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A generalized flux function for three-dimensional magnetic reconnection
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The definition and measurement of magnetic reconnection in three-dimensional magnetic fields with

multiple reconnection sites is a challenging problem, particularly in fields lacking null points. We

propose a generalization of the familiar two-dimensional concept of a magnetic flux function to the

case of a three-dimensional field connecting two planar boundaries. In this initial analysis, we require

the normal magnetic field to have the same distribution on both boundaries. Using hyperbolic fixed

points of the field line mapping, and their global stable and unstable manifolds, we define a unique

flux partition of the magnetic field. This partition is more complicated than the corresponding

(well-known) construction in a two-dimensional field, owing to the possibility of heteroclinic points

and chaotic magnetic regions. Nevertheless, we show how the partition reconnection rate is readily

measured with the generalized flux function. We relate our partition reconnection rate to the common

definition of three-dimensional reconnection in terms of integrated parallel electric field. An

analytical example demonstrates the theory and shows how the flux partition responds to an isolated

reconnection event. VC 2011 American Institute of Physics. [doi:10.1063/1.3657424]

I. INTRODUCTION

This paper presents a new method for measuring mag-

netic reconnection in a three-dimensional (3D) magnetic

field. Reconnection is a fundamental physical process in any

highly conducting plasma yet remains poorly understood

owing to the challenging range of lengthscales involved.1,2

In 3D magnetic fields, progress is hampered by the difficulty

in defining and measuring reconnected flux, particularly if

there are multiple interacting reconnection sites. It is this

problem that we seek to address.

There are two contrasting ways to measure reconnection

rates in 3D. The first uses the parallel electric field integrated

along magnetic field lines,3 while the second counts the

transfer of flux between distinct flux domains. Here, we pur-

sue the second approach, where the task is twofold: to define

a partition of the flux and to measuring the rate of transfer

between fluxes in this partition. We call this a reconnection

rate with respect to a partition, or a partition reconnection
rate, to distinguish it from the first case. Such a partition

reconnection rate can capture only reconnection processes

that change fluxes between the partition domains, and not

those within any individual flux domain. However, this rate

is in many applications the most relevant information, deter-

mining the stability and dynamics of the system.

In a two-dimensional (2D) field B¼Bx(x, y)exþBy(x,

y)ey, there is a natural choice for such a partition and corre-

spondingly for the reconnection rate: write B in terms of a

flux function A(x, y) where B ¼ r� Aez. The different

fluxes in the partition correspond to the regions of the plane

bounded by separatrices, which are the global stable

and unstable manifolds of hyperbolic nulls (x-points). The

magnetic flux within each such region (per unit height in the

ignorable z direction) is measured by the difference in A
between appropriately chosen nulls. These fluxes are invari-

ant under an ideal evolution, while in a non-ideal evolution,

the change in fluxes is measured exactly by the change in the

values of A at the (discrete) set of null points. This defines an

unambiguous global reconnection rate, which is readily com-

puted even in turbulent 2D fields with many nulls.4

In 3D, the situation is more complicated. Here, a natural

partition also arises from the existence of null points in the

domain. The 2D invariant manifolds (fan surfaces) associ-

ated with these null points form a coarse but natural partition

of the flux.5,6 This inherent topological structure has been

used successfully to quantify reconnection.7 Nulls and sepa-

rators in particular are favoured locations to detect global

changes in connectivity because they are locations where

distinct flux domains come into close proximity.

Another possible flux partition arises in a field connected

to a physical boundary, such as the photosphere of the Sun,

where the sign of the normal field component divides the

boundary into regions of positive and negative magnetic po-

larity. This boundary partition extends to a partition of mag-

netic flux connected to the boundary, by following the field

lines from the different polarity regions into the volume.8

There are, however, many examples of magnetic fields

where either the above described partitions are too coarse or

null points do not exist in the domain. Examples are a single

coronal loop or the magnetic field in a tokamak. A generic

3D magnetic field in this situation does not possess a folia-

tion of flux surfaces. This “worst case” is the situation that

we want to investigate here. More specifically, we assume a

simply connected domain in which all field lines stretch

between two planar boundaries. In magnetospheric recon-

nection studies this is often referred to as the “guide field”

case. We present a general way to define the flux partition in

such a field, using distinguished hyperbolic orbits, and
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measure reconnection by introducing a generalized version

of the 2D flux function A. Not only is this a natural topologi-

cal flux partition when there are no magnetic null points but

also it retains the simplicity of the 2D method when it comes

to measuring the partition reconnection rate.

As may be expected, there are some complexities that do

not arise in the 2D case. Chief among these is the possibility

of chaos in the field line mapping. This is well-known from

the study of area-preserving mappings as models for the mag-

netic field in toroidal fusion devices.9 Indeed, recent results

in tokamak experiments show heating on the vessel walls

consistent with the breakdown of confinement and chaotic

transport of magnetic flux through homoclinic tangles, as

found in numerical simulations.10–12 Though they were rec-

ognised by Poincaré in the 19th Century, it is only recently

that detailed analysis of the structure of homoclinic tangles

has been applied to measure and to predict the transport of

trajectories in these chaotic regions. A primary application

has been 2D fluids with time-dependent velocity fields.13–16

Here, we show how these ideas can be applied to define and

to measure a natural reconnection rate in 3D magnetic fields.

II. TWO-DIMENSIONAL MAGNETIC FIELDS

We first review the basic properties of the flux function

A(x, y) of a 2D magnetic field B ¼ r� Aez (Figure 1).

