
ar
X

iv
:1

10
8.

20
40

v2
 [

he
p-

ph
]

 3
1

Ju
l 2

01
2

CP3-11-25, IPHC-PHENO-11-04, IPPP/11/39, DCPT/11/78, MPP-2011-68

UFO - The Universal FeynRules Output

Céline Degrande a, Claude Duhr b, Benjamin Fuks c,
David Grellscheid b, Olivier Mattelaer a, Thomas Reiter d

aUniversité catholique de Louvain,
Center for particle physics and phenomenology (CP3),

Chemin du cyclotron, 2, B-1348 Louvain-La-Neuve, Belgium
Email: celine.degrande@uclouvain.be, olivier.mattelaer@uclouvain.be

bInstitute for Particle Physics Phenomenology, University of Durham,
Durham, DH1 3LE, United Kingdom,

Email: claude.duhr@durham.ac.uk, david.grellscheid@durham.ac.uk
cInstitut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,
Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg,

France
E-mail address: benjamin.fuks@iphc.cnrs.fr

dMax-Planck-Institut für Physik,
Föhringer Ring 6, 80805 München, Germany

Email: reiterth@mpp.mpg.de

Abstract

We present a new model format for automatized matrix-element generators, the so-
called Universal FeynRules Output (UFO). The format is universal in the sense that
it features compatibility with more than one single generator and is designed to be
flexible, modular and agnostic of any assumption such as the number of particles or
the color and Lorentz structures appearing in the interaction vertices. Unlike other
model formats where text files need to be parsed, the information on the model is
encoded into a Python module that can easily be linked to other computer codes.
We then describe an interface for the Mathematica package FeynRules that
allows for an automatic output of models in the UFO format.

Key words: Model building, model implementation, Feynman rules, Feynman
diagram calculators, Monte Carlo programs.

Preprint submitted to Elsevier 1 August 2012

http://arxiv.org/abs/1108.2040v2

1 Introduction

Monte Carlo simulations of the physics to be observed at the Large Hadron
Collider (LHC) at CERN play a central role in the exploration of the elec-
troweak scale, both from the experimental point of view of establishing an
excesses over the expected Standard Model (SM) backgrounds as well as from
the phenomenological point of view by providing possible explanations for the
observations. For this reason, activities in the field of Monte Carlo simula-
tions have been rather intense over the last fifteen years, resulting in many
advances in the field. Automated tree-level matrix-element generators, such as
Alpgen [1], Comix [2], CompHep/CalcHep [3,4,5], Helac [6], Herwig
[7,8], MadGraph/MadEvent [9,10,11,12,13], Sherpa [14,15], orWhizard
[16,17], describing the hard scattering processes where the Beyond the Stan-
dard Model (BSM) physics is expected to show up have been developed. As
a consequence, the problem of the automatic generation of tree-level matrix
elements for a large class of Lagrangian-based BSM theories is solved, at least
in principle.

Due to the numerous existing BSM theories based on ideas in constant evo-
lution, the implementation of these models into Monte Carlo event genera-
tors remains a tedious and error-prone task. Feynman rules associated with
a given BSM model must be derived and then implemented one at the time
into the various codes, which often follow their own specific conventions and
formats. A first step in the direction of automating this procedure by starting
directly from the Lagrangian of the model has been made in the context of
the LanHep package [18] linked to the CompHep and CalcHep programs.
Recently, a new efficient framework going beyond this scheme has been de-
veloped. It is based on the FeynRules package [19,20,21,22] and proposes a
general and flexible environment allowing to develop a model, investigate its
phenomenology and eventually confront it to data. Its virtue has been illus-
trated in the context of the CompHep/CalcHep, FeynArts/FormCalc
[23], MadGraph/MadEvent, Sherpa and Whizard programs, by imple-
menting several new physics theories in FeynRules and then passing them
to the different tools for a systematic validation procedure. The approach is
based on a modular structure where each node consists in an interface to a ded-
icated matrix-element generator. Since the latter have in general hard-coded
information regarding the supported Lorentz and/or color structures, the in-
terfaces check whether a given vertex is compliant with a given matrix-element
generator, in which case the vertex is written to file in a format suitable for
the generator. The final output consists then in a set of text files that can be
used in a similar way to any other built-in model.

