o = (@;j) for the n x g matrix of indices. With I as above, we then define

Wg; = Ogiip+1 N - N Oajgptq (7.6)
W = Way A+ A O,
HﬂZH(xilio"'oH(xiqh
Ha:Hﬂo"'oHai
Hp.r="Hpyiy ©--- 0 Hp,iy
eg=ep Q@ --Qeg,.

Let 1<y <pand 1<j<n. Forl, a,and B fixed, let

8yj = #lk; aj =y} + #lks (B, i) = (v, ). (7.7)

This defines a p x n matrix Ay g = Agpr+ and Schwartz functions ¢a,,, as in
Definition 4.4. -

Lemma 7.5. The Schwartz form @,g ¢ (g1) is given by

1
Png.e (81) = ong/2+¢ Z uf ® PAgps © O @ ep.
o.p

Proof. With the above notation we have

1
Ong.0 €)= gy Y ] ® (Hay 00 Huy 0 Hp.)90) ® (@ay A+ A ) ® e

aq,....0n

2”(1/24_5/ Z Uy ® (Hot o Hﬂ 1)§00 R wy & eﬂ (78)
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But now we easily see that

P n
(Ha o Hp.Dpo®) = [ [T Hs,, )00 ). (7.9)

y=1j=1
which gives the assertion. O
7.2.2. The mixed model. We now describe the Schwartz form ¢, in the mixed
model. We describe this in terms of the individual components ¢, ,, described in

the Schréodinger model. From Lemma 4.7, Lemma 4.8, and Proposition 4.9 we see the
following lemma.

Lemma 7.6.

3

Ph s | XW —goA/ (XW)(/?AH (1),
- /
u

/\

Note that gag/, only depends on the indices ajj, B; such that ay, B; > € + 1, while goA,,
B

only depends on the indices ajj, Bi such that ay;, Bj < L. In particular, if all oy, Bj > € + 1
then

;
Ohops |3 | =0k, W& 0).
. ’

On the other hand, if one of the ayj, Bj is less or equal to £, then

0
ag,, [(0.0)= (pxa.ﬂj xw | =0.
0

7.2.3. The Fock model. In the Fock model, ¢,,  looks particularly simple. We have
the following lemma.

Lemma 7.7.

1 1 ng+£
Ong.0(€1) = a2+l (27_”) Z M({ ® Zay,1 " Zagn BT B (@ay A+ A wai) ® egp.
aq apn

8

Here we use the notational conventions of (7.6) and in addition

Zajj = Zajrjt Retjgjy ZBd = ZPrin " Lyip - (7.10)

7.3. The forms ¢q

We now define another class of special forms. We will only do this in the Fock model.
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Definition 7.8. We define ¢ 1 € Hom(T*(C™); T°(U) ® Fav® T*(Vc)) by

1/ 11\*
vo,k(er) = ok (27‘[1) zﬂ: 1®z81®ep. (7.11)

Remark 7.9. The element ¢g x is the image of the operator 7; (see (7.5)) applied to the
Gaussian ¢g under the intertwiner from the Schrédinger to the Fock model. Also note
that ¢o x is not closed, and hence they do not define cocycles.

We also leave the proof of the following lemma to the reader. It follows (in large part)
from Remark 7.9 and the corresponding properties of ¢, ¢'.

Lemma 7.10.
0 k iy * k K’ xK xS
0ok €T°(U) @ T (C"" @F,v @ T* (V)] )
i.e.,
00k € C?/O’k.

From Lemma 7.7, we immediately see the following lemma.

Lemma 7.11.
Png, 0/ = ¥ng,0 * 0,0/
and
@0,k1 * 90,k = ©0,k1 +ka>

where the multiplication is the one in Cy,.

Remark 7.12. This kind of product decomposition for ¢,q ¢ and ¢ in Lemma 7.11
only holds in the Fock model. In the Schrédinger model this only makes sense in terms of
the operators D and 7y of Definitions 7.1 and 7.2 respectively.

We apply the projection ;) (see (5.10)) to define @g ;).
Definition 7.13.

0,001
00,10 = Ty @0k € Cy ',

The following product formula will be important later.

Proposition 7.14. Let A =t()) be a filling of the Young diagram associated with A and
let B= By ¢ be the filling of the n x € rectangular Young diagram introduced in § 3. Then

w W o_ W
©0.8 " 0.4 = %0,B|A"
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The proposition will follow from the next two lemmas.

Lemma 7.15. Both (p(V)VB . <ngA and @SVBlA are elements of

N K'xK
Oy = 1100) ® Spia (C)* @Fuw @ Spu(Well

Proof. Since Sp(C")* @ S4(C")* = Spja(C")* as subspaces of T+ (Cmy (see Corollary
3.4), the claim follows in the same way as Lemma 6.16. g

Lemma 7.16.

(wg,vg : (p&lA)(SBgB ® sa€4) = wgB\A(SBEB ® s4€4).

Proof. This is a short calculation using Lemmas 3.3 and 7.11. Indeed, we have
(w(vfg : QD&IA)(SBSB ® sae4) = (w(‘)}[,/ne . <Pg,/g/)(5383 ® sa€4)
= 00 were (5BEB ® sa84) = (A, B)QY o (SBIAEBIA)
= c(A, B)p() g (spiaeBia) = 9 pa (s8EB @ saga) . O
Now we can prove Proposition 7.14. By Lemma 7.15 we see that <p&/B . (p(v)‘fA and (p(v)‘fB‘A
are U(n)-equivariant homomorphisms from Sga (C")* to 00U) ® Fow ® Spia(We). By

Lemma 7.16 they agree on the highest weight vector (see Lemma 3.3), and hence
coincide.

8. Local restriction

We retain the notation from the previous sections. In this section, we will give formulas
for the restrictions r}.fv and rp of @,4 ¢. The main result will be then the local restriction
formula for @,q,[3]-

Proposition 8.1. We have
1
w v _ q w
U2 ng ) ) = S D Wi @)y Bow@ep.
o B =
Hereej=¢, ® - Q¢ € T@((C"), o and ﬁ’ are the same indices as before with
41 <aj, B/ <p.

Loosely speaking, r},{v((qu ) is obtained from (pr‘t/q o by ‘throwing away’ all the indices less
than or equal to £. In particular, if n > p — £, we have

rgvgor‘,; o =0.
Proof. This follows from Lemma 7.5, the formula for ¢, in the Schrédinger model,

and from Lemma 7.6. For the last statement, we observe that w, is in the ng-exterior
power of a (p — £)g-dimensional space. O
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The local restriction looks particularly simple in the Fock model.

Proposition 8.2. Let o] and B’ be as before in Proposition 8.1. Then
2y (O (ED)

1 1 ng+¢'
0 - 4q Joe e 7. 7 7 ce . ’ 7
T ong/2+U (27[i> Z up ® %y Loy " 2T ® (w% A A w‘)‘q) ® g

Proof. This follows immediately either from Proposition 8.1 and applying the
intertwiner to the Fock model or from Proposition 4.12 and Lemma 7.7. (|

Proposition 8.3. For the restriction of gOXq o> we have

gy =1y ® lon @ rp’ @ 0% @ 1v)gy, -

Analogous statements hold for 90,‘,/61,1 and QD,Yq,[)\r

Proof. By Definition 5.5, the restriction rp: C}, — Ap is given by 1y @ 1c» ® r};v ®
(t* 00™) ® 1y. Then the theorem follows from Proposition 8.2 and Lemma 2.5, and in
particular (2.42): the components of a*gor‘fq p involving a* already become annihilated

w * B IV V
under rp”, so (* acts trivially on o*rp Png.e O

We define
1 1 nt
PPt = oup <2m> Z uf ® Zy1,1 7 Zyun ® (Vyy Avee Avy,). (8.1)
Vit
Here y; = (Vjm—t+1, - - - » ¥jm) is a multi-index of length £ such that £ +1 < yj; <p, and Zy;.j

as in (7.10). Furthermore, we have set

¢
*
Vi = Vgl A A V1 € /\ (). (8.2)

We have the following lemma.