1. A is constant along magnetic field lines B � rA ¼ 0ð Þ.
2. Consider two vertical lines through the points (x1, y1) and

(x2, y2). The magnetic flux through any surface bounded

by the two lines and the planes z¼ 0, z¼ 1 is A(x2, y2)

– A(x1, y1) (w.r.t. the orientation of the surface). This is

the reason for the name flux function. It works because

Aðx; yÞ ¼
ð1

0

Aðx; yÞdz ¼
ð1

0

A � dl; (1)

where A¼A(x, y)ez is a vector potential for B.

3. For an ideal evolution

@Bðx; y; tÞ
@t

�r� ðvðx; y; tÞ � Bðx; y; tÞÞ ¼ 0;

A(x, y) can be chosen as an ideal invariant,

@A

@t
þ v � rA ¼ 0: (2)

A 2D magnetic field is naturally partitioned by the

x-points (hyperbolic nulls) and their separatrices. The sepa-

ratrices—shown by thick lines in Figure 1—are the topologi-

cally distinguished field lines given by the global stable and

unstable manifolds of each x-point. These manifolds are tan-

gent at the null to the unstable or stable eigenvectors of the

local linearisation and are uniquely defined by extending for-

wards or backwards along the flow. They are invariant sub-

spaces of the field line flow (i.e., they are field lines) that

delineate topologically distinct regions. Each region has a

well-defined flux measured by the difference in A between

two (not necessarily unique) null points (joined by dashed

lines in Figure 1). Since the separatrices are themselves field

lines, two x-points joined by a separatrix must have the same

value of A.

In a 2D field, changes in topology—i.e., changes in the

amount of flux in each region of the partition—can take

place only at null points.17 Traditionally, reconnection

counts only changes in A at x-points, indicating the transfer

of flux between distinct regions, and not at o-points, where

changes in A represent only the creation=annihilation of flux

within a single region. In this way, one can define a global

partition reconnection rate

DUP ¼
X

hi

dAðhiÞ
dt

����
����; (3)

where the sum is over all x-points hi. Notice that we can

measure the reconnection rate completely knowing only the

values of A at the null points, with no need to know either

the partition fluxes or the structure of the field (except for the

spatial derivatives at each null point, in order to determine

the hyperbolicity).

III. GENERALIZED FLUX FUNCTION

In a general 3D field, we can no longer write B in terms

of a 2D function. But this does not prevent us from con-

structing a 2D function to measure magnetic flux. In this sec-

tion, we will show how to construct a generalized flux

function Aðx; yÞ that retains a number of the properties of the

2D flux function A(x, y). Our domain is a bounded region in

R3 between z¼ 0 and z¼ 1, with all field lines connecting

from the lower to the upper boundary.

As a simple generalization of A(x, y), we might consider

a function f ðx; yÞ ¼
Ð 1

0
A � ez dz, i.e., the integral along verti-

cal lines of the vector potential A (where B ¼ r� A). The

difference in f(x, y) between two points (x1, y1) and (x2, y2)

would then give the flux through a vertical surface, analo-

gous to the 2D case. However, this function f(x, y) does not

retain the ideal invariant property of A(x, y), which is vital to

define any meaningful reconnection rate.

To construct a flux function that is an ideal invariant, we

make a simple modification and integrate A along magnetic

field lines rather than vertical lines. For a point (x, y) on the

lower boundary, denote the field line starting at (x, y) by

Fz(x, y). In other words,

FIG. 1. A 2D magnetic field, showing nulls (hyperbolic as squares, elliptic

as circles) and separatrices (thick lines). Dashed grey lines show the differ-

ences in A that measure the partition fluxes.
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@Fzðx; yÞ
@z

¼ BðFzðx; yÞÞ
BzðFzðx; yÞÞ

; with F0ðx; yÞ ¼ ðx; yÞ: (4)

The subscript z indicates that we have chosen to parametrize

the field line by the vertical coordinate z. With this notation,

we may define the generalised flux function as a function on

the lower boundary z¼ 0

Aðx; yÞ ¼
ð1

0

AðFzðx; yÞÞ �
BðFzðx; yÞÞ
BzðFzðx; yÞÞ

dz: (5)

We consider, in this paper, only fields where Bz(x, y, 1)

¼Bz(x, y, 0), i.e., where the Bz distribution is the same on the

upper and the lower boundaries, although we suggest in

Sec. VII how the theory could be extended to more general

fields. We impose the gauge condition that A� ez is periodic,

which is always possible when Bz(x, y, 1)¼Bz(x, y, 0). We are

still free to impose a gauge transformation A! Aþrv pro-

viding that v(x, y, 1)¼ v(x, y, 0)þ v0 with v0 constant. We

impose the further gauge condition v0¼ 0, leaving the func-

tion v(x, y, z) free for 0� z< 1.

Under a gauge transformation, the function Aðx; yÞ
becomes

A0ðx; yÞ ¼ Aðx; yÞ þ vðF1ðx; yÞÞ � vðx; y; 0Þ; (6)

so, it is not gauge invariant in general. But at fixed points,

where F1(x, y)¼ (x, y), the last two terms in Eq. (6) cancel

and Aðx; yÞ becomes gauge invariant. Thus, differences in A
between fixed points are well-defined, and correspond to

physical fluxes (Figure 2), in analogy to the 2D case. We

argue in this paper that these physical fluxes defined by val-

ues of A at fixed points form a natural partition of the 3D

magnetic field. In fact, the values of A at non-fixed points

may also be given physical meaning if one fixes the gauge in

a particular way; this is beyond the scope of this paper and

will be addressed in future.