The procedure spelled out above, where communication between FeynRules
and the matrix-element generators proceeds exclusively via a set of well-

2

defined text files that must be parsed and interpreted, has some serious limita-
tions. In particular, extending the format to include more general structures,
like higher-dimensional operators and/or non-standard color structures, is dif-
ficult to incorporate into a static text-based format. In this paper we present
a new format, dubbed the Universal FeynRules Output or the UFO, for
model files that goes beyond existing formats in various ways. The format
is completely generic and, unlike existing formats, it does not make any a

priori assumptions on the structures that can appear in a model. The aim
is to provide a flexible format, where all the information about a model is
represented in an abstract form that can easily be accessed by other tools.
The information on the particles, parameters and vertices of the model are
stored in a set of Python objects, each of them being associated with a list
of attributes related to their properties. This way of representing the model
information has some benefits over the more traditional plain text table-based
format, because it allows, e.g., to add a missing piece of information directly as
a new attribute to an existing object. As an example, extending a table-based
format to accommodate higher-point vertices requires to change the format
of the table and to adapt the readers for the table accordingly. In an object-
oriented format like the UFO, the same extension is trivial, as the number of
particles entering a vertex is just an attribute of the vertex, so no extension
of rewriting of the readers is necessary. Presently, the UFO format is already
used by the MadGraph version 5 [13] and the GoSam generators [24,25,26],
and will be used in a near future by Herwig++.

The paper is organized as follows. In Section 2, we describe the features of
the UFO format as a stand-alone Python module, while Section 3 addresses
the automation of writing an UFO model through FeynRules. Section 4 is
dedicated to the UFO features beyond tree level and in Section 5, we provide
an example of how to implement a model containing non-trivial Lorentz struc-
tures with the help of FeynRules into MadGraph 5. Our conclusions are
drawn in Section 6.

2 The UFO format

Any quantum field theory can be defined by a threefold information,

• a set of particles, defined together with their quantum numbers (spin, elec-
tric charge, etc.),
• a set of parameters (masses, coupling constants, etc, ...),
• a Lagrangian describing the interactions among the different particle species.

However, matrix-element generators do not work, in general, directly with
the Lagrangian, but rather with an explicit set of vertices. In the rest of this

3

section, we assume that we have extracted all the vertices from the Lagrangian
of a given model and only restrict ourselves to describing a new generic format
to implement the information on the particles and parameters of the model
along with the vertices describing the interactions among the particles into
matrix-element generators. The issue of the extraction of the vertices from
the Lagrangian and their translation into this new format in an automated
fashion via the FeynRules package will be discussed in Section 3.

The Universal FeynRules Output (UFO) allows to translate all the infor-
mation about a given particle physics model into a Python module that
can easily be linked to existing matrix-element generators. While in general
each generator is following its own format and conventions, the UFO format
goes beyond this approach in the sense that it is, by definition, not tied to
any specific matrix-element generator. More specifically, it saves the model
information in an abstract (generator-independent) way in terms of Python
objects. An UFO model is hence a standalone Python module, containing
ready-to-go definitions for all the classes representing particles, parameters,
etc., and which can be directly linked to an existing matrix-element generator
without any modification or further interfacing.

In this section we give a detailed account on the UFO format, putting special
emphasis on the definition of the different classes useful for designing model
files. In general, an UFO model consists of a directory containing a set of text
files that can be split into two distinct classes,

• Model-independent files:
- __init__.py,
- object_library.py,
- function_library.py,
- write_param_card.py,
• Model-dependent files:
- particles.py,
- parameters.py,
- vertices.py,
- couplings.py,
- lorentz.py,
- coupling_orders.py.