Lemma 8.4.

(g—0)(n—1)
(el s) = tp(pl ) = (=)™ C—2 —+D

@oP.ne-

Proof. First note that by Proposition 6.15 we have Lp((p(‘;"]B) = Lp((pgfne). We let
B, ..., Bn be n indices of length £ with £ + 1 < Bj; < p. For the corresponding elements
ep; € TY(W), we easily see that

Z (Zﬁl.-.Z&n)®fn5(€ﬂ71®...®eﬂi): Z (Zﬁl"'zﬁn)®(VﬁA"'AVﬂi) (83)
Bioibn B1.-iBn
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with vg; as in (8.2). With that, we conclude

(q=0)(n=1) 1 1\
[P((p(‘)}[’/B):(_l)nz( 2 +1) 2ne <2m) Z M{@(Zﬁlzﬁn)®(V@AAV&)
BissBn

(q-0@-1)
= (D" D g (8.4)
by (8.1). O
We are now ready for the main result of this section, the local restriction formula for

Png,[2]-

Theorem 8.5. Let A be a standard filling of the Young diagram with £ bozes and let By ¢
be the standard tableau associated with the n by £ rectangle as in § 3. Then
1% w
VP(‘an,E’) = [P((pn(q—f),ni—i-l’)’
14 w
rP(Qonq,A) = lP((Pn(q_e),Bm)-

Furthermore, for the form ‘Pqu,[A] with harmonic coefficients, we have
1% w
[”P((an,[A])] = [lP(q)n(q_z),[B\A])]-

Proof. We first note that

(@0 gy gy

VPQO,Yqﬂ = (—1)"z Pn(g—0),0 ~ PP.nt - ‘P(‘)}[,/eh

Here we view @), o e ALEa=00 g oY, € Ap™" in the natural fashion. The

analogous statements hold for (pr‘l/q 4 and gor‘l/q (4]- Indeed, this follows immediately from
Proposition 8.2 and
G*a)/—(—l)gia)/ N ANwy VA% VANKRRVANS VW] (85)
% 2t/2 “eup+l g Py g1t g1 '

which follows from Lemma 2.5. The sign arises from ‘sorting’ a"‘(a)o/1 A s A a)aé)
according to (8.5) into elements @y, (which lie in pj,) and vy, (which lie in njy). From
this and Lemma 8.4 we conclude that

1% w w w w
r P(<an,13/) =1P(@p(g—0),0 * PO.ne - P0.0) = LP(¢n(q—€),n(+€’)'
By Sy -equivariance of tp we also obtain
v w W W w
I”P((P,,q,A) = LP((pn(q—Z),O *%0,B " ‘pO,A) = ®n(g—0),B|A

since ‘/’8‘,/3 . (p&/A = (pnglA (see Proposition 7.14) and (p,?(/q_e)’BlA = Qn(g—0),0 - ‘P(‘))‘,/B|A (see
Lemma 7.11). The cohomology statement now follows from Proposition 6.15(ii). O

Corollary 8.6. We have [rp((pr‘l;‘[)»])] =0 for n > min ( , [%])—Z (if £=2)and n>p—1
orn>m—2—i() (if £=1).

Proof. The Schur functor Sipjaj(Wc) vanishes in this range. O
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On the other hand, we have the following corollary.

Corollary 8.7. Let P be a (real) parabolic subgroup as above such that the associated
space W is positive definite. Assume that
pP—q .
e ifqg>2
i) <n< [ 2 ] fa=
p—1—ild) ifg=1.

Then

[rp (@ )] # 0.

9. Global complexes, theta series, and the global restriction

In this section, we return to the global situation and assume that V,W,E etc are
Q-vector spaces. Furthermore, P is a standard Q-parabolic subgroup and P = Py(R) for
its real points etc. All the ‘local’ notions (over R) of the previous sections carry over
naturally to this situation, and we make use of the already established notation.

Let L C V be an even Z-lattice of full rank, i.e., (x,x) € 2Z for x € L. In particular,
L C L¥, the dual lattice. We fix h € (L#)n once and for all and pick a congruence
subgroup I' C G(Z) of finite index which stabilizes £ := Ly = L" + h. The associated
locally symmetric space X = I'\D is non-compact (since the Witt index of V is positive)
but has finite volume.

9.1. Global complexes and theta series

9.1.1. Global complexes. We first define ‘global’ versions of the ‘local’ complexes C*®
of forms on X = I'\D, and A} of forms on €'(P) = I'p\e(P). We set

Co®(I, ), 3) = C® (G T (U) @ S, (€)) (9.1)

for I'" an (appropriate) arithmetic subgroup of Sp(n,Z). Note that we can identify
C*®(I'’,j,A) in the usual way with the space of vector-valued C*°-functions on the
Siegel upper half-space of genus n, transforming like a Siegel modular form of type
det//? ® S, (C"). Furthermore, we denote by Mod(I"’, j, 1) the space of holomorphic Siegel
modular forms of this type. We let

aft =i ) e A D es (o),
~cxrine [ Nebesvoec e (9.2)
and
AR = C°(I j, 1) ® [AT(E (P)) @ S, (V)]

}KP (9.3)

~ (0 @ [\ (@ sk 85,.(Ve) ® CX(Ip\P)
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We then define E@r,[x] and Z{,;r’[)‘] as in the local case by harmonic projection onto
Si1(Ve). The local map tp induces a global intertwining map of complexes

ip: Gl tmmth L Attt (9.4)
by lifting functions on I'y\SOg(Wr) to Iy\M. This induces a map on the cohomology
ip: C®(I",j. 1) ® H"™ X, it 421 (We))
— C(I",j,2) ® H"4™9 Xy, H" (n, Sy (Vo)) (9.5)
— C®(I", j, ») @ H"I('(P), Sy (V).
We also introduce
T = ¢®(IN\G: T'(U) ® S, (€)Y © AR, 8,0, (9.6)

the complex associated with the differential forms on the compactification X with values
in S, (Vc), the local system associated with S, (V). We then have a restriction map

Fp:Cy — Ap (9.7)
induced by the inclusion ¢'(P) < X.

9.1.2. The theta series. Using the Schrédinger model S(VR) of the Weil

representation, we now introduce for ¢ € C]{}r’A its theta series 6(¢) as follows. For
g € G, we then define for z € D the theta series

Ocy(8.20) =Y (@), 2). (9.8)

Xeﬂv

We easily see that the series is I'-invariant as I" stabilizes Ly. Thus 6., descends to a
closed differential ng-form on the locally symmetric space X = I"\D. More precisely, by
the standard theta machinery, we have

Or,(p) € Gy (9.9)

for some congruence subgroup I'" € Sp(n, Z). Summarizing, the theta distribution 6,
associated with £ gives rise to a G’ x G intertwining map of complexes

Or,:Cy—> C}. (9.10)

Remark 9.1. The main point of [11] is that for the Schwartz forms ¢, (5] one has
[QEV (Q‘)nq,[k])] € MOd(F/’j5 A‘) ® an(X7 SX(VC))v

and the Fourier coefficients are Poincaré dual classes of special cycles with non-trivial
local coefficients.