IV. GENERAL FLUX PARTITION

We propose a simple generalization of the 2D case: parti-

tion the flux in a 3D field by the hyperbolic fixed points of

the field line mapping F1(x, y) and their global manifolds.

The physical nature of the partition is explored in this section,

while the partition reconnection rate is defined in Sec. V.

A 2D mapping may be viewed as a discrete-time dynam-

ical system, and we will use mathematical methods devel-

oped for such systems. For more details see Guckenheimer

and Holmes18 or Wiggins.19

Analogous to an x-point in a 2D vector field, a fixed

point x0 of a 2D mapping is said to be hyperbolic when the

eigenvalues ks, ku of the Jacobian matrix Jij ¼ @F1;i=@F1;j at

x0 satisfy jksj< 1< jkuj. As with the x-point, the associated

eigenvectors define linear subspaces, and the map F1 has

global stable and unstable manifolds Ws(x0), Wu(x0) that are

tangent to these linear subspaces at x0. There are two

branches of each manifold for each hyperbolic fixed point.

By definition, Ws(x0) and Wu(x0) are invariant subspa-

ces, meaning that if x 2 Ws x0ð Þ then F1 xð Þ 2 Ws x0ð Þ, and

similarly for Wu(x0). Under the mapping F1, points on

Ws(x0) move closer to x0 (along the curve), while those on

Wu(x0) move further away. In the case of our magnetic field,

Ws(x0) and Wu(x0) correspond to curves on the boundary

z¼ 0 (or equivalently z¼ 1). Their invariance means that

field lines starting on either manifold for z¼ 0 must end on

the same manifold for z¼ 1. The union of such field lines

therefore defines a magnetic surface in the 3D domain gener-

ated by each manifold.

A. Integrable fields

The simplest type of 3D field to understand is an inte-
grable field, where the field lines lie on a foliation of flux

surfaces. Figure 3(a) shows an example of such a field

defined by adding a uniform z-component to a 2D magnetic

field. Field lines of the 3D field lie on vertical surfaces that

project on to field lines of the 2D field. The three null points

of the 2D field now correspond to vertical field lines, thus to

fixed points (e1, h1, h2). The separatrices of the 2D field cor-

respond to the global manifolds of the 3D field line mapping.

FIG. 2. The flux Uloop through the surface defined by two fixed points (x1,

y1), (x2, y2) is measured by Aðx2; y2Þ � Aðx1; y1Þ, because the integrals of A

along line L on z¼ 0 and z¼ 1 are equal and opposite.

FIG. 3. (Color online) Sketch of (a) an integrable field where field lines lie

on flux surfaces, and (b) a more general 3D field created by perturbing the

integrable field. Thick black lines show magnetic field lines, including the

three fixed points of the integrable field (h1, h2 hyperbolic and e1 elliptic),

which persist in the general field. Thin red and blue curves (grey in the print

journal) show where the global manifolds intersect the boundary.
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What is the flux of the “island” containing e1? There are

two natural fluxes: (1) the vertical flux through the lower

boundary within this region and (2) the horizontal flux cross-

ing the grey-shaded vertical surface between the e1 and h2

field lines. The first flux does not exist in the original 2D

field but is measured straightforwardly from B � n on the

lower boundary. The second flux is measured using the gen-

eralised flux function by the difference Aðe1Þ � Aðh2Þ. This

is clearly analogous to the 2D case (Sec. II). Note that, in

this integrable field, Aðh1Þ ¼ Aðh2Þ, so the identical flux for

this island region would be measured by Aðe1Þ � Aðh1Þ.
The “barrier” around the island comprises two magnetic

surfaces: (1) a branch of Wu(h1), which coincides with a

branch of Ws(h2) (in red online) and (2) a branch of Ws(h1),

which coincides with a branch of Wu(h2) (in blue online).

B. Heteroclinic tangles

Unfortunately, the simplicity of the integrable case

belies the complexity typical of a general 3D magnetic field.

If a small z-dependent perturbation is applied to Figure 3(a),

the three fixed points will persist and maintain their ellip-

tic=hyperbolic character, but the regular global manifolds

will break down into heteroclinic tangles (Figure 3(b)). In

this generic situation, the stable and unstable manifolds

intersect transversally at discrete points, rather than coincid-

ing to form regular separatrices as in the 2D or integrable

cases. It follows from the uniqueness of field lines that an

intersection can take place only between a stable manifold

and an unstable manifold. Two stable manifolds can never

intersect nor can two unstable manifolds. An intersection

between a stable manifold and an unstable manifold of the

same fixed point is called a homoclinic point, while an inter-

section between manifolds from different fixed points is a

heteroclinic point (Figure 4). In this paper, we shall not need

to distinguish between the two and will refer to both as heter-

oclinic points.

The key result about heteroclinic intersections, first rec-

ognised by Poincaré, is that a single intersection between

two manifolds Ws
h1 and Wu

h2 implies the existence of an infi-

nite number of intersections between these same two curves.

This simply follows from the fact that the intersection point

lies on both manifolds. It cannot be a fixed point, and every

iterate must also lie on both manifolds, by definition. The in-

finite number of intersections as one approaches either of the

fixed points h1, h2 leads to a very convoluted path of the

manifold curves. Called a homoclinic tangle, this is a major

route to chaos in 2D mappings. This possibility of chaos in

the field line mapping is the major factor that complicates

the partitioning of flux in a 3D field.