Since the UFO format is based on the Python language, all files have a .py

extension. The model-independent files are identical for every model and con-
tain, among others, the definitions of the classes which the model-dependent
objects (particles, parameters, etc.) are instances of. All those files are pro-
vided as self-contained Python modules.

4

2.1 Initialization and structure of the objects and functions

A file named __init__.py inside a directory is standard in the Python
language and corresponds to a tag for importing complete Python modules
by issuing the Python command

import Directory_Name

where Directory_Name refers to the name of the directory containing the
__init__.py file. However, in addition to the possiblity of importing a com-
plete UFO model, this file also contains, in the UFO case, links to different
lists of quantities associated with the various objects defined in a model,

• all_particles

• all_vertices

• all_couplings

• all_lorentz

• all_parameters

• all_coupling_orders

• all_functions

These lists allow, e.g., to access the full particle content of a model in an easy
way downstream in the code. Moreover, every time that an instance of a class
is created in the model, it will be automatically added to the corresponding
list.

An UFO model can be fully implemented with the help of a small number
of basic classes, denoted Particle, Parameter, Vertex, Coupling, Lorentz
and CouplingOrder. All of these classes are derived from the mother class
UFOBaseClass, defining a set of common methods and attributes accessible in
the same way by each class. The mother class, together with all its children, is
defined in the file object library.py. In particular, each class has methods
to display all the attributes associated to a given instance of the class, as
well as to return or set the values of these attributes. As an example, if P is
an instance of the class Particle and if charge is an attribute of this class
(see Section 2.2), the charge of the corresponding particle can be accessed in
the standard way by issuing the command P.charge. The complete list of
attributes of the UFOBaseClass class is summarized in Table 1.

The file function library.py is related to the implementation of user-defined
functions into an UFO module via the special class Function, which translates
functions that can be defined within a single Python line (i.e., the so-called
Python ‘lambda’ functions) to other programming languages (such as For-
tran or C++). Let us note that this specific type of functions is currently
the only type of user-defined functions supported by the UFO format. A mem-

5

Table 1: Attributes and methods available to all UFO classes

get all Returns a list of all the attributes of an object.

nice string Returns a string with a representation of an object contain-
ing the values associated with each of its attributes.

get This method provides access to the value of an attribute
of an object. As an example, if P denotes an instance of
a class with attribute charge, then P.get(’charge’) and
P.charge are equivalent means of accessing the value of the
attribute charge.

set This method allows one to modify the value of an attribute
of an object. As an example, if P denotes an instance of
class with attribute charge, then P.set(’charge’, 1), or
equivalently P.charge = 1, will set the attribute denoted
by charge to unity.

Table 1

ber of the class Function contains three mandatory attributes, called name,
arguments and expression. While name is a string representing the name
of the function, the attributes arguments and expression correspond to a
sequence of strings for the names of the variables the function depends upon
and a string representing the valid Python expression defining the function
itself. Several functions are by default included into the UFO function library,

• complexconjugate: complex conjugation,
• csc: the trigonometric function cosecant,
• acsc: the cyclometric function arccosecant,
• im: the imaginary part of a complex number,
• re: the real part of a complex number,
• sec: the trigonometric function secant,
• asec: the cyclometric function arcsecant.

These functions consist in a set of common mathematical functions for which
the standard Python module cmath is insufficient or unpractical. As an ex-
ample, the cosecant function csc (not included in the cmath library) is im-
plemented within the UFO module as an instance of the aforementioned class
Function via

csc = Function(name = ’csc’,

arguments = (’z’,),

expression = ’1./cmath.sin(z)’)

6

2.2 Implementation of the particle content of a model

In the UFO format, all particles are instances of the class Particle defined in
the file particles.py. Even if the Lagrangian of a model is in general more
easily written in terms gauge eigenstates, matrix-element generators usually
work at the level of mass eigenstates. Hence only mass eigenstates should be
defined in the particles.py file.