For a similar theta intertwiner for Ap, we note that Ap involves the Weil
representation for W = EL/E. Recall (see Proposition 4.2 and Definition 4.3) that we
can extend the action of O(Wgr) on S(Wg) to P such that the Weil representation
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intertwining map r],fv becomes an MN-intertwiner. In particular, N and M} act trivially
on S(Wg). We let Ly be a linear combination of delta functions of (cosets of) lattices in
W which is stabilized by I'p, that is, by I'iy. Recall that we defined I'ly as the image of
I'p when acting on E+/E. Tt contains I' N SOg(Wg) as a finite subgroup of finite index.
Applying the theta distribution associated with Ly we obtain an intertwining map

Or, 1A — A, (9.11)

Furthermore, 0., commutes with ¢p:

Ocwotp=tipofr,. (9.12)
More general, we let
AREYIW — (g € AS: 0, (@) is Ty-invariant}. (9.13)
and obtain a map 0., :A;;CW’FW — Z;, as before.

We will be interested in a particular Ly, which naturally arises from Ly as follows.
Let g : EY — E1/E be the natural projection map. We then set

EW =map(Ly N EL). (9.14)

For this definition, it is crucial to view W = E+/E as a subquotient of V and not as the
subspace EL N (E’)J‘ of V. Namely, Ly is in general larger than W N £", which can be

empty even when Ly is not.

Remark 9.2. The notation of ZW becomes more transparent if one changes to the
adelic setting. Adelically, £ corresponds to the characteristic function x,, of the
image of Ly inside V(Ay), where Ay denotes the finite adeles. Then in this setting,
EW corresponds to the partial Fourier transform of xp, with respect to E(Ay) when
restricted to W. From this perspective, the assignment £ — EW is the analogue at the
finite places of the local restriction map rp at the infinite place.

9.2. The global restriction

9.2.1. Smooth forms on smooth manifolds with corners. We begin with a short
discussion of the definition of a smooth ¢-form on a smooth n-manifold with corners M.
For more on smooth manifolds with corners we refer the reader to the Appendix of [5]
or [24], pp. 363-370. First, for any point x € M the tangent space Ty(M) is a linear space
of dimension n. A differential ¢-form @ will be a section of /\Z(T*(M)). To say when
an {-form w is smooth on M it suffices to define smooth £-forms on the local models
Sp=REy x R"F,

Definition 9.3. An ¢-form @ on ]R’;O x R"* is smooth if there exists € > 0 and a smooth

form @ on R x R"*> R’;O x R"* such that @ restricts to w.

>—€
For our purposes we need only two classes of smooth forms. Recall from the appendix

of [5] that a point x in a neighbourhood U that maps by a chart ¢ to the local model S}
above with ¢(x) =0 is said to have index k. The set of points of index greater than or
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equal to k is denoted as M® . The subset M@ is said to be the interior of M, the set M1
is said to be the boundary of M. The first class of smooth £-forms on M is obtained by
extending by zero from M© to M the smooth ¢-forms on M© whose coefficients relative
to one and hence any system of coordinates vanish to infinite order on M. The second
class of smooth ¢-forms on M will consist of the special forms. We define an £-form w in
a local model S} to be special if there exists an ¢-form @ on R"* such that w = po,
where pg : S} — R"* is the projection on the second factor. We now claim that o special
implies that it is smooth. Indeed if we let g2 : RF x R" % — R*~* then o := g5w provides
the desired extension of w.

Remark 9.4. This definition of special forms for general smooth manifolds with corners
in less restrictive than the definition in [16], Definition 13.2, p. 169, for the case of
Borel-Serre compactifications. In this latter definition the form w is required to have
further properties (e.g. local left Np-invariance) that use the special features of the
Borel-Serre compactification.

9.2.2. The restriction formula. We now prove the following theorem.

Theorem 9.5. Assume that V is different from the Q-split space for signature (p, p).
Then (see Remark 9.8 below) the theta series Oz, (0ng.e), O£y (Png.n), O, (@ng12]) extend
to smooth forms on the smooth manifold with corners X.

Moreover, for a standard rational parabolic P, the restrictions rp to the corresponding
boundary component € (P) of the three series above are given by

rp (9[,\/ (@nq,o)) = GEW (Vprnq,.)-

Remark 9.6. The statement of the theorem is not correct for the Q-split case for
signature (p, p). In that case, one has to replace the Borel-Serre compactification for
SO(p, p) by the big Borel-Serre compactification, as we explain in the final section. With
this modification the theorem holds again as stated above.

Combining Theorem 9.5 with Theorem 8.5, we obtain the following corollary.
Corollary 9.7.

POLy Prg. ) =P O7, Doty mese))s  TPOLY g 31) =TPOF, @nig—p) g,

and

[Fp Oy (g u)] = 2O, @lg—) 1gna)]

Remark 9.8. (i) The proof of Theorem 9.5 also shows that 6., ((p,‘l/q,[)h]) is ‘essentially’
a special differential form in the sense of weighted cohomology; see [16]. Namely,
rp(fc, (gor‘l/q’[)\])) is Np-invariant and while 0., (go,‘l/q’[)l]) restricted to a neighbourhood
of ¢(P) in X is not the pullback by the geodesic retraction of its restriction, the
difference of 0., (‘/’Xq,[x]) and this pullback has a ‘square-exponential’ decrease in the
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coordinates #; on Ap. In fact, one can distil out of our proof an explicit asymptotic
expansion for 6., ((p,‘l/q’m). In particular, 6., ((0,‘,/,1’[,\]) extends to a smooth form on the
smooth manifold with corners X.

Moreover, the torus Ap acts on the differential forms in (9.20) with weight

2n —rmn

ey Ny
nn .—Oll 052 ~Olr

(written multiplicatively). Hence (up to the exponentially decreasing part) the
forms Qﬁv((p,‘l/q’[)\]) represent weighted cohomology classes with weight profile 7,
(independent of the coefficient system).

The restriction of p, the half-sum of the (complex) positive roots, to the standard
minimal parabolic is given by

-

[ 172

; .

j=1
Comparing this with 5, above we easily conclude that the forms e»cv((pr\z/q,[k]) are
L?if p+q—r>2n+1 (since the volume form for the symmetric space D can be
expressed in terms of p).
Finally, the proof shows that 6., ((p’Yq, ) 1s exponentially decreasing in the direction
of ¢'(P) if n > p — £. In particular, 0., ((p,Yq’ ) is exponentially decreasing for n = p.

Proof of Theorem 9.5. It suffices to consider @[q,l/' For ge G and g’ € G/, we let

O g€ 8)= Y ov(eheh,, (&%) @ 8w, ®geg (9.15)
xel"+h B

be the theta series associated with one fixed component of (p,‘z/q’ - For the purposes of
studying the restriction to ¢'(P), we can assume that g =1 (since it intertwines with
the restriction) and also g = a(t) € A (since g varies in a Siegel set and by Lemma 4.1).
It also suffices to assume

Ly = (L +hg) ® (Ly + hy) & (L + he)

with Lg, Ly, Ly lattices in E, W, E’ respectively.

Lemma 9.9. Let a(t) € A. Then

O pra®) =det )™ > > e@nis hp)
XWeL"ﬁv+/’lW SE(L?)”
u’eL’é,JrhE/

~E T e w
x [t wAZ’ﬂJ(t(E’ +u), tu’)tﬂA;VﬂJ (xw) ® a(t)" 0¥ we ® alt)ep.