C. Partial barriers

Since the global manifolds for a 3D field can be infin-

itely long (unlike in 2D), the regions of the flux partition

must be defined by partial barriers: curves comprising seg-

ments of one or more global manifolds, ending at hyperbolic

fixed points.15

To formally define a partial barrier, let Ws
h x1; x2½ � denote

the segment of Ws
h between two points x1, x2. Consider an

intersection point p 2 Wu
h1
\Ws

h2
. This point p is a primary

intersection point or pip if the segments Wu
h1
½h1; p� and

Ws
h2
½p; h2� intersect only at p (and possibly at h1 if h2¼h1;

Rom-Kedar et al.20). A partial barrier starts and ends at

hyperbolic fixed points (possibly the same) and comprises

one or more global manifold segments intersecting at pips. It

includes no further fixed points.

Figure 5(a) shows a partial barrier between hyperbolic

fixed points h1 and h2, with two segments Wu
h1
½h1; p� and

Ws
h2
½p; h2� intersecting at pip p. The barrier separates the

shaded region A from the unshaded region A0. There is noth-

ing special about this choice of pip: choosing a different pip

would redefine the barrier and also the shape of regions A

FIG. 4. (Color online) Example and notation for a heteroclinic tangle

between two hyperbolic fixed points h1 and h2. The manifolds are curtailed

to finite length for clarity. Pip q is a homoclinic intersection. Pips p1, p2 are

heteroclinic intersections, defining the lobe shaded in grey. FIG. 5. (Color online) A partial barrier and the turnstile lobes.
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and A0. But the partition fluxes are defined only by A at the

fixed points so are independent of the choice of partial

barrier.

The barrier in Figure 5 is called “partial” because certain

field lines cross it in the mapping F1. While no magnetic

field line may cross the magnetic surface generated by each

global manifold, this does not prevent field lines from cross-

ing the partial barrier if it is made up of more than one global

manifold. In the remainder of this section, we show that the

flux crossing the barrier in each direction under F1 is well-

defined (independent of the choice of pip p), and further that

the net flux crossing the barrier is simply Aðh2Þ � Aðh1Þ.
The key to understanding which field lines cross a par-

tial barrier is lobe dynamics.15,20–22 A lobe is a closed region

bounded by the segments Wu
h1
½p1; p2�, Ws

h2
½p1; p2� between

two adjacent pips p1, p2 (e.g., Figure 4). The important dy-

namical rules governing lobes are20

1. Lobes map to lobes under F1. This follows from continu-

ity of the mapping and the fact that Wu and Ws are invari-

ant manifolds that field lines cannot cross.

2. Ordering of points on Wu and Ws is maintained, so for a

given pair of intersecting manifolds, there are a fixed

number m of lobes lying between p and F1(p), the same

for any pip p.

In our case, F1 is orientation-preserving (jJj> 0 because

Bz> 0), so m must be even.

Consider again Figure 5, where m¼ 4. In the mapping

F1, the two lobes E1, E2 cross from A to A0, while the two

lobes C1, C2 cross from A0 to A. These four lobes, which are

precisely those lying between p and F1(p), are the turnstile
lobes: they contain exactly those points which cross the par-

tial barrier under F1. The flux in a lobe L is measured by

integrating UðLÞ ¼
Ð

L Bzðx; y; 0Þ dxdy on z¼ 0. What hap-

pens if we choose a different pip to define the partial barrier?

The turnstile would then comprise different lobes. But the

dynamical rules above guarantee that there would still be

four turnstile lobes, and their fluxes would be the same as for

the original choice of pip.

Theorem 1. (Net flux). Let p be a pip of Wu
h1

and Wu
h2

defining a partial barrier between regions A and A0 (oriented
as in Figure 5). For i¼ 1,..,m=2, let Ei be the lobes mapped
from A to A0 by F1, and Ci the lobes mapped from A0 to A.
Then

Aðh2Þ � Aðh1Þ ¼
Xm=2

i¼1

ðUðEiÞ � UðCiÞÞ;

and this sum is independent of the choice of pip p.

Proof. We already know from the rules of lobe dynam-

ics that the sum is independent of the choice of pip.

The sketch in Figure 6 illustrates the magnetic surfaces

generated by Wu
h1

and Wu
h2

, for the barrier in Figure 5. To

derive our result, we consider two closed loops, one lying on

each of these surfaces. Start with the following closed loop

on the surface generated by Wu
h1

Lu � FzðpÞ [Wu
h1
½F1ðpÞ; h1� [ F�1

z ðh1Þ [Wu
h1
½h1; p�: (7)

Here, the notation Fz(p) means the field line traced from p

on the lower boundary to F1(p) on the upper boundary, and

F�1
z means a field line traced downward from the upper

boundary to the lower boundary.

Now form a closed loop on the Ws
h2

surface

Ls � FzðpÞ [Ws
h2
½F1ðpÞ; h2� [ F�1

z ðh2Þ [Ws
h2
½h2; p�: (8)

The integral of A around each loop must vanish, so, using

periodicity of A� ez,

AðpÞ �
ð

Wu
h1
½p;F1ðpÞ�

A � dl�Aðh1Þ ¼ 0; (9)

AðpÞ �
ð

Ws
h2
½p;F1ðpÞ�

A � dl�Aðh2Þ ¼ 0: (10)

Subtracting Eq. (10) from Eq. (9) yields

Aðh2Þ � Aðh1Þ ¼
ð

Wu
h1
½p;F1ðpÞ�

A � dl�
ð

Ws
h2
½p;F1ðpÞ�

A � dl:

(11)

The right-hand side is the magnetic flux through a closed

loop in the plane z¼ 0 (or z¼ 1) encircling all of the turnstile

lobes. Since the F1(Ei) are encircled anticlockwise and the

F1(Ci) are encircled clockwise, the result follows from

Stokes’ theorem. h

Theorem 1 shows that, for two hyperbolic points con-

nected by a partial barrier, the difference in their values of A
is precisely the net flux crossing this partial barrier. If

h2¼h1, i.e., the two manifolds belong to the same fixed

point, then there can be no net flux across the barrier. In the

limiting case that h1 and h2 are connected by a regular sepa-

ratrix (i.e., the two global manifolds coincide exactly, as in a

2D field), there are effectively infinitely many lobes of

zero area. In this limiting case, Theorem 1 reduces to

Aðh2Þ ¼ Aðh1Þ, as in 2D.

FIG. 6. (Color online) Sketch of the magnetic surfaces in the 3D domain

generated by field lines from Wu
h1

(in red online) and Ws
h2

(in blue online).

Some important magnetic field lines are shown in black.
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For simplicity, our illustrations avoid secondary inter-

sections between lobes (see Rom-Kedar et al.20). However,

even in the presence of secondary intersections, one may

show that Aðh2Þ � Aðh1Þ gives the net flux across the partial

barrier.

D. A region of the general flux partition

To get a feeling for the nature of our new flux partition,

let us examine the region R in Figure 7(a), whose boundary

is a chain of partial barriers comprising alternating segments

of Wu and Ws from four hyperbolic fixed points hi,

i¼ 1,…,4. The exact definition of each partial barrier is non-

unique, owing to the freedom of choice of defining pip, but

this does not affect any of the fluxes that we will describe

here.

Since R is simply connected it must contain an elliptic

fixed point e, because the topological degree of F1 on R is 1,

by definition of the boundary. In this respect, the situation is

analogous to a similar region in a 2D magnetic field, which

must contain an o-point (Figure 1). However, there is a key

difference when we try to define a “flux” of the region R. In

the 2D field, the partial barriers would be replaced by regular

separatrices, and the flux function A would have the same

value at each hi. The flux of the region would then be unam-

biguously defined as A(e) – A(h1). In the 3D case, such a

unique flux cannot be defined.

To see this, consider the differences in A between each

pair of fixed points, which define 8 physical fluxes, shown in

Figure 7(b)

w1 ¼ Aðh2Þ � Aðh1Þ; /1 ¼ AðeÞ � Aðh1Þ;
w2 ¼ Aðh3Þ � Aðh2Þ; /2 ¼ AðeÞ � Aðh2Þ;
w3 ¼ Aðh4Þ � Aðh3Þ; /3 ¼ AðeÞ � Aðh3Þ;
w4 ¼ Aðh1Þ � Aðh4Þ; /4 ¼ AðeÞ � Aðh4Þ:

The wi are the net fluxes through each partial barrier, while

the /i measure fluxes across surfaces in the domain. But

these 8 fluxes are not all independent. Dividing R into 4 sub-

regions Ri, as in Figure 7(b), the net flux into each Ri must

vanish (for a periodic field), so we have the constraints

wi ¼ /i � /iþ1; for i ¼ 1;…; 4: (12)

Summing all of these equations leads to
P

i wi ¼ 0, express-

ing conservation of flux in the full region R. It is clear from

Eq. (12) that differences between the /i relate to net flux

through the partial barriers. If all wi¼ 0, as in a 2D field, all

the /i must be equal, giving us our uniquely defined flux.

But if any of the wi is non-zero, there is no meaningful single

flux in R.

Interestingly, we see that a change in AðeÞ adds the

same amount to each /i. So although the structure is not sim-

ple enough to define a unique flux in R, there is a unique

reconnected flux. This emphasizes that it is the values of A
at fixed points that define our flux partition, not the individ-

ual fluxes wi, /i, which are not independent. Note that this

change in AðeÞ does not affect any of the wi, so it represents

a purely local non-ideal event within the region R. By con-

trast, changes in AðhiÞ affect more than one region of the

partition, giving reconnection in the usual sense.

V. MEASURING RECONNECTION

Measuring the partition reconnection rate for our general

flux partition is straightforward using the generalized flux

function A. As in the 2D case, the partition fluxes are defined

entirely by the values of A at fixed points. In a general 3D

field line mapping with chaotic regions, we cannot uniquely

define the regions of the partition, because the definition of

partial barriers is non-unique. But to measure reconnection,

we require not a partition of space into regions but rather a

partition of flux. This we have shown to be well-defined.

In the same way as the 2D case, we can define a global

partition reconnection rate by summing over hyperbolic

fixed points hi

DUP ¼
X

hi

dAðhiÞ
dt

����
����: (13)

How does this partition reconnection rate relate to the defini-

tion of reconnection using integrated Ek? In the latter defini-

tion, reconnection can occur anywhere with non-zero Ek: a

global reconnection rate is defined3 by identifying distinct

reconnection regions as local maxima of Ek. These sites need

not coincide with fixed point field lines, so the global recon-

nection rates from the two methods may differ. The example

in Sec. VI will demonstrate this. In fact, the change in A at a

fixed point corresponds to the integral of Ek along the fixed

point field line itself, as we now show.

Let x0 be a fixed point of the field line mapping F1, ei-

ther hyperbolic or elliptic. We consider a general non-ideal

evolution with an Ohm’s law of the form

Eþ v� B ¼ R; (14)

where R is any non-ideal term (for example, in resistive-

MHD, R¼ j=r). In our magnetic field, where there are no

closed field lines, we may write R ¼ rwþ u� B, where

wðFzðx; yÞÞ ¼
ðFzðx;yÞ

ðx;yÞ
R � dl (15)FIG. 7. (Color online) A region R of the general flux partition (a), and

decomposition into subregions Ri (b).
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is integrated along a field line, and u ¼ B� R�rwð Þ=B2.

Letting w¼ v�u, we may write Ohm’s law (14) as

Eþ w� B ¼ rw; (16)

indicating that the field lines are frozen-in with a velocity w,

which differs in general17 from the plasma velocity v.

Faraday’s law then implies that

@A

@t
� w�r� A ¼ �rð/þ wÞ; (17)

where /(x, t) is the electrostatic potential. Following a field

line at velocity w, the rate of change of A is

@A
@t
þ w � rA ¼ d

dt

ð
A � dl; (18)

¼
ð

@A

@t
� w�r� Aþrðw � AÞ

� �
� dl;

(19)

¼ w � A� /� wð ÞjF1ðx;yÞ
ðx;yÞ ; (20)

using Eq. (17). At a fixed point, F1(x0)¼ x0, and we now

choose the gauge / so that / ¼ w � A. This ensures that A
becomes an ideal invariant whenever R¼ 0, and leads to

@A
@t
þ w � rA ¼ �

ðF1ðx0Þ

x0

E � dl: (21)

In other words, the rate of change of A following a fixed

point corresponds to the integrated parallel electric field

along the fixed point field line.

VI. EXAMPLE

To illustrate the ideas developed above, we present a

particular example of a 3D magnetic field. The basic field

(Sec. VI A) is given by an analytical expression and is cho-

sen to be generic in that the field line mapping contains both

regular and chaotic regions, and the global manifolds form

heteroclinic tangles. In Sec. VI B, we perform a simple

experiment where a growing toroidal flux ring is added to

the basic field. This demonstrates how our flux partition

responds to localized 3D reconnection.

A. Structure of the basic field

The basic field comprises six isolated magnetic flux

rings, superimposed on a uniform vertical field Bz¼ 1. The

ith flux ring is derived from a vector potential

Ai ¼ aiki exp �ðx� xiÞ2 þ ðy� yiÞ2

a2
i

� ðz� ziÞ2

l2
i

 !
ez; (22)

where the centre of the ring is at (xi, yi, zi), the parameter ki

controls the flux, and the parameters ai and li control the ra-

dial and vertical extents, respectively.23 Thus

B ¼ r� � y

2
ex þ

x

2
ey þ

X6

i¼1

Ai

 !
; (23)

where we choose the parameter sets

ðxi; i ¼ 1;…; 6Þ ¼ ð1; 0;�1; 1; 0;�1Þ;
ðyi; i ¼ 1;…; 6Þ ¼ ð0:5; 0:5; 0:5;�0:5;�0:5;�0:5Þ;
ðzi; i ¼ 1;…; 6Þ ¼ ð�20;�12; 4; 4; 12; 20Þ;
ðki; i ¼ 1;…; 6Þ ¼ ð1;�1; 1:1;�1; 1;�1Þk0;

with k0¼ 0.08, all ai ¼ 0:3
ffiffiffi
2
p

and li¼ 2. Notice that one of

the rings has larger jkij: this creates an asymmetry in the flux

partition leading to a net flux across certain partial barriers.

Figure 8(a) illustrates this magnetic field. Since both A

and B are periodic, we can iterate the field line mapping

F1(x, y) to produce a Poincaré plot (Figure 8(b)). This

reveals that the field is structured into six regular elliptic

regions—corresponding to the (x, y) locations of the six flux

rings—separated by bands of chaotic field lines.

The 2D greyscale image on the base of Figure 8(a)

shows a “color map”24 of the direction of F1(x, y) – (x, y).

We used this to identify fixed points as locations where all

four colors meet and to identify the Poincaré index of each

fixed point from the surrounding color sequence.25,26 The

precise locations (Table I) were found by Newton-Raphson

FIG. 8. (Color online) The 6-roll mag-

netic field. The left panel shows a 3D

visualization (isosurfaces at B2
x þ B2

y ¼
0:003 identify the toroidal flux rings),

while the right panel shows a Poincaré

return map with the calculated global

stable=unstable manifolds shown in

blue=red, respectively. The greyscale

image on the lower boundary of the 3D

visualization shows the “color map”

used to identify fixed points.
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iteration using the color map as a first guess. There are six

elliptic fixed points, at the centre of each regular region, and

two hyperbolic fixed points between. Table I also shows the

value of the generalized flux function Aðx; yÞ at each fixed

point, calculated by numerically integrating A along the

appropriate magnetic field line from z¼�24 to z¼ 24.

The red and blue curves in Figure 8(b) show the global

manifolds of the fixed points h1 and h2. These have been

“grown” numerically up to a finite length using the method

of Krauskopf and Osinga27 (see also England et al.28). As

expected in a generic 3D mapping, the manifolds do not

describe regular separatrices but have degenerated into heter-

oclinic tangles. In addition to the manifolds of h1 and h2, we

also show the corresponding manifolds emanating from the

six hyperbolic points at infinity (effectively on the bounda-

ries of this plot).

An enlargement of the partial barrier between h1 and h2

is shown in Figure 9(a). By identifying a pip p and comput-

ing F1(p), we find that m¼ 2, for this example: i.e., one turn-

stile lobe crosses the partial barrier in each direction. It is

apparent that the areas of these two lobes are unequal, i.e.,

there is a net flux across this partial barrier. Numerical inte-

gration shows that the two lobe fluxes are approximately

0.0008 and 0.0001, and indeed Aðh2Þ � Aðh1Þ ¼ 0:0007,

thus verifying Theorem 1 for this example. Repeating the

calculation for the other partial barriers, we find that those

connecting h1 with the boundary each have a net flux of

0.0007, while those connecting h2 with the boundary each

have zero net flux. This is consistent with the values of A for

the two hyperbolic points (at infinity, A ¼ 0). One can think

of a net chaotic flux of 0.0007 encircling the left-hand hyper-

bolic point, crossing all four of its attached partial barriers.

(These barriers must all have the same net flux since F1 is

area preserving.)

B. Effect of an isolated reconnection region

To illustrate several key properties of our general flux

partition, we consider the effect of adding a gradually

strengthening seventh flux ring to the basic field. This mod-

els the topological effect of a localised three-dimensional

(non-null) diffusion region, as modelled by Hornig and

Priest29 and studied in the framework of general magnetic

reconnection.30

Specifically,

B ¼ r� � y

2
ex þ

x

2
ey þ

X7

i¼1

Ai

 !
; (24)

where Ai are the same as the basic field for i¼ 1,…,6, and

the new ring has parameters z7¼ 28, a7¼ 0.1, l7¼ 1, and

k7¼ 0.01t. The dependence of k7 on time t causes a gradual

increase in the ring’s azimuthal magnetic flux from U7¼ 0 at

t¼ 0 to U7 ¼
ffiffiffi
p
p

a7l7k7ðtÞ at time t. We shall illustrate how

the reconnection associated with this new flux ring affects

the partition fluxes for two differing locations (x7, y7).

Case 1: At fixed point h2 (x7¼ 0.4663, y7¼ 0.0410). The

resulting perturbation is shown in Figure 10. The fixed point

remains at the same position, and for small t remains hyper-

bolic, though the structure of the global manifolds underly-

ing the chaotic region is altered. At t � 2.5, there is a

pitchfork bifurcation: the original fixed point becomes ellip-

tic and a pair of new hyperbolic fixed points are formed. The

flux U7 of the new flux ring has become strong enough to

perturb the field and create a new elliptic region.

Note that, throughout this evolution, the change in

Aðh2Þ is exactly equal to the rate of increase of U7 (Figure

10(d)). All the new flux is counted by our partition reconnec-

tion rate, because the fixed point field line passes through the

centre of the reconnection region. In general, a reconnection

site will not be aligned with the fixed point field lines in this

way, so the full imposed flux will not be measured by our

TABLE I. Fixed points in the basic field (23).

Point Poincaré index x y Aðx; yÞ

e1 1 1.0058 0.5007 0.1191

e2 1 �0.0021 0.5083 �0.1189

e3 1 �1.0003 0.5003 0.1314

e4 1 �1.0061 �0.5010 �0.1191

e5 1 0.0024 �0.5081 0.1190

e6 1 1.0007 �0.5007 �0.1194

h1 �1 �0.4623 �0.0457 0.0007

h2 �1 0.4663 0.0410 0

FIG. 9. (Color online) Enlargement of the central partial barrier in Figure 8(b), showing the lobes in (a) the basic field, (b) Case 2 (Sec. VI B) at t¼ 2, and (c)

Case 3 at t¼ 6.
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partition reconnection rate. However, as suggested by the

bifurcation in this example, if enough flux is reconnected

then the structure of the underlying field will be modified,

creating new fixed points that subsequently measure the new

flux.

Case 2: On a partial barrier (x7¼ y7¼ 0). Here, the flux

ring modifies field lines in the lobes of a partial barrier (Fig-

ure 9). Figures 9(b) and 9(c) show that the lobes grow as the

ring flux increases. This implies that more flux crosses the

partial barrier in each direction. But the net flux across the

barrier remains invariant because neither fixed point field

line passes through the reconnection region, so that the fixed

point locations and A values cannot change. Notice that,

even though the mapping near h1 or h2 is unperturbed, the

nearby lobes change significantly, because the global mani-

fold passes through the reconnection region. Numerical com-

putation of the areas of the two turnstile lobes reveals that

0.58(E1þC1) � U7, roughly corresponding to a simple pic-

ture of the new flux being counted twice in the lobes: once in

each direction across the partial barrier. But this reconnec-

tion has not changed the partition fluxes as defined by A at

fixed points; hence, the partition reconnection rate is zero.

To summarise, these examples illustrate three important

properties of an isolated reconnection region:

1. The position of a localised reconnection region within the

background field determines its topological effectiveness:

i.e., the extent to which it changes the partition fluxes, as

measured by A at fixed points. Indeed, the fluxes in the

partition can change only if a fixed point field line passes

through the reconnection region.

2. If the reconnected flux becomes large enough, the recon-

nection region may perturb the original field sufficiently

that new fixed points, whose field lines pass through the

reconnection region are created. Thus, it will become visi-

ble to the flux partition.

3. If field lines from the lobes of a heteroclinic tangle pass

through the reconnection region, then both the paths of

the corresponding global manifolds and the lobe areas

may change due to the reconnection. While this may alter

the amount of flux in the turnstile lobes, the net flux

across the barrier cannot change if the associated fixed

point field lines do not pass through the reconnection

region.

VII. CONCLUSION

We have proposed a method to define and measure

reconnection in a 3D magnetic field stretching between two

boundaries. The flux is partitioned using the global mani-

folds of hyperbolic fixed points of the field line mapping

between the boundaries. Individual fluxes in the partition

are defined as differences between the values of a general-

ized flux function Aðx; yÞ at fixed points. This is a natural

generalization of the flux function in a 2D magnetic field

and maintains the key advantage that the reconnection rate

(with respect to this partition) is measured simply by the

rate of change of A at fixed points. The associated partition

reconnection rate is unique, and straightforward to com-

pute: the main computational effort required is identifying

the fixed points in the field line mapping at successive

times.

Petrisor31 has previously recognised that reconnection

may be related to values of an action function (essentially

A) on hyperbolic orbits, though that analysis was limited to

non-twist area-preserving maps. Our results are more general

and have been derived in a more physical way relating

directly to the magnetic field itself. The interpretation of A
as an action integral brings out a deep connection with the

magnetic structure. Cary and Littlejohn32 have shown that

Aðx; yÞ is the action in a variational formulation leading to

the equations of the magnetic field lines. In other words,

given A, and assuming displacements dx with A � dx¼ 0 at

the end-points, the Euler-Lagrange equations that extremise

A are the equations of the field lines.

Future work will consider in more detail how our parti-

tion reconnection rate compares with reconnection defined

using the integrated parallel electric field, such as in numeri-

cal simulations (e.g., Pontin et al.33). There are certainly dif-

ferences: we have seen in Sec. VI how the visibility of a

reconnection region (as defined with Ek) to our flux partition

depends on its location. We interpret this as a difference in

the topological effectiveness of the reconnection, from the

point of view of the flux partition. One way to refine the par-

tition would be to integrate A over more than one iteration

of F1, measuring the values of A at the larger number of per-

iodic points.

The example in Sec. VI B also demonstrated that the

flux in each direction across a partial barrier may be much

FIG. 10. (Color online) Perturbation of the Poincaré plot and global manifolds in case 1, at (a) t¼ 0 (basic field), (b) t¼ 2, and (c) t¼ 4. Panel (d) compares

the reconnected flux measured using Aðh2Þ (thick solid line) to the imposed flux U7 (grey dashed line): the two curves coincide. The thin lines show the A val-

ues at the two new hyperbolic points following the bifurcation at t � 2.5.
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larger than the net flux, and furthermore may change under a

non-ideal evolution even if the net flux remains constant.

Our existing flux partition is insensitive to such changes.

However, we note that it is possible to measure the flux of an

individual lobe with the formula

UðLÞ ¼
X1

k¼�1
AðFk

1ðp2ÞÞ � AðFk
1ðp1ÞÞ

� �
; (25)

where p2 and p1 are the defining pips of the lobe. This may

be proved using a similar geometrical argument to Theorem

1 and is a straightforward generalisation of a similar formula

for lobe area in area-preserving maps.21,34,35 Taking account

of chaotic regions in this way is likely to be of particular im-

portance in fields where heteroclinic tangles fill large areas

of the plane, with multiple intersections. In this case, the

structure of the field is dominated by chaotic regions. While

the flux partition may still be defined in the same way using

A values at the fixed points, the geometrical interpretation is

less clear and requires further investigation.

Finally, the theory developed in this paper requires Bz to

be periodic, i.e., Bz(x, y, 1)¼Bz(x, y, 0). In many astrophysi-

cal applications, we have magnetic flux tubes which do not

satisfy such a condition (where z is a coordinate along the

flux tube). We can apply the generalized flux function in this

case by using a “reference field” B
ref, defined on the same

domain as B and with the same normal field component on

the boundaries. Given such a reference field, we may con-

struct a combined field B
comb by choosing the field lines that

satisfy Fcomb
z ðx; yÞ ¼ ðFref

z Þ
�1

Fzðx; yÞð Þ, and fixing the magni-

tude so that Bcomb
z ðx; y; 0Þ ¼ Bzðx; y; 0Þ. Here, Fz(x, y) are the

field lines of B, as in Eq. (4), and Fref
z ðx; yÞ are the field lines

of Bref parametrized in the same way. The combined field

satisfies Bcomb
z ðx; y; 1Þ ¼ Bcomb

z ðx; y; 0Þ, so our theory may be

applied directly to this new field. Unfortunately, the resulting

partition fluxes will depend on the choice of reference field.

This may be seen by considering the “trivial” choice

B
ref¼B, where Fcomb

1 would be the identity mapping, with

no isolated fixed points. However, we argue that a natural

choice of reference field would be the (unique) potential field

satisfying the required boundary conditions, which has the

minimum possible magnetic energy. No reconnection event

can lower the energy beyond this limit while leaving the

boundary conditions fixed, so the potential field has, in this

sense, the “minimum magnetic flux.” This is consistent with

Aðx; yÞ ¼ 0 for B¼Bref.
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