The definition of a particle might read, for, e.g., a top quark, as

t = Particle(pdg_code = 6,

name = ’t’,

antiname = ’t~’,

spin = 2,

color = 3,

mass = Param.MT,

width = Param.WT,

texname = ’t’,

antitexname = ’\\bar{t}’,

charge = 2/3,

line = ’straight’,

LeptonNumber = 0

)

The class Particle has various attributes that are summarized in Table 2. In
the following we content ourselves to highlight only the most important points.
First, note that, apart from a set of mandatory arguments (all attributes but
the last two in the example above), the Particle class can be given an arbi-
trary number of optional attributes (the line and LeptonNumber attributes in
the example). There are three predefined optional attributes, which are sum-
marized in Table 2. Every additional optional attribute must be an integer
representing additional model-dependent additive quantum numbers (as the
attribute LeptonNumber in the example). The only exceptions regarding the
treatment of the quantum numbers concern the electric charge and color rep-
resentation, which are always mandatory and stored in the attributes charge
and color.

A particle object is identified through its name, a string stored in the name

attribute. In a similar fashion, the attribute antiname is a string representing
the name of the corresponding antiparticle. Note that self-conjugate particles,
i.e., particles that are their own antiparticles, are identified by having identi-
cal name and antiname attributes (i.e., even for self-conjugate particles, the
antiname attribute must be defined). The transformation properties of the
particle under the Lorentz group and the QCD and electromagnetic gauge

7

groups are specified through the spin, color and charge attributes. Each of
these attributes takes an integer value:

• spin: the possible values are 2s+ 1, where s is the spin of the particle. For
the moment only s ≤ 2 is supported. By convention, the value −1 is used
for ghost fields.
• color: the possible values are 1, ±3, ±6 and 8, corresponding to singlets,
(anti)triplets, (anti)sextets and octets.
• charge: any rational number, representing the electric charge of the particle.

Inside matrix-element generators, particles are often identified through an
integer number referring to the Particle Data Group (PDG) numbering scheme
[27]. This code is stored in the pdg code attribute, which can be set to any
integer value, even though it is highly recommended to follow the existing
conventions whenever possible. Finally, masses and widths are encoded in the
mass and width attributes. They refer to the corresponding instances of the
Parameter class defined in the file parameters.py (see Section 2.3). Therefore,
at the beginning of the particles.py file, the Parameter objects are imported
via the Python instruction

import parameters as Param

In the previous example we have only instantiated the object representing the
top quark. However, since the top quark is not a self-conjugate particle, we
still need to implement an object representing the top antiquark. We could
proceed in a similar way as in the example above, but the Particle class has a
built-in method, denoted anti(), instantiating the antiparticle object directly
from the corresponding particle object. In the example of the top quark, the
instruction

t__tilde__ = t.anti()

instantiates a Particle object called t__tilde__ which is identical to the
object t previously defined, but with the attributes name (texname) and
antiname (antitexname) interchanged. In addition, all the quantum numbers,
including the electric charge (charge) and the color representation (color),
are set to opposite values.

2.3 Implementation of the parameters of a model

Parameters of a model, like masses, coupling constants, etc., are defined in
an UFO model as instances of the Parameter class (itself defined in the file
object library.py) in the file parameters.py. All the parameters used in
a model implementation are either external (or equivalently independent) pa-

8

Table 2: Attributes of the particle class

pdg code An integer corresponding the identification number related
to the PDG numbering scheme [27].

name A string specifying the name of the particle.

antiname A string specifying the name of the antiparticle. If the par-
ticle is self-conjugate, antiname must be identical to name.

spin An integer corresponding to the spin of the particle in the
form 2s + 1. By convention, the spin of a ghost field (anti-
commuting scalar field) is -1.

color An integer corresponding to the dimension of the color rep-
resentation of the particle (1,±3,±6, 8).

mass A Parameter object corresponding to the mass of the par-
ticle. If the particle is massless, the value must be set to
Param.ZERO.

width A Parameter object corresponding to the width of the parti-
cle. If the width is zero, the value must be set to Param.ZERO.

texname A TEX string representing the particle name.

antitexname A TEX string representing the antiparticle name.

charge A rational number equal to the electric charge of the particle.

Optional attributes

goldstone A boolean, tagging a scalar field as a Goldstone boson (true)
or not (false). The default value is false.

propagating A boolean, tagging the corresponding particle as auxiliary
and non-propagating (false) field or as a physical field
(true). The default value is true.

line A string representing how the propagator of the particle
should be drawn in a Feynman diagram. The possible val-
ues are ’dashed’, ’dotted’, ’straight’, ’wavy’, ’curly’,
’scurly’,’swavy’ and ’double’. The default value is cho-
sen according to the spin and color representation of the
particle.

Table 2

9

rameters or internal (or equivalently dependent) parameters. The user must
provide as an input the numerical value of the external parameters (e.g.,
αs = 0.118), while the internal parameters are related to other (external
and/or internal) parameters via algebraic relations (e.g., gs =

√
4παs). Since

internal and external parameters belong to the same generic class Parameter,
their declaration is very similar. We will give an example for each case sepa-
rately in order to emphasize the main differences and features. The list of all
the possible attributes for the Parameter class is summarized in Table 3.

We start with external parameters. In the UFO format, the external param-
eters are all taken to be real and the type attribute of the Parameter class
must be set to the value ’real’. Therefore, complex numbers will have to be
split into their real and imaginary parts. As an example, the declaration of
the external parameter αs reads

aS = Parameter(name = ’aS’,

nature = ’external’,

type = ’real’,

value = 0.118,

texname = ’\\alpha_s’,

lhablock = ’SMINPUTS’,

lhacode = [3]

)

The attributes of the Parameter class are all mandatory and contain the name
of the parameter (name), its nature (nature) which is external and the value
of the parameter (value). Since any external parameter is a real number, the
value must be a real floating point number. The last two arguments, lhablock
and lhacode, refer to the Les Houches-like format for the input parameters
which is followed by the UFO. This is a generalization to any model of the
original Supersymmetry Les Houches Accord [28,29]. All the model parameters
are grouped into blocks, each line of a block containing a counter (a sequence
of integers) associated with a given parameter name and its corresponding
numerical value. The attribute lhablock of the Parameter object directly
refers to the name of the block in which the considered parameter is stored,
whilst the attribute lhacode is a list of integers referring to the counter.

An additional function related to the Les Houches format is included in the file
write param card.py. The class ParamCardWriter can be called from within
another Python module by issuing the instruction

ParamCardWriter(’./param_card.dat’, qnumbers=True)

and outputs a parameter file named param card.dat which contains all the
external parameters defined in the model, grouped into blocks and counters
according to their lhablock and lhacode attributes. The first argument in

10

the function above refers to the location of the output file, whereas the second
argument specifies whether or not the QNUMBERS blocks [30] should be included
in the output. In addition, if the second argument is set to True, the full set of
masses and widths, even if they are dependent parameters, are written to file.
In the example of aS presented above, the corresponding entry in the output
file would read

Block SMINPUTS

3 1.18000e-01 # aS

Let us also note that the file write param card.py can be directly used from
the command line by issuing the instruction

$> python ./write_param_card.py

As a result, an output file named param card.dat is created and contains the
numerical values of all the external parameters. A snapshot of this parameter
file for a more complete model reads

###################################

INFORMATION FOR SMINPUTS

###################################

Block SMINPUTS

1 1.325070e+02 # aEWM1

2 1.166390e-05 # Gf

3 1.180000e-01 # aS

###################################

INFORMATION FOR YUKAWA

###################################

Block YUKAWA

5 4.200000e+00 # ymb

6 1.645000e+02 # ymt

15 1.777000e+00 # ymtau

The definition of internal parameters follows the same lines as for the ex-
ternal parameters, with the only differences that the lhablock and lhacode

attributes are not available and that the value argument now contains an
algebraic expression relating the parameter to other external or internal pa-
rameters. As a simple example, consider the external parameter aS (αs) and
the internal parameter G (gs =

√
4παs). The implementation of G reads,

G = Parameter(name = ’G’,

nature = ’internal’,

type = ’real’,

value = ’cmath.sqrt(4 * cmath.pi * aS)’,

11

Table 3: Parameter class attributes

nature A string, either ’external’ or ’internal’, specifying
whether a given parameter is considered as a dependent or
independent parameter.

name A string, specifying the name of the parameter.

type A string, either ’real’ or ’complex’, specifying whether a
given parameter is a real or a complex number. We remind
that following the UFO synthax, external parameters must
be real numbers.

value For external parameters, this attribute is a single real
floating-point number. For internal parameters, it consists
of a string representing the analytic expression relating the
considered parameter to other external and/or internal pa-
rameters, following a valid Python syntax.

texname A TEX string representing the parameter name in TEX for-
mat.

Attributes specific to external parameters

lhablock A string containing the name of the block which the param-
eter is assigned to, following a Les Houches-like format.

lhacode A list of integers giving the position of the considered pa-
rameter inside a given lhablock, i.e., the counter associated
with the parameter, following a Les Houches-like format.

Table 3

texname = ’G’

)

Unlike the case of external parameters, the value attribute is a string rep-
resenting a valid algebraic Python expression. Moreover, it is mandatory
that every internal parameter depends only on other parameters which have
already been declared. Returning to our example, the external parameter
aS must hence be defined before the internal parameter G inside the file
parameters.py. Note that masses and widths are considered to be param-
eters of the model (either internal or external), and must thus be declared as
such in parameters.py.

Let us conclude this section by mentioning that most matrix-element gener-
ators have information on the Standard Model input parameters hard-coded.
This allows, among others, for a correct handling of the running of the strong

12

coupling constant. Therefore, the Standard Model parameters in an UFO
model must be correctly identified, following the same notations and con-
ventions as for the implementation of a model in FeynRules [20].

2.4 Implementation of the interactions of the model

The vertices corresponding to the interactions included in a model are defined
in the file vertices.py using the Vertex class. Let us consider a set of n
particles {φℓiai

i }, with spin indices 1 {ℓi} and color indices {ai}. A generic n-
point vertex coupling these fields can be written as a tensor in the color ⊗
spin space 2 ,

Va1...an,ℓ1...ℓn(p1, . . . , pn) =
∑

i,j

Ca1...an
i Gij L

ℓ1...ℓn
j (p1, . . . , pn) , (2.1)

where the variables pi denote the particle momenta, Gij the couplings, and
the quantities Ca1...an

i and Lℓ1...ℓn
j (p1, . . . , pn) denote tensors in color and spin

space, respectively. Since several vertices may share the same spin and/or color
tensors, the latter act as a ‘basis’ for the vertices of the model, the couplings
being the ‘coordinates’ in that basis. As an example, the well-known four-gluon
vertex,

ig2s f
a1a2bf ba3a4 (ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4)

+ ig2s f
a1a3bf ba2a4 (ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4)

+ ig2s f
a1a4bf ba2a3 (ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4) ,

(2.2)

is written in Eq. (2.1) as

(

fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3
)

×

ig2s 0 0

0 ig2s 0

0 0 ig2s

ηµ1µ4ηµ2µ3 − ηµ1µ3ηµ2µ4

ηµ1µ4ηµ2µ3 − ηµ1µ2ηµ3µ4

ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4

.
(2.3)

The UFO format for vertices mimics exactly this structure. As an example,
the implementation of the vertex in Eq. (2.3) into an UFO model reads

V_1 = Vertex(name = ’V_1’,

particles = [P.G, P.G, P.G, P.G],

color = [’f(1,2,-1)*f(-1,3,4)’,

1 The terminology spin indices refers to both Lorentz and Dirac indices.
2 The case of non-strongly interacting particles corresponds to a tensor in color
space equal to unity.

13

Table 4: Vertex class attributes

name A string specifying the name tag of the vertex.

particles A list of Particle objects containing the set of particles en-
tering into the vertex. By convention, