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Abstract

A chain is a configuration in R
d of segments of length �1, . . . , �n−1 consecutively joined

to each other such that the resulting broken line connects two given points at a distance �n .
For a fixed generic set of length parameters the space of all chains in R

d is a closed smooth
manifold of dimension (n − 2)(d − 1) − 1. In this paper we study cohomology algebras
of spaces of chains. We give a complete classification of these spaces (up to equivariant
diffeomorphism) in terms of linear inequalities of a special kind which are satisfied by the
length parameters �1, . . . , �n . This result is analogous to the conjecture of K. Walker which
concerns the special case d = 2.

Introduction

For � = (�1, . . . , �n) ∈ R
n
>0 and d a positive integer, define the subspace Cn

d (�) of
(Sd−1)n−1 by

Cn
d (�) =

{
z = (z1, . . . , zn−1) ∈ (Sd−1)n−1

∣∣∣∣∣
n−1∑
i=1

�i zi = �n e1

}
,

where e1 = (1, 0, . . . , 0) is the first vector of the standard basis e1, . . . , ed of R
d . An element

of Cn
d (�), called a chain, can be visualized as a configuration of n − 1 segments in R

d , of
length �1, . . . , �n−1, joining the origin to �ne1; see Figure 1. The vector � is called the length
vector.
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Fig. 1. A chain with length vector � = (�1, �2, . . . , �n).

The group O(d − 1), viewed as the subgroup of O(d) stabilising the first axis, acts
naturally (on the left) upon Cn

d (�). The quotient SO(d − 1)
∖
Cn

d (�) is the polygon space
N n

d , usually defined as

N n
d (�) = SO(d)

∖{
z ∈ (Sd−1)n

∣∣∣∣∣
n∑

i=1

�i zi = 0

}
.

When d = 2 the space of chains Cn
2 (�) coincides with the polygon space N n

2 (�). Descriptions
of several chain and polygon spaces are provided in [8] (see also [7] for a classification of
C4

d(�)).
A length vector � ∈ R

n
>0 is generic if Cn

1 (�) = �, that is to say there is no collinear chain.
Explicitly, � is generic iff

∑n
i=1 εi�i � 0 for all εi = ±1. It is proven in e.g. [7] that, for �

generic, Cn
d (�) is a smooth closed manifold of dimension

dim Cn
d (�) = (n − 2)(d − 1) − 1.

Another known fact is that if �, �′ ∈ R
n
>0 satisfy

(�′
1, . . . , �

′
n−1, �

′
n) = (�σ(1), . . . , �σ(n−1), �n)

for some permutation σ of {1, . . . , n − 1}, then Cn
d (�′) and Cn

d (�) are O(d − 1)-equivariantly
diffeomorphic, see [8, 1·5].

A length vector � ∈ R
n
>0 is said to be ordered if �1 � �2 � · · · � �n . A length vector

� ∈ R
n
>0 is said to be dominated if �i � �n for all i = 1, . . . , n − 1.

The goal of this paper is to show that for d � 3 the diffeomorphism types of spaces Cn
d (�)

(for � generic and dominated) are in one-to-one correspondence with some pure combinat-
orial objects, described below.

THEOREM 0·1. Let d ∈ N, d � 3. Then, the following properties of generic and domin-
ated length vectors �, �′ ∈ R

n
>0 are equivalent:

(a) Cn
d (�) and Cn

d (�′) are O(d − 1)-equivariantly diffeomorphic;
(b) H ∗(Cn

d (�); Z) and H ∗(Cn
d (�′); Z) are isomorphic as graded rings;

(c) H ∗(Cn
d (�); Z2) and H ∗(Cn

d (�′); Z2) are isomorphic as graded rings;
Moreover, if the vectors � and �′ are ordered1, then the above conditions are equivalent to:

(d) For a subset J ⊂ {1, . . . , n}, the inequality∑
i∈J

�i <
∑
i�J

�i

1 This can be achieved by a permutation of �1, . . . , �n−1, see above.
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holds if and only if ∑
i∈J

�′
i <

∑
i�J

�′
i .