Proof. This follows directly from Lemma 4.1 and Poisson summation. O

Lemma 9.10. Assume that at least one of the oy and Py is less than or equal to £. Then

r£9¥§’1=0.
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Proof. By the hypothesis we have W # 0 for all parabolics P. Then W ® Ru; Cn is a
weight space for the action of Ap with weight ;. So in particular, for a(t) € Ap, we have
that all components f; — 0o as we approach ¢'(P). Hence by Lemma 9.9 we clearly see
that each term in Ogﬁ’l(a(t)) is rapidly decreasing as t; — oo for P unless both & = u = 0.

s

But by Lemma 7.6, we have

0
Gay,, 0.00=04,,, | xw]|=0. O (9.16)
£ "1

Now for the remainder of the proof of Theorem 9.5, assume that
o, B =€+ 1. (9.17)

Again, each term in Lemma 9.9 is rapidly decreasing unless & = u = 0. So it suffices to
consider

0
a®ey,,, | xw | = |t|<pg/; ,,w) ®a (6" 0" wy ® alt)e. (9.18)
. 8.

Now a(t)eg = eg by (9.17). We have

14
(=D
®,
0wy, = 502 Wajip+1 A A Oagy ym—t A Vagy gi16 N A Vgl (9.19)

and A acts trivially on the w,, while for the v, we have a (t)* Vji = %ﬁ, where 1 <i< /¢
and £+1 < j <m—{. Here bj; is the coordinate of WQ®E for e; ® u; and f; is the parameter
ina(ty,...,t,...,t;) € A. We obtain

14
(_l)n dbot —o+1 1% dbot 11
| | () o 2}’1@/2 | | oy 1p+1 Cg—p¢ 1M 4 0 n
dby ) dby, 1
/\"'Aa)alnp+1A"'Aa)aq,enm—i/\ﬁ/\ A —a"

fe al
(_1)}15
= W(Dal 1[7+1 VANRIIEIVAN a)‘xq—«‘f 1m—_ N dbaq—[+l 14 VANEIEIVAN dbl)lq 11

A AN @y ptl A A @y ym—t Adbgy yy e Ao Adbg, 1. (9.20)

This shows that for (9.18) we have

0
a(t)(pxa’ﬁ’l xw | = rg(pxmw (xw) (9.21)
"\ i

independently of t. This completes the proof of Theorem 9.5. O
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9.3. Non-vanishing

‘We now prove Theorem 1.3.
By the hypotheses we can find a rational parabolic P such that dimE =¢ =g, so W is
positive definite and Xy is a point. Then by Theorem 9.5,

[7pO, (T, 0y )] = 1107, (T, 08 4, 2))]
€ Mod(I'', m/2, 1) ® Tp(H (Xw. Syar, +11(We)))
~ Mod(I"', m/2, 1) ® Tuge' (Siemy+11(We))
~ Mod(I"', m/2, 1) ® Sier, +11(We). (9.22)
So in this case Tp is an embedding. Hence the restriction to ¢/(P) vanishes if and only if

the positive definite theta series 6 Fw (t, go&/ [¢z,+2)) venishes. Furthermore, the restriction

of the class [0, (T, (p[}/ ()] cannot arise from an invariant form on D, since in that case
one would need to obtain the trivial representation in the coefficients.
To obtain the non-vanishing, we first observe the following lemma.

Lemma 9.11. Given wgV[Zw,,+A] as above, then there exists a coset of a lattice Lw which

A~

we can take to be contained in Lw such that

Oy (T, ¢(‘;Y[ewn+x]) # 0.

Proof. We give a very simple argument which we learned from E. Freitag and
R. Schulze-Pillot. We can assume that V = Q™ with the standard inner product. First
find a vector h € 1\% (Z™" with N1 € Z such that ‘P(V)Y[ewﬁx] (h) # 0. Then pick a lattice
L = N1N2Z" such that || Y, c;» w(v)‘,/[lwﬁx] @] < ||<p(v)‘7/[[w”+u(h)||. Such a Ng € Z exists as
cp(‘f [y t] 1S & Schwartz function. Then the theta series associated with go&/ [0z, +2] for
Lw = L" 4+ h does not vanish.

From the above, we now can find a E/V contained in Ly such that L w = Lw with
02w (T 90 (1, 12)) 7 0- Replace I' with I' N StabL'. Then [7p0,, (7, ¢} ;)] # 0. This
proves Theorem 1.3.

One feature of our method for establishing non-vanishing is that we retain some
control over the cover X', since this reduces to the very concrete question of the
non-vanishing of positive definite theta series. An easy example for this is the following.

Example 9.12. Consider the integral quadratic form given by
YY) A Yy, 20T 2

with y;, yg, Xj € Z. So L ="7" with m = 2g 4 k. Assume that k > g. Note that L¥# C %Z’".
We let I" be the subgroup in Stab(L) which stabilizes L# /L. Then

HY(I',Z) #0.

Using our method, this follows from the non-vanishing of the theta series
X1 .- 4ri(S xP)T
1 Xg€ )T,
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9.4. An L?-vanishing result for non-trivial coefficients

We now prove Theorem 1.5, that is, that our L2-non-vanishing result for our theta series
is sharp. The proof consists of two parts, the first an L2-cohomology argument, the
second a (g, K)-cohomology argument.

Assume that k < i(A)g, and let [n] € H* (X, S[;L](V(c))@) be a non-zero element
represented by a closed square integrable differential k form 7. Assume that 5 is not
exact in the L?-complex. We claim that then the harmonic projection of H(n) of 7 is
non-zero. To prove this it suffices to show that the L2-cohomology groups of degree
k < i(\)q are finite dimensional since such a result of finite dimensionality implies the
existence of the usual (i.e., without taking closures in L2) Hodge decomposition. To this
end, note that unless p and g are both odd, then G and K have the same rank over
C and the L?-cohomology groups of all degrees are finite dimensional by the results of
[3]. In the exceptional case in which both p and ¢ are odd we apply [6], Chapter III,
Theorem 5.1, to deduce that with the exception of the two groups of degrees the two
middle dimensions [’%4], [I%H], the L2-cohomology groups are finite dimensional. But
by the hypotheses we have k < i(A)g < [p/2]q, so we are below the middle dimensions.
Consequently, the usual Hodge decomposition holds, and the harmonic projection H(n)
of a non-zero square integrable non-exact closed form 7n of degree k is a non-zero
square integrable harmonic form. We find, then, that the pullback of H(n) from X to
I'\G would generate a copy of a Vogan—Zuckerman representation Aq():), occurring in
L? (I'\G),. But, by a straightforward argument extending that of §2 in [28], one shows
that if A satisfies 0 < i(A) < [p/2], then for any Aq(A) we have H*(g, K, Aq(%)) = 0 for all
k<i(A)g.

10. The big Borel-Serre compactification for rational SO(p, p)

In this section, V is always a Q-split rational quadratic space of signature (p, p) with
Witt basis u1, ..., up—1, up, u},, “;;—p N

We will show that our main Theorem 9.5 remains true for the case of rational SO(p, p)
but only if we replace the Borel-Serre compactification associated with the usual Tits
building of type D), of (rational) parabolic subgroups of SO(p, p) by the ‘big Borel-Serre
compactification’ of type B, which will be described below. For this we have to change
the underlying root system from type D, to type B, by adding reflections (and great
subspheres in the Tits building). In terms of groups this is achieved by switching from
SO(p, p) to the full orthogonal group O(p, p) (or equivalently, to SO(p + 1, p)).

Of course since both compactifications are compactifications of the same locally
symmetric space, the two boundaries assigned will be the same as topological spaces
but their structures as manifolds with corners will be different.

The main issue for us is that the parabolic subgroups of SO(p, p) do not correspond
bijectively to isotropic flags, but rather to oriflammes; see Lemma 2.3.

By switching to the root system B,, i.e., considering O(p, p) or SO(p + 1, p), we do
obtain a bijection between parabolics and isotropic flags. This is the crucial aspect in
constructing the big Borel-Serre compactification.
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We first define the big Borel-Serre compactification ezxtrinsically by embedding
the locally symmetric space X, , = I}, ,\Dp, for SO(p, p) into a suitably constructed
space Xpi1p = Ipy1,p\Dpy1,p for signature (p + 1, p) and then considering the closure
of X,, inside the Borel-Serre compactification Xp,;1,. The intrinsic big Borel-Serre
compactification uses the Tits building for parabolic subgroups for the full orthogonal
group O(p, p).

The extension of (g, x]) is most easily established by pulling back the usual
Borel-Serre compactification and restriction formulas for (p 4+ 1, p) using the extrinsic
definition. We proceed to give the intrinsic definition and compare the two
constructions. It is then most instructive to compare the usual and the big Borel-Serre
compactification. Finally, we consider the case of signature (2, 2) in more detail.

10.1. The extrinsic big Borel-Serre compactification

We set V=V L Qv with (v,v) =1. Hence V has signature (p + 1, p). We rearrange
coordinates such that v becomes the (p 4+ 1) st standard basis vector e,;1. We write
Lpr1 = Qepy1 for the line spanned by e,;1. The natural inclusion V < V defines the
inclusion j, 41 : O(p, p) = O(p + 1, p). We will often identify O(p, p) with its image under
Jp+1- The inclusion j,41 induces an inclusion (also denoted as j,+1) of the symmetric
spaces Dp p < Dpy1p. We let I},11 ), denote a congruence subgroup in SO(V) stabilizing
L = L & Zv chosen such that it is torsion-free and

I—VP,P = O(p’ p) N F[J+1,p‘

We may assume, for example if I},41, is neat (the intersection of the subgroup of C*
generated by the elements of I',;1, with the roots of unity is {1}), that this intersection
is contained in SO(p, p). Let o € SO(V) be the rational element, that is —1 on V and 1
on £p41. Then D), ,, is the fixed point set of o acting on D41 p, that is,

. _nNo
Jp+1Dpp =D q .

The inclusion of symmetric spaces induces a map (again denoted as j,41) of locally
symmetric spaces jy1+1 : X, = Xp11,p. Assume now that I},41, is torsion-free. Then it
follows from a well-known argument using o (the ‘Jaffe Lemma’, Lemma 2.1 of [26]) that
Jp+1 induces an embedding of X, , into X, 41 .

Definition 10.1 (The extrinsic big Borel-Serre compactification). Assume that I}, , is
torsion-free. The big Borel-Serre compactification X, , is the closure of X, , in Xp41,p.
We note that the inclusion j,41 induces an embedding j, 11 : X p = Xpi1,p-

We will discuss the properties of the extrinsic big Borel-Serre compactification later in
detail. At this point we can already give a quick proof that our theta series extends to
the big compactification of X, .

Theorem 10.2. The forms 6(gup) on X,, extend to the big Borel-Serre
compactification X, p.
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Proof. Let @, 1) be the special np-cocycle for SO(p + 1,p) and @y 2] be that for
SO(p, p). Note that from the explicit formulas for @y 1] and @up 1] we have

. ~ l
Jps1Pnp, 00 = Pap, 1199 (10.1)

Here ¢ ' is the Gaussian associated with the one-dimensional positive definite
subspace £11. Since the lattice splits, we obtain a corresponding restriction formula

. ~ l
J5110 @up. 1) = 0(@up. )0 (0" ) (10.2)

on the level of theta functions. Note that 9(<pép *1) is constant on X, p, so the product
of the two factors on the right of (10.2) extends to the big Borel-Serre boundary if and
only if the first factor extends. Now we have seen above that 6(¢,p [5]) extends over the
Borel-Serre boundary of X,41,. The lemma then follows on considering the following
commutative diagram (starting with 6(¢,,) in the lower left hand corner).

L Y4 j;Jrl L Y4
A*Xpt1,p) —> A*(Xpp)

l l

A Xpi1p) s A,y O

Remark 10.3. We are required so far to assume that the lattice I,41,, and hence
I, p, is torsion-free. However, after we have given the intrinsic description of our
compactification, and hence we know that this intrinsic construction produces a
compactification for the quotient of D by a normal torsion-free subgroup I'" of
I' ¢ SO(p, p), then the extension and the restriction formula will hold for the quotient
by the larger lattice I" because it is invariantly defined. We leave the details to the
reader.

10.2. The intrinsic description of the new compactification

We now give an intrinsic description of the big Borel-Serre compactification, that is, it
does not use the embedding j,1.

In what follows if G is any reductive group we will use P(G) to denote the set of
parabolic subgroups of G.

There are four key ingredients of a Borel-Serre compactification; see [4], II11.9 (and
§2.4 above).

(1) The Tits building B(G) (or rather its quotient by the arithmetic group I" C G under
consideration).

(2) For each rational parabolic P of G there is the split torus Ap which is the connected
component of the identity of the centre of P/N.

(3) For each rational parabolic subgroup P there is the associated ‘Borel-Serre face’
e(P) := P/ApKp. Here Kp = PN K is as before the subgroup of P that stabilizes the
base point zg of the associated symmetric space.
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(4) The set @ (P, Ap) of restrictions of the set of positive roots to Ap, which governs
the topology around the boundary faces, and in particular, convergence to a point
in the boundary. The reader will note that the definition of convergence will not
be changed if the elements of @(P,Ap) are replaced by positive scalar multiples.
Furthermore, one obtains the same set of convergent sequences if in the rule of
[4], p. 328, one replaces @(P,Ap) by A(P,Ap), the set restrictions to Ap of the
simple roots in the root system associated with the maximal torus Ap, for a chosen
minimal parabolic Py.

Definition 10.4 (The intrinsic big Borel-Serre compactification). The intrinsic big
Borel-Serre compactification X, , is obtained by applying the ‘uniform construction
of Borel and Ji’ ([4], §I11.9) to the Tits building B(O(p, p)) for the full orthogonal group
together with the root system B,,.

The term ‘intrinsic compactification’ is a bit premature since one still needs to show
that the construction really gives a compact space. At this point it is only a formal
procedure. Moreover, it is a priori not clear that we can freely change the root system
from D, to B,. Only once we have established the equivalence to the extrinsic description
will this be justified. Note however, that the full orthogonal group O(p, p) gives rise to
the same symmetric space as SO(p, p).

We now describe some of the features of the new construction.

10.2.1. The new building B(O(p, p)) and the map of parabolic subgroups. Recall
that we defined the standard totally isotropic subspaces Ex = span(ui, ..., ux) in V and
the spaces E; = E, =span(ui, ..., Up_1,Up) and E_ =span(ui, ...up_1, u;).

We first note (see e.g. [1,14]) the following lemma.

Lemma 10.5. The (standard) parabolic subgroups of O(p,p) are the stabilizers of the
(standard) isotropic flags (in E,), and every isotropic flag determines a parabolic.
Thus the associated Tits building B(O(p,p)) is the spherical building associated with
the partially ordered set of isotropic flags in V and the parabolic subgroups of O(p, p) are
the stabilizers of the faces of the building.

Example 10.6. We illustrate this fundamental difference from the special orthogonal
group SO(p, p). Let P C O(p, p) be the stabilizer of the isotropic subspace E,_1. Then

8§ €2¢3
P= 0 h
0 0 g

with g € GL,—1(R), h € O(1, 1), ¢; € RP~! (column vectors) and g* as in (2.14). Note that
O(1, 1) = SO(1, 1) UwSO(1, 1) and SO(1, 1) = {(b b,l) } Here w = (? 3). Hence P is

a maximal parabolic subgroup of O(p, p).
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Now consider P' =P N SO(p, p), the stabilizer of E,_1 in SO(p, p). Now we have

g c2 3

. 0 b 0

“)lo o bt
00 0 g

Thus P’ is strictly contained in the stabilizer of both isotropic p-planes E; and E_.
Hence is not a mazimal parabolic and we can associate P’ with two isotropic flags,
namely (Ex—1, E4) and (Ex—1, E_), i.e., the oriflamme (E, E_).

The situation in general is as follows.

Definition 10.7. We say an isotropic flag F in V is bad if an isotropic subspace of
dimension p — 1 occurs in F. We say a parabolic in O(p, p) is bad if it stabilizes a bad
flag. Otherwise we call F and Py good.

We then have the following lemma.

Lemma 10.8. Let P C O(p,p) be a parabolic subgroup stabilizing the flag F. Set
P =PNnSO®,p).

(i) Assume that P is good. Then P’ is the stabilizer of the flag F(see also
Lemma 2.3(2) ).

(i) Assume that P is bad, stabilizing a flag F1 C ---Fyx C Fp_1(C Fp) with dimF,_1 =
p—1 and dimF, =p. (F, might or might not be there). Let F,1,F,2 be as in
Lemma 2.3 (3). Then P’ is the stabilizer of the oriflamme (F1, ..., Fx, Fp 1, Fp2).

We now describe how each top dimensional simplex of the Tits building B(SO(p, p))
of type D, will be bisected to obtain B(O(p,p)). Each spherical chamber (a top
dimensional, i.e. p — 1-dimensional, simplex) contains a distinguished edge e (the edge
joining the two vertices corresponding to highest dimensional isotropic subspaces). Let
f be the p — 3 face that is opposite to e. Hence the chamber is the join e * f. Let b
be the barycentre of e. Then we bisect each spherical chamber by the codimension 1
interior simplex b * f. We make a choice of one of the two halves of the original spherical
fundamental chamber Ap, = A’ and call it the fundamental spherical chamber A B, = A
of B(O(p, p)). The resulting non-thick building is the building of type B, on which the
big Borel-Serre compactification will be modelled. Note that if F is a face of B(O(p, p)),
then there will be a unique face F’ of B(SO(p, p)) such that the interior FY is contained
in F'.

Since the parabolic subgroups are exactly the subgroups that fix faces of the buildings,
the map F +— F’ induces a map P(O(p, p)) — P(SO(p, p)) of parabolic subgroups. In
fact, it is exactly the assignment P+ P’ = P N SO(p, p) in Lemma 10.8. For good flags
the claim is obvious, since in that case by definition P’ is the subgroup of SO(p, p)
that fixes the same face F. Thus the only difficulty is when the face F corresponds to
a bad flag. In this case the face F fixed by the original parabolic P has dimension 1
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less than F(F). But in this case FO is contained in the interior of F' and if g € SO(p, p)
fixes an interior point to the face F’, then it fixes all of F’. The claim follows. Note that
F i+ F' is a bijection on faces of dimension less than or equal to p—1, but it is two-to-one
on top faces.

10.2.2. The new split central split torus Ap. We define the subtorus Ap of Ap, to
be the centre of L =P N P% where 6y is the Cartan involution corresponding to our
chosen base point zg. Note that we cannot define it as the annihilator of an appropriate
subset I of the simple roots of SO(p, p). However we can define it as the annihilator of
an appropriate subset I of the simple roots of the new root system of type Bp; see below,
in particular Lemma 10.18. These roots are defined intrinsically only up to positive
multiples but this is enough to unambiguously define Ap. We will denote the new torus
by AP.

10.2.3. The new face e(P). Given Ap, we define the associated face e(P) of the
Borel-Serre enlargement by e(P) = P/ApKp. Hence the cells e(P) are assembled using
the simplicial complex associated with the partially ordered set of isotropic flags in V.
The point is that the split torus Ap can be strictly smaller for certain parabolics in
the new compactification (because P and its Levi subgroup L will have extra connected
components causing its centre to be smaller; see Example 10.6) and consequently the
face e(P) will be strictly larger. In Theorem 10.11 we will record this in detail.

10.2.4. The new system of roots of type B, and the set ®(P,Ap). There is
a subset of the positive roots restricted to Ap to be denoted as ®(P,Ap) and the
corresponding system of simple roots restricted to Ap to be denoted as A(P, Ap). This
is the most complicated change to describe intrinsically. We define the Weyl group W of
the maximal torus Ap, as usual as the normalizer in O(p, p). But now the element

I,—1

I,

is in W. Hence the Weyl group for O(p, p) is strictly larger than the one for SO(p, p).
In fact, with this additional reflection (which interchanges u, and u;)) one obtains the
Weyl group for the root system B,. While this does not define directly the new roots
it defines the root hyperplanes. The choice of the fundamental chamber in the new
Tits building defines a positive Weyl chamber, or equivalently the correct orientation
of the hyperplanes. (This corresponds to the choice of defining the standard parabolics
in O(p,p) to be the stabilizers of flags in E4 or E_.) For each root hyperplane we
choose a linear functional which vanishes on the hyperplane and is positive on the cone
on Ag,. This new collection of linear functionals we will call the (new) positive roots
to be denoted as @. In terms of the Tits building this amounts to the following. We
have already added the new walls to the spherical building at infinity and chosen the
fundamental spherical chamber Ap,. We now extend them inside Ap, to obtain the
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standard linear action of the Weyl group of type B, as a reflection group. In more
detail, given the split torus Ap, which we identify with its Lie algebra a, we consider the
corresponding apartment A in B(O(p, p)) (the boundary of Ap,). The building structure
on B(O(p, p)) gives us a collection of great spheres in the apartment A. If we regard
the apartment A as the sphere at infinity of A,, (each ray leaving the origin of Ap,
corresponds to a unique point of A), then the collection of great spheres corresponds to
(the boundaries of) a collection of hyperplanes in Ap,. Reflections in these hyperplanes
give rise to the standard representation of the Coxeter group of type B,. The chosen
spherical chamber Ap, corresponds to a Weyl chamber in Ap, which we will also denote
as Ap,.

Definition 10.9. @ (P, Ap) is the set of restrictions to Ap of the roots in @.

Remark 10.10. We did not use the Lie algebra n of P in this definition. We will see
later that what we are doing is pulling back the usual Ap and @ (P, Ap) from SO(p + 1, p)
using the embedding jj, 1.

10.3. The intrinsic and the extrinsic big Borel-Serre compactifications
coincide

Theorem 10.11. The intrinsic and the extrinsic big Borel-Serre compactifications of
Xpp coincide. In particular, the cells € (P) are assembled using the simplicial complex
associated with the partially ordered set of isotropic flags in V.

From this we now easily check that all results from §9 carry over with no change to
the big Borel-Serre compactification for the split (p, p)-case. In particular, we have the
following theorem.

Theorem 10.12. The restriction theorems, Theorem 9.5 and Corollary 9.7, hold in the
big Borel-Serre compactification of X, p.

Remark 10.13. In fact, the restriction in the small Borel-Serre compactification to
faces associated with good parabolics goes through as before as well, with no change. It
is the restriction to bad faces which causes problems.

To prove Theorem 10.11 we will first prove the analogue of the theorem for the partial
compactifications (Borel-Serre enlargements) of the symmetric spaces D, , and Dpy1 p.
We will denote the corresponding enlargements by D), , (constructed using P(O(p, p)))
and Dp11,. Recall that earlier we already saw that D, = Dg 41 We claim that
the corresponding equation also holds for the enlargements. We have the following
proposition.

Proposition 10.14. (i) Dy, =D, .
(ii) Let P be the stabilizer of an isotropic flag F in V and suppose that P is normalized
by o. Then the subspaces of the flag F are in fact contained in V. We let F be the
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associated isotropic flag in V and P be the stabilizer of F, whence

P=P°.
(iii) Suppose that e (i’)d is non-empty. Then P is normalized by o and
e(P) =e(P).

(V) Dpi1,p = Dpop LT L pep0p.pn) €(P)-

On the building level this means that the map j,4+1 induces a simplicial embedding of
B(O(p, p)) onto B(SO(p + 1, p))° carrying apartments isomorphically onto apartments.
The image is the fixed subbuilding B (SO(p + 1, p))°.

The proposition will be a consequence of the following discussion.

We note that the inclusion D, , C D1, is obvious. The reverse inclusion will follow

once we have proved (iv). We immediately see that

— ~ 0
Dyi1p=Dpi1,p H H e .
PePSO(p+1,p)

Clearly (iv) will follow from (iii). (ii) and (iii) will be a consequence of the next three
lemmas. In order to prove (iii) we need to first prove (ii). We first note the following
lemma.

Lemma 10.15. Suppose that Eisa totally isotropic subspace of V such that o(E) = E.
Then ECV.

We now show that Lemma 10.15 implies (ii). Indeed, P is the stabilizer of a unique
isotropic flag F. Now since P is its own normalizer and we are assuming that o
normalizes P, we find o € P and consequently o carries each of the subspaces in F
into itself. Hence by Lemma 10.15, each of these subspaces is contained in V. We let
F denote the associated isotropic flag in V and let P be its stabilizer in O(p, p). We
now prove that P° = P. First we claim that P is contained in O(p, p). Indeed, since
g€ 1~"’, we have g—1
g € O(p, p). But also by definition, P° fixes F, whence we have

P° =P.

og = o, whence g carries the line through e, 1 into itself, whence

Thus it remains to prove (iii). This we do in the next two lemmas.

Lemma 10.16. If e(P) contains a fized point of o, then o € P and hence o(e(P)) =
e(P). In fact, we have

o(e(P)) =e(P) < o €P. (10.3)

Proof. It follows from the basic result of [5], Corollary 7.7(1) (with P = Q), that

oeP)NeP)#P < oecP. O
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Lemma 10.17. Suppose P = P° . Then we have

e(P)=e(P)’ . (10.4)

Proof. We only need to show that e(P) C e (f’)a. So suppose that x € e(f’) is fixed by
o. Let y be the diagonal matrix with p + 1 entries 1 followed by p entries —1. Then
conjugation with y induces Cartan involutions of SO(p +1.p) and O(p p). It is standard

1

that we may construct a Levi decomposition P=M-N with M=Pn yPy , whence

o € M. Note that
e(P) = (MN)/K N M.

Choose a lift X' = i of x to P. Then x being fixed under o implies that 7 is fixed under
o, which implies that 7 is in the unipotent radical N of P. Also m is fixed modulo K N M.
Thus it remains to show that the group M = M? acts transitively on the fixed point set
of o on its associated symmetric space M / (K N M). But the fixed point set is connected
(because the unique geodesic joining any two fixed points must also be fixed). Hence we
may obtain the fixed point set by exponentiating the fixed subspace of p, the tangent

space of D1, at the point zo fixed by the above Cartan involution. But this fixed
subspace is p, the tangent space of D, , at zg. O

We have now completed the proof of Proposition 10.14.

We also need to show that the convergence criterion applied to the topology of Dy, is
induced from the topology of D41, (and hence using the root system of type By). This
follows from the following lemma which the reader can verify.

Lemma 10.18. & (P, Ap) is the set of weights of Ap acting on the nilradical n of
the parabolic subalgebra of the corresponding parabolic P (P° = P) wvia the inclusion
Jp+1:L— L.

Theorem 10.11 will follow from the next lemma.

Lemma 10.19. Suppose that Iy41,p is torsion-free and there exists y € Ip41,p such that
y(e(P)) Ne(P)#W. Then y € PN I} ,. In particular, the image of e(P) in X,,_H,p is the
quotient of e(P) by PN 1T} ,.

Proof. Suppose x € e(P) satisfies that y = y(x) € e(P). Then ay‘loy(x) = x since o

fixes x and y. But the action of I},11, on the Borel-Serre enlargement of D,;1, is
fixed-point-free since by [5], Theorem 9.3, it acts properly and we have assumed that it
is torsion-free. Hence oyo =y and consequently y € I}, ,. The lemma now follows from
Corollary 7.7(1) of [5]. O

This concludes the proof of Theorem 10.11.

10.4. Relating the small and the big Borel-Serre compactifications of X ,

We now have two compactifications of X, ,: the usual Borel-Serre compactification and
the new ‘big’ Borel-Serre compactification that we have just described.
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For P a parabolic in O(p, p), we will write P’ = P N SO(p, p) as before. We will denote
the corresponding face in the small Borel-Serre enlargement by e(P’).

Proposition 10.20. Suppose that P is a good parabolic in O(p, p). Then:
(1) e(P) =e(P).
(2) Ap=Ap.

(3) If the last subspace in the flag has dimension strictly less than p (and hence strictly
less than p — 1) then

0B (P, Ap) = @20 (P, Ap)).

If the last element in the flag has dimension p, then ®B (P, Ap) and ®Pr(P',Ap) will
coincide except for the last entry, which in the first case will be the restriction of t, and in
the second case will be the restriction of tg (the squaring makes no difference in terms of
the convergence criterion).

We will leave the proof of this proposition to the reader.
We now state what happens if P is bad. We may assume that the associated flag is
standard, contained in the totally isotropic subspace E, = E.

Proposition 10.21. Suppose that P is a bad parabolic in O(p, p). There are two cases.
(i) Suppose first that the last subspace in the flag has dimension p — 1. Then:

(1) e(P) Ze(P) x Ry
2) Ap x Ry = Apr. Note that there is a projection map m, : Ap — Ap which omits the last
+ 14

coordinate t,. This map is split by the map i, : Ap — Ap which puts a 1 in the last
component.

(3) Then APr(P,Ap) is the set of restrictions of the old simple roots of type D, to
Ap and AP»(P',Ap) is the set of restrictions of the old simple roots of type D,
to the larger torus Ap. This may be restated as follows. We may identify Ap and
Ap with quotient tori of A and hence we may identify their character groups with
subgroups of the character group of A. Suppose that Ap has dimension r + 1,
whence Ap hence dimension r. Then |AP»(P',Ap)| =r+ 1 and |AB (P, Ap)| = r.
Then the first r — 1 elements of the two sets of restricted simple roots ‘coincide’ in
the sense that as characters of A they are the pullbacks of the restrictions of the roots
ti/tix1, 1 <i<p—2, to Ap and Ap (and so some of these may be trivial), the last
element of ABr(P,Ap) is tp—1 and the last two elements of APr (P Ap) are -1/t
and ty_1tp.

(ii) Now suppose the last element in the flag has dimension p, and so the last two
elements are E, 1 and E,; then:

(1) e(P) =e(P).
(2) Ap = Ap-.
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(3) APr(P',Ap)) and APr(P,Ap) have the same cardinality r, and their first r — 1
elements coincide. The last two non-trivial elements of ABr(P, ABr) are th_1/t, and
t, and the last two non-trivial elements of APr (P, Ap) are the restrictions of 1/t
and t,_1tp.

Proof. We prove (i) for the special case in which P is the stabilizer of the isotropic
subspace E,_1; see Example 10.6. For P’ = P N SO(VR) we easily see that

al,-.1 0 0 0

Ap = 0 b0 0 ca,beRy
0 0 b! 0 Y
0 0 0 alr,,

and
APr (P, Ap)) = {a/b, ab).

Consequently if ¥, 1 denotes the symmetric space associated with SL(E, 1), we have a
diffeomorphism (ignoring the fibre bundle structure)

e(P)Z Y, 1 x (WR®E,_1) x /\2Ep_1
with W = span(up, u;,). But for the Levi of P in the full group O(p, p), we have
Z(L)=Z(LNSO(p, p)) NZ(w)
with w as in Example 10.6, whence we have

al,1 0 0 0

| 0 1.0 0 "
= ;ac
d 0 01 0 +

0 0 0 all,
and
APr (P, Ap) = {a}.
Hence we have a diffeomorphism
~ 2
eP)=Y) 1 xR x (WQE,_1) x /\ E,_1.

For (ii), suppose that the last subspace has dimension p. For convenience we assume
that P is the stabilizer of the flag (E,_1, E;). Then

g ¢ g 0 O 0

0 b 0 b O 0
P: -1 and L: —1

0 0 b 0 0 b 0

00 0 g 00 0 g
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with g € GL,—1(R), c € RP~1, b € R*. Hence

al,.1 0 0 0
0 b 0 0

Ap=Ap = 0 0 b71 0 N Cl,bER+ s
0 0 0 all,,

but
ABr (P, Ap) ={a/b, b} and AP»(P',Ap)={a/b,ab}. O

10.5. Signature (2, 2)

We now consider the case of signature (2, 2) in detail. In particular, we illustrate in this
case the failure of the restriction formula for the small Borel-Serre compactification.

10.5.1. Comparison of the two compactifications. For SO(2, 2), each apartment
of the underlying Tits building (the building of parabolic subgroups of SO(2,2)) is a
square: the building of type Da = A1 x A1. In the usual Borel-Serre compactification
each of the four vertices is blown up to a circle bundle over a quotient of the upper
half-plane by a subgroup of finite index in SL(2, Z), i.e., modular curves. Each edge is
blown up to a 2-torus, and the two circle bundles over the modular curves corresponding
to the two vertices of the edge are glued along this torus.

We now describe the big Borel-Serre compactification. In this case the underlying
building (the non-thick Tits building associated with the complex of isotropic flags
in Q%2) has apartments which are octagons. We will regard these octagons as the
barycentric subdivisions of the above squares. We blow up the original vertices to the
same circle bundles over modular curves as before. We blow up the four new vertices
(the barycentres of the original edges) to trivial 2-torus bundles over Ry compactified by
adding two points 0 and co. We can glue the four new 3-manifolds to the four old ones
because each has boundary components homeomorphic to the 2-torus. There is one such
glueing for each of the eight edges of the octagon. It is critical to observe that not only
do we use a new glueing scheme—the non-thick building of type B2 = Cg associated with
the isotropic flag complex—but also there are some new cells e(P) that do not occur in
the usual Borel-Serre compactification.

In detail, we consider one fixed edge of the apartment of the Tits building
for SO(2,2) corresponding to the basis {u1, u2, u5, u}}. Namely, we let Q) be the
maximal parabolic in SO(2,2) which is the stabilizer of the isotropic plane Ei
spanned by wuy,uz and ui,us respectively. The intersection P’ = Q' N Q' stabilizes
the orilamme (EL, E_). Recall that in this situation the maximal split torus A is given
by {a(t1, t2) = diag(t1, t2, t2_1, tl_l); t; > 0}. We set W := span(ug, u5). Then:

(i) e(Q}) ~H x R with trivial bundle structure. The collar neighbourhood in D is given
by e(Q',) x {a(t, t); t* > T}.

(ii) e(P') = Np ~ W ~ R2. The collar neighbourhood in D is given by e(P)) x
{a(t1, 2); tito > T, t1/t2 > T}.
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(iii) e(Q") ~H x R with trivial bundle structure. The collar neighbourhood in D is given
by e(Q) x {a(t,t71); 1 > T}.

Furthermore, e(Q/,) and e(Q") are glued in e(P’) with the respective R-fibres glued to
the ‘x-direction’ of H.

Now we consider the analogous picture for O(2, 2). The faces e(Q+) for the stabilizers
Q4 of the planes E1 stay the same (with slightly different neighbourhoods). But now
there are three parabolics P, Py, P_ whose restriction to SO(2,2) is P, and we blow
up e(P’) by using e(P) >~ e(P") x R, and glue e(P) to e(Q+) along e(P+). The blow-up
variable in Ry in the neighbourhood of e(P’) is given by t1 /2. We have:

(i) P is the stabilizer of the line E; = Ruj. Then e(P) = {a(l, t2)} x W with collar
neighbourhood e(P) x {a(t, 1); to > T}.

(ii) P4+ are the stabilizers of the flag Ruy C E+. Then e(P+) ~ W. Collar neighbourhoods
are given by e(P+) x {a(t1, t2); tito > T, t2 > T} and e(P_) x {a(t1, t2); t1t2_1 >T, t2_1 >
T} respectively.

Inside e(P) =~ {a(1, t2)} x W, one approaches e(P+) by letting to — oo and o — 0
respectively.

10.5.2. Non-existence and existence of the restriction for the case of SO(2, 2).
In this subsection we will explain why 6(¢2,0) does not extend to Yp’p if Yp,p is the small
Borel compactification of SO(p, p).

Namely, 68(p2,0) does not extend to the 2-torus ¢'(P’), where P’ is the stabilizer of the
oriflamme (E4, E_). We will see below that the limit as we approach ¢'(P’) is undefined
(it depends on the way in which we approach the corner). We have just seen that the
corner ¢'(P') is the intersection of the two maximal faces €/ (Q/y), trivial circle bundles
over quotients of the upper half-plane.

It suffices to study 6(p2.0)(a(t1,2)) = Zy1,yz,y’2,y’1 gog,o(tflyl, ty1y2, oy2, 11y)) as we
go to the corner. Here y;, y; are the Witt coordinates of V. In this case the 2-form
0(p2.0) has four components. Three of the components go to zero as w1 = t1t2 and
ag = t1/t2 go to infinity; essentially because #1 = /ajoeg — 00, we can apply the
partial Fourier transform and the Poisson summation argument from §9 to the
sum on yi. We find that the limit as ;1 — oo coincides (up to a constant) with
Z(},Q’yé) Hs (t2_1y2 +t2y/2)e*”(’52y%+’5 0'/2)2)% A (% +19dwh). Here wo, wi, are the variables
for the 2-torus €’(P’) realized as a quotient of W = Rug @ Rus. Now the resulting limit is
supposed to be a 2-form on the corner ¢’(P’), that is, a form in the coordinates wa, ws, on
the torus. However note that the limit depends on f2 (and also involves the coordinate
differential dro). Thus it depends on how we approach the boundary and consequently
is not well-defined. In particular, as claimed, the form 6(¢2,0) does not extend to a
well-defined 2-form on the manifold with corners X.

In the big Borel-Serre compactification the problems go away. For the face ¢/(P), 12 is
the extra variable for ¢/(P) = ¢ (P’) x Ry, and we obtain the above form as the limit as
t] — 0o. The other faces ¢/(P+), as sets, are again the 2-torus ¢’(P") but now approached
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by taking t1/t2,t2 — oo and tito, 1, 1 o0 respectively. Then the Poisson summation
argument on the sum on y1, y2 and y1, y5, respectively, gives vanishing.
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