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Abstract In our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal

groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established

a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with
local coefficients for local symmetric spaces X attached to real orthogonal groups of type (p, q). This

correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz
forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in X with

coefficients.

In this paper, we study the boundary behaviour of these theta functions in the non-compact case and
show that the theta functions extend to the Borel–Sere compactification X of X. However, for the Q-split

case for signature (p, p), we have to construct and consider a slightly larger compactification, the ‘big’

Borel–Serre compactification. The restriction to each face of X is again a theta series as in [J. Funke and
J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.

As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles

when passing to an appropriate finite cover of X. In particular, the (co)homology groups in question do
not vanish. We deduce as a consequence a sharp non-vanishing theorem for L2-cohomology.
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1. Introduction

The cohomology of arithmetic quotients X = Γ \D of a symmetric space D associated
with a reductive Lie group G is of fundamental interest in number theory and for
the field of automorphic forms. For dual reductive pairs, one can apply the ‘geometric
theta correspondence’ (see below) obtained from the Weil representation to construct
cohomology classes on locally symmetric spaces associated with these groups. One very
attractive aspect of this method is that the classes obtained in this way often give rise to
Poincaré dual forms for geometrically defined, ‘special’ cycles arising via the embedding
H ↪→ G of suitable subgroups H.
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Let V be a rational quadratic space of signature (p, q) with, for simplicity, even
dimension m. Let G = SO(V) and let G = G (R)0 = SO0(VR). Let DV = D = G/K be the
symmetric space of G of dimension pq with K a maximal compact subgroup. We let
g= k⊕ p be the associated Cartan decomposition of the Lie algebra of G.

Every partition λ of a non-negative integer `′ into at most n parts gives rise to a
dominant weight λ of GL(n). We write i(λ) for the number of non-zero entries of λ. We
explicitly realize the corresponding irreducible representation of highest weight λ as the
image Sλ(Cn) of the Schur functor Sλ(·) associated with λ applied to the tensor space
T`
′

(Cn). We can apply the same Schur functor to T`
′

(VC) to obtain the space Sλ(VC),
and the harmonic `′-tensors in Sλ(VC) give the irreducible representation S[λ](VC) for
G with highest weight λ̃ (under some restrictions). If i(λ) 6 [m2 ], then λ̃ has the same
non-zero entries as λ (when λ̃ is expressed in coordinates relative to the standard basis
{εi} of [7], Planche II and IV).

The Weil representation induces an action of Spn(R) × O(VR) on S(Vn
R), the Schwartz

functions on Vn
R. The main point of our previous paper [11] is the construction of certain

(g,K)-cocycles

ϕV
nq,[λ] ∈

[∧nq
(p∗C)⊗ S(Vn

R)⊗ S[λ](VC)
]K

with values in S(Vn
R)⊗ S[λ](VC). These classes generalize the work of Kudla and Millson

(e.g. [22]) to the case of non-trivial coefficient systems S[λ](VC). The cocycle ϕV
nq,[λ]

corresponds to a closed differential nq-form ϕ̃V
nq,[λ] on D with values in S(Vn

R)⊗ S[λ](VC).
For L a coset of a lattice in Vn, we define the theta distribution ΘL =

∑
`∈L δ`, where

δ` is the delta measure concentrated at `. It is obvious that ΘL is invariant under
Stab(L)⊂ G. Hence we can apply ΘL to ϕ̃V

nq,[λ] to obtain

θϕV
nq,[λ]

(L)= 〈ΘL, ϕ̃
V
nq,[λ]〉,

which gives a closed nq-form on the finite volume quotient X = Γ \D with values in (the
local system associated with) S[λ](VC). Here Γ ⊆ Stab(L) is a congruence subgroup.
Furthermore, it is shown in [11] that θϕV

nq,[λ]
also gives rise to a non-holomorphic

vector-valued Siegel modular form for the representation Sλ(Cn) ⊗ detm/2 on the Siegel
space Hn. We may then use θϕV

nq,[λ]
as the integral kernel of a pairing of Siegel modular

forms f with (closed) differential (p − n)q-forms η or nq-chains (cycles) C in X. The
resulting pairing in f , η (or C), and (possibly different) Schwartz cocycles ϕ we call the
geometric theta correspondence.

Special cycles ZU arise from the embedding GU ↪→ G of the stabilizer of a positive
definite rational subspace U ⊂ V of dimension n. Hence GU is an orthogonal group of
signature (p− n, q). The special cycles ZU for varying U give rise to a family of composite
cycles ZT parametrized by symmetric positive definite integral n × n matrices T. We
obtain (by Poincaré duality) classes [ZT ] in Hnq(X,Z), and in [11] we explain how to
attach S[λ](VC)-coefficients to the cycles to obtain classes

[ZT,[λ]] ∈ Sλ(Cn)
∗
⊗ Hnq(X,S[λ](VC)). (1.1)
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Then the main result in [11] is that

[θϕV
nq,[λ]
] =

∑
T>0

[ZT,[λ]]e
2π itr(Tτ) (1.2)

is a holomorphic vector-valued Siegel modular form with values in Hnq(X,S[λ](VC)). Here
τ ∈ Hn. (We omit the definition of [ZT,[λ]] for T semi-definite.) This result gives further
justification to the term geometric theta correspondence.

Recently, it has been shown [2] that, for 2n < m − [m/2] − 1, the geometric theta
correspondence using the Schwartz cocycle ϕ = ϕV

nq,[λ] induces on the adelic level an
isomorphism from the appropriate space of (direct limits of) classical Siegel modular
forms to Hn×q

cusp(X,S[λ](VC)), the subspace of Hnq
cusp(X,S[λ](VC)) corresponding to the

special refined Hodge type n × q (see [2]). In particular, for any congruence quotient,
the cohomology groups Hn×q

cusp(X,S[λ](VC)) are spanned by the cuspidal projections of the
Poincaré duals of special cycles. We note that for the case of hyperbolic space the space
Hn×q

cusp(X,S[λ](VC)) coincides with the entire cuspidal cohomology group Hnq
cusp(X,S[λ](VC))

and for the case of signature (p, 2) it coincides with the usual cuspidal Hodge summand
Hnq,nq

cusp (X,S[λ](VC)). Thus, in the first case, the cuspidal projections of special cycles span
the entire cuspidal cohomology and, in the second case, the span of cuspidal projections
of the special cycles (in this case the special cycles are algebraic cycles) coincides with
the span of the cuspidal projections of all algebraic cycles and furthermore this span is
the entire cuspidal cohomology group of type (nq, nq). Thus, the results of [2] highlight
the importance of the geometric theta correspondence which we analyse here.

It is therefore very natural to study θϕV
nq,[λ]

for non-compact X, and in particular to
analyse its boundary behaviour. This is what we do in this paper.

We let P = P (R)0 be the connected component of the identity of the real points of
a rational parabolic subgroup P in G stabilizing a flag F of totally isotropic rational
subspaces in V. Conversely, for signature different to (p, p) all such flags give rise
to a unique rational parabolic. Then the Borel–Serre compactification X compactifies
X by adding to each rational P a face e′(P), which is a nilmanifold bundle over a
suitable quotient of the symmetric space associated with the semi-simple part of the
Levi subgroup of P; see [5, 4]. This makes X into a manifold with corners.

However, for the Q-split case in signature (p, p), the rational parabolics are not in 1–1
correspondence with the stabilizers of rational totally isotropic flags in V (but rather
with so-called oriflammes). This turns out to be a critical issue for us. To remedy this
we consider instead the spherical building of proper rational parabolic subgroups for the
full (non-connected) orthogonal group O(p, p) instead. The space X does not change, but
now isotropic flags do parametrize parabolics. The resulting compactification we call the
big Borel–Serre compactification of X since it is (slightly) bigger. By abuse of notation
we denote the big compactification also by X. For an alternative construction of the big
X, we embed X = Xp,p into a locally symmetric space Xp+1,p for signature (p + 1, p) and
then consider the closure of Xp,p in Xp+1,p.

To illustrate the big Borel–Serre compactification, we consider the split case for
SO(2, 2), when X = X1 × X2 is the product of two modular curves. Then the Borel–Serre



4 J. Funke and J. Millson

compactification of X is the product of the two individual compactifications X1 × X2

which adds to each cusp of the modular curves a circle S1. Hence the corner at
the cusp (z1, z2) = (i∞, i∞) of X is given by a 2-torus T2. Then the big Borel–Serre
compactification of X blows up the corner to T2

× R+ with the new coordinate
Im(z1)/Im(z2) ∈ R+ measuring the ‘slope’ by which one enters the corner from the
interior. We explain the details of the big Borel–Serre compactification in ğ 10.

Let E be the largest element in the rational isotropic flag F with dimension `

corresponding to P. Set W = E⊥/E, which is naturally a quadratic space of signature
(p − `, q − `). Then a suitable arithmetic quotient XW of the symmetric space DW

associated with W occurs as a factor in the base of the nilmanifold bundle e′(P).
The main result of this paper is the following.

Theorem 1.1. (1) The form θLV (ϕ
V
nq,[λ]) extends to a smooth differential form on the

(big) Borel–Serre compactification X considered as a smooth manifold with corners.
In fact, a stronger result holds. For each face e′(P), there exists a neighbourhood U′P
in X such that the restriction of θLV (ϕ

V
nq,[λ]) to U′P is the sum of a rapidly decreasing

form and a special differential form in the sense of [16], p. 169, on U′P.
(2) For a given face e′(P), let r̃P be the restriction map from X to e′(P). Then there exists

a theta distribution L̂W for W such that

[r̃P(θLV (ϕ
V
nq,[λ]))] = [ ι̃P(θL̂W

(ϕW
n(q−`),[`$n+λ]

))].

Here ι̃P is an embedding

ι̃P : H
n(q−`)(XW ,S[`$n+λ](WC)) ↪→ Hnq(e′(P),S[λ](VC)),

where $n = (1, . . . , 1) is the n th fundamental weight for GL(n), so the Young
diagram associated with `$n is an n by ` rectangle.

In particular, [r̃P(θLV (ϕ
V
nq,[λ]))] = 0 for n>min

(
p,
[m

2

])
− ` (if `> 2) and n> p− 1 or

n> m− 2− i(λ) (if `= 1).

Loosely speaking, the restriction formula of Theorem 1.1 can be summarized by
saying that the restriction of our theta series for SO(V) to a face of X is the theta series
for SO(W) of the same type corresponding to an enlarged coefficient system given by
placing an n by ` rectangle on the left of the Young diagram corresponding to λ to
obtain a bigger Young diagram corresponding to `$n + λ. The theta series θLV (ϕ

V
nq,[λ])

is termwise moderately increasing, so the statement of the theorem is rather delicate. To
capture the boundary behaviour we switch to a mixed model of the Weil representation.

As stated above, for the split SO(p, p)-case, the differential form θLV (ϕ
V
nq,[λ]) does not

extend to the usual Borel–Serre boundary.

Remark 1.2. We can also interpret our result in terms of weighted cohomology
[16]. More precisely, let r 6 min(p, q) be the non-zero Q-rank of G. Then our forms
θLV (ϕ

V
nq,[λ]) define classes in the cohomology for the weight profile associated with the

weight ñ$r for G. In particular, the forms are square integrable if

2n+ 1< p+ q− r.
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Non-vanishing at the boundary and sharp non-vanishing of the L2-cohomology. As an
easy and direct application of Theorem 1.1 we obtain a non-vanishing result for the
special (co)cycles.

Theorem 1.3. Assume that the Q-rank and the R-rank of G coincide. Then for

i(λ)6 n6


[

p− q

2

]
if q> 2

p− 1− i(λ) if q= 1,

there exists a finite cover X′ of X such that

[θ(ϕV
nq,[λ])] 6= 0.

Using (1.2) this gives [ZT,[λ]] 6= 0 for infinitely many T. In particular, (for n 6= 0)

Hnq(X′,S[λ](VC)) 6= 0.

Finally, for the case of trivial coefficients, Hnq(X′,C) is not spanned by classes given by
invariant forms on D.

Combining this with Remark 1.2 we obtain the following corollary.

Corollary 1.4. Under the hypotheses of Theorem 1.3 and n < (p − 1)/2 if q = 1,
both the L2-cohomology group Hnq

(2)(X
′,S[λ](VC)) and its image Hnq (X′,S[λ](VC))

(2) in
Hnq(X′,S[λ](VC)) do not vanish.

The basic idea for the proof of Theorem 1.3 is to study the restriction to a face of
X associated with a minimal rational parabolic subgroup. At such a face, the space W
is positive definite, and hence the restriction becomes a positive definite theta series for
which we establish non-vanishing.

There are numerous non-vanishing results in the literature, and we mention a few
related ones. In the case of non-trivial coefficients for compact hyperbolic manifolds,
Millson [27] proved the non-vanishing of the special cycles with coefficients in
codimension n in the range i(λ) 6 n 6 p − i(λ). Li [25] used the theta correspondence to
establish non-vanishing for the cohomology of orthogonal groups, again in the compact
(or L2) case (without giving a geometric interpretation of the classes). Speh and
Venkataramana [31] gave in general a criterion for the non-vanishing of certain modular
symbols in terms of the compact dual. In contrast to our result, their non-vanishing
occurs from classes defined by invariant forms on D.

From Section 9.4 and [32], ğ 8 it follows that for trivial coefficients all L2 cohomology
classes in degree less than q arise from invariant forms. Hence the lower bound q (known
for p + q > 8 even; see [25]) obtained with n = 1 in Corollary 1.4 is sharp since the class
[Θ(ϕV

q )] cannot be represented by an invariant form.
For non-trivial coefficients, the lower bound i(λ)q obtained with n = i(λ) (and in

addition 2i(λ) < p − 1 if q = 1) for non-vanishing of the L2-cohomology is also sharp, as
we now see. We have the following theorem.
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Theorem 1.5. Suppose 0< i(λ) < [p/2] and k < i(λ)q. Then

Hk (X′,S[λ](VC))
(2)
= Hk

(2)(X
′,S[λ](VC))= 0.

This indeed implies the sharpness of our L2-non-vanishing result since we have
i(λ) < [ p2 ] in the non-vanishing range of Corollary 1.4.

Vanishing at the boundary and the extension of the cohomological theta lift. We first
describe the general main motivation for our work. From (1.1) and (1.2) we see that the
theta series θL(ϕnq,0) (for simplicity, we only consider trivial coefficients for the moment)
gives rise to a map

Λnq : H
(p−n)q
c (X,C)→M(n)

m/2(Γ
′) (1.3)

from the cohomology with compact supports to the space of holomorphic Siegel modular
forms of degree n of weight m/2. We are interested in extending the lift (1.3) to other
cohomology groups of the space X which capture its boundary. The present paper
should be considered in this context, and is central to our efforts. This programme is in
particular motivated by the work of Hirzebruch and Zagier [18], which is the Q-rank 1
case for signature (2, 2) when X is a Hilbert modular surface, and the cycles in question
are the famous Hirzebruch–Zagier curves (n= 1).

Whenever the restriction of θL(ϕnq,0) to ∂X is cohomologically trivial, then such an
extension of the lift exists – at least in principle. Namely, in this case, one can utilize
a mapping cone construction to modify θL(ϕnq,0) to represent a class in the compactly
supported cohomology of X. However, there is a further problem beyond the homological
triviality of the restriction, that is explicitly constructing suitable primitives for the
restriction (again using the theta correspondence). Once this second problem is solved
one obtains an extension of Λnq to the full cohomology of X.

We have already carried this out in several instances. First and foremost, the
restriction vanishes in the Hirzebruch–Zagier case, and on the basis of this, we give in
[12] a new treatment and extension of the results in [18] using the theta correspondence.
The Q-rank 2 case when X is the product of two modular curves is of course highly
interesting as well. Now the boundary faces in the big Borel–Serre compactification
are no longer isolated, and in addition some subtle analytic complications arise when
constructing the primitives at the boundary. We will consider this case in the near
future.

The case which resembles the Hirzebruch–Zagier one most closely is the one for Picard
modular surfaces (quotients of U(2, 1); the results of this paper generalize to unitary
groups). Cogdell [8] considered this case in the spirit of Hirzebruch and Zagier. We will
consider this case from our point of view in a subsequent paper.

Another case is SO(2, 1), when X is a modular curve, and the cycles are geodesics.
For non-trivial coefficients, the restriction to the boundary vanishes. This case is
particularly attractive since one can interpret our classes as (co)homology classes for
even powers of the universal elliptic curve. We discussed this case in detail in [13].

Finally, we mention that [10] gives an introductory survey of the results obtained in
this paper.
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2. Basic notation

2.1. Orthogonal symmetric spaces

Let V be a rational vector space of dimension m= p+ q and let ( , ) be a non-degenerate
symmetric bilinear form on V with signature (p, q). We fix a standard orthogonal basis
e1, . . . , ep, ep+1, . . . , em of VR such that (eα, eα) = 1 for 1 6 α 6 p and (eµ, eµ) = −1 for
p + 1 6 µ 6 m. (We will use ‘early’ Greek letters to denote indices between 1 and p, and
‘late’ ones for indices between p+ 1 and m.) With respect to this basis the matrix of the
bilinear form is given by the matrix Ip,q =

(
1p

−1q

)
.

We let G = SO(V) viewed as an algebraic group over Q. We let G := G (R)0 be the
connected component of the identity of G(R) so G' SO0(p, q). We let K be the maximal
compact subgroup of G stabilizing span{eα; 1 6 α 6 p}. Thus K ' SO(p) × SO(q). Let
D= G/K be the symmetric space of dimension pq associated with G. We realize D as the
space of negative q-planes in VR:

D' {z⊂ VR : dim z= q; ( , )|z < 0}. (2.1)

Thus z0 = span{eµ; p + 1 6 µ 6 m} is the base point of D. Furthermore, we can also
interpret D as the space of minimal majorants for ( , ). That is, z ∈ D defines a majorant
( , )z by (x, x)z = −(x, x) if x ∈ z and (x, x)z = (x, x) if x ∈ z⊥. We write ( , )0 for the
majorant associated with the base point z0.

The Cartan involution θ0 of G corresponding to the base point z0 is obtained by
conjugation with the matrix Ip,q. We will systematically abuse notation below and write
θ0(v) for the action of the linear transformation of V with matrix Ip,q relative to the
above basis acting on v ∈ V. Let g be the Lie algebra of G and k be that of K. We obtain
the Cartan decomposition

g= k⊕ p, (2.2)

where

p= span{Xαµ := eα ∧ eµ; 16 α 6 p, p+ 16 µ6 m}. (2.3)

Here w ∧ w′ ∈
∧2VR is identified with an element of g via

(w ∧ w′)(v)= (w, v)w′ − (w′, v)w. (2.4)

We let {ωαµ} be the dual basis of p∗ corresponding to {Xαµ}. Finally note that we can
identify p with the tangent space Tz0(D) at the base point z0 of D.

We let r be the Witt rank of V, i.e., the dimension of a maximal totally isotropic
subspace of V over Q and assume that r > 0. Let F be a totally isotropic subspace of
V of dimension `. Then we can describe the `-dimensional isotropic subspace θ0(F) as
follows. For U a subspace of V, let U⊥ (resp., U⊥0) be the orthogonal complement of U

for the form ( , ) (resp., ( , )0). Then θ0(F)= (F⊥)
⊥0 . We fix a maximal totally isotropic

subspace Er and choose a basis u1, u2, . . . , ur of Er. Let E′r = θ0(Er). We pick a basis
u′r, . . . , u′1 of E′r such that (ui, u′j)= δij. More generally, we let

E` := span{u1, . . . , u`}, (2.5)
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and we call E` a standard totally isotropic subspace. Furthermore, we set E′` = θ0(E`) =
span(u′`, . . . , u′1). Note that E′` can be naturally identified with the dual space of E`. We
can assume that with respect to the standard basis of VR we have eα = 1

√
2
(uα + u′α) and

em+1−α =
1
√

2
(uα − u′α) for α = 1, . . . , `. We let

W` = E⊥` /E`, (2.6)

and note that W` is a non-degenerate space of signature (p− `, q− `). We can realize W`

as a subspace of V through

W` = (E` ⊕ E′`)
⊥
, (2.7)

where the orthogonal complement is with respect to either ( , ) or ( , )0. This gives

V = E` ⊕W` ⊕ E′`, (2.8)

a θ0-invariant Witt splitting for V. Note that with these choices, θ0 restricts to a Cartan
involution for O(W`). We obtain a Witt basis u1, . . . , u`, e`+1, . . . , em−`, u′`, . . . , u′1 for
VR. We will denote coordinates with respect to the Witt basis with yi and coordinates
with respect to the standard basis with xi.

We often drop the subscript ` and just write E, E′, and W.

2.2. Parabolic subgroups

We describe the rational parabolic subgroups of G.