The equivalence (a) ∼ (d) means that the topology of the chain space Cn
d (�) determines the

length vector �, up to certain combinatorial equivalence.
In the case d = 2 we do not know if (c) ⇒ (a) although the equivalences (a) ∼ (b) ∼ (d)

are true. This is related to a conjecture of K. Walker [11] who suggested that planar polygon
spaces are determined by their integral cohomology rings. The conjecture was proven for a
large class of length vectors in [3] and the (difficult) remaining cases were settled in [10].

An analogue of the Walker Conjecture also holds for the spatial polygon spaces N n
3 with

n > 4, see [3, theorem 3]. No such result is known for N n
d when d > 3.

One may interpret Theorem 0·1 as follows. Consider the simplex An−1 ⊂ R
n of dimension

n − 1 given by the inequalities

0 < �1 < · · · < �n−1 < �n = 1

and the hyperplanes HJ ⊂ R
n defined by the equations∑

i∈J

�i =
∑
i�J

�i ,

for all possible subsets J ⊂ {1, . . . , n}. The connected components of the complement
An−1 −�J HJ are called chambers. Theorem 0·1 implies that for a fixed d � 3 the manifolds
Cn

d (�) and Cn
d (�′), where �, �′ ∈ (An−1 − �J HJ ), are equivariantly diffeomorphic if and only

if the vectors � and �′ lie in the same chamber. Thus we obtain a one-to-one correspondence
between the chambers and the equivariant diffeomorphism types of the manifolds Cn

d (�) for
generic length vectors � ∈ An−1.

The number cn of chambers in An−1 grows fast with the number of parameters n. It was
established in [9] that c3 = 2, c4 = 3, c5 = 7, c6 = 21, c7 = 135, c8 = 2470 and
c9 = 175428.

We now give the scheme of the proof of Theorem 0·1. We first recall that the O(d − 1)-
diffeomorphism type of Cn

d (�) is determined by d and the sets of �-short (or long) subsets,
which play an important role all along this paper. A subset J of {1, . . . , n} is �-short, or just
short, if ∑

i∈J

� j <
∑
i�J

� j .

The reverse inequality defines long (or �-long) subsets. Observe that � is generic if and only
if any subset of {1, . . . , n} is either short or long.

The family of subsets of {1, . . . , n} which are long is denoted by L = L(�). Short subsets
form a poset under inclusion, which we denote by S = S(�). We are interested in the
subposet

Ṡ = Ṡ(�) = {J ⊂ {1, . . . , n − 1} | J � {n} ∈ S}. (0·1)

The following lemma is proven in [8, lemma 1·2] (this reference uses the poset Sn(�) =
{J ∈ S | n ∈ J } which is determined by Ṡ(�)).
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LEMMA 0·2. Let �, �′ ∈ R
n
>0 be generic length vectors. Suppose that Ṡ(�) and Ṡ(�′)

are isomorphic as simplicial complexes. Then Cn
d (�) and Cn

d (�′) are O(d − 1)-equivariantly
diffeomorphic.

Lemma 0·2 gives the implication (d) ⇒ (a) in Theorem 0·1. The implication (a) ⇒ (b) is
obvious and the implication (b) ⇒ (c) follows since (under the condition that � is dominated)
H ∗(Cn

d (�); Z) is torsion free, see Theorem 2·1. Remark 2·1 shows that the condition that � is
dominated is necessary for this conclusion; in other words, the integral homology H�(Cn

d ; Z)

may have torsion if � is not dominated.
Note that H ∗(Cn

d ; Z2) = 0 if and only if Cn
d = �, which happens if and only if the

one-element subset {n} is long. We can thus suppose that {n} is short.
To prove that (c) ⇒ (d) in Theorem 0·1, it suffices to show that the graded ring

H ∗(Cn
d (�); Z2) determines the simplicial complex Ṡ(�) when the length vector � is dom-

inated.
For a finite simplicial complex � whose vertex set is contained in the set {1, 2, . . . , n−1},

and for an integer d � 2, consider the graded ring

�d(�) = Z2[X1, . . . , Xn−1]
/
I(�),

where I(�) is the monomial ideal of the polynomial ring Z2[X1, . . . , Xn−1] generated by
the monomials X 2

i and X j1 · · · X jk such that { j1, . . . , jk} is not a simplex of �; the grading of
�d(�) is determined by the requirement that each variable X1, . . . , Xn−1 has degree d − 1.

Let � and �′ be two finite simplicial complexes with vertex sets contained in {1, . . . , n −
1}. By a result of J. Gubeladze, any graded ring isomorphism �d(�) ≈ �d(�

′) is induced
by a simplicial isomorphism � ≈ �′ (see [6, example 3·6], and [3, theorem 8]). Hence,
the implication (c) ⇒ (d) of Theorem 0·1 is established once we have proven the following
result:

THEOREM 0·3. Let � ∈ R
n
>0 be a generic dominated length vector. When d � 3, the

subring H �(d−1)(Cn
d (�); Z2) of H ∗(Cn

d (�); Z2) is isomorphic, as a graded ring, to the ring
�d(Ṡ(�)).

The proof of Theorem 0·3 is given in Section 3. The preceding sections are preliminaries
for this goal. For instance, computation of H ∗(Cn

d (�); Z) as a graded abelian group, is given
in Theorem 2·1.

1. Robot arms in R
d

Let S = S
n
d = {ρ: {1, . . . , n} → Sd−1} ≈ (Sd−1)n. Points of S

n
d can be viewed as

labeled configurations of n points lying on the sphere Sd−1. By post-composition, the or-
thogonal group O(d) acts smoothly on the left upon S. In [5, section 4–5], the quotient
W = SO(2)\S

n
2 ≈ (S1)n−1 is used to get cohomological informations about Cn

2 . In this sec-
tion, we extend these results for d > 2. The quotient SO(d)\S

n
d is no longer a convenient

object to work with, so we replace it by the fundamental domain for the O(d)-action given
by the submanifold

Z = Zn
d = {ρ ∈ S | ρ(n) = −e1} ≈ (Sd−1)n−1.

Observe that Z inherits an action of O(d − 1).
For a length vector � = (�1, . . . , �n) ∈ R

n
>0, the �-robot arm is the smooth map F̃�: S →

R
d defined by F̃�(ρ) = ∑n

i=1 �iρ(i).
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Consider a smooth function

f : Z −→ R given by f (ρ) = −|F�(ρ)|2.
Observe that

C = Cn
d (�) = f −1(0) ⊂ Z

and denote Z ′ = Z − C . It is well known that the set of critical points Crit( f ) of the
function f : Z → R consists of the critical submanifold C and finitely many Morse critical
points ρ ∈ Z ′ corresponding to collinear configurations, i.e. such that ρ(i) = ±e1 for
i ∈ {1, 2, . . . , n − 1}.

From now on we will assume that the length vector � is generic. We will label the critical
points of f by long subsets J ∈ L as follows. For each J ∈ L with n � J let ρJ ∈ Z ′ be
given by

ρJ (i) =
{

e1, if i ∈ J,

−e1, if i � J.

However, for J ∈ L with n ∈ J let ρJ ∈ Z ′ be given by

ρJ (i) =
{−e1, if i ∈ J,

e1, if i � J.

LEMMA 1·1. The Morse index of ρJ , as a critical point of f , is equal to (d − 1)(n −|J |).
Proof. The non-degeneracy of ρJ and the computation of its index are classical in topolo-

gical robotics; they are based on arguments described in [7, proof of theorem 3·2].