2.2.1. Isotropic flags and parabolic subgroups. We let F be a flag of totally
isotropic subspaces F1 ⊂ F2 ⊂ · · · ⊂ Fk of V over Q. Then we let P= PF be the parabolic
subgroup of G stabilizing the flag F:

PF = {g ∈ G; gFi = Fi}, (2.9)

and write P = PF = (PF(R))0 for the resulting rational parabolic in G. The first
fundamental fact is given in the following lemma.

Lemma 2.1. Assume that V is not a rational Q-split space of signature (p, p). Then the
assignment F 7→ PF defines a bijection between the rational totally isotropic flags in V
and rational parabolic subgroups in G. Furthermore, under this map isotropic subspaces
give rise to maximal parabolics.

In this situation, we can assume by conjugation that the flag F consists of standard
totally isotropic subspaces Ei (2.5) and call such parabolics standard Q-parabolics.

However, if V is a rational Q-split space of signature (p, p), then the map from totally
isotropic flags to parabolics is surjective but not 1–1. We need a incidence relation
between totally isotropic subspaces more involved than inclusion to describe parabolic
subgroups which gives rise to a configuration called oriflammes; see e.g. [14], chapter 11.

Definition 2.2 (oriflammes). We define the incidence relation ∼ on non-zero totally
isotropic subspaces of V of dimension different to p− 1 by F1 ∼ F2 if either
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(i) F1 ⊂ F2 or F2 ⊂ F1, or

(ii) if dim F1 = dim F2 = p, then F1 ∩ F2 has dimension p− 1.

Then an oriflamme is a collection of such subspaces in which any two members are
incident.

One then has the following lemma (see e.g. [1, 14], and also Example 10.6).

Lemma 2.3. Assume that V is a rational Q-split space of signature (p, p). Then the
rational parabolic subgroups in G are in 1–1 correspondence with the rational oriflammes
in V by taking the stabilizer of the oriflamme. Concretely:

(1) The maximal parabolics are attached to totally isotropic subspaces of dimension
different to p− 1. The totally isotropic subspaces of dimension p− 1 do not give rise
to a maximal parabolic.

(2) All totally isotropic flags which do not include a constituent of dimension p − 1 give
rise to different standard parabolic subgroups.

(3) Let Fp−1 be a totally isotropic space of dimension p − 1 and F = F1 ⊂ F2 ⊂

· · ·Fk ⊂ Fp−1 be a totally isotropic flag. Since F⊥p−1/Fp−1 is naturally a Q-split
space of signature (1, 1) there are exactly two totally isotropic spaces Fp,1, Fp,2

of (maximal) dimension p which contain Fp−1. Then the three flags F, F ⊂ Fp,1,
F ⊂ Fp,2 are fixed by the same parabolic in G. This parabolic fixes the oriflamme
(F1,F2, . . . ,Fk,Fp,1,Fp,2).

Let E+ = Ep = span(u1, . . . , up−1, up) and E− = span(u1, . . . up−1, u′p). Then we define
the standard Q-parabolics to be the ones given by fixing a suboriflamme of the maximal
oriflamme (E1,E2, . . . ,En−2,E+,E−). We discuss the case where V is a rational Q-split
space of signature (p, p) in more detail in ğ 10.

2.2.2. The Langlands decomposition. We let NP be the unipotent radical of P. It
acts trivially on all quotients of the flag. We let LP = NP\P and let SP be the split centre
of LP over Q. Note that SP acts by scalars on each quotient. Let MP = ∩χ∈X(LP)

Ker(χ2).
We let N = NP and L = LP be their respective real points in G, and as before we set
M = MP = (MP(R))0, and A = AP = (SP(R))0. We can realize LP (and also SP,MP) as
θ0-stable subgroups of P:

LP = P ∩ θ0(P). (2.10)

Then MP is the semi-simple part of the centralizer of SP in P. We will often drop the
subscripts F, P, and P. We obtain the (rational) Langlands decomposition of P:

P= NAM ' N × A×M, (2.11)

and we write n, a, and m for their respective Lie algebras. The map P→ N × A × M is
equivariant with the P-action defined by

n′a′m′(n, a,m)= (n′Ad(a′m′)(n), a′a,m′m). (2.12)
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2.2.3. The Levi. We let F be a standard rational totally isotropic flag 0 = E0 ⊂ Ei1 ⊂

· · · ⊂ Eik = E` = E and assume that the last (biggest) totally isotropic space in the flag
F is equal to E` for some `. The reader will make the necessary adjustments when
considering an oriflamme in the Q-split SO(p, p)-case.

Let Uij = span(uij−1+1, . . . , uij) be the orthogonal complement of Eij−1 in Eij with
respect to ( , )0 and U′ij be the orthogonal complement of E′ij in E′ij+1 and let

W = W` = (E` ⊕ E′`)
⊥. We obtain a refinement of the Witt decomposition of V such

that the subspaces Uij ,U′is , and W are mutually orthogonal for ( , )0 and defined over Q:

V =

 k⊕
ij=1

Uij

⊕W ⊕

 k⊕
ij=1

U′ij

 . (2.13)

Then LP is the subgroup of P that stabilizes each of the subspaces in the above
decomposition of V. In what follows we will describe matrices in block form relative
to the above direct sum decomposition of V. We first note that we naturally have
O(W)×GL(E)⊂O(V) via

g

h

g̃

 ; h ∈O(W), g ∈GL(E)

 , (2.14)

where g̃ = Jg∗J, g∗ = tg−1, and J =

(
1

· · ·

1

)
. In particular, we can view the

corresponding Lie algebras o(WR) and gl(ER) as subalgebras of g. Namely,

o(WR) ' span{ei ∧ ej; ` < i< j6 m− `}, (2.15)

gl(ER) ' span{u′i ∧ uj; i, j6 `}, (2.16)

via g'
∧2VR. We see that

L'


g

h

g̃

 ; h ∈ SO(W), g= diag(g1, . . . , gk) ∈

k∏
j=1

GL(Uij),

 . (2.17)

We now consider the isotropic flag F in V as a flag F(E) of subspaces inside E. We
let P′ be the parabolic subgroup of GL(E) stabilizing F(E). Then for the real points
P′ = (P′(R))0, we have

P′ = NP′AMP′ , (2.18)

with unipotent radical NP′ and Levi factor

MP′ =

k∏
j=1

SL(Uij(R)). (2.19)

Here A is as above, viewed as a subgroup of GL+(ER). Furthermore, we can view P′ and
its subgroups naturally as subgroups of P via the embedding of GL(E) into O(V) given
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by (2.14). We obtain

M ' SO0(WR)×MP′ . (2.20)

We also define

pM = p ∩m= pW ⊕ pE, (2.21)

where pE = sl(E) ∩ p and

pW = oW ∩ p= span{Xαµ = eα ∧ eµ; `+ 16 α 6 p, p+ 16 µ6 m− `}. (2.22)

2.2.4. Roots. We let S be the maximal Q-split torus of G given by

S=

a(t1, . . . , tr) :=

diag(t1, . . . , tr)

1

diag(t−1
r , . . . , t−1

1 )


 . (2.23)

Note that (S(R))0 = AP0 , where P0 is the minimal parabolic contained in all
standard parabolics. We write t = (t1, . . . , tr) and t̃ = tJ = (tr, . . . , t1). Note that
a(0, . . . , 0, 1, 0, . . . , 0) = exp(u′i ∧ ui). The set of simple rational roots for G with respect
to S is given by ∆=∆(S,G)= {α1, . . . , αr}, where

αi(a)= tit
−1
i+1, (16 i6 r − 1) (2.24)

αr(a)=

{
tr if Wr 6= 0

tr−1tr if Wr = 0.
(2.25)

We write Φ(P,AP) for the positive roots of P with respect to AP and ∆(P,AP) for the
simple roots of P with respect to AP, which are those α ∈ ∆ which act non-trivially on
SP. We let Q be the standard maximal parabolic stabilizing the totally isotropic rational
subspace E` of dimension ` 6 r. We have AQ = {a(t, . . . , t, 1, . . . 1)} and ∆(Q,AQ) = {α`}

except in the Q-split case for SO(p, p) and where Q stabilizes E− in which case
AQ = {a(t, . . . , t, t−1)} and ∆(Q,AQ)= {αp−1}. For general P, we have

∆(P,AP)= {αi1 , . . . , αik}; (2.26)

the reader will make the necessary adjustments in the Q-split case for SO(p, p).

2.2.5. The nilradical. With P and P′ as before, we can naturally view NP′ ⊂ SL(E) as a
subgroup of NP. We then have a semi-direct product decomposition

NP = NP′ n NQ, (2.27)

where Q is, as above, the maximal parabolic containing P. Furthermore, we let ZQ be the
centre of NQ ⊆ NP. It is given by

ZQ =

z(b) :=

1 b

1

1

 ; JtbJ =−b

 . (2.28)
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Then for the coset space NP/(NP′ n ZQ), we have

NP/(NP′ n ZQ)' NQ/ZQ 'W ⊗ E (2.29)

as vector spaces. Explicitly, the basis of E gives rise to an isomorphism W ⊗ E ' W`.
Then for (w1, . . . ,w`) ∈W`, the corresponding coset is represented by

n(w1, . . . ,w`) :=



I` (·,w1) −w2
1

... ·

(·,w`) −w2
`

IW −w` . . . −w1

I`


. (2.30)

Here we write w2
i =

1
2 (wi,wi) for short. On the Lie algebra level, we let zQ be the centre

of nQ ⊆ nP, whence corresponding to (2.28), we have

zQ '
∧2

ER. (2.31)

We let nP′ be the Lie algebra of NP′ ; thus nP′ ⊂ E′R ∧ ER = gl(ER). We can realize,
corresponding to (2.30), WR ⊗ ER as a subspace of n. Namely, we obtain an embedding

WR ⊗ ER ↪→ n, (2.32)

w⊗ u→ w ∧ u=: nu(w), (2.33)

and we denote this subspace by nW , which we frequently identify with WR ⊗ ER.
Furthermore, this embedding is o(WR)⊕ gl(ER)-equivariant, i.e.,

[X, nu(w)] = nu(Xw) [Y, nu(w)] = nYu(w) (2.34)

for X ∈ o(WR) and Y ∈ gl(ER). We easily see that

exp(nui(w))= n(0, . . . ,w, . . . , 0). (2.35)

A standard basis of nW is given by

Xαi := nui(eα)= eα ∧ ui, Xµi := nui(eµ)= eµ ∧ ui (2.36)

with 16 i6 `, ` + 16 α 6 p, and p + 16 µ6 m − `. The dual space n∗W we can identify
with WR ⊗ E′R, and we denote the elements of the corresponding dual basis by ναi =

eα ∧ u′i and νµi =−eµ ∧ u′i.
Summarizing, we obtain the following lemma.

Lemma 2.4. We have a direct sum decomposition (of vector spaces)

nP = nP′ ⊕ nW ⊕ zQ.

Furthermore, the adjoint action of o(WR)⊕ gl(ER) on nP induces an action on the space
nP/(nP′ ⊕ zQ)' nW such that

nW 'WR ⊗ ER

as o(WR)⊕ gl(ER)-representations.
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2.3. The Maurer–Cartan forms and horospherical coordinates

The Langlands decomposition of P gives rise to the (rational) horospherical coordinates
on D associated with P through

σ = σP : N × A× DP −→ D, (2.37)

σ(n, a,m)= n a mz0.

Here DP =MP/KP is the boundary symmetric space associated with P with KP =M ∩ K.
We note that DP factors into a product of symmetric spaces for special linear groups and
one orthogonal factor, the symmetric space DW associated with SO(W). We call DW the
orthogonal factor in the boundary symmetric space DP. We have

DP = DW ×

k∏
j=1

DUij
, (2.38)

where DUij
denotes the symmetric space associated with SL(Uij).

We now describe the basic cotangent vectors ωαµ = (eα ∧ eµ)∗ ∈ p∗ ' T∗z0(D) in NAM
coordinates. We extend σ to N × A × M × K −→ G with σ(n, a,m, k) = namk, and this
induces an isomorphism between the left-invariant forms on NAM (which we identify
with n∗ ⊕ a∗ ⊕ p∗M) and the horizontal left-invariant forms on G (which we identify with
p∗). Thus we have an isomorphism

σ ∗ : p∗ −→ n∗ ⊕ a∗ ⊕ p∗M. (2.39)

Lemma 2.5. Let 1 6 i 6 `. For the preimage under σ ∗ of the elements in n∗W coming
from W+ ⊗ E, we have

σ ∗ ωαm+1−i =−
1
√

2
ναi, (2.40)

where `+ 16 α 6 p. Furthermore, for the ones coming from W− ⊗ E, we have

σ ∗ωiµ =
1
√

2
νµi, (2.41)

where p + 1 6 µ 6 m + 1 − `. On p∗M, the map σ ∗ is the identity. In particular, for
`+ 16 α 6 p and any µ> p+ 1, we have

σ ∗ωαµ ∈ p∗W ⊕ n∗W . (2.42)

The remaining elements of p∗ are of the form ωiµ with p + 1 6 µ 6 m + 1 − `. These
elements are mapped under σ ∗ to z∗Q ⊕ n∗P′ ⊕ a∗ ⊕ p∗E ⊂

∧2E∗R ⊕ gl (ER)
∗.

2.4. Borel–Serre compactification

We now briefly describe the Borel–Serre compactification of D and of X = Γ \D. For
a more detailed discussion see also the last section where we discuss the Q-split case
for SO(p, p) in detail. In that situation the Borel–Serre compactification is not the
right compactification for our purposes, and we need to work with a slightly larger
compactification.
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We follow [4], III.9. We first partially compactify the symmetric space D. For any
rational parabolic P, we define the boundary component

e(P)= NP × DP ' P/APKP. (2.43)

Then as a set the (rational) Borel–Serre enlargement DBS
= D is given by

D= D ∪
∐

P

e(P), (2.44)

where P runs over all rational parabolic subgroups of G. As for the topology of D,
we first note that D and e(P) have the natural topology. Furthermore, a sequence of
yj = σP(nj, aj, zj) ∈ D in horospherical coordinates of D converges to a point (n, z) ∈ e(P)
if and only if nj→ n, zj→ z and α(aj)→∞ for all roots α ∈ Φ(P,AP). For convergence
within boundary components, see [4], III.9.

With this, D has a canonical structure of a real analytic manifold with corners.
Moreover, the action of G(Q) extends smoothly to D. The action of g = kp = kman ∈
KMAN = G on e(P) is given by

g · (n′, z′)= k · (Ad(am)(nn′),mz′) ∈ e(Ad(k)P)= e(Ad(g)P) (2.45)

with k · (n′, z′)= (Ad(k)n,Ad(k)mKAd(k)P) ∈ e(Ad(k)P). Finally,

X := Γ \D (2.46)

is the Borel–Serre compactification of X = Γ \D to a manifold with corners. If P1, . . . ,Pk
is a set of representatives of Γ -conjugacy classes of rational parabolic subgroups of G,
then

Γ \D= Γ \D ∪
k∐

i=1

ΓPi\e (P)i, (2.47)

with ΓPi = Γ ∩ Pi. We will write e′(P) = ΓP\e(P). We write ΓM for the image of ΓP

under the quotient map P→ P/N. Furthermore, ΓP acts on E⊥R/ER, and we denote this
transformation group by ΓW . Note that ΓM and ΓW when viewed as subgroups of P
contain Γ ∩M and Γ ∩ SO0(WR) respectively as subgroups of finite index.

We now describe Siegel sets. For t ∈ R+, let

AP,t = {a ∈ AP;α(a) > t for all α ∈∆(P,AP)}, (2.48)

and for bounded sets U ⊂ NP and V ⊂ DP, we define the Siegel set

SP,U,t,V = U × AP,t × V ⊂ NP × AP × DP. (2.49)

Note that for t sufficiently large, two Siegel sets for different parabolic subgroups are
disjoint. Furthermore, if P1, . . . ,Pk are representatives of the G(Q)-conjugacy classes
of rational parabolic subgroups of G, then there are Siegel sets Si associated with Pi

such that the union
⋃
π(Si) is a fundamental set for Γ . Here π denotes the projection

π : D→ Γ \D.
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3. A review of representation theory for general linear and orthogonal groups

In this section, we will briefly review the construction of the irreducible finite
dimensional (polynomial) representations of GL(Cn) and O(V). Here, in this section,
we assume that V is an orthogonal complex space of dimension m. Basic references are
[9], ğğ 4.2 and 6.1 and [15], ğğ 9.3.1–9.3.4, to which we refer the reader for details.

3.1. Representations of GLn(C)

Let λ= (b1, . . . , bn) be a partition of `′ with the bi arranged in decreasing order. We will
use D(λ) to denote the associated Young diagram. We identify the partition λ with the
dominant weight λ for GL(n) in the usual way. A standard filling λ of the Young diagram
D(λ) with the elements of the set [`′] = {1, 2, · · · , `′} is an assignment of each of the
numbers in [`′] to a box of D(λ) such that the entries in each row strictly increase when
read from left to right and the entries in each column strictly increase when read from
top to bottom. A Young diagram equipped with a standard filling will be also called a
standard tableau.

We let st(λ) be the idempotent in the group algebra of the symmetric group S`′
associated with a standard tableau with `′ boxes corresponding to a standard filling t(λ)
of a Young diagram D(λ). Note that S`′ acts on the space of `′-tensors T`

′

(Cn) in the
natural fashion on the tensor factors. Therefore s(t(λ)) gives rise to a projection operator
in End(T`

′

(Cn)), which we also denote by st(λ). We write

St(λ)(Cn)= st(λ)(T
`′(Cn)). (3.1)

We have a direct sum decomposition

T`
′

(Cn)=
⊕
λ

⊕
t(λ)

St(λ)(Cn), (3.2)

where λ runs over all partitions of `′ and t(λ) over all standard fillings of D(λ). This gives
the decomposition of T`

′

(Cn) into irreducible constituents, i.e. for every standard filling
t(λ), the GL(Cn)-module St(λ)(Cn) is irreducible with highest weight λ. In particular,
St(λ)(Cn) and St′(λ)(Cn) are isomorphic for two different standard fillings t(λ) and t′(λ).
We denote this isomorphism class by Sλ(Cn) (or if we do not want to specify the
standard filling).

Explicitly, we let A be the standard filling of a Young diagram D(A) corresponding to
the partition λ with less than or equal to n rows and `′ boxes obtained by filling the rows
in order beginning at the top with 1, 2, . . . , `′. We let R(A) be the subgroup of S`′ which
preserves the rows of A and C(A) be the subgroup that preserves the columns of A. We
define elements rA and cA in the group ring of S`′ by

rA =
∑

s∈R(A)

s and cA =
∑

s∈C(A)

sgn(s)s. (3.3)
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Let h(A) be the product of the hook lengths of the boxes in D(A); see [9], p. 50. Then the
idempotent sA is given by

sA =
1

h(A)
cArA. (3.4)

We will also need the ‘dual’ idempotent s∗A given by s∗A =
1

h(A) rAcA. We let ε1, . . . , εn

denote the standard basis of Cn and θ1, . . . , θn ∈ (Cn)∗ be its dual basis. We set

εA = ε
b1
1 ⊗ · · · ⊗ ε

bn
n (3.5)

and let θA be the corresponding element in T`
′

(Cn)∗. Then sA(εA) is a highest weight
vector in SA(Cn); see [15], ğ 9.3.1. We have the following lemma.

Lemma 3.1. Let |R(A)| be the order of R(A). Then

s∗AθA(sAεA)=
|R(A)|

h(A)
.

Proof. We compute

s∗AθA(sAεA)= θA(s
2
AεA)= θA(sAεA)=

|R(A)|

h(A)
θA(cAεA)=

|R(A)|

h(A)
θA(εA).

The last equation holds because θA(qεA) = 0 for any non-trivial q in the column group
of A as the reader will easily verify. We have used rAεA = |R(A)|εA (since all elements of
R(A) fix εA) and sA =

1
h(A)cArA. �

3.2. Enlarging the Young diagram

We let B= Bn,` be the standard tableau with underlying shape D(B) an n by ` rectangle
with the standard filling obtained by putting 1 to ` in the first row, ` + 1 to 2` in the
second row etc. Then D(B) is the Young diagram corresponding to the dominant weight
`$n. Here $n = (1, 1, . . . , 1) is the nth fundamental weight for GL(n). We note that we
have εB = ε

`
1 ⊗ · · · ⊗ ε

`
n and θB = θ

`
1 ⊗ · · · ⊗ θ

`
n .

Lemma 3.2. The space sBTn`(Cn) is one dimensional, and

sBTn`(Cn)= CsBεB

as GL(n,C)-modules. Correspondingly, s∗BTn` (Cn)∗ is one dimensional and

s∗BTn` (Cn)
∗
= Cs∗BθB.

In particular,

s∗BTn` (Cn)
∗ ∼=

(∧n
(Cn)

∗
)⊗`

.

We let A be the standard filling of the Young diagram D(λ) as above. Then B|A
denotes the standard tableau with underlying shape D(B|A) given by making the shape
of A abut B (on the right), using the above filling for B and filling A in the standard way
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(as above) with n`+ 1 to n`+ `′. For example, if

B=

1 2 3

4 5 6

7 8 9

and A=
1 2 3

4 5
, then B|A=

1 2 3 10 11 12

4 5 6 13 14

7 8 9

We have an idempotent sB|A in the group ring of Sn`+`′ and εB|A ∈ Tn`+`′(Cn), which give
rise to a highest weight vector sB|AεB|A in sB|A(Tn`+`′(Cn)). Note that

εB|A = εB ⊗ εA. (3.6)

Lemma 3.3. There is a positive number c(A,B) such that

sBεB ⊗ sAεA = c(A,B)sB|AεB|A.

Proof. Since the Young diagrams D(B) and D(A) are abutted along their vertical
borders, we see that

cB|A = (cB ⊗ 1`′) ◦ (1n` ⊗ cA)= (1n` ⊗ cA) ◦ (cB ⊗ 1`′). (3.7)

Also r(C)εC = |R(C)|εC. Then we easily compute (using (3.6) and (3.7))

sBεB ⊗ sAεA =
h(B|A)

h(B)h(A)

|R(B)||R(A)|

|R(B|A)|
sB|AεB|A. �

Corollary 3.4. Under the identification of Tn`(Cn) ⊗ T`
′

(Cn)→ Tn`+`′(Cn) given by
tensor multiplication, we have the equality of maps

sB ⊗ sA = sB|A.

That is,

SB(Cn)⊗ SA(Cn)= SB|A(Cn)

as (physical) subspaces of Tn`+`′(Cn). The same statements hold for the dual space
S∗B|A (C

n`+`′)
∗

etc.

Proof. Since SB(Cn) is one dimensional, the tensor product SB(Cn) ⊗ SA(Cn) defines
an irreducible representation for GLn(Cn) (under the tensor multiplication map
Tn`(Cn) ⊗ T`

′

(Cn) inside Tn`+`′(Cn)). But by Lemma 3.3 it has non-zero intersection
with the irreducible GLn(C)-representation SB|A(Cn) inside Tn`+`′(Cn). Hence the two
subspaces coincide. �

3.3. Representations of O(V)

We extend the bilinear form ( , ) on V to T`
′

(V) as the `′-fold tensor product and note
that the action of S`′ on T`

′

(V) is by isometries. We let V [`
′
] be the space of harmonic

`′-tensors (which are those `′-tensors which are annihilated by all contractions with the
form ( , )). We let H be the orthogonal projection H : T`′(V)→ V [`

′
] onto the harmonic
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`′-tensors of V. Note that V [`
′
] is invariant under the action of S`′ . We then define for λ

as above the harmonic Schur functor S[t(λ)](V) by

S[t(λ)](V)=HSt(λ)(V). (3.8)

If the sum of the lengths of the first two columns of D(λ) is at most m, then S[t(λ)](VC)
is a non-zero irreducible representation for O(VC); see [9] ğ 19.5. Otherwise, it vanishes.
Of course, for different fillings t(λ) of D(λ), these representations are all isomorphic
and we write S[λ](V) for the isomorphism class. Furthermore, it is also irreducible
when restricted to G unless m is even and i(λ) = m

2 , in which case it splits into two
irreducible representations. If i(λ)6 [m2 ], then the corresponding highest weight λ̃ for the
representation S[λ](V) of G has the same non-zero entries as λ.

4. The Weil representation

We review different models of the Weil representation. In this section, V denotes a real
quadratic space of signature (p, q) and dimension m.

We let V ′ be a real symplectic space of dimension 2n. We denote by G′ =Mp(n,R) the
metaplectic cover of the symplectic group Sp(V ′)= Sp(n,R) and let g′ be its Lie algebra.
We let K′ be the inverse image of the standard maximal compact U(n) ⊂ Sp(n,R)
under the covering map Mp(n,R)→ Sp(n,R). Note that K′ admits a character det1/2,
i.e., its square descends to the determinant character of U(n). The embedding of U(n)
into Sp(n,R) is given by A + iB 7→

(
A B
−B A

)
. We write Wn,V for (an abstract model

of) the K′-finite vectors of the restriction of the Weil representation of Mp(V ′ ⊗ V) to
Mp(n,R)×O(V) associated with the additive character t 7→ e2π it.

4.1. The Schrödinger model

We let V ′1 be a Lagrangian subspace of V ′. Then V ⊗ V ′1 is a Lagrangian subspace of
V ⊗ V ′ (which is naturally a symplectic space of dimension 2nm). The Schrödinger model
of the Weil representation consists of the space of (complex-valued) Schwartz functions
on the Lagrangian subspace V ′1 ⊗ V ' Vn. We write S(Vn) for the space of Schwartz
functions on Vn and write ω = ωn,V for the action.

The Siegel parabolic P′ =M′N′ has Levi factor

M′ =

{
m′(a)=

(
a 0

0 ta−1

)
; a ∈GL(n,R)

}
(4.1)

and unipotent radical

N′ =

{
n′(b)=

(
1 b

0 1

)
; b ∈ Symn(R)

}
. (4.2)
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It is well-known that we can embed P′ into Mp(n,R), and the action of P′ on S(Vn) is
given by

ω
(
m′(a)

)
ϕ(x) = (det a)m/2 ϕ(xa) (det a> 0), (4.3)

ω
(
n′(b)

)
ϕ(x) = eπ itr(b(x,x))ϕ(x) (4.4)

with x= (x1, . . . , xn) ∈ Vn. The orthogonal group G acts on S(Vn) via

ω(g)ϕ(x)= ϕ(g−1x), (4.5)

which commutes with the action G′. The standard Gaussian is given by

ϕ0(x)= e−π tr (x,x)z0 ∈ S (Vn)
K
. (4.6)

Here (x, x) is the inner product matrix (xi, xj)ij.
We let S(Vn) be the space of K′-finite vectors inside the space of Schwartz functions on

Vn. It consists of those Schwartz functions of the form p(x)ϕ0(x), where p is a polynomial
function on Vn.

4.2. The mixed model and local restriction for the Weil representation

We let P be a standard parabolic of G stabilizing a totally isotropic flag in V with E = E`
the largest constituent of the flag and the associated Witt decomposition V = E⊕W⊕E′.

We describe a different model for the Weil representation, the so-called mixed model.
Furthermore, we will define a ‘local’ restriction rW

P from S(Vn) to the space of Schwartz
functions S(Wn) for W, a subspace of signature (p− `, q− `).

4.2.1. The mixed model. We let E = E` be one of the standard totally isotropic
subspaces of V; see (2.5). As before, we identify the dual space of E with E′. Accordingly,

we write x =

(
u

xW
u′

)
for x ∈ Vn, where u ∈ En, u′ ∈ (E′)n, and xW ∈Wn. We then have an

isomorphism of two models of the Weil representation given by

S(Vn) −→ S((E′)n)⊗ S(Wn)⊗ S((E′)n) (4.7)

ϕ 7−→ ϕ̂

given by the partial Fourier transform operator

ϕ̂

 ξ

xW

u′

= ∫
En
ϕ

 u

xW

u′

 e−2π itr(u,ξ)du (4.8)

with ξ ∈ (E′)n, xW ∈Wn, u′ ∈ (E′)n. We need some formulas relating the action of ω in the
two models. A straightforward calculation gives the following lemma.

Lemma 4.1. Let ξ ∈ (E′)n, xW ∈Wn, u′ ∈ (E′)n.

(i) Let n ∈ NQ and write n (u′)W for the image of n(u′) under the orthogonal projection
onto W. Then

n̂ϕ(t(ξ, xW , u′))= e
(
tr(n(xW + u′), ξ)

)
ϕ̂(t(ξ, xW + n (u′)W , u′)).
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(ii) For g ∈ SL(E)⊂ G (in particular, g ∈ NP′ or g ∈MP′) we have

ĝϕ(t(ξ, xW , u′))= ϕ̂(t(g̃ξ, xW , g̃−1u′))

with g̃= Jg∗J and g∗ = tg−1.
(iii) For t= (t1, . . . , t`), set t̃= tJ = (t`, . . . , t1) and |t| = t1 · t2 · · · t`. Then

â(t)ϕ(t(ξ, xW , u′))= |t |n ϕ̂(t (̃tξ, xW , t̃u
′)).

(iv) For h ∈ SO0(W)⊂M, we have

ĥϕ(t(ξ, xW , u′))= ϕ̂(t(ξ, h−1xW , u′)).

(v) For m′(a)=
(

a 0

0 ta−1

)
∈M′ ⊂ Sp(n,R) with a ∈ GL+n (R),

̂(m′(a)ϕ)(t(ξ, xW , u′))= (det a)
m
2−` ϕ̂(t(ξa∗, xWa, u′a)).

(vi) For n′(b)=
(

1 b
0 1

)
∈ N′ ⊂ Sp(n,R) with b ∈ Symn(R),

̂(n′(b)ϕ)(t(ξ, xW , u′))= e

(
tr

(
b
(xW , xW)

2

))
ϕ̂(t(ξ − u′b, xW , u′)).

We obtain the following proposition.

Proposition 4.2. Let ϕ ∈ S(Vn). Then the restriction of ϕ̂ to Wn,

ϕ 7→ ϕ̂|Wn ,

defines a G′ × MN intertwiner from S(Vn) to S(Wn). Here, we identify W with E⊥/E
to define the action of MN on W. In particular, N and MP′ (see (2.20)) act trivially on
S(Wn).

4.2.2. Weil representation restriction.

Definition 4.3. Let ϕ ∈ S(Vn) and let P be the parabolic as before. We define the
‘local’ restriction rW

P (ϕ) ∈ S(Wn) with respect to P for the Schrödinger model of the Weil
representation W by

rW
P (ϕ)= ϕ̂|Wn .

We now describe this restriction on a certain class of Schwartz functions on Vn. For

x = (x1, . . . , xn) ∈ Vn, we write

x1j
.
.
.

xmj

 for the standard coordinates of xj. We define a

family of commuting differential operators on S(Vn) by

Hrj =

(
xrj −

1
2π

∂

∂xrj

)
, (4.9)

where 16 r 6 m and 16 j6 n. Define a polynomial H̃k by

H̃k(x)= (2π)−k/2 Hk(
√

2πx), (4.10)
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where Hk(x)= (−1)k ex2 dk

dxk e−x2 is the k th Hermite polynomial. Then

Hk
rjϕ0(x)= H̃k(xrj)ϕ0(x), (4.11)

where ϕ0(x) is the standard Gaussian; see (4.6). We let ∆ ∈ Mm×n(Z) = (δrj) be
an integral matrix with non-negative entries and split ∆ into ∆+ ∈ Mp×n(Z) and
∆− ∈ Mq×n(Z) into its ‘positive’ and ‘negative’ parts, where ∆+ consists of the first
p rows of ∆ and ∆− of the last q. (Recall that m= p+ q.) We define operators

H∆ =

∏
16r6m
16j6n

Hδrj
rj , H∆+ =

∏
16α6p
16j6n

Hδαj
αj , H∆− =

∏
p+16µ6m

16j6n

Hδµj
µj ,

so H∆ =H∆+H∆− . Here again we make use of our convention to use early Greek letters
for the ‘positive’ indices of V and late ones for the ‘negative’ indices.

Definition 4.4. For ∆ as above, we define the Schwartz function ϕ∆ by

ϕ∆(x)=H∆ϕ0(x)=
∏

16α6p
p+16µ6m

16j6n

H̃δαj(xαj)H̃δµj(xµj)ϕ0(x).

Similarly, we set ϕ∆+(x)=H∆+ϕ0(x).

We now describe ϕV
∆ in the mixed model. The superscript V emphasizes that the

Schwartz function is associated with the space V. We begin with some auxiliary
considerations. The following fact will be crucial for us.

Lemma 4.5. For a Schwartz function f ∈ S(R), let f̂ (ξ)=
∫

R f (y)e−2π iyξdy be its Fourier
transform. Let gk(y)= H̃k(−

y
√

2
)e−πy2 . Then

ĝk(ξ)= (−
√

2iξ)
k

e−πξ
2
.

Proof. We use induction and differentiate the equation (̂ĝk)(−y) = H̃k(
y
√

2
)e−πy2 . The

assertion follows from the recursion H̃k+1(y) = 2yH̃k(y) − 1
2π H̃′k(y), which is immediate

from the definition of H̃k. The claim also follows easily from [23], (4.11.4). �

Remark 4.6. Recall that on the other hand H̃k(y)e−πy2 is an eigenfunction under
the Fourier transform with eigenvalue (−i)k; see [23], (4.12.3). This fact underlies the
automorphic properties of the theta series associated with the special forms ϕnq,[λ].

The Gaussian is given in standard coordinates by ϕV
0 (x) = exp(−π

∑n
j=1

∑m
i=1 x2

ij). In
Witt coordinates, we have xrj =

1
√

2
(yrj − y(m−r)j) and x(m−r)j =

1
√

2
(yrj + y(m−r)j); thus

x2
rj + x2

(m−r),j = y2
rj + y2

(m−r)j for r 6 `. Thus

ϕV
0

 u

xW

u′

= exp

−π n∑
j=1

∑̀
r=1

(y2
rj + y2

(m−r)j)

ϕW
0 (xW). (4.12)



22 J. Funke and J. Millson

We write, slightly abusing notation,

ϕE
0 (u, u′) := ϕV

0

u

0

u′

= exp

−π n∑
j=1

∑̀
r=1

(y2
rj + y2

(m−r)j)

 . (4.13)

We let ∆′ be the truncated matrix of size (m − 2`) × n given by eliminating the first
and the last ` rows from ∆. We let ∆′′ be the matrix of these eliminated rows. Note
that H∆′ now defines an operator on S(Wn) and H∆′′ on S((E ⊕ E′)n). We also obtain
matrices ∆′+ of size (p − `) × n and ∆′− of size (q − `) × n by eliminating the first ` and
the last ` rows from ∆+ and ∆− respectively. Similarly we obtain ∆′′+ and ∆′′−. We define
ϕW
∆′
(+)
(x)=H∆′

(+)
ϕW

0 (x) and ϕE
∆′′
(+)
(x)=H∆′′

(+)
ϕE

0 (x) as before.

With this notation we obtain the following lemma.

Lemma 4.7.

(i) ϕ̂V
∆

 ξ

xW

u′

= ϕW
∆′(xW)ϕ̂

E
∆′′(ξ, u′).

(ii) rW
P

(
ϕV
∆

)
(xW)= ϕ

W
∆′(xW)ϕ̂

E
∆′′(0, 0).

In our applications all entries of ∆− will be zero, so ∆ = ∆+ (by abuse of the
notation).

Lemma 4.8.

ϕ̂E
∆′′+
(ξ, 0)=

 n∏
j=1

∏̀
α=1

(−
√

2iξαj)
δαj

ϕE
0 (ξ, 0).

In particular, if in addition all entries of ∆′′+ vanish, then

ϕ̂V
∆+

 ξ

xW

0

= ϕW
∆′+
(xW)ϕ

E
0 (ξ, 0).

Proof. This follows from applying Lemma 4.5. �

We conclude the following proposition.

Proposition 4.9. (i) Assume that one of the entries of ∆′′+ is non-zero; then

rW
P (ϕV

∆+
)= 0.

(ii) If all of the entries of ∆′′+ vanish, then

rW
P

(
ϕV
∆+

)
= ϕW

∆′+
.
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Remark 4.10. Analogous results hold for rW
P (ϕV

∆−
). However, a general formula for the

restriction of rW
P (ϕV

∆) is more complicated (and is not needed in this paper).

4.3. The Fock model

It will be convenient to also consider the Fock model F = Fn,V of the Weil
representation. For more details on Fn,V , see the appendix of [11].

There is an intertwining map ι : S(Vn)→ P(Cn(p+q)) from the K′-finite Schwartz
functions to the infinitesimal Fock model of the Weil representation acting on the space
of complex polynomials P(Cn(p+q)) in n(p + q) variables such that ι(ϕ0) = 1. We denote
the variables in P(Cn(p+q)) by zαi (16 α 6 p) and zµi (p+16 µ6 p+q) with i= 1, . . . , n.
Moreover, the intertwining map ι satisfies

ι

(
xαi −

1
2π

∂

∂xαi

)
ι−1
=

1
2π i

zαi, ι

(
xµj −

1
2π

∂

∂xµj

)
ι−1
=−

1
2π i

zµj.

By a slight abuse of notation, we use the same symbol for corresponding objects in the
Schrödinger and Fock models. In the Fock model, ϕV

∆ looks as follows.

Lemma 4.11.

ϕV
∆ =

∏
16α6p

p+16µ6m
16j6n

(
1

2π i
zαj

)δαj
(
−

1
2π i

zµj

)δµj

.

Proposition 4.9 translates to the following proposition.

Proposition 4.12. If one of the entries of ∆′′+ is non-zero, then

rW
P (ϕV

∆+
)= 0.

If all of the entries of ∆′′+ vanish, then

rW
P (ϕV

∆+
)=

∏
`+16α6p
16j6n

(
1

2π i
zαj

)δαj

.

5. Differential graded algebras associated with the Weil representation

In this section, we construct certain differential graded algebras C•V and A•P and define
a local restriction map rP from C•V to A•P. Again V will denote a non-degenerate real
quadratic space of dimension m and signature (p, q).

5.1. Relative Lie algebra complexes

For the convenience of the reader, we briefly review some basic facts about relative Lie
algebra complexes; see, e.g., [6]. For this subsection, we deviate from the notation of the
paper and let g be any real Lie algebra g and let k be any subalgebra. We let (U, π) be a
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representation of g. We set

Cq(g, k;U)=
[
Hom

(∧q
(g/k),U

)]k
'

[∧q
(g/k)∗ ⊗ U

]k
, (5.1)

where the action of k on
∧q
(g/k) is induced by the adjoint representation. Then in the

setting of [
∧q
(g/k)∗ ⊗ U]k, the differential d is given by

d =
∑

i

A(ωi)⊗ π(Xi)+
1
2

∑
i

A(ωi)ad∗(Xi)⊗ 1. (5.2)

Here A(ωi) denotes the left multiplication with ωi in
∧
•
(g/k)∗, and ad∗(X) is

the dual of the adjoint action on
∧
•
(g/k)∗, that is, (ad∗(X)(α))(Y1, . . . ,Yq) =∑q

i=1 α(Y1, . . . , [Yi,X], . . . ,Yq). We easily see the following lemma.

Lemma 5.1. Consider two relative Lie algebra complexes C•(g, k;U) and C•(g′, k′;U′).
Then given

(i) ρ : g→ g′, a Lie algebra homomorphism such that ρ(k)⊆ k′,
(ii) T : U′→ U, an intertwining map with respect to ρ(i.e., T(ρ(X) · u′) = X · T(u′) for

X ∈ g),

we obtain a natural map of complexes

C•(g′, k′;U′)→ C•(g, k;U)

given by

ϕ 7→ T ◦ ϕ ◦ ρ.

On realizing ϕ as an element
[∧q

(g′/k′)∗⊗U′
]k′ , the map is given by

ϕ 7→ (ρ∗ ⊗ T)(ϕ),

where ρ∗ : (g′/k′)∗→ (g/k)∗ is the dual map.

Now let G be any real Lie group with Lie algebra g and let K be a closed connected
subgroup of G (not necessarily compact) with Lie algebra k. For U a smooth G-module,
we let Aq(G/K;U) be the U-valued differential q-forms on G/K (with the usual exterior
differentiation). The G-action on Aq(G/K;U) is given by

(g ◦ w)x(X)= g(ωg−1·x(g
−1
· X)), (5.3)

for ω ∈ Aq(G/K;U), x ∈ G/K, and X ∈ Tq
x (G/K). Then evaluation at the base point of

G/K gives rise to an isomorphism of complexes

A• (G/K;U)G ' C•(g, k;U) (5.4)

of the G-invariant forms on G/K with C•(g, k;U).

5.2. The differential graded algebra C•
V

We begin this section by defining a differential graded (but not graded commutative)
algebra C•V . The complex C•V is essentially the relative Lie algebra complex for O(V)
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with values in Wn,V tensored with the tensor algebra of VC and twisted by some factors
associated with Cn. To be precise, it is the complex given by

C j,r,k
V =

[
T j(U)

[
−

p− q

2

]
⊗ Tk (Cn)

∗
⊗Wn,V ⊗

∧r
p∗C ⊗ Tk(VC)

]K′×K×Sk

'

[
T j(U)

[
−

p− q

2

]
⊗ Tk (Cn)

∗
⊗Wn,V ⊗Ar(D)⊗ Tk(VC)

]K′×G×Sk

.

Here j, r, k are non-negative integers and Ar(D) denotes the space of complex-valued
differential r-forms on D. We let U =

∧n
(Cn)∗, and we define the action of K′ on

T j(U)[ p−q
2 ] by requiring K′ to act through the character det−j− p−q

2 on T j(U). Thus K′

acts by algebra homomorphisms shifted by the character det−
p−q
2 . We will usually drop

the [ p−q
2 ] in what follows. The differential is the usual relative Lie algebra differential

for the action of O(V). The group K′ acts on the first three factors, while the maximal
compact subgroup KV = K of SO0(V) fixing the base point z0 acts on the last three
factors. Finally, the symmetric group Sk acts on the second and the last factor.

We now give the complex C•V an associative multiplication. In order to give the
complex the structure of a graded algebra we choose, as a model for the Weil
representation that has an algebra structure, the Fock model Fn,V , the multiplication
law is multiplication of polynomials. However, it is important to observe that K′ does
not act on Fn,V by algebra homomorphisms (but rather by homomorphisms twisted by
the character det

p−q
2 ). Now the vector space underlying C•V is a subspace (of invariants

under a group action) of a tensor product of graded algebras. Thus it remains to prove
that the group acts by homomorphisms of the product multiplication.

Lemma 5.2. The group K′×K×Sk acts by algebra homomorphisms on the tensor product
of algebras T•(U)⊗ T• (Cn)∗⊗Wn,V ⊗

∧
•p∗C ⊗ T•(VC).

Proof. The statement is obvious except possibly for the action of the group K′. The
group K′ acts on the algebra Fn,V by algebra homomorphisms twisted by the character
det

p−q
2 . It acts on the tensor product T•(U) by algebra homomorphisms twisted by the

inverse character det−
p−q
2 ; see e.g. [11] Lemma A.1. The two twists cancel on the tensor

product and we find that K′ acts by algebra homomorphisms. �

Sometimes it is more convenient to view an element ϕ ∈ C j,r,k
V as an element in[

Hom
(

Tk(Cn);T j(U)⊗Wn,V ⊗
∧r

p∗C ⊗ Tk(VC)
)]K′×K×Sk

. (5.5)

For w ∈ Tk(Cn), we write ϕ(w) for its value in T j(U)⊗Wn,V ⊗
∧rp∗C ⊗ Tk(VC).

By Schur–Weyl theory (see [9], Lecture 6), we have the decomposition

Tk (Cn)
∗
'

⊕
λ

st(λ)(T
k (Cn)

∗
)⊗ V∗λ . (5.6)

Here the sum is over the Young diagrams λ with k boxes and no more than n rows, t(λ)
is a chosen standard filling of λ for each λ and Vλ is the irreducible representation of Sk
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corresponding to λ. We also have the corresponding decomposition

Tk(VC)'
⊕
µ

st′(µ)(T
k(VC))⊗ Vµ. (5.7)

Combining the two decompositions we obtain

C j,r,k
V '

⊕
λ,µ

[
T j(U)⊗ St(λ) (Cn)

∗
⊗V∗λ ⊗Wn,V ⊗

∧r
p∗C ⊗ St′(µ)(VC)⊗ Vµ

]K′×K×Sk
. (5.8)

Noting that

(V∗λ ⊗ Vµ)
Sk '

{
0 if λ 6= µ

C if λ= µ,
(5.9)

we obtain the following lemma.

Lemma 5.3.

C j,r,k
V '

⊕
λ

[
T j(U)⊗ St(λ)(Cn)

∗
⊗Wn,V ⊗

∧r
p∗C ⊗ St(λ)(VC)

]K′×K
.

We have assumed (as we may do) that the fillings t(λ) and t′(λ) are the same. For the
summands in the lemma we write C j,r,t(λ)

V (or just C j,r,λ
V if we do not want to specify the

filling). The application of the Schur functor S∗t(λ)(·) on Tk (Cn)∗, or equivalently applying
St(λ)(·) on Tk(VC), gives rise to a projection map

πt(λ) : C
j,r,k
V −→ C j,r,t(λ)

V . (5.10)

That is,

πt(λ) = 1U ⊗ st(λ)(Cn)∗ ⊗ 1Wn,V ⊗ 1p∗ ⊗ 1V

= 1U ⊗ 1Cn ⊗ 1Wn,V ⊗ 1p∗ ⊗ st(λ)V . (5.11)

Here we use subscripts to indicate which spaces the respective identity transformations 1
operate on. We apply the harmonic projection HV (see (3.8)) on the last factor to obtain
S[t(λ)](VC), and we obtain a complex C•,[t(λ)]V (or C•,[λ]V ) and a projection map

π[t(λ)] : C
j,r,k
V −→ C j,r,[t(λ)]. (5.12)

That is,

π[t(λ)] = 1U ⊗ 1Cn ⊗ 1Wn,V ⊗ 1p∗ ⊗ s[t(λ)]V . (5.13)

Remark 5.4. We can interpret an element ϕ ∈ C j,r,k
V as a K′ × K × Sk-invariant

homomorphism from Tk(Cn) to T j(U)⊗Wn,V ⊗
∧rp∗C ⊗ Tk(VC); see (5.5). In this setting,

we can interpret πt(λ)ϕ as the restriction of the homomorphism ϕ to the St(λ)(Cn).
From this point of view, Lemma 5.3 states that the homomorphism πt(λ)ϕ on St(λ)(Cn)

automatically takes values in Wn,V ⊗
∧rp∗C ⊗ St(λ)(VC).
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5.3. The face differential graded algebra A•
P and the map rP

In this section we assume that P is the stabilizer of a standard flag Ei1 ⊂ Ei2 ⊂ · · · ⊂

Eik = E` = E and NP is the unipotent radical of P. We let Q be the stabilizer of E. We
will now construct a differential graded algebra A•P, which is the relative Lie algebra
version of a differential graded subalgebra of the de Rham complex of the face e(P) of
the Borel–Serre enlargement of D. We will continue with the notation of ğ 2.

We define the differential graded algebra A•P associated with the face e(P) of the
Borel–Serre boundary corresponding to P by

Aj,r,k
P =

[
T j(U)⊗ Tk (Cn)

∗
⊗Wn,W ⊗

∧r
(n⊕ pM)

∗
C⊗Tk(VC)

]K′×KP×Sk

'

[
T j(U)⊗ Tk (Cn)

∗
⊗Wn,W ⊗Ar(e(P))⊗ Tk(VC)

]K′×NM×Sk
. (5.14)

Furthermore, we define A•,λP and A•,[λ]P as for C•V .

Definition 5.5. The ‘local’ restriction map of de Rham algebras with coefficients

rP : C
•
V → A•P

of de Rham algebras with coefficients is given by

1⊗ 1⊗ rW
P ⊗ ι

∗
⊗ 1.

Here ι : n ⊕ m ↪→ g is the underlying Lie algebra homomorphism, and the map from the
coefficients of C•V to the coefficients of A•P is given by the tensor product

1⊗ 1⊗ rW
P ⊗ 1,

where rW
P : Wn,V → Wn,W is the restriction map of the Weil representation (see

Definition 4.3). By Lemma 5.1 we therefore see that rP is a map of complexes. We
note that rW

P is not a ring homomorphism so rP is not a map of algebras. Since rP

commutes with the action of the symmetric group Sk, we obtain maps C•,λV → A•,λP and
C•,[λ]V → A•,[λ]P as well, which we also denote by rP.

Note that the induced map ι∗ : (g/k)∗ ' p∗ → ((n⊕m)/kM)
∗
' (n⊕ pM)

∗ is the
composition of the isomorphism σ ∗ : p∗ −→ (n⊕ a⊕ pM)

∗ (see (2.39)), with the
restriction (n⊕ a⊕ pM)

∗
→ (n⊕ pM)

∗.
Finally observe that on the level of homogeneous spaces, the map rP arises by realizing

e(P) as the orbit of the base point z0 under the group NM. So in this setting, we are no
longer thinking of e(P) as being at the boundary of D; we have pushed e(P) far inside D.

6. Aspects of nilpotent Lie algebra cohomology and the map ιP

6.1. An explicit constituent in the Lie algebra cohomology of nP

In what follows, we discuss some aspects of the Lie algebra cohomology of the nilpotent
Lie algabra nP which we need later. Some parts that we develop here could have been
deduced from the general work of Kostant [19]. However, our concern here is proving
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that certain explicit cocycles are (non-)zero rather than computing the cohomology
itself.

As before, we let P be a standard parabolic subgroup of G. Recall that we have
the decomposition of vector spaces nP = nP′ ⊕ nQ, where Q is the maximal parabolic
containing P. For the two-step nilpotent algebra nQ, we have the central extension
zQ→ nQ→ nW with zQ '

∧2E and nW ' W ⊗ E. On the other hand, nP′ is a nilpotent
subgroup of sl(E)⊂ E′ ⊗ E.

We assume for the following subsections that V,W, nP etc are defined over C. We let

C•,`
′

=

∧•
(n∗P)⊗ T`

′

(V)

be the complex for the nilpotent cohomology with coefficients in T`
′

(V) and define
analogously C r,λ

= C r,A and C r,[λ]
= C r,[A] for Sλ(V) and S[λ](V) respectively.

We are interested in certain cohomology classes arising from
∧rn∗W . By Lemma 2.4,

n∗W 'W ⊗ E′ as O(W)×GL(E)-modules. Furthermore (see e.g. [9], p. 80),∧r
(n∗W)'

∧r (
W ⊗ E′

)
'

⊕
µ

Sµ(W)⊗ Sµ′(E′), (6.1)

as O(W)×GL(E)-modules. Here the sum extends over all partitions µ of r with at most
dim W = m − 2` rows and at most dim E = ` columns, and µ′ denotes the conjugate
partition of µ.

We will be mainly interested in the case r = n`. Then we can take µ = `$n =

(`, `, . . . , `), and so µ′ = n$` = (n, n, . . . , n) and Sµ′(E′) =
(∧`E′)⊗n

' C is the trivial
(one-dimensional) SL(E)-module. We obtain

SB(W)⊗ SB′(E
′)'

[∧n`
(W ⊗ E′)

]SL(E)

'

[∧n`
(n∗W)C

]SL(E)

(6.2)

as O(W) × SL(E)-modules. Here B = Bn,` is the filling of the Young diagram associated
with µ described in ğ 3.2.

To realize this isomorphism, we define a GL(W)×GL(E) intertwining map

τr,`′ : T
r(W)⊗ T`

′

(W)⊗ Tr(E′)→
∧r

(W ⊗ E′)⊗ T`
′

(V)⊂ C r,`′ (6.3)

given by

τr,`′((w1 ⊗ · · · ⊗ wr)⊗ w̄⊗ (v′1 ⊗ · · · ⊗ v′r))= (w1 ⊗ v′1) ∧ · · · ∧ (wr ⊗ v′r)⊗ w̄,

where w̄ ∈ T`
′

(W). We also write τr for τr,0. We immediately see the following lemma.

Lemma 6.1. The map τr,`′ is O(W)× SL(E)× Sr+`′ × Sr-equivariant. Here the action of
the symmetric group Sr+`′ (resp., Sr) is on the tensor factors involving W(resp., E′).

For r = n`, the map τn` realizes the isomorphism (6.2). Furthermore, we have the
following lemma.

Lemma 6.2. Let w ∈ Tn`+`′(W) and v′ ∈ Tn`(E′). Then

τn`,`′(sB|A(w)⊗ v′) ∈ (C n`,A)
SL(E)

.
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We view from now on τn`,`′ as a map of Tn`+`′(W) by setting

τn`,`′(w) := τn`,`′(w⊗ (u
′
1 ⊗ · · · ⊗ u′`)

n
).

We let V [k] (W[k]) be the space of harmonic k-tensors in V (W), i.e., the tensors which
are annihilated by all the contractions Cij. We let E k(V) ⊂ Tk(V) be the orthogonal
complement of the harmonic tensors. Thus E k(V) is the sum of the images of the
insertion maps Eij(g∗V) : Tk−2(V) → Tk(V), 1 6 i < j 6 k, with the metric g∗V of V.
Similarly, we define E k(W) ⊂ Tk(W). Note that S[λ](W) ⊂ S[λ](V). However note that
if w̄ ∈ T`

′

(W) is a non-zero tensor in the orthogonal complement of T [`
′
](W) (i.e., spanned

by tensors in the image of the inclusion with the metric for E`′(W)), then w̄ does
not necessarily lie in the orthogonal complement in T [`

′
](V) (since the metric of V is

different).

Proposition 6.3. Let B again be the given filling of the Young diagram associated with
`ωn and A be a filling for λ.

(i) Let w ∈ SB|A(W). Then τn`,`′(w) defines a cocycle in C n`,`′ . More precisely, we obtain
a map

SB|A(W)→ Hn` (nP,SA(V))
SL(E) .

(ii) Let n6
[

dim W
2

]
and let w ∈ S[B|A](W). Then the cohomology class

[τn`,`′ (w)] ∈ Hn` (nP,S[A](V))SL(E)

does not vanish. Thus we obtain an embedding

S[B|A](W) ↪→ Hn` (nP,S[A](V))SL(E) .

(iii) Let w ∈ SB|A(W) ∩ E n`+`′(W) be in the orthogonal complement of S[B|A](W) inside
SB|A(W). Then

[π[A] ◦ τn`,`′(w)] = 0

in Hn`(nP,S[A](V)). Here π[A] is the natural projection from H•(nP,SA(V)) to
H•(nP,S[A](V)) induced by the orthogonal projection SA(V)→ S[A](V). In particular,
for w ∈ SB|A(W), we have

[π[A] ◦ τn`,`′(w)] = [τn`,`′(π[B|A](w))].

The next section will be concerned with proving this proposition.

6.2. Proof of Proposition 6.3

We give V the positive definite Hermitian metric coming from the majorant ( , )0. This
induces positive definite metrics on

∧2E, W ⊗ E, and E′ ⊗ E and hence an admissible
metric on the entire Lie algebra complex C•,`′ , which we also denote by ( , )0. Using
( , )0 we obtain an adjoint d∗ to the differential d on C•. We then have the finite
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dimensional analogues of Hodge theory. Namely, we define the Laplacian ∆ = dd∗ + d∗d
and say that a form in C• is harmonic if it is in the kernel of Delta. It is immediate that

ker∆= ker d ∩ ker d∗.

We let Hr,`′ be the harmonic forms of degree r, given by the intersection ker∆ ∩ C r,`′ . In
particular, we have the Hodge decomposition.

Lemma 6.4. The space C r,• is the orthogonal direct sum of the exact forms Imd, the
coexact forms Imd∗ and the harmonic forms. Furthermore, the map Hr,•

→ Hr,(nP, •) is
an isomorphism.

The Lie algebra complex C•,`′ is in fact triple graded via

C r,s,t,`′
:=

∧r
(W ⊗ E′)⊗

∧s
(∧2

E′
)
⊗

∧t
n∗P′ ⊗ T`

′

(V)

and we define analogously C r,s,t,λ and C r,s,t,[λ] for U = Sλ(V) and U = S[λ](V) respectively.
Here again we have used the form ( , ) to identify W∗ 'W and E∗ ' E′.

We now give explicit formulas for the Lie algebra differential d and its adjoint d∗ on C.
We omit the proofs. We write d = dn + dV with a ‘Lie algebra part’ dn and a ‘coefficient’
part dV . That is,

dn = dnQ + dnP′
and dV = dW

V + dE
V + d

nP′
V (6.4)

with

dnQ =
1
2

∑
α,i

A(eα ⊗ u′i)ad∗(eα ∧ u′i)+
1
2

∑
16i<j6`

A(u′i ∧ u′j)ad∗(ui ∧ uj) (6.5)

and

dW
V =

∑
α,i

A(eα ⊗ u′i)⊗ ρ(eα ∧ ui) and dE
V =

∑
16i<j6`

A(u′i ∧ u′j)⊗ ρ(ui ∧ uj).

Here ρ denotes the action of nP on the coefficient system T`
′

(V). Finally, dnP′
+ d

nP′
V is the

part of the differential arising from nP′ . (We do not need it more precisely.)
Since [nW , nW ] ⊆ zQ, we first note that dnQ has triple degree (2,−1, 0). In particular,

all elements of degree (r, 0, t) are dnQ-closed. Accordingly, dnQ is determined by its values
on C0,s,0,•. In fact, it suffices to consider s= 1.

Lemma 6.5. Let v′1, v′2 ∈ E′ and v ∈ T`
′

(V). Then

dnQ((v
′
1 ∧ v′2)⊗ v)=−τ2(E1,2(g

∗
W)⊗ (v

′
1 ⊗ v′2))⊗ v.

It suffices to compute the dual d∗nQ
on basic forms.
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Lemma 6.6.

d∗nQ
((w1 ⊗ v′1) ∧ · · · ∧ (wk ⊗ v′k)⊗ v)

=

∑
i<j

{(−1)i+j(wi,wj)(w1 ⊗ v′1) ∧ · · · ∧ (ŵi ⊗ v′i) ∧ · · · ∧ (ŵj ⊗ v′j) ∧ · · · ∧ (wk ⊗ v′k)

⊗ (v′i ∧ v′j)} ⊗ v.

For the nP′-contribution, we have the following lemma.

Lemma 6.7. The differential dnP′
+ d

nP′
V has triple degree (0, 0, 1). The adjoint action of

nP′ ⊂ sl(E) on nQ = (W ⊗ E) ⊕
∧2E arises from the natural action of sl(E) on E. Hence

dnP′
+ d

nP′
V vanishes on (C r,s,0,`′)

SL(E)
. In particular,

(dnP′
+ d

nP′
V )τn`,`′(sB|A(w))= 0

for w ∈ Tn`+`′(W). Finally, the dual d∗nP′
+ (d

nP′
V )
∗

vanishes on C r,s,0,`′ .

We now turn our attention to dV and d∗V . It suffices to consider the case `′ = 1.

Lemma 6.8. (i) Let w ∈ Tk(W), w ∈W, and v′ ∈ Tk(E′). Then

dW
V

(
τk,1(w⊗ w⊗ v′)

)
=

∑̀
i=1

τk+1
(
(w⊗ w)⊗ (u′i ⊗ v′)

)
⊗ ui.

(ii) Let w ∈ Tk(W), v′ ∈ Tk(E′), and u′ ∈ E′. Then

dW
V

(
τk(w⊗ v′)⊗ u′

)
=−τk+1,1

(
E1,k+1(g

∗
W)(w)⊗ (u

′
⊗ v′)

)
.

Lemma 6.9. Let w ∈ Tk(W), w ∈W, and v′ ∈ Tk(E′). Then

d∗V
(
τk,1(w⊗ w⊗ v′)

)
=

∑
i=1,...,k

(−1)i−1(wi,w)((w1 ⊗ v′1) ∧ · · · ∧ (ŵi ⊗ v′i) ∧ · · · ∧ (wk ⊗ v′k))⊗ v′k.

We obtain as a consequence of Lemmas 6.6, 6.9 and 6.7 the following proposition.

Proposition 6.10. Let w ∈ W[k+`
′
] be a harmonic (k + `′)-tensor. Then for any

v′ ∈ Tk(E′), we have

d∗τk,`′(w⊗ v′)= 0.

We are now ready to prove Proposition 6.3. For (i), first note that the action
of σ ∈ S`′ on the coefficients T`

′

(V) commutes with the differentiation d, that is,
d ◦ (1 ⊗ σ ⊗ 1) = (1 ⊗ σ ⊗ 1) ◦ d. Furthermore, in the first factor Tn`(W), τn`,`′

factors through cB, the column anti-symmetrizer for Young tableau B, that is,
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τn`,`′ ◦(cB⊗1)= τn`,`′ . Combining this with Lemma 6.1 gives τn`,`′ ◦(cB|A)= (1⊗cA)◦τn`,`′

on Tn`+`′(W). Therefore it suffices to show that τn`,`′(rB|A(w)) is closed. Indeed, we
have

d(τn`,`′(sB|A(w)))= d((1⊗ cA) ◦ τn`,`′(rB|A(w)))= (1⊗ cA) ◦ d(τn`,`′(rB|A(w))).

Furthermore, it suffices to establish closedness for n= 1. Indeed, if the Young diagram
A arises from the partition (`′1, `

′
2, . . . , `

′
n) of `′, we write w = w1⊗· · ·⊗wn ∈ Tn`(W) with

wi ∈ T`(W) and w̄ = w̄1 ⊗ · · · ⊗ w̄n with w̄i ∈ T`
′
i(W). We then have a natural product

decomposition

τn`,`′(w⊗ w̄)= τ`,`′1(w1 ⊗ w̄1) ∧ · · · ∧ τ`,`′n(wn ⊗ w̄2), (6.6)

for which d acts as a graded derivation. Also note that dnQ vanishes on the image of τn`,`′

and by Lemma 6.7 so does the nP′-contribution. Now for n = 1, using Lemma 6.8(i), we
see that applying dV to τ`,`′(w) with w ∈ Sym`+`′(W) gives rise to a map

Sym`+`′(W)→
⊕̀
i=1

∧`+1
(W ⊗ E′)⊗ (E′i ⊗ T`

′
−1(W))

=

⊕̀
i=1

⊕
C

SC(W)⊗ SC′(E
′)⊗ (E′i ⊗ T`

′
−1(W)). (6.7)

Here E′i = Cu′i, and the sum extends over all Young diagrams C of size ` + 1, which have
at least two rows (otherwise the dual diagram C′ would have at least ` + 1 rows, which
is impossible as dim E′ = `). By the Littlewood–Richardson rule we now see that in the
decomposition of SC(W)⊗ T`

′
−1(W) into irreducibles, only Young diagrams with at least

two rows can occur. Hence Sym`+`′(W) does not occur on the right hand side of (6.7),
and the map vanishes identically. This proves Proposition 6.3(i).

Proposition 6.3(ii) now follows immediately from Proposition 6.10 and Lemma 6.4.
For (iii), it suffices to show that for any w ∈ Tn`+`−2, the form π[A] ◦

τn`,`′(sB|A(Ei,j(g∗W)(w))) is exact. For this, it suffices to show that τn`,`′(rB|A(Ei,j(g∗W)(w)))
is exact up to terms involving the inclusion of the metric g∗V into the coefficient system.
The product decomposition (6.6) reduces the claim to the cases of n = 1 (if the metric
g∗W occurs in one factor for (6.6)) or n = 2 (if g∗W occurs in two factors). It is not
too hard but a bit tedious to explicitly construct primitives for these cases. We omit
this.

6.3. The map ιP

We now assume again that all objects are defined over R. We construct a map
ιP : C•W ↪→ A•P of complexes.

We let U,U′ be two representations of G and T : U′→ U be a G-intertwiner. We let
C•(nP,U)= (

∧
•n∗P)⊗ U be the complex computing the nilpotent cohomology Hs(nP,U),

and we let C•closed(nP,U) be the subspace of cocycles in C•(nP,U).
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Lemma 6.11. Define a map

ηr,s
:

[∧r
(p∗M)⊗

((∧s
n∗P

)
⊗ U′

)]KP
→

[∧r+s
(p∗M ⊕ n∗P)⊗ U

]KP

by

ηr,s(ω(r) ⊗ (ω(s) ⊗ u′))= (ω(r) ∧ ω(s))⊗ T(u′).

Then ηr,s induces a map of relative Lie algebra complexes

η : C•(m, kP; C s
closed(nP,U′))−→ C•+s (p, kP;U)

and the induced map in cohomology factors through H•
(
m, kP;Hs(nP,U′)

)
.

Proof. This essentially is [17], Lemma 2.6 (see also [29], § 2), together with the standard
spectral sequences argument in this context. Note that Harder actually considers
instead of cocycles in C(nP,U′) the nilpotent cohomology group Hs(nP,U′) realized
as a subspace in C(nP,U′) by harmonic forms as discussed in § 6. �

Definition 6.12. We define the map ιP on Cj,r,k
W as follows. In fact, it is defined on the

underlying tensor spaces without taking the group invariants. First we set ιP to be zero if
k < n`. If k > n` we split the two tensor factors:

Tk (Cn)
∗
= Tn` (Cn)

∗
⊗Tk−n` (Cn)

∗ and Tk(WC)= Tn`(WC)⊗ Tk−n`(WC).

We define ιP on tensors which are decomposable relative to these two splittings. We let
u1 = θ1∧ · · ·∧ θn be the standard generator of U =

∧n
(Cn)∗ (with the twisted K′-action).

Let uj
1 ⊗ x ⊗ f ⊗ ω ⊗ w be a single tensor component of an element in C j,r,k

W and assume
that k > n`. Assume that x and w are decomposable, that is

x= x1 ⊗ x2 ∈ Tn` (Cn)
∗
⊗Tk−n` (Cn)

∗ and w= w1 ⊗ w2 ∈ Tn`(WC)⊗ Tk−n`(WC).

Then we define

ιP(u
j
1 ⊗ x⊗ f ⊗ ω ⊗ w)

= (−1)n`(
(q−`)(n−1)

2 +1) ηr,n`((uj
1 ⊗ s∗B(x1))⊗ x2 ⊗ f ⊗ ω ⊗ τn`(w1)⊗ w2)

∈ T j+`(U)⊗ Tk−n`(Cn)
∗
⊗Wn,W ⊗

∧r
(p∗W)C ⊗

∧n`
(n∗W)C⊗Tk−n`(WC).

Note here that by Lemma 3.2, we see that SB (Cn)∗ = s∗BTn` (Cn)∗ ' T`(U)[0] and
therefore uj

1 ⊗ s∗B(x1) lies in T j+`(U)[− p−q
2 ] and is zero if and only if s∗B(x1)= 0.

Proposition 6.13. ιP is a map of complexes

ιP : C
j,r,k
W → Aj+`,r+n`,k−n`

P .

Proof. In view of Lemma 6.11, it suffices to show that the map on Cj,r,k
W to

C r
(

m, kP; C n`(nP,Tk−n`(WC))⊗ T j+`(U)

[
−

p− q

2

]
⊗Wn,W

)
(6.8)
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induced by

uj
1 ⊗ x⊗ f ⊗ ω ⊗ w 7→ (uj

1 ⊗ s∗B(x1))⊗ x2 ⊗ f ⊗ ω ⊗ τn`(w1)⊗ w2 (6.9)

gives a cocycle for the nilpotent nP-complex. Going through the proof of
Proposition 6.3(i), we see that the composition of the nP-differential with (6.9) factors
when viewed as a map on Tk(WC) through representations SC(WC) with C having at
least n+ 1 rows. But now by Lemma 5.3 such representations do not occur in Cj,r,k

W . �

The reader can easily check from the definition that ιP satisfies the following
properties.

Lemma 6.14. (1) ιP is a [T(U)⊗Wn,W ⊗
∧

p∗W ]
K′×KW -module homomorphism. That is,

ιP(ϕ
W
j′,r′,0 · ϕ

W
j,r,k)= ϕ

W
j′,r′,0 · ιP(ϕ

W
j,r,k)

for ϕW
j′,r′,0 ∈ Cj′,r′,0

W and ϕW
j,r,k ∈ Cj,r,k

W .

(2) ιP(ϕW
j,r,k) is zero if k < n`.

(3) Suppose that ϕW
j,r,k ∈ C j,r,k

W with k > n` and ϕW
j′,r′,`′ ∈ Cj′,r′,`′

W . Then

ιP(ϕ
W
j,r,k · ϕ

W
j′,r′,`′)= ιP(ϕ

W
j,r,k) · ϕ

W
j′,r′,`′ .

(4) Let x ∈ Tn` (Cn)∗ and w ∈ Tn`(WC). Then

ιP(1U ⊗ x⊗ 1F ⊗ 1p∗W
⊗ w)= x(εB)(u` ⊗ 1Cn ⊗ 1F ⊗ 1p∗W

⊗ τn`(w)⊗ 1T(VC)).

Proposition 6.15. Let k = n`+ `′ as above. Let λ be a dominant weight of GLn(C), and
we let A be a standard filling of the associated Young diagram D(λ). We let B|A be the
associated filling for the weight `$n + λ; see § 3.

(i) Then the preimage of Aj+`,r+n`,A
P under ιP lies in Cj,r,B|A

W ; i.e.,

ι−1
P (Aj+`,r+n`,A

P )= Cj,r,B|A
W .

Moreover, if ιP(ϕ′)= ϕ for ϕ′ ∈ Cj,r,n`+`′

W and ϕ ∈ Aj+`,r+n`,`′

P , then

πA(ϕ)= ιP(πB|A(ϕ
′)).

Here πB|A is the projection from Cj,r,n`+`′

W to Cj,r,B|A
W (see (5.10)), and πA is that from

Aj+`,r+n`,`′

P to Aj+`,r+n`,A
P .

(ii) Let ϕ ∈ Aj+`,r+n`,[A]
P be a closed form such that ιP(ϕ′) = ϕ for some ϕ′ ∈ Cj,r,B|A

W .
Let π[B|A] be the projection from Cj,r,B|A

W to Cj,r,[B|A]
W . Then the cohomology class [ϕ]

satisfies

[ϕ] = [ιP(π[B|A](ϕ
′))].
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Proof. (i) We first observe that ιP is invariant under sB in the Tn`(W)-factor and also
s(B∗)-invariant in the Tn` (Cn)∗-factor, that is,

ιP = ιP ◦ (1U ⊗ 1Tn` (Cn)∗ ⊗ 1T`′ (Cn)∗
⊗ 1W ⊗ 1p∗W

⊗ sB ⊗ 1T`′ (W))

= ιP ◦ (1U ⊗ s(B∗)⊗ 1T`′ (Cn)∗
⊗ 1W ⊗ 1p∗W

⊗ 1Tn`(W) ⊗ 1T`′ (W)).

Taking the S`′-invariance into account, we see that ιP maps[
T j(U)⊗ SB(Cn)

∗
⊗ SA(Cn)

∗
⊗Wn,W ⊗

∧r
(p∗W)C ⊗ SB(WC)⊗ SA(WC)

]K′×KW
(6.10)

to Aj+2`,r+n`,A. But now we have the following lemma.

Lemma 6.16.[
T j(U)⊗ SB(Cn)

∗
⊗ SA(Cn)

∗
⊗Wn,W ⊗

∧r
(p∗W)⊗ SB(WC)⊗ SA(WC)

]K′×KW

= Cj,r,B|A
W . (6.11)

Proof. In (6.11), we first observe that SB(Cn)∗ ⊗ SA(Cn)∗ = SB|A(Cn)∗ as subspaces
of Tn`+`′(Cn); see Corollary 3.4. But then by Schur–Weyl theory (see Lemma 5.3 or
Remark 5.4), we can now replace SB(WC)⊗ SA(WC) with its subspace SB|A(WC) in (6.11),
that is, the left hand side in (6.11) is equal to Cj,r,B|A

W . �

From this we obtain Proposition 6.15(i). Proposition 6.15(ii) follows from
Proposition 6.3(iii) and Lemma 6.11. �

7. Special Schwartz forms

Again V will denote a real quadratic space of dimension m and signature (p, q).

7.1. Construction of the special Schwartz forms

We recall the construction in [11] of the special Schwartz forms ϕnq,`′ , ϕnq,λ, and ϕnq,[λ],
which define cocycles in C•,`

′

V , C•,λV , and C•,[λ]V respectively. It will be more convenient to
use the model C•V consisting of homomorphisms on T`

′

(Cn) (and its subspaces St(λ)(Cn));
see (5.5) and Remark 5.4. We will initially use the Schrödinger model S(Vn).

In [11], we construct for n 6 p a family of Schwartz forms ϕnq,`′ on Vn such that

ϕnq,`′ ∈ Cq,nq,`′

V . So

ϕnq,`′ ∈ [Hom(T`
′

(Cn),Tq(U)⊗ S(Vn)⊗Anq(D)⊗ T`
′

(VC))]
K′×G×S`′

' [Hom(T`
′

(Cn),Tq(U)⊗ S(Vn)⊗
∧nq

(p∗C)⊗ T`
′

(VC))]
K′×K×S`′

. (7.1)

These Schwartz forms are generalizations of the Schwartz forms considered by Kudla
and Millson [20–22]. Under the isomorphism in (7.1), the standard Gaussian ϕ0(x) =

1⊗ e−π tr (x,x)z0 ∈
[
T0(U)⊗ S(Vn)

]K′×K corresponds to

ϕ0(x, z)= 1⊗ e−π tr (x,x)z ∈ [T0(U)⊗ S(Vn)⊗ C∞(D)]
K′×G

.
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Definition 7.1. Let n 6 p. The form ϕnq,0 with trivial coefficients is given by applying
the operator

D =
1

2nq/2 A(uq
1)⊗

n∏
i=1

p+q∏
µ=p+1

[ p∑
α=1

(
xαi −

1
2π

∂

∂xαi

)
⊗ A(ωαµ)

]
to ϕ0:

ϕnq,0 =D(ϕ0) ∈ Cq,nq,0
V =

[
Tq(U)⊗ S(Vn)⊗

∧nq
(p∗C)

]K′×K
.

Here as before A(·) denotes left multiplication and u1 is the generator of U =
∧n
(Cn)∗.

Furthermore, Theorem 3.1 of [20] implies that ϕnq,0 is indeed K′-invariant.

For T(VC), we define another K-invariant differential operator D′i which acts on

S(Vn)⊗
∧•

(p∗C)⊗ T(VC) (7.2)

by

D′i =
1
2

p∑
α=1

(
xαi −

1
2π

∂

∂xαi

)
⊗ 1⊗ A(eα). (7.3)

Let I = (i1, . . . , i`′) ∈ {1, . . . , n}`
′

be a multi-index of length `′ and write

εI = εi1 ⊗ · · · ⊗ εi`′ (7.4)

for the corresponding standard basis element of T`
′

(Cn). Then for εI ∈ T`
′

(Cn), we define
an operator by

T`′(εI)=D′i1 ◦ · · · ◦D′i`′ (7.5)

extending T`′ linearly to T`
′

(Cn).

Definition 7.2. Define

ϕnq,`′ ∈ Cq,nq,`′

V =HomC
(

T`
′

(Cn),Tq(U)⊗ S(Vn)⊗
∧nq

(p∗C)⊗ T`
′

(VC)
)K′⊗K⊗S`′

by

ϕnq,`′(w)= T`′(w)ϕnq,0

for w ∈ T`
′

(Cn). We put ϕnq,`′ = 0 for `′ < 0. Here the S`′-invariance of ϕnq,`′ is shown in
Proposition 5.2 in [11], while the K′-invariance is Theorem 5.6 in [11].

Using the projections πt(λ) and π[t(λ)] (see (5.10) and (5.12)), we can therefore give the
following definitions.

Definition 7.3. For any standard filling t(λ) of D(λ), we define

ϕnq,t(λ) = πt(λ)ϕnq,`′ ∈ Cq,nq,λ
V ,

ϕnq,[t(λ)] = π[t(λ)]ϕnq,`′ ∈ Cq,nq,[λ]
V .
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We write ϕnq,λ and ϕnq,[λ] if we do not want to specify the standard filling.

Proposition 7.4 (Theorem 5.7 [11]). The form ϕnq,`′ is closed. That is, for w ∈ T`
′

(Cn)

and x ∈ Vn, the differential form

ϕnq,`′(w)(x) ∈
[
Anq

(
D;T`

′

(VC)
)]G

is closed.

7.2. Explicit formulas

We give more explicit formulas for ϕnq,`′ in the various models of the Weil
representation.

7.2.1. The Schrödinger model. We introduce multi-indices αi = (αi1, . . . , αiq) of
length q (typically) with 1 6 i 6 n and β = (β1, . . . , β`′) of length `′ (typically) with
values in {1, . . . , p} (typically). Note that we suppressed their length from the notation.
We also write α = (αij) for the n× q matrix of indices. With I as above, we then define

ωαi = ωαi1p+1 ∧ · · · ∧ ωαiqp+q (7.6)

ωα = ωα1 ∧ · · · ∧ ωαn

Hαi =Hαi1i ◦ · · · ◦Hαiqi,

Hα =Hα1 ◦ · · · ◦Hαn

Hβ,I =Hβ1i1 ◦ · · · ◦Hβ`′ i`′

eβ = eβ1 ⊗ · · · ⊗ eβ`′ .

Let 16 γ 6 p and 16 j6 n. For I, α, and β fixed, let

δγ j =#{k;αkj = γ } +#{k; (βk, ik)= (γ, j)}. (7.7)

This defines a p × n matrix ∆α,β,I = ∆α,β,I;+ and Schwartz functions ϕ∆α,β,I as in
Definition 4.4.

Lemma 7.5. The Schwartz form ϕnq,`′(εI) is given by

ϕnq,`′(εI)=
1

2nq/2+`′

∑
α,β

uq
1 ⊗ ϕ∆α,β,I ⊗ ωα ⊗ eβ .

Proof. With the above notation we have

ϕnq,`′(εI) =
1

2nq/2+`′

∑
α1,...,αn

β

uq
1 ⊗ ((Hα1 ◦ · · · ◦Hαn ◦Hβ,I)ϕ0)⊗ (ωα1 ∧ · · · ∧ ωαq)⊗ eβ

=
1

2nq/2+`′

∑
α,β

uq
1 ⊗ (Hα ◦Hβ,I)ϕ0 ⊗ ωα ⊗ eβ . (7.8)
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But now we easily see that

(Hα ◦Hβ,I)ϕ0(x)=

p∏
γ=1

n∏
j=1

H̃δγ,j(xγ j)ϕ0(x), (7.9)

which gives the assertion. �

7.2.2. The mixed model. We now describe the Schwartz form ϕnq,`′ in the mixed
model. We describe this in terms of the individual components ϕ∆α,β,I described in
the Schrödinger model. From Lemma 4.7, Lemma 4.8, and Proposition 4.9 we see the
following lemma.

Lemma 7.6.

ϕ̂V
∆α,β,I

 ξ

xW

u′

= ϕW
∆′α,β,I

(xW)ϕ̂
E
∆′′α,β,I

(ξ, u′).

Note that ϕW
∆′α,β,I

only depends on the indices αij, βj such that αij, βj > ` + 1, while ϕ̂E
∆′′α,β,I

only depends on the indices αij, βj such that αij, βj 6 `. In particular, if all αij, βj > `+ 1,
then

ϕ̂V
∆α,β,I

 ξ

xW

0

= ϕW
∆′α,β,I

(xW)ϕ
E
0 (ξ, 0).

On the other hand, if one of the αij, βj is less or equal to `, then

ϕ̂E
∆′′α,β,I

(0, 0)= ϕ̂V
∆α,β,I

 0

xW

0

= 0.

7.2.3. The Fock model. In the Fock model, ϕnq,`′ looks particularly simple. We have
the following lemma.

Lemma 7.7.

ϕnq,`′(εI)=
1

2nq/2+`′

(
1

2π i

)nq+`′ ∑
α1,...,αn

β

uq
1 ⊗ zα1,1 · · · zαn,n · zβ,I ⊗ (ωα1 ∧ · · · ∧ ωαq)⊗ eβ .

Here we use the notational conventions of (7.6) and in addition

zαj,j = zαj1j · · · zαjqj, zβ,I = zβ1i1 · · · zβ`′ i`′ . (7.10)

7.3. The forms ϕ0,k

We now define another class of special forms. We will only do this in the Fock model.
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Definition 7.8. We define ϕ0,k ∈Hom(Tk(Cn);T0(U)⊗ Fn,V ⊗ Tk(VC)) by

ϕ0,k(εI)=
1
2k

(
1

2π i

)k∑
β

1⊗ zβ,I ⊗ eβ . (7.11)

Remark 7.9. The element ϕ0,k is the image of the operator Tk (see (7.5)) applied to the
Gaussian ϕ0 under the intertwiner from the Schrödinger to the Fock model. Also note
that ϕ0,k is not closed, and hence they do not define cocycles.

We also leave the proof of the following lemma to the reader. It follows (in large part)
from Remark 7.9 and the corresponding properties of ϕnq,`′ .

Lemma 7.10.

ϕ0,k ∈ [T
0(U)⊗ Tk (Cn)

∗
⊗Fn,V ⊗ Tk(VC)]

K′×K×Sk
,

i.e.,

ϕ0,k ∈ C0,0,k
V .

From Lemma 7.7, we immediately see the following lemma.

Lemma 7.11.

ϕnq,`′ = ϕnq,0 · ϕ0,`′

and

ϕ0,k1 · ϕ0,k2 = ϕ0,k1+k2 ,

where the multiplication is the one in C•V .

Remark 7.12. This kind of product decomposition for ϕnq,`′ and ϕ0,k in Lemma 7.11
only holds in the Fock model. In the Schrödinger model this only makes sense in terms of
the operators D and T`′ of Definitions 7.1 and 7.2 respectively.

We apply the projection πt(λ) (see (5.10)) to define ϕ0,t(λ).

Definition 7.13.

ϕ0,t(λ) := πt(λ)ϕ0,k ∈ C0,0,t(λ)
V .

The following product formula will be important later.

Proposition 7.14. Let A = t(λ) be a filling of the Young diagram associated with λ and
let B= Bn,` be the filling of the n× ` rectangular Young diagram introduced in § 3. Then

ϕW
0,B · ϕ

W
0,A = ϕ

W
0,B|A.
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The proposition will follow from the next two lemmas.

Lemma 7.15. Both ϕW
0,B · ϕ

W
0,A and ϕW

0,B|A are elements of

C0,B|A,0
W = [T0(U)⊗ SB|A (Cn)

∗
⊗Fn,W ⊗ SB|A(WC)]

K′×KW
.

Proof. Since SB(Cn)∗ ⊗ SA(Cn)∗ = SB|A(Cn)∗ as subspaces of Tn`+`′(Cn) (see Corollary
3.4), the claim follows in the same way as Lemma 6.16. �

Lemma 7.16.

(ϕW
0,B · ϕ

W
0,A)(sBεB ⊗ sAεA)= ϕ

W
0,B|A(sBεB ⊗ sAεA).

Proof. This is a short calculation using Lemmas 3.3 and 7.11. Indeed, we have

(ϕW
0,B · ϕ

W
0,A)(sBεB ⊗ sAεA) = (ϕ

W
0,n` · ϕ

W
0,`′)(sBεB ⊗ sAεA)

= ϕW
0,n`+`′(sBεB ⊗ sAεA)= c(A,B)ϕW

0,n`+`′(sB|AεB|A)

= c(A,B)ϕW
0,B|A(sB|AεB|A)= ϕ

W
0,B|A (sBεB ⊗ sAεA) . �

Now we can prove Proposition 7.14. By Lemma 7.15 we see that ϕW
0,B · ϕ

W
0,A and ϕW

0,B|A

are U(n)-equivariant homomorphisms from SB|A(Cn)∗ to T0(U) ⊗ Fn,W ⊗ SB|A(WC). By
Lemma 7.16 they agree on the highest weight vector (see Lemma 3.3), and hence
coincide.

8. Local restriction

We retain the notation from the previous sections. In this section, we will give formulas
for the restrictions rW

P and rP of ϕnq,`′ . The main result will be then the local restriction
formula for ϕnq,[λ].

Proposition 8.1. We have

(rW
P ϕV

nq,`′)(εI)=
1

2nq/2+`′

∑
α′,β ′

uq
1 ⊗ ϕ

W
∆′
α′,β′,I
⊗ ωα′ ⊗ eβ ′ .

Here εI = εi1 ⊗ · · · ⊗ εi` ∈ T`(Cn), α′ and β ′ are the same indices as before with

`+ 16 α′ij, β
′
j 6 p.

Loosely speaking, rW
P (ϕV

nq,`′) is obtained from ϕV
nq,`′ by ‘throwing away’ all the indices less

than or equal to `. In particular, if n> p− `, we have

rW
P ϕV

nq,`′ = 0.

Proof. This follows from Lemma 7.5, the formula for ϕnq,` in the Schrödinger model,
and from Lemma 7.6. For the last statement, we observe that ωα′ is in the nq-exterior
power of a (p− `)q-dimensional space. �
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The local restriction looks particularly simple in the Fock model.

Proposition 8.2. Let α′j and β ′ be as before in Proposition 8.1. Then

rW
P (ϕV

nq,`′(εI))

=
1

2nq/2+`′

(
1

2π i

)nq+`′ ∑
α′1,...,α

′
n

β′

uq
1 ⊗ zα′1 · · · zα′n · zβ ′,I ⊗ (ωα′1 ∧ · · · ∧ ωα′q)⊗ eβ ′ .

Proof. This follows immediately either from Proposition 8.1 and applying the
intertwiner to the Fock model or from Proposition 4.12 and Lemma 7.7. �

Proposition 8.3. For the restriction of ϕV
nq,`′ , we have

rPϕ
V
nq,`′ = (1U ⊗ 1Cn ⊗ rW

P ⊗ σ
∗
⊗ 1V)ϕ

V
nq,`′ .

Analogous statements hold for ϕV
nq,λ and ϕV

nq,[λ].

Proof. By Definition 5.5, the restriction rP : C•V → A•P is given by 1U ⊗ 1Cn ⊗ rW
P ⊗

(ι∗ ◦ σ ∗) ⊗ 1V . Then the theorem follows from Proposition 8.2 and Lemma 2.5, and in
particular (2.42): the components of σ ∗ϕV

nq,`′ involving a∗ already become annihilated
under rW

P , so ι∗ acts trivially on σ ∗rW
P ϕV

nq,`′ . �

We define

ϕP,n` =
1

2n`

(
1

2π i

)n` ∑
γ1,...,γn

u`1 ⊗ zγ1,1 · · · zγn,n ⊗ (νγ1 ∧ · · · ∧ νγn). (8.1)

Here γj = (γjm−`+1, . . . , γjm) is a multi-index of length ` such that `+ 16 γji 6 p, and zγj,j

as in (7.10). Furthermore, we have set

νγj = νγjm−`+1` ∧ · · · ∧ νγjm1 ∈
∧`

(n∗W). (8.2)

We have the following lemma.

Lemma 8.4.

ιP(ϕ
W
0,B)= ιP(ϕ

W
0,n`)= (−1)n`(

(q−`)(n−1)
2 +1) ϕP,n`.

Proof. First note that by Proposition 6.15 we have ιP(ϕ
W
0,B) = ιP(ϕ

W
0,n`). We let

β1, . . . , βn be n indices of length ` with ` + 1 6 βji 6 p. For the corresponding elements
eβj ∈ T`(W), we easily see that∑
β1,...,βn

(zβ11 · · · zβnn)⊗ τn`(eβ1 ⊗ · · · ⊗ eβn)=
∑

β1,...,βn

(zβ11 · · · zβnn)⊗ (νβ1 ∧ · · · ∧ νβn) (8.3)
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with νβj as in (8.2). With that, we conclude

ιP(ϕ
W
0,B) = (−1)n`(

(q−`)(n−1)
2 +1) 1

2n`

(
1

2π i

)n` ∑
β1,...,βn

u`1 ⊗ (zβ11 · · · zβnn)⊗ (νβ1 ∧ · · · ∧ νβn)

= (−1)n`(
(q−`)(n−1)

2 +1) ϕP,n` (8.4)

by (8.1). �

We are now ready for the main result of this section, the local restriction formula for
ϕnq,[λ].

Theorem 8.5. Let A be a standard filling of the Young diagram with `′ boxes and let Bn,`

be the standard tableau associated with the n by ` rectangle as in § 3. Then

rP(ϕ
V
nq,`′) = ιP(ϕ

W
n(q−`),n`+`′),

rP(ϕ
V
nq,A) = ιP(ϕ

W
n(q−`),B|A).

Furthermore, for the form ϕV
nq,[A] with harmonic coefficients, we have

[rP(ϕ
V
nq,[A])] = [ιP(ϕ

W
n(q−`),[B|A])].

Proof. We first note that

rPϕ
V
nq,`′ = (−1)n`(

(q−`)(n−1)
2 +1) ϕW

n(q−`),0 · ϕP,n` · ϕ
W
0,`′ .

Here we view ϕW
n(q−`),0 ∈ Aq−`,n(q−`),0

P and ϕW
0,`′ ∈ A0,0,`′

P in the natural fashion. The
analogous statements hold for ϕV

nq,A and ϕV
nq,[A]. Indeed, this follows immediately from

Proposition 8.2 and

σ ∗ωα′j
= (−1)`

1
2`/2

ωα′j1p+1 ∧ · · · ∧ ωα′jq−`m−`
∧ να′jq−`+1`

∧ · · · ∧ να′jq1, (8.5)

which follows from Lemma 2.5. The sign arises from ‘sorting’ σ ∗(ωα′1 ∧ · · · ∧ ωα′q)
according to (8.5) into elements ωα′• (which lie in p∗W) and να′• (which lie in n∗W). From
this and Lemma 8.4 we conclude that

rP(ϕ
V
nq,`′)= ιP(ϕ

W
n(q−`),0 · ϕ

W
0,n` · ϕ

W
0,`′)= ιP(ϕ

W
n(q−`),n`+`′).

By S`′-equivariance of ιP we also obtain

rP(ϕ
V
nq,A)= ιP(ϕ

W
n(q−`),0 · ϕ

W
0,B · ϕ

W
0,A)= ϕ

W
n(q−`),B|A

since ϕW
0,B · ϕ

W
0,A = ϕ

W
0,B|A (see Proposition 7.14) and ϕW

n(q−`),B|A = ϕn(q−`),0 · ϕ
W
0,B|A (see

Lemma 7.11). The cohomology statement now follows from Proposition 6.15(ii). �

Corollary 8.6. We have [rP(ϕ
V
nq,[λ])] = 0 for n>min

(
p,
[m

2

])
−` (if `> 2) and n> p−1

or n> m− 2− i(λ) (if `= 1).

Proof. The Schur functor S[B|A](WC) vanishes in this range. �
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On the other hand, we have the following corollary.

Corollary 8.7. Let P be a (real) parabolic subgroup as above such that the associated
space W is positive definite. Assume that

i(λ)6 n6


[

p− q

2

]
if q> 2

p− 1− i(λ) if q= 1.

Then

[rP(ϕ
V
nq,[λ])] 6= 0.

9. Global complexes, theta series, and the global restriction

In this section, we return to the global situation and assume that V,W,E etc are
Q-vector spaces. Furthermore, P is a standard Q-parabolic subgroup and P = P0(R) for
its real points etc. All the ‘local’ notions (over R) of the previous sections carry over
naturally to this situation, and we make use of the already established notation.

Let L ⊂ V be an even Z-lattice of full rank, i.e., (x, x) ∈ 2Z for x ∈ L. In particular,
L ⊂ L#, the dual lattice. We fix h ∈ (L#)

n
once and for all and pick a congruence

subgroup Γ ⊂ G(Z) of finite index which stabilizes L := LV = Ln
+ h. The associated

locally symmetric space X = Γ \D is non-compact (since the Witt index of V is positive)
but has finite volume.

9.1. Global complexes and theta series

9.1.1. Global complexes. We first define ‘global’ versions of the ‘local’ complexes C•

of forms on X = Γ \D, and A•P of forms on e′(P)= ΓP\e(P). We set

C∞(Γ ′, j, λ) := C∞
(
Γ ′\G′;T j(U)⊗ Sλ(Cn)

∗
)K′ (9.1)

for Γ ′ an (appropriate) arithmetic subgroup of Sp(n,Z). Note that we can identify
C∞(Γ ′, j, λ) in the usual way with the space of vector-valued C∞-functions on the
Siegel upper half-space of genus n, transforming like a Siegel modular form of type
detj/2

⊗ Sλ(Cn). Furthermore, we denote by Mod(Γ ′, j, λ) the space of holomorphic Siegel
modular forms of this type. We let

C̃j,r,λ
V = C∞(Γ ′, j, λ)⊗ [Ar(D)⊗ Sλ(VC)]

Γ
,

' C∞(Γ ′, j, λ)⊗
[∧r

(p∗C)⊗ Sλ(VC)⊗ C∞(Γ \G)
]K

(9.2)

and

Ãj,r,λ
P = C∞(Γ ′, j, λ)⊗

[
Ar(e′(P))⊗ Sλ(VC)

]ΓP

' C∞(Γ ′, j, λ)⊗
[∧r

(n⊕ pM)
∗
C⊗Sλ(VC)⊗ C∞(ΓP\P)

]KP
. (9.3)
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We then define C̃j,r,[λ]
V and Ãj,r,[λ]

P as in the local case by harmonic projection onto
S[λ](VC). The local map ιP induces a global intertwining map of complexes

ι̃P : C̃
j−`,r,`$n+λ
W → Ãj,n`+r,λ

P . (9.4)

by lifting functions on ΓW\SO0(WR) to ΓM\M. This induces a map on the cohomology

ι̃P : C
∞(Γ ′, j, λ)⊗ Hn(q−`)(XW ,S[`$n+λ](WC))

↪→ C∞(Γ ′, j, λ)⊗ Hn(q−`)(XM,Hn`(n,S[λ](VC))) (9.5)

↪→ C∞(Γ ′, j, λ)⊗ Hnq(e′(P),S[λ](VC)).

We also introduce

C
j,r,λ
V = C∞

(
Γ ′\G′;T j(U)⊗ Sλ(Cn)

∗
)K′
⊗Ar(X,Sλ(VC)), (9.6)

the complex associated with the differential forms on the compactification X with values
in Sλ(VC), the local system associated with Sλ(VC). We then have a restriction map

r̃P : C
•

V → Ã•P (9.7)

induced by the inclusion e′(P) ↪→ X.

9.1.2. The theta series. Using the Schrödinger model S(Vn
R) of the Weil

representation, we now introduce for ϕ ∈ Cj,r,λ
V its theta series θ(ϕ) as follows. For

g′ ∈ G′, we then define for z ∈ D the theta series

θLV (g
′, z, ϕ)=

∑
x∈LV

ω(g′)ϕ(x, z). (9.8)

We easily see that the series is Γ -invariant as Γ stabilizes LV . Thus θLV descends to a
closed differential nq-form on the locally symmetric space X = Γ \D. More precisely, by
the standard theta machinery, we have

θLV (ϕ) ∈ C̃j,r,λ
V (9.9)

for some congruence subgroup Γ ′ ⊆ Sp(n,Z). Summarizing, the theta distribution θLV

associated with L gives rise to a G′ × G intertwining map of complexes

θLV : C
•
V −→ C̃•V . (9.10)

Remark 9.1. The main point of [11] is that for the Schwartz forms ϕnq,[λ] one has

[θLV (ϕnq,[λ])] ∈Mod(Γ ′, j, λ)⊗ Hnq(X,Sλ(VC)),

and the Fourier coefficients are Poincaré dual classes of special cycles with non-trivial
local coefficients.

For a similar theta intertwiner for AP, we note that AP involves the Weil
representation for W = E⊥/E. Recall (see Proposition 4.2 and Definition 4.3) that we
can extend the action of O(WR) on S(Wn

R) to P such that the Weil representation
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intertwining map rW
P becomes an MN-intertwiner. In particular, N and M′P act trivially

on S(Wn
R). We let LW be a linear combination of delta functions of (cosets of) lattices in

Wn, which is stabilized by ΓP, that is, by ΓW . Recall that we defined ΓW as the image of
ΓP when acting on E⊥/E. It contains Γ ∩ SO0(WR) as a finite subgroup of finite index.
Applying the theta distribution associated with LW we obtain an intertwining map

θLW : A
•
P→ Ã•P. (9.11)

Furthermore, θLW commutes with ιP:

θLW ◦ ιP = ι̃P ◦ θLW . (9.12)

More general, we let

A•,LW ,ΓW
P = {ϕ ∈ A•P; θLW (ϕ) is ΓW -invariant}. (9.13)

and obtain a map θLW : A
•,LW ,ΓW
P → Ã•P as before.

We will be interested in a particular LW , which naturally arises from LV as follows.
Let πE : E⊥→ E⊥/E be the natural projection map. We then set

L̂W := πE(LV ∩ E⊥). (9.14)

For this definition, it is crucial to view W = E⊥/E as a subquotient of V and not as the
subspace E⊥ ∩ (E′)⊥ of V. Namely, L̂W is in general larger than W ∩ Ln, which can be
empty even when L̂W is not.

Remark 9.2. The notation of L̂W becomes more transparent if one changes to the
adelic setting. Adelically, L corresponds to the characteristic function χLV of the
image of LV inside V(Af ), where Af denotes the finite adeles. Then in this setting,
L̂W corresponds to the partial Fourier transform of χLV with respect to E(Af ) when
restricted to W. From this perspective, the assignment L→ L̂W is the analogue at the
finite places of the local restriction map rP at the infinite place.

9.2. The global restriction

9.2.1. Smooth forms on smooth manifolds with corners. We begin with a short
discussion of the definition of a smooth `-form on a smooth n-manifold with corners M.
For more on smooth manifolds with corners we refer the reader to the Appendix of [5]
or [24], pp. 363–370. First, for any point x ∈M the tangent space Tx(M) is a linear space
of dimension n. A differential `-form ω will be a section of

∧`
(T∗(M)). To say when

an `-form ω is smooth on M it suffices to define smooth `-forms on the local models
Sn

k = Rk
>0 × Rn−k.

Definition 9.3. An `-form ω on Rk
>0×Rn−k is smooth if there exists ε > 0 and a smooth

form ω̃ on Rk
>−ε × Rn−k

⊃ Rk
>0 × Rn−k such that ω̃ restricts to ω.

For our purposes we need only two classes of smooth forms. Recall from the appendix
of [5] that a point x in a neighbourhood U that maps by a chart ϕ to the local model Sn

k
above with ϕ(x) = 0 is said to have index k. The set of points of index greater than or
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equal to k is denoted as M(k). The subset M(0) is said to be the interior of M, the set M(1)

is said to be the boundary of M. The first class of smooth `-forms on M is obtained by
extending by zero from M(0) to M the smooth `-forms on M(0) whose coefficients relative
to one and hence any system of coordinates vanish to infinite order on M(1). The second
class of smooth `-forms on M will consist of the special forms. We define an `-form ω in
a local model Sn

k to be special if there exists an `-form ω on Rn−k such that ω = p∗2ω,
where p2 : Sn

k → Rn−k is the projection on the second factor. We now claim that ω special
implies that it is smooth. Indeed if we let q2 : Rk

× Rn−k
→ Rn−k, then ω̃ := q∗2ω provides

the desired extension of ω.

Remark 9.4. This definition of special forms for general smooth manifolds with corners
in less restrictive than the definition in [16], Definition 13.2, p. 169, for the case of
Borel–Serre compactifications. In this latter definition the form ω is required to have
further properties (e.g. local left NP-invariance) that use the special features of the
Borel–Serre compactification.

9.2.2. The restriction formula. We now prove the following theorem.

Theorem 9.5. Assume that V is different from the Q-split space for signature (p, p).
Then (see Remark 9.8 below) the theta series θLV (ϕnq,`′), θLV (ϕnq,λ), θLV (ϕnq,[λ]) extend
to smooth forms on the smooth manifold with corners X.

Moreover, for a standard rational parabolic P, the restrictions r̃P to the corresponding
boundary component e′(P) of the three series above are given by

r̃P
(
θLV (ϕnq,•)

)
= θL̂W

(rPϕnq,•).

Remark 9.6. The statement of the theorem is not correct for the Q-split case for
signature (p, p). In that case, one has to replace the Borel–Serre compactification for
SO(p, p) by the big Borel–Serre compactification, as we explain in the final section. With
this modification the theorem holds again as stated above.

Combining Theorem 9.5 with Theorem 8.5, we obtain the following corollary.

Corollary 9.7.

r̃P(θLV (ϕ
V
nq,`′))= ι̃P(θL̂W

(ϕW
n(q−`),n`+`′)), r̃P(θLV (ϕ

V
nq,λ]))= ι̃P(θL̂W

(ϕW
n(q−`),`ϕn+λ

)),

and

[r̃P(θLV (ϕ
V
nq,[λ]))] = [̃ιP(θL̂W

(ϕW
n(q−`),[`ϕn+λ]

))].

Remark 9.8. (i) The proof of Theorem 9.5 also shows that θLV (ϕ
V
nq,[λ]) is ‘essentially’

a special differential form in the sense of weighted cohomology; see [16]. Namely,
r̃P(θLV (ϕ

V
nq,[λ])) is NP-invariant and while θLV (ϕ

V
nq,[λ]) restricted to a neighbourhood

of e′(P) in X is not the pullback by the geodesic retraction of its restriction, the
difference of θLV (ϕ

V
nq,[λ]) and this pullback has a ‘square-exponential’ decrease in the
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coordinates ti on AP. In fact, one can distil out of our proof an explicit asymptotic
expansion for θLV (ϕ

V
nq,[λ]). In particular, θLV (ϕ

V
nq,[λ]) extends to a smooth form on the

smooth manifold with corners X.
Moreover, the torus AP acts on the differential forms in (9.20) with weight

ηn := α
−n
1 α−2n

2 · · ·α−rn
r

(written multiplicatively). Hence (up to the exponentially decreasing part) the
forms θLV (ϕ

V
nq,[λ]) represent weighted cohomology classes with weight profile ηn

(independent of the coefficient system).
(ii) The restriction of ρ, the half-sum of the (complex) positive roots, to the standard

minimal parabolic is given by
r∏

j=1

α
j(p+q−j−1)/2
j .

Comparing this with ηn above we easily conclude that the forms θLV (ϕ
V
nq,[λ]) are

L2 if p + q − r > 2n + 1 (since the volume form for the symmetric space D can be
expressed in terms of ρ).

(iii) Finally, the proof shows that θLV (ϕ
V
nq,`′) is exponentially decreasing in the direction

of e′(P) if n> p− `. In particular, θLV (ϕ
V
nq,`′) is exponentially decreasing for n= p.

Proof of Theorem 9.5. It suffices to consider ϕV
nq,`′ . For g ∈ G and g′ ∈ G′, we let

θV
α,β,I(g

′, g)=
∑

x∈Ln+h

ωV(g
′)ϕV

∆α,β,I
(g−1x)⊗ g∗ωα ⊗ geβ (9.15)

be the theta series associated with one fixed component of ϕV
nq,`′ . For the purposes of

studying the restriction to e′(P), we can assume that g′ = 1 (since it intertwines with
the restriction) and also g = a(t) ∈ A (since g varies in a Siegel set and by Lemma 4.1).
It also suffices to assume

LV =
(
Ln

E + hE
)
⊕
(
Ln

W + hw
)
⊕
(
Ln

E′ + hE′
)

with LE,LW ,LE′ lattices in E,W,E′ respectively.

Lemma 9.9. Let a(t) ∈ A. Then

θV
α,β,I(a(t)) = det (LE)

−n
∑

xW∈Ln
W+hW

∑
ξ∈(L

#
E )

n

u′∈Ln
E′
+hE′

e (2π i(ξ, hE))

× |t |n ϕ̂E
∆′′α,β,I

(̃t(ξ t
+ u′), t̃u′)ϕW

∆′α,β,I
(xW)⊗ a (t)∗ σ ∗ωα ⊗ a(t)eβ .

Proof. This follows directly from Lemma 4.1 and Poisson summation. �

Lemma 9.10. Assume that at least one of the αkj and βk is less than or equal to `. Then

rPθ
V
α,β,I = 0.
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Proof. By the hypothesis we have W 6= 0 for all parabolics P. Then W ⊗ Rui ⊂ n is a
weight space for the action of AP with weight ti. So in particular, for a(t) ∈ AP, we have
that all components ti→∞ as we approach e′(P). Hence by Lemma 9.9 we clearly see
that each term in θV

α,β,I(a(t)) is rapidly decreasing as ti→∞ for P unless both ξ = u= 0.
But by Lemma 7.6, we have

ϕ̂E
∆′′α,β,I

(0, 0)= ϕ̂V
∆α,β,I

 0

xW

0

= 0. � (9.16)

Now for the remainder of the proof of Theorem 9.5, assume that

αkj, βk > `+ 1. (9.17)

Again, each term in Lemma 9.9 is rapidly decreasing unless ξ = u = 0. So it suffices to
consider

̂a(t)ϕV
∆α,β,I

 0

xW

0

= |t|ϕW
∆′α,β,I

(xW)⊗ a (t)∗ σ ∗ωα ⊗ a(t)eβ . (9.18)

Now a(t)eβ = eβ by (9.17). We have

σ ∗ωαj =
(−1)`

2`/2
ωαj1p+1 ∧ · · · ∧ ωαjq−`m−` ∧ ναjq−`+1` ∧ · · · ∧ ναjq1, (9.19)

and A acts trivially on the ω•, while for the ν• we have a (t)∗ νji =
dbji
ti

, where 1 6 i 6 `
and `+16 j6 m−`. Here bji is the coordinate of W⊗E for ej⊗ui and ti is the parameter
in a(t1, . . . , ti, . . . , t`) ∈ A. We obtain

|t|a (t)∗ σ ∗ωα =
(−1)n`

2n`/2 |t|ωα1 1p+1 ∧ · · · ∧ ωαq−` 1m−` ∧
dbαq−`+1 1`

t`
∧ · · · ∧

dbαq 11

t1

∧ · · · ∧ ωα1 np+1 ∧ · · · ∧ ωαq−` nm−` ∧
dbαq−`+1 n`

t`
∧ · · · ∧

dbαq n1

t1

=
(−1)n`

2n`/2 ωα1 1p+1 ∧ · · · ∧ ωαq−` 1m−` ∧ dbαq−`+1 1` ∧ · · · ∧ dbαq 11

∧ · · · ∧ ωα1 np+1 ∧ · · · ∧ ωαq−` nm−` ∧ dbαq−`+1 n` ∧ · · · ∧ dbαq n1. (9.20)

This shows that for (9.18) we have

̂a(t)ϕV
∆α,β,I

 0

xW

0

= rPϕ
V
∆α,β,I

(xW) (9.21)

independently of t. This completes the proof of Theorem 9.5. �
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9.3. Non-vanishing

We now prove Theorem 1.3.
By the hypotheses we can find a rational parabolic P such that dim E = `= q, so W is

positive definite and XW is a point. Then by Theorem 9.5,

[r̃PθLV (τ, ϕ
V
q,[λ])] = ι̃P[θL̂W

(τ, ϕW
0,[`$n+λ]

)]

∈ Mod(Γ ′,m/2, λ)⊗ ι̃P(H0(XW ,S[`$n+λ](WC)))

' Mod(Γ ′,m/2, λ)⊗ τnq,`′
(
S[`$n+λ](WC)

)
' Mod(Γ ′,m/2, λ)⊗ S[`$n+λ](WC). (9.22)

So in this case ι̃P is an embedding. Hence the restriction to e′(P) vanishes if and only if
the positive definite theta series θL̂W

(τ, ϕW
0,[`$n+λ]

) vanishes. Furthermore, the restriction
of the class [θLV (τ, ϕ

V
q,[λ])] cannot arise from an invariant form on D, since in that case

one would need to obtain the trivial representation in the coefficients.
To obtain the non-vanishing, we first observe the following lemma.

Lemma 9.11. Given ϕW
0,[`$n+λ]

as above, then there exists a coset of a lattice LW which
we can take to be contained in L̂W such that

θLW (τ, ϕ
W
0,[`$n+λ]

) 6= 0.

Proof. We give a very simple argument which we learned from E. Freitag and
R. Schulze-Pillot. We can assume that V = Qm with the standard inner product. First
find a vector h ∈ 1

N1
(Zm)n with N1 ∈ Z such that ϕW

0,[`$n+λ]
(h) 6= 0. Then pick a lattice

L = N1N2Zm such that ‖
∑

x∈Ln ϕW
0,[`$n+λ]

(x)‖ < ‖ϕW
0,[`$n+λ]

(h)‖. Such a N2 ∈ Z exists as
ϕW

0,[`$n+λ]
is a Schwartz function. Then the theta series associated with ϕW

0,[`$n+λ]
for

LW = Ln
+ h does not vanish. �

From the above, we now can find a L′V contained in LV such that L̂′W = LW with
θLW (τ, ϕ

W
0,[`$n+λ]

) 6= 0. Replace Γ with Γ ∩ Stab L′. Then [r̃PθLV (τ, ϕ
V
q,[λ])] 6= 0. This

proves Theorem 1.3.
One feature of our method for establishing non-vanishing is that we retain some

control over the cover X′, since this reduces to the very concrete question of the
non-vanishing of positive definite theta series. An easy example for this is the following.

Example 9.12. Consider the integral quadratic form given by

y1y′1 + · · · + yqy′q + 2x2
1 + · · · + 2x2

k

with yi, y′i, xj ∈ Z. So L = Zm with m = 2q + k. Assume that k > q. Note that L#
⊂

1
4Zm.

We let Γ be the subgroup in Stab(L) which stabilizes L#/L. Then

Hq(Γ,Z) 6= 0.

Using our method, this follows from the non-vanishing of the theta series∑
x∈Zk+(

1
4 ,...,

1
4 )

x1 · · · xqe4π i(
∑

x2i )τ .
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9.4. An L2-vanishing result for non-trivial coefficients

We now prove Theorem 1.5, that is, that our L2-non-vanishing result for our theta series
is sharp. The proof consists of two parts, the first an L2-cohomology argument, the
second a (g,K)-cohomology argument.

Assume that k < i(λ)q, and let [η] ∈ Hk (X′,S[λ](VC))
(2) be a non-zero element

represented by a closed square integrable differential k form η. Assume that η is not
exact in the L2-complex. We claim that then the harmonic projection of H(η) of η is
non-zero. To prove this it suffices to show that the L2-cohomology groups of degree
k < i(λ)q are finite dimensional since such a result of finite dimensionality implies the
existence of the usual (i.e., without taking closures in L2) Hodge decomposition. To this
end, note that unless p and q are both odd, then G and K have the same rank over
C and the L2-cohomology groups of all degrees are finite dimensional by the results of
[3]. In the exceptional case in which both p and q are odd we apply [6], Chapter III,
Theorem 5.1, to deduce that with the exception of the two groups of degrees the two
middle dimensions [ pq−1

2 ], [
pq+1

2 ], the L2-cohomology groups are finite dimensional. But
by the hypotheses we have k < i(λ)q < [p/2]q, so we are below the middle dimensions.
Consequently, the usual Hodge decomposition holds, and the harmonic projection H(η)
of a non-zero square integrable non-exact closed form η of degree k is a non-zero
square integrable harmonic form. We find, then, that the pullback of H(η) from X to
Γ \G would generate a copy of a Vogan–Zuckerman representation Aq(λ̃), occurring in
L2 (Γ \G)d. But, by a straightforward argument extending that of ğ 2 in [28], one shows
that if λ satisfies 0 < i(λ) < [p/2], then for any Aq(λ̃) we have Hk(g,K,Aq(λ̃)) = 0 for all
k < i(λ)q.

10. The big Borel–Serre compactification for rational SO(p, p)

In this section, V is always a Q-split rational quadratic space of signature (p, p) with
Witt basis u1, . . . , up−1, up, u′p, u′p−1, . . . , u′1.

We will show that our main Theorem 9.5 remains true for the case of rational SO(p, p)
but only if we replace the Borel–Serre compactification associated with the usual Tits
building of type Dp of (rational) parabolic subgroups of SO(p, p) by the ‘big Borel–Serre
compactification’ of type Bp which will be described below. For this we have to change
the underlying root system from type Dp to type Bp by adding reflections (and great
subspheres in the Tits building). In terms of groups this is achieved by switching from
SO(p, p) to the full orthogonal group O(p, p) (or equivalently, to SO(p+ 1, p)).

Of course since both compactifications are compactifications of the same locally
symmetric space, the two boundaries assigned will be the same as topological spaces
but their structures as manifolds with corners will be different.

The main issue for us is that the parabolic subgroups of SO(p, p) do not correspond
bijectively to isotropic flags, but rather to oriflammes; see Lemma 2.3.

By switching to the root system Bp, i.e., considering O(p, p) or SO(p + 1, p), we do
obtain a bijection between parabolics and isotropic flags. This is the crucial aspect in
constructing the big Borel–Serre compactification.
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We first define the big Borel–Serre compactification extrinsically by embedding
the locally symmetric space Xp,p = Γp,p\Dp,p for SO(p, p) into a suitably constructed
space Xp+1,p = Γp+1,p\Dp+1,p for signature (p + 1, p) and then considering the closure
of Xp,p inside the Borel–Serre compactification Xp+1,p. The intrinsic big Borel–Serre
compactification uses the Tits building for parabolic subgroups for the full orthogonal
group O(p, p).

The extension of θ(ϕnp,[λ]) is most easily established by pulling back the usual
Borel–Serre compactification and restriction formulas for (p + 1, p) using the extrinsic
definition. We proceed to give the intrinsic definition and compare the two
constructions. It is then most instructive to compare the usual and the big Borel–Serre
compactification. Finally, we consider the case of signature (2, 2) in more detail.

10.1. The extrinsic big Borel–Serre compactification

We set Ṽ = V ⊥ Qv with (v, v) = 1. Hence Ṽ has signature (p + 1, p). We rearrange
coordinates such that v becomes the (p + 1) st standard basis vector ep+1. We write
`p+1 = Qep+1 for the line spanned by ep+1. The natural inclusion V ↪→ Ṽ defines the
inclusion jp+1 :O(p, p)→O(p+ 1, p). We will often identify O(p, p) with its image under
jp+1. The inclusion jp+1 induces an inclusion (also denoted as jp+1) of the symmetric
spaces Dp,p ↪→ Dp+1,p. We let Γp+1,p denote a congruence subgroup in SO(Ṽ) stabilizing
L̃= L⊕ Zv chosen such that it is torsion-free and

Γp,p =O(p, p) ∩ Γp+1,p.

We may assume, for example if Γp+1,p is neat (the intersection of the subgroup of C∗
generated by the elements of Γp+1,p with the roots of unity is {1}), that this intersection
is contained in SO(p, p). Let σ ∈ SO(Ṽ) be the rational element, that is −1 on V and 1
on `p+1. Then Dp,p is the fixed point set of σ acting on Dp+1,p, that is,

jp+1Dp,p = Dσp+1,p.

The inclusion of symmetric spaces induces a map (again denoted as jp+1) of locally
symmetric spaces jp+1 : Xp,p→ Xp+1,p. Assume now that Γp+1,p is torsion-free. Then it
follows from a well-known argument using σ (the ‘Jaffe Lemma’, Lemma 2.1 of [26]) that
jp+1 induces an embedding of Xp,p into Xp+1,p.

Definition 10.1 (The extrinsic big Borel–Serre compactification). Assume that Γp,p is
torsion-free. The big Borel–Serre compactification Xp,p is the closure of Xp,p in Xp+1,p.
We note that the inclusion jp+1 induces an embedding jp+1 : Xp,p→ Xp+1,p.

We will discuss the properties of the extrinsic big Borel–Serre compactification later in
detail. At this point we can already give a quick proof that our theta series extends to
the big compactification of Xp,p.

Theorem 10.2. The forms θ(ϕnp,[λ]) on Xp,p extend to the big Borel–Serre
compactification Xp,p.
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Proof. Let ϕ̃np,[λ] be the special np-cocycle for SO(p + 1, p) and ϕnp,[λ] be that for
SO(p, p). Note that from the explicit formulas for ϕ̃np,[λ] and ϕnp,[λ] we have

j∗p+1ϕ̃np,[λ] = ϕnp,[λ]ϕ
`p+1
0 . (10.1)

Here ϕ
`p+1
0 is the Gaussian associated with the one-dimensional positive definite

subspace `p+1. Since the lattice splits, we obtain a corresponding restriction formula

j∗p+1θ(ϕ̃np,[λ])= θ(ϕnp,[λ])θ(ϕ
`p+1
0 ) (10.2)

on the level of theta functions. Note that θ(ϕ`p+1
0 ) is constant on Xp,p, so the product

of the two factors on the right of (10.2) extends to the big Borel–Serre boundary if and
only if the first factor extends. Now we have seen above that θ(ϕ̃np,[λ]) extends over the
Borel–Serre boundary of Xp+1,p. The lemma then follows on considering the following
commutative diagram (starting with θ(ϕ̃np) in the lower left hand corner).

A•(Xp+1,p)
j
∗

p+1
−−−−→ A•(Xp,p)y y

A•(Xp+1,p)
j∗p+1
−−−−→ A•(Xp,p)

�

Remark 10.3. We are required so far to assume that the lattice Γp+1,p, and hence
Γp,p, is torsion-free. However, after we have given the intrinsic description of our
compactification, and hence we know that this intrinsic construction produces a
compactification for the quotient of D by a normal torsion-free subgroup Γ ′ of
Γ ⊂ SO(p, p), then the extension and the restriction formula will hold for the quotient
by the larger lattice Γ because it is invariantly defined. We leave the details to the
reader.

10.2. The intrinsic description of the new compactification

We now give an intrinsic description of the big Borel–Serre compactification, that is, it
does not use the embedding jp+1.

In what follows if G is any reductive group we will use P(G) to denote the set of
parabolic subgroups of G.

There are four key ingredients of a Borel–Serre compactification; see [4], III.9 (and
ğ 2.4 above).

(1) The Tits building B(G) (or rather its quotient by the arithmetic group Γ ⊂ G under
consideration).

(2) For each rational parabolic P of G there is the split torus AP which is the connected
component of the identity of the centre of P/N.

(3) For each rational parabolic subgroup P there is the associated ‘Borel–Serre face’
e(P) := P/APKP. Here KP = P ∩ K is as before the subgroup of P that stabilizes the
base point z0 of the associated symmetric space.
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(4) The set Φ(P,AP) of restrictions of the set of positive roots to AP, which governs
the topology around the boundary faces, and in particular, convergence to a point
in the boundary. The reader will note that the definition of convergence will not
be changed if the elements of Φ(P,AP) are replaced by positive scalar multiples.
Furthermore, one obtains the same set of convergent sequences if in the rule of
[4], p. 328, one replaces Φ(P,AP) by ∆(P,AP), the set restrictions to AP of the
simple roots in the root system associated with the maximal torus AP0 for a chosen
minimal parabolic P0.

Definition 10.4 (The intrinsic big Borel–Serre compactification). The intrinsic big
Borel–Serre compactification Xp,p is obtained by applying the ‘uniform construction
of Borel and Ji’ ([4], ğ III.9) to the Tits building B(O(p, p)) for the full orthogonal group
together with the root system Bp.

The term ‘intrinsic compactification’ is a bit premature since one still needs to show
that the construction really gives a compact space. At this point it is only a formal
procedure. Moreover, it is a priori not clear that we can freely change the root system
from Dp to Bp. Only once we have established the equivalence to the extrinsic description
will this be justified. Note however, that the full orthogonal group O(p, p) gives rise to
the same symmetric space as SO(p, p).

We now describe some of the features of the new construction.

10.2.1. The new building B(O(p, p)) and the map of parabolic subgroups. Recall
that we defined the standard totally isotropic subspaces Ek = span(u1, . . . , uk) in V and
the spaces E+ = Ep = span(u1, . . . , up−1, up) and E− = span(u1, . . . up−1, u′p).

We first note (see e.g. [1, 14]) the following lemma.

Lemma 10.5. The (standard) parabolic subgroups of O(p, p) are the stabilizers of the
(standard) isotropic flags (in Ep), and every isotropic flag determines a parabolic.
Thus the associated Tits building B(O(p, p)) is the spherical building associated with
the partially ordered set of isotropic flags in V and the parabolic subgroups of O(p, p) are
the stabilizers of the faces of the building.

Example 10.6. We illustrate this fundamental difference from the special orthogonal
group SO(p, p). Let P⊂O(p, p) be the stabilizer of the isotropic subspace Ep−1. Then

P=


g c2 c3 . . .

0 h . . .

0 0 g∗




with g ∈GLp−1(R), h ∈O(1, 1), ci ∈ Rp−1 (column vectors) and g∗ as in (2.14). Note that

O(1, 1)= SO(1, 1) ∪ wSO(1, 1) and SO(1, 1)=
{(

b
b−1

)}
. Here w=

(
0 1
1 0

)
. Hence P is

a maximal parabolic subgroup of O(p, p).
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Now consider P′ = P ∩ SO(p, p), the stabilizer of Ep−1 in SO(p, p). Now we have

P′ =




g c2 c3 . . .

0 b 0 . . .

0 0 b−1 . . .

0 0 0 g∗


 .

Thus P′ is strictly contained in the stabilizer of both isotropic p-planes E+ and E−.
Hence is not a maximal parabolic and we can associate P′ with two isotropic flags,
namely (Ek−1,E+) and (Ek−1,E−), i.e., the oriflamme (E+,E−).

The situation in general is as follows.

Definition 10.7. We say an isotropic flag F in V is bad if an isotropic subspace of
dimension p − 1 occurs in F. We say a parabolic in O(p, p) is bad if it stabilizes a bad
flag. Otherwise we call F and PF good.

We then have the following lemma.

Lemma 10.8. Let P ⊂ O(p, p) be a parabolic subgroup stabilizing the flag F. Set
P′ = P ∩ SO(p, p).

(i) Assume that P is good. Then P′ is the stabilizer of the flag F(see also
Lemma 2.3(2)).

(ii) Assume that P is bad, stabilizing a flag F1 ⊂ · · ·Fk ⊂ Fp−1(⊂ Fp) with dim Fp−1 =

p − 1 and dim Fp = p. ( Fp might or might not be there). Let Fp,1,Fp,2 be as in
Lemma 2.3 (3). Then P′ is the stabilizer of the oriflamme (F1, . . . ,Fk,Fp,1,Fp,2).

We now describe how each top dimensional simplex of the Tits building B(SO(p, p))
of type Dp will be bisected to obtain B(O(p, p)). Each spherical chamber (a top
dimensional, i.e. p − 1-dimensional, simplex) contains a distinguished edge e (the edge
joining the two vertices corresponding to highest dimensional isotropic subspaces). Let
f be the p − 3 face that is opposite to e. Hence the chamber is the join e ∗ f . Let b
be the barycentre of e. Then we bisect each spherical chamber by the codimension 1
interior simplex b ∗ f . We make a choice of one of the two halves of the original spherical
fundamental chamber ∆Dp = ∆

′ and call it the fundamental spherical chamber ∆Bp = ∆

of B(O(p, p)). The resulting non-thick building is the building of type Bp on which the
big Borel–Serre compactification will be modelled. Note that if F is a face of B(O(p, p)),
then there will be a unique face F′ of B(SO(p, p)) such that the interior F0 is contained
in F′.

Since the parabolic subgroups are exactly the subgroups that fix faces of the buildings,
the map F 7→ F′ induces a map P(O(p, p))→ P(SO(p, p)) of parabolic subgroups. In
fact, it is exactly the assignment P 7→ P′ = P ∩ SO(p, p) in Lemma 10.8. For good flags
the claim is obvious, since in that case by definition P′ is the subgroup of SO(p, p)
that fixes the same face F. Thus the only difficulty is when the face F corresponds to
a bad flag. In this case the face F fixed by the original parabolic P has dimension 1
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less than F(F). But in this case F0 is contained in the interior of F′ and if g ∈ SO(p, p)
fixes an interior point to the face F′, then it fixes all of F′. The claim follows. Note that
F 7→ F′ is a bijection on faces of dimension less than or equal to p−1, but it is two-to-one
on top faces.

10.2.2. The new split central split torus AP. We define the subtorus AP of AP0 to
be the centre of L = P ∩ Pθ0 where θ0 is the Cartan involution corresponding to our
chosen base point z0. Note that we cannot define it as the annihilator of an appropriate
subset I of the simple roots of SO(p, p). However we can define it as the annihilator of
an appropriate subset I of the simple roots of the new root system of type Bp; see below,
in particular Lemma 10.18. These roots are defined intrinsically only up to positive
multiples but this is enough to unambiguously define AP. We will denote the new torus
by AP.

10.2.3. The new face e(P). Given AP, we define the associated face e(P) of the
Borel–Serre enlargement by e(P) = P/APKP. Hence the cells e(P) are assembled using
the simplicial complex associated with the partially ordered set of isotropic flags in V.
The point is that the split torus AP can be strictly smaller for certain parabolics in
the new compactification (because P and its Levi subgroup L will have extra connected
components causing its centre to be smaller; see Example 10.6) and consequently the
face e(P) will be strictly larger. In Theorem 10.11 we will record this in detail.

10.2.4. The new system of roots of type Bp and the set Φ(P,AP). There is
a subset of the positive roots restricted to AP to be denoted as Φ(P,AP) and the
corresponding system of simple roots restricted to AP to be denoted as ∆(P,AP). This
is the most complicated change to describe intrinsically. We define the Weyl group W of
the maximal torus AP0 as usual as the normalizer in O(p, p). But now the element

w=


Ip−1

0 1

1 0

Ip−1


is in W. Hence the Weyl group for O(p, p) is strictly larger than the one for SO(p, p).
In fact, with this additional reflection (which interchanges up and u′p) one obtains the
Weyl group for the root system Bp. While this does not define directly the new roots
it defines the root hyperplanes. The choice of the fundamental chamber in the new
Tits building defines a positive Weyl chamber, or equivalently the correct orientation
of the hyperplanes. (This corresponds to the choice of defining the standard parabolics
in O(p, p) to be the stabilizers of flags in E+ or E−.) For each root hyperplane we
choose a linear functional which vanishes on the hyperplane and is positive on the cone
on ∆Bp . This new collection of linear functionals we will call the (new) positive roots
to be denoted as Φ. In terms of the Tits building this amounts to the following. We
have already added the new walls to the spherical building at infinity and chosen the
fundamental spherical chamber ∆Bp . We now extend them inside AP0 to obtain the
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standard linear action of the Weyl group of type Bp as a reflection group. In more
detail, given the split torus AP0 which we identify with its Lie algebra a, we consider the
corresponding apartment A in B(O(p, p)) (the boundary of AP0). The building structure
on B(O(p, p)) gives us a collection of great spheres in the apartment A. If we regard
the apartment A as the sphere at infinity of Ap0 (each ray leaving the origin of AP0

corresponds to a unique point of A), then the collection of great spheres corresponds to
(the boundaries of) a collection of hyperplanes in AP0 . Reflections in these hyperplanes
give rise to the standard representation of the Coxeter group of type Bp. The chosen
spherical chamber ∆Bp corresponds to a Weyl chamber in AP0 which we will also denote
as ∆Bp .

Definition 10.9. Φ(P,AP) is the set of restrictions to AP of the roots in Φ.

Remark 10.10. We did not use the Lie algebra n of P in this definition. We will see
later that what we are doing is pulling back the usual AP and Φ(P,AP) from SO(p+ 1, p)
using the embedding jp+1.

10.3. The intrinsic and the extrinsic big Borel–Serre compactifications
coincide

Theorem 10.11. The intrinsic and the extrinsic big Borel–Serre compactifications of
Xp,p coincide. In particular, the cells e′(P) are assembled using the simplicial complex
associated with the partially ordered set of isotropic flags in V.

From this we now easily check that all results from ğ 9 carry over with no change to
the big Borel–Serre compactification for the split (p, p)-case. In particular, we have the
following theorem.

Theorem 10.12. The restriction theorems, Theorem 9.5 and Corollary 9.7, hold in the
big Borel–Serre compactification of Xp,p.

Remark 10.13. In fact, the restriction in the small Borel–Serre compactification to
faces associated with good parabolics goes through as before as well, with no change. It
is the restriction to bad faces which causes problems.

To prove Theorem 10.11 we will first prove the analogue of the theorem for the partial
compactifications (Borel–Serre enlargements) of the symmetric spaces Dp,p and Dp+1,p.
We will denote the corresponding enlargements by Dp,p (constructed using P(O(p, p)))
and Dp+1,p. Recall that earlier we already saw that Dp,p = Dσp+1,p. We claim that
the corresponding equation also holds for the enlargements. We have the following
proposition.

Proposition 10.14. (i) Dp,p = Dσp+1,p.

(ii) Let P̃ be the stabilizer of an isotropic flag F̃ in Ṽ and suppose that P̃ is normalized
by σ . Then the subspaces of the flag F̃ are in fact contained in V. We let F be the
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associated isotropic flag in V and P be the stabilizer of F, whence

P= P̃σ .

(iii) Suppose that e (P̃)
σ

is non-empty. Then P̃ is normalized by σ and

e (P̃)
σ
= e(P).

(iv) Dσp+1,p = Dp,p
∐∐

P∈P(O(p,p)) e(P).

On the building level this means that the map jp+1 induces a simplicial embedding of
B(O(p, p)) onto B (SO(p+ 1, p))σ carrying apartments isomorphically onto apartments.
The image is the fixed subbuilding B (SO(p+ 1, p))σ .

The proposition will be a consequence of the following discussion.
We note that the inclusion Dp,p ⊂ Dσp+1,p is obvious. The reverse inclusion will follow

once we have proved (iv). We immediately see that

Dσp+1,p = Dσp+1,p

∐ ∐
P∈P(SO(p+1,p))

e (P̃)
σ
.

Clearly (iv) will follow from (iii). (ii) and (iii) will be a consequence of the next three
lemmas. In order to prove (iii) we need to first prove (ii). We first note the following
lemma.

Lemma 10.15. Suppose that Ẽ is a totally isotropic subspace of Ṽ such that σ(Ẽ) = Ẽ.
Then Ẽ ⊂ V.

We now show that Lemma 10.15 implies (ii). Indeed, P̃ is the stabilizer of a unique
isotropic flag F̃. Now since P̃ is its own normalizer and we are assuming that σ

normalizes P̃, we find σ ∈ P̃ and consequently σ carries each of the subspaces in F̃

into itself. Hence by Lemma 10.15, each of these subspaces is contained in V. We let
F denote the associated isotropic flag in V and let P be its stabilizer in O(p, p). We
now prove that P̃σ = P. First we claim that P̃σ is contained in O(p, p). Indeed, since
g ∈ P̃σ , we have g−1σg = σ , whence g carries the line through ep+1 into itself, whence
g ∈O(p, p). But also by definition, P̃σ fixes F, whence we have

P̃σ = P.

Thus it remains to prove (iii). This we do in the next two lemmas.

Lemma 10.16. If e(P̃) contains a fixed point of σ , then σ ∈ P̃ and hence σ(e(P̃)) =
e(P̃). In fact, we have

σ(e(P̃))= e(P̃) ⇐⇒ σ ∈ P̃. (10.3)

Proof. It follows from the basic result of [5], Corollary 7.7(1) (with P= Q), that

σ(e(P̃)) ∩ e(P̃) 6= ∅ ⇐⇒ σ ∈ P̃. �
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Lemma 10.17. Suppose P= P̃σ . Then we have

e(P)= e (P̃)
σ
. (10.4)

Proof. We only need to show that e(P) ⊂ e (P̃)
σ
. So suppose that x ∈ e(P̃) is fixed by

σ . Let y be the diagonal matrix with p + 1 entries 1 followed by p entries −1. Then
conjugation with y induces Cartan involutions of SO(p+ 1, p) and O(p, p). It is standard
that we may construct a Levi decomposition P̃ = M̃ · Ñ with M̃ = P̃ ∩ yP̃y−1, whence
σ ∈ M̃. Note that

e(P̃)= (M̃Ñ)/K̃ ∩ M̃.

Choose a lift x′ = m̃ñ of x to P̃. Then x being fixed under σ implies that ñ is fixed under
σ , which implies that ñ is in the unipotent radical N of P. Also m̃ is fixed modulo K̃ ∩ M̃.
Thus it remains to show that the group M = M̃σ acts transitively on the fixed point set
of σ on its associated symmetric space M̃/(K̃ ∩ M̃). But the fixed point set is connected
(because the unique geodesic joining any two fixed points must also be fixed). Hence we
may obtain the fixed point set by exponentiating the fixed subspace of p̃, the tangent
space of Dp+1,p at the point z0 fixed by the above Cartan involution. But this fixed
subspace is p, the tangent space of Dp,p at z0. �

We have now completed the proof of Proposition 10.14.
We also need to show that the convergence criterion applied to the topology of Dp,p is

induced from the topology of Dp+1,p (and hence using the root system of type Bp). This
follows from the following lemma which the reader can verify.

Lemma 10.18. Φ(P,AP) is the set of weights of AP acting on the nilradical ñ of
the parabolic subalgebra of the corresponding parabolic P̃ ( P̃σ = P) via the inclusion
jp+1 : L→ L̃.

Theorem 10.11 will follow from the next lemma.

Lemma 10.19. Suppose that Γp+1,p is torsion-free and there exists γ ∈ Γp+1,p such that
γ (e(P)) ∩ e(P) 6= ∅. Then γ ∈ P ∩ Γp,p. In particular, the image of e(P) in Xp+1,p is the
quotient of e(P) by P ∩ Γp,p.

Proof. Suppose x ∈ e(P) satisfies that y = γ (x) ∈ e(P). Then σγ−1σγ (x) = x since σ
fixes x and y. But the action of Γp+1,p on the Borel–Serre enlargement of Dp+1,p is
fixed-point-free since by [5], Theorem 9.3, it acts properly and we have assumed that it
is torsion-free. Hence σγ σ = γ and consequently γ ∈ Γp,p. The lemma now follows from
Corollary 7.7(1) of [5]. �

This concludes the proof of Theorem 10.11.

10.4. Relating the small and the big Borel–Serre compactifications of Xp,p

We now have two compactifications of Xp,p: the usual Borel–Serre compactification and
the new ‘big’ Borel–Serre compactification that we have just described.
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For P a parabolic in O(p, p), we will write P′ = P ∩ SO(p, p) as before. We will denote
the corresponding face in the small Borel–Serre enlargement by e(P′).

Proposition 10.20. Suppose that P is a good parabolic in O(p, p). Then:

(1) e(P)= e(P′).

(2) AP = AP′ .

(3) If the last subspace in the flag has dimension strictly less than p (and hence strictly
less than p− 1) then

ΦBp(P,AP)=Φ
Dp(P′,AP′).

If the last element in the flag has dimension p, then ΦBp(P,AP) and ΦDp(P′,AP′) will
coincide except for the last entry, which in the first case will be the restriction of tp and in
the second case will be the restriction of t2p (the squaring makes no difference in terms of
the convergence criterion).

We will leave the proof of this proposition to the reader.
We now state what happens if P is bad. We may assume that the associated flag is

standard, contained in the totally isotropic subspace Ep = E+.

Proposition 10.21. Suppose that P is a bad parabolic in O(p, p). There are two cases.
(i) Suppose first that the last subspace in the flag has dimension p− 1. Then:

(1) e(P)∼= e(P′)× R+.
(2) AP×R+ = AP′ . Note that there is a projection map πp : AP′→ AP which omits the last

coordinate tp. This map is split by the map ip : AP→ AP′ which puts a 1 in the last
component.

(3) Then ∆Bp(P,AP) is the set of restrictions of the old simple roots of type Dp to
AP and ∆Dp(P′,AP′) is the set of restrictions of the old simple roots of type Dp

to the larger torus AP′ . This may be restated as follows. We may identify AP and
AP′ with quotient tori of A and hence we may identify their character groups with
subgroups of the character group of A. Suppose that AP′ has dimension r + 1,
whence AP hence dimension r. Then |∆Dp(P′,AP′)| = r + 1 and |∆Bp(P,AP)| = r.
Then the first r − 1 elements of the two sets of restricted simple roots ‘coincide’ in
the sense that as characters of A they are the pullbacks of the restrictions of the roots
ti/ti+1, 1 6 i 6 p − 2, to AP and AP′ (and so some of these may be trivial), the last
element of ∆Bp(P,AP) is tp−1 and the last two elements of ∆Dp(P′,AP′) are tp−1/tp
and tp−1tp.

(ii) Now suppose the last element in the flag has dimension p, and so the last two
elements are Ep−1 and Ep; then:

(1) e(P)= e(P′).

(2) AP = AP′ .
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(3) ∆Dp(P′,AP′) and ∆Bp(P,AP) have the same cardinality r, and their first r − 1
elements coincide. The last two non-trivial elements of ∆Bp(P,ABp) are tp−1/tp and
tp and the last two non-trivial elements of ∆Dp(P′,AP′) are the restrictions of tp−1/tp
and tp−1tp.

Proof. We prove (i) for the special case in which P is the stabilizer of the isotropic
subspace Ep−1; see Example 10.6. For P′ = P ∩ SO(VR) we easily see that

AP′ =




aIp−1 0 0 0

0 b 0 0

0 0 b−1 0

0 0 0 a−1Ip−1

 ; a, b ∈ R+


and

∆Dp(P′,AP′)= {a/b, ab}.

Consequently if Yp−1 denotes the symmetric space associated with SL(Ep−1), we have a
diffeomorphism (ignoring the fibre bundle structure)

e(P′)∼= Yp−1 × (W ⊗ Ep−1)×
∧2

Ep−1

with W = span(up, u′p). But for the Levi of P in the full group O(p, p), we have

Z(L)= Z(L ∩ SO(p, p)) ∩ Z(w)

with w as in Example 10.6, whence we have

AP =




aIp−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 a−1Ip−1

 ; a ∈ R+


and

∆Bp(P,AP)= {a}.

Hence we have a diffeomorphism

e(P)∼= Yp−1 × R+ × (W ⊗ Ep−1)×
∧2

Ep−1.

For (ii), suppose that the last subspace has dimension p. For convenience we assume
that P is the stabilizer of the flag (Ep−1,E+). Then

P=




g c . . . . . .

0 b . . . . . .

0 0 b−1 . . .

0 0 0 g∗


 and L=




g 0 0 0

0 b 0 0

0 0 b−1 0

0 0 0 g∗
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with g ∈GLp−1(R), c ∈ Rp−1, b ∈ R∗. Hence

AP = AP′ =




aIp−1 0 0 0

0 b 0 0

0 0 b−1 0

0 0 0 a−1Ip−1

 ; a, b ∈ R+

 ,
but

∆Bp(P,AP)= {a/b, b} and ∆Dp(P′,AP′)= {a/b, ab}. �

10.5. Signature (2, 2)

We now consider the case of signature (2, 2) in detail. In particular, we illustrate in this
case the failure of the restriction formula for the small Borel–Serre compactification.

10.5.1. Comparison of the two compactifications. For SO(2, 2), each apartment
of the underlying Tits building (the building of parabolic subgroups of SO(2, 2)) is a
square: the building of type D2 = A1 × A1. In the usual Borel–Serre compactification
each of the four vertices is blown up to a circle bundle over a quotient of the upper
half-plane by a subgroup of finite index in SL(2,Z), i.e., modular curves. Each edge is
blown up to a 2-torus, and the two circle bundles over the modular curves corresponding
to the two vertices of the edge are glued along this torus.

We now describe the big Borel–Serre compactification. In this case the underlying
building (the non-thick Tits building associated with the complex of isotropic flags
in Q2,2) has apartments which are octagons. We will regard these octagons as the
barycentric subdivisions of the above squares. We blow up the original vertices to the
same circle bundles over modular curves as before. We blow up the four new vertices
(the barycentres of the original edges) to trivial 2-torus bundles over R+ compactified by
adding two points 0 and ∞. We can glue the four new 3-manifolds to the four old ones
because each has boundary components homeomorphic to the 2-torus. There is one such
glueing for each of the eight edges of the octagon. It is critical to observe that not only
do we use a new glueing scheme—the non-thick building of type B2 = C2 associated with
the isotropic flag complex—but also there are some new cells e(P) that do not occur in
the usual Borel–Serre compactification.

In detail, we consider one fixed edge of the apartment of the Tits building
for SO(2, 2) corresponding to the basis {u1, u2, u′2, u′1}. Namely, we let Q′± be the
maximal parabolic in SO(2, 2) which is the stabilizer of the isotropic plane E±
spanned by u1, u2 and u1, u′2 respectively. The intersection P′ = Q′+ ∩ Q′− stabilizes
the oriflamme (E+,E−). Recall that in this situation the maximal split torus A is given
by {a(t1, t2)= diag(t1, t2, t−1

2 , t−1
1 ); ti > 0}. We set W := span(u2, u′2). Then:

(i) e(Q′+)'H× R with trivial bundle structure. The collar neighbourhood in D is given
by e(Q′+)× {a(t, t); t2 > T}.

(ii) e(P′) = NP′ ' W ' R2. The collar neighbourhood in D is given by e(P′) ×
{a(t1, t2); t1t2 > T, t1/t2 > T}.
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(iii) e(Q′−)'H× R with trivial bundle structure. The collar neighbourhood in D is given
by e(Q′+)× {a(t, t−1); t2 > T}.

Furthermore, e(Q′+) and e(Q′−) are glued in e(P′) with the respective R-fibres glued to
the ‘x-direction’ of H.

Now we consider the analogous picture for O(2, 2). The faces e(Q±) for the stabilizers
Q± of the planes E± stay the same (with slightly different neighbourhoods). But now
there are three parabolics P,P+,P− whose restriction to SO(2, 2) is P′, and we blow
up e(P′) by using e(P) ' e(P′) × R+ and glue e(P) to e(Q±) along e(P±). The blow-up
variable in R+ in the neighbourhood of e(P′) is given by t1/t2. We have:

(i) P is the stabilizer of the line E1 = Ru1. Then e(P) = {a(1, t2)} × W with collar
neighbourhood e(P)× {a(t, 1); t2 > T}.

(ii) P± are the stabilizers of the flag Ru1 ⊂ E±. Then e(P±)'W. Collar neighbourhoods
are given by e(P+)×{a(t1, t2); t1t2 > T, t2 > T} and e(P−)×{a(t1, t2); t1t−1

2 > T, t−1
2 >

T} respectively.

Inside e(P) ' {a(1, t2)} × W, one approaches e(P±) by letting t2 →∞ and t2 → 0
respectively.

10.5.2. Non-existence and existence of the restriction for the case of SO(2, 2).
In this subsection we will explain why θ(ϕ2,0) does not extend to Xp,p if Xp,p is the small
Borel compactification of SO(p, p).

Namely, θ(ϕ2,0) does not extend to the 2-torus e′(P′), where P′ is the stabilizer of the
oriflamme (E+,E−). We will see below that the limit as we approach e′(P′) is undefined
(it depends on the way in which we approach the corner). We have just seen that the
corner e′(P′) is the intersection of the two maximal faces e′(Q′±), trivial circle bundles
over quotients of the upper half-plane.

It suffices to study θ(ϕ2,0)(a(t1, t2)) =
∑

y1,y2,y′2,y
′
1
ϕ2,0(t

−1
1 y1, t−1

2 y2, t2y2, t1y′1) as we
go to the corner. Here yi, y′i are the Witt coordinates of V. In this case the 2-form
θ(ϕ2,0) has four components. Three of the components go to zero as α1 = t1t2 and
α2 = t1/t2 go to infinity; essentially because t1 =

√
α1α2 → ∞, we can apply the

partial Fourier transform and the Poisson summation argument from ğ 9 to the
sum on y1. We find that the limit as t1 →∞ coincides (up to a constant) with∑
(y2,y′2)

H̃2(t
−1
2 y2+ t2y′2)e

−π(t−22 y22+t22 (y
′
2)

2
) dt2

t2
∧( dw2

t2
+ t2dw′2). Here w2,w′2 are the variables

for the 2-torus e′(P′) realized as a quotient of W = Ru2 ⊕ Ru′2. Now the resulting limit is
supposed to be a 2-form on the corner e′(P′), that is, a form in the coordinates w2,w′2 on
the torus. However note that the limit depends on t2 (and also involves the coordinate
differential dt2). Thus it depends on how we approach the boundary and consequently
is not well-defined. In particular, as claimed, the form θ(ϕ2,0) does not extend to a
well-defined 2-form on the manifold with corners X.

In the big Borel–Serre compactification the problems go away. For the face e′(P), t2 is
the extra variable for e′(P) = e′(P′) × R+, and we obtain the above form as the limit as
t1→∞. The other faces e′(P±), as sets, are again the 2-torus e′(P′) but now approached
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by taking t1/t2, t2→∞ and t1t2, t−1
2 →∞ respectively. Then the Poisson summation

argument on the sum on y1, y2 and y1, y′2, respectively, gives vanishing.
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