Consider the axial involution τ̂ on R
d = R × R

d−1 defined by τ̂ (x, y) = (x, −y). It
induces an involution τ on S and on Z . The map f is τ -invariant. Moreover, the critical
set of f |Z ′ : Z ′ → (−∞, 0) coincides with the fixed point set Z τ . By Lemma 1·1 and [5,
theorem 4], this proves the following

LEMMA 1·2. The Morse function f ′ = f |Z ′: Z ′ → (−∞, 0) is Z-perfect, in the sense
that Hi (Z ′) is free abelian of rank equal to the number of critical points of f ′ of index i .
Moreover, the induced map τ∗: Hi (Z ′) → Hi(Z ′) is multiplication by (−1)i .

[5, Theorem 4] is stated for a Morse function f : M → R where M is a compact manifold
with boundary. To use it in the proof of Lemma 1·2, just replace Z ′ by Z − N where N is a
small open tubular neighbourhood of C .)

We now represent homology bases for Z and Z ′ by convenient closed submanifolds. For
a subset J ⊂ {1, . . . , n} we define

WJ = {ρ ∈ Z; ρ(i) = ρ( j) for all i, j ∈ J }.
It is clear that WJ is diffeomorphic to a product of (n − |J |) copies of the sphere Sd−1. We
also observe that ρJ ∈ WJ .

We denote by [WJ ] ∈ H(d−1)(n−|J |)(Z; Z) the class represented by WJ ⊂ Z (for some
chosen orientation of WJ ).

If J is long, then WJ is contained in Z ′ and we denote by [WJ ] the class represented by
the submanifold WJ ⊂ Z ′ in H(d−1)(n−|J |)(Z ′; Z).
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LEMMA 1·3.
(a) The integral homology group H∗(Z ′; Z) is freely generated by the classes [WJ ] where

J runs over all subsets J ⊂ {1, . . . , n} which are long with respect to �.
(b) The homology group H∗(Z; Z) is freely generated by the classes [WJ ] for all J ⊂

{1, . . . , n} with n ∈ J .

Proof. For (a), we invoke [5, theorem 5]. Indeed, the the collection of τ -invariant mani-
folds {WJ | J ∈ L} satisfies all the hypotheses of this theorem (see also [5, lemma 8]). The
statement (b) follows directly from the Künneth formula.

Let J, J ′ ⊂ {1, . . . , n} be such that |J |+|J ′| = n+1. Then one has dim WJ +dim WJ ′ =
dim Z = dim Z ′ and the intersection number [WJ ] · [WJ ′ ] ∈ Z is defined (the intersection
number in Z ). We shall use the following formulae, compare [5]:

LEMMA 1·4. Let J, J ′ ⊂ {1, . . . , n} be subsets with |J | + |J ′| = n + 1. Then

[WJ ] · [WJ ′ ] =
{±1 if |J � J ′| = 1,

0 if |J � J ′| > 1 and n ∈ J � J ′.

Proof. Suppose that J � J ′ = {q}. Then |J � J ′| = |J | + |J ′| − |J � J ′| = n. Hence,
n ∈ J � J ′ and WJ � WJ ′ consists of the single point ρJ�J ′ (satisfying ρJ�J ′(i) = −e1 for
all i ∈ {1, . . . , n}). It is not hard to check that the intersection is transversal (see [5, proof
of (34)]), so that [WJ ] · [WJ ′ ] = ±1.

In the case |J � J ′| > 1, there exists q ∈ J � J ′ with q � n. Let α be a rotation of R
d

such that α(e1) � e1. Let h: Z → Z be the diffeomorphism such that h(ρ)(k) = ρ(k) if
k � q and h(ρ)(q) = α ◦ρ(q). We now use that n ∈ J � J ′, say n ∈ J ′. Then, ρ(q) = −e1

for all ρ ∈ WJ ′ . Therefore, h(WJ ) � WJ ′ = �. As h is isotopic to the identity of Z , this
implies that [WJ ] · [WJ ′ ] = 0.

Remark 1·5. In Lemma 1·4, the hypothesis n ∈ J � J ′ is not necessary if d is even, by
the above proof, since there exists a diffeomorphism of Sd−1 isotopic to the identity and
without fixed point. But, for example, if n = d = 3, one checks that [WJ ] · [WJ ′ ] = ±2 for
J = J ′ = {1, 2}.

In the case n ∈ J � J ′ and |J | + |J ′| = n + 1, Lemma 1·4 takes the following form:

[WJ ] · [WJ ′ ] =
{±1 if J � J ′ = {n},

0 otherwise.
(1·1)

Therefore, the basis {[WJ ] | |J | = n − k, n ∈ J } of Hk(d−1)(Z; Z) has a dual basis (up to
sign) {[WJ ]
 ∈ H(n−k)(d−1)(Z; Z) | |J | = n − k, n ∈ J } for the intersection form, defined by
[WJ ]
 = [WK ], where K = J̄ � {n} (with J̄ denoting the complement of J in {1, . . . , n}).

We are now in position to express the homomorphism

φr : Hr(d−1)(Z ′; Z) −→ Hr(d−1)(Z; Z) (1·2)

induced by the inclusion Z ′ ⊂ Z . By Lemma 1·3, one has a direct sum decomposition

Hr(d−1)(Z ′; Z) = Ar ⊕ Br ,

where

(i) Ar is the free abelian group generated by [WJ ] with J ⊂ {1, . . . , n} long, |J | = n−r,
and n ∈ J .
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(ii) Br is the free abelian group generated by [WJ ] with J ⊂ {1, . . . , n} long, |J | = n −r
and n � J .

Part (b) of Lemma 1·3 gives a direct sum decomposition

Hr(d−1)(Z; Z) = Ar ⊕ Cr ,

where

(i) Ar is the free abelian group generated by [WJ ] with J ⊂ {1, . . . , n} with n ∈ J ,
|J | = n − r , and J long.

(ii) Cr is the free abelian group generated by [WJ ] with J ⊂ {1, . . . , n} with n ∈ J ,
|J | = n − r , and J short.

LEMMA 1·6.
(a) The homomorphism φr restricted to Ar coincides with the identity of Ar .
(b) Suppose that the length vector � is dominated. Then the image of φr coincides with

Ar . In particular, φr (Br ) ⊂ Ar .

Proof. The claim (a) is obvious. For (b), let [WJ ] ∈ B(n−|J |) and

φ�[WJ ] =
∑
n∈K

αK · [WK ],

where |K | = |J | and n ∈ K . We claim that αK = 0 for K short. Indeed,

αK = ±[WJ ] · [WK ]
 = ±[WJ ] · [WK ′ ]
where K ′ = K̄ � {n}. By Lemma 1·4, αK � 0 implies that

J � (K̄ � {n}) = J − K = {i}
with i < n. As |K | = |J |, this is equivalent to K = (J − {i}) � {n}, i.e. K is obtained
from J by adding n and deleting i . This gives a contradiction since J is long, K is short and
�n � � j .

2. The Betti numbers of the chain space

Let � = (�1, . . . , �n) be a generic dominated length vector. Let ak = ak(�) be the number
of short subsets J containing n with |J | = k + 1, as introduced in [5]. Alternatively, ak is
the number of sets I ∈ Ṡ with |I | = k.

THEOREM 2·1. Let � = (�1, . . . , �n) be a generic dominated length vector. If d � 3 then
H k(Cn

d (�); Z) is free abelian of rank

rk H k(Cn
d (�); Z) =

⎧⎨
⎩

as if k = s(d − 1), s = 0, 1, . . . , n − 3,

an−s−2 if k = s(d − 1) − 1, s = 0, 1, . . . , n − 2,

0 otherwise.

Proof. Let N be a closed tubular neighbourhood of C = Cn
d (�) in Z = Zn

d . By Poincaré-
Lefschetz duality and excision, one has the isomorphisms on integral homology

H k(C) ≈ H k(N ) ≈ H(n−1)(d−1)−k(N , ∂ N ) ≈ H(n−1)(d−1)−k(Z , Z ′).
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By Lemma 1·3 we know that the homology of Z and Z ′ are concentrated in degrees which
are multiples of (d −1). The possibly non-vanishing part of H k(C) sits in the exact sequence

0 −→ H (n−r−1)(d−1)−1(C) −→ Hr(d−1)(Z ′)
φr−→ Hr(d−1)(Z) −→ H (n−r−1)(d−1)(C) −→ 0

which is obtained from the exact sequence of (Z , Z ′) via the isomorphisms mentioned in
the preceding paragraph. Using Lemma 1·6 we obtain that the kernel and cokernel of φr

(see (1·2)) are free abelian of rank rk Br and rk Cr correspondingly. It follows that integral
cohomology of C is free abelian and

rk H (n−r−1)(d−1)−1(C) = rk Br = ar−1,

rk H (n−r−1)(d−1)(C) = rk Cr = an−r−1.

Besides, the homology groups of C vanish in all other dimensions. This completes the
proof.

Remark 2·1. Theorem 2·1 is false if � is not dominated. For example, let � = (1, 1, 1, ε)

with ε < 1. Then, C4
d(�) is diffeomorphic to the unit tangent bundle T 1Sd−1 of Sd−1: a

map g: C4
d(�) → T 1Sd−1 is given by g(ρ) = (ρ(1), ρ̂(2)), where the latter is obtained

from (ρ(1), ρ(2)) by the Gram–Schmidt orthonormalization process. The map g is clearly
a diffeomorphism for ε = 0 and the robot arm F(1,1,1): S

3
d → R

d of Section 1 has no
critical value in the disk {|x | < 1} ⊂ R

d . In particular, C4
3(�) is diffeomorphic to SO(3),

and thus H 2(C4
3(�); Z) = Z2. What goes wrong is Point (b) of Lemma 1·6: for instance

A2 = 0, B2 = H2(Z , Z ′) ≈ H 2(Z) = C2 ≈ Z
3 and, by the proof of Theorem 2·1,

φ: H 2(Z ′) → H 2(Z) must be injective with cokernel Z2. To obtain this fine result with our
technique would require to control the signs in Lemma 1·4.

3. Proof of Theorem 0·3
In this section all homology and cohomology groups are understood with Z2 coefficients.

We assume that the length vector � is generic and dominated and d > 2.
Recall that H �(Z) is an exterior algebra on generators X1, . . . , Xn−1 where the class X j ∈

H d−1(Z) is induced by the projection π j : Z → Sd−1 given by π j (ρ) = ρ( j); here ρ ∈ Z
and j = 1, . . . , n − 1.

Consider the inclusion i : C → Z and the induced homomorphism on cohomology with
Z2 coefficients i�: H �(Z) → H �(C). We claim that for any s = 0, 1, . . . , n − 1 the homo-
morphism

i� : H s(d−1)(Z) −→ H s(d−1)(C) (3·1)

is an epimorphism and its kernel is additively generated by the monomials Xi1 Xi2 . . . Xis

such that i1 < i2 < · · · < is < n and the set {i1, i2, . . . , is, n} is long with respect to the
length vector �. Indeed, one has the following commutative diagram

H s(d−1)(Z)
i�−→ H s(d−1)(C)

↓� ↓�
Hr(d−1)(Z ′)

φr−→ Hr(d−1)(Z) −→ Hr(d−1)(Z , Z ′) −→ 0.

Here r = n − 1 − s and the lower horizontal row is a part of the exact sequence of the
pair (Z , Z ′); its Z-coefficient version was discussed in detail in the previous section. The
vertical isomorphism on the left is the Poincaré duality map. The vertical isomorphism on
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the right is as in the previous section (a combination of Poincaré–Lefschetz duality and
excision). The diagram commutes as shown in [1, theorem I·2·2]. From this diagram one
sees that i� : H s(d−1)(Z) → H s(d−1)(C) is an epimorphism and its kernel coincides with the
Poincaré dual of the image of φr . From Lemma 1·6 we know that the image of φr coincides
with the subgroup Ar ⊂ Hr(d−1)(Z), i.e. it is freely generated by the classes [WJ ] with
J ⊂ {1, . . . , n} being long, n ∈ J and |J | = n − r = s + 1.

Next we note that the Poincaré dual of the homology class [WJ ] ∈ Hr(d−1)(Z) (assuming
that n ∈ J ) coincides with the monomial

X I = Xi1 Xi2 · · · Xis ∈ H s(d−1)(Z)

where J = {i1 < i2 < · · · < is < n} and I = {i1 < i2 < · · · < is}. This follows from the
formula

[WJ ] · [WK ] = 〈X I , [WK ]〉 ∈ Z2 (3·2)

which holds for any subset K ⊂ {1, . . . , n} with n ∈ K and |K | = r + 1. In (3·2) the
brackets 〈 , 〉 denote the evaluation of the cohomology class on homology class. Formula
(3·2) is a consequence of (1·1).

Hence we see that the kernel of the epimorphism i�: H �(d−1)(Z) → H �(d−1)(C) is the ideal
I consisting of linear combinations of all monomials of the form X I where the subset I ⊂
{1, . . . , n − 1} is such that I � {n} is long with respect to �. Thus, the subalgebra H �(d−1)(C)

is isomorphic to the quotient of the Z2-coefficient exterior algebra on X1, . . . , Xn−1 with
respect to the ideal I. This completes the proof of Theorem 0·3.

4. Comments

1. The Betti numbers alone do not distinguish the chain spaces up to diffeomorphism
(therefore, it is necessary to use the cohomology algebras as we do in this paper). The first
example occurs for n = 6 with � = (1, 1, 1, 2, 3, 3) and �′ = (ε, 1, 1, 1, 2, 2), where
0 < ε < 1. (The chamber of � is 〈632, 64〉 and that of �′ is 〈641〉 , see [8, table C].)
Then, S̃(�) and S̃(�′) are both graphs with 4 vertices and 3 edges. Therefore, as(�) = as(�

′)
for all s which, by Theorem 2·1, implies that C6

d(�) and C6
d(�

′) have the same Betti numbers.
However, S̃(�) and S̃(�′) are not poset isomorphic: the former is not connected while the
latter is.

2. It would be interesting to know if, in Theorem 0·1, the ring Z2 could be replaced by any
other coefficient ring. In the corresponding result for spatial polygon spaces N n

3 (�), which
are distinguished by their Z2-cohomology rings if n > 4 [3, theorem 3], the ring Z2 cannot
be replaced by R. Indeed, N 5

3 (ε, 1, 1, 1, 2) ≈ CP2
C̄P2 while N 5
3 (ε, ε, 1, 1, 1) ≈ S2 × S2

(ε small; see [8, table B]). These two manifolds have non-isomorphic Z2-cohomology rings
but isomorphic real cohomology rings. One can of course replace Z2 by Z in Theorem 0·1
since, by Theorem 2·1, H ∗(Cn

d (�); Z) determines H ∗(Cn
d (�); Z2) when � is dominated.

3. We do not know if Theorem 0·1 is true for generic length vectors which are not dom-
inated. We believe that the techniques developed in [2] may be useful to study this more
general case.

4. Let � ∈ R
n
>0 be a length vector. In [7, 8], a smooth manifold Vd(�) is introduced whose

boundary is Cn
d (�). When � is generic and dominated, it can be shown that homomorphism

H ∗(Vd(�)) → H ∗(Cn
d (�)) is injective with image equal to the subring H (d−1)∗(Cn

d (�); Z). By
Theorem 0·3, this implies that the graded H ∗(Vd(�)) is isomorphic to �(Ṡ(�)) if q � 3.
Details may be found in an earlier version of this paper [4].
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Lectures Notes 1474 (1989), 146–159.
[8] J.–C. HAUSMANN. Geometric descriptions of polygon and chain spaces. In Topology and Robotics

Contemp. Math. Amer. Math. Soc. 438 (2007), 47–57.
[9] J.–C. HAUSMANN and E. RODRIGUEZ. The space of clouds in an Euclidean space. Experiment.

Math. 13 (2004), 31–47.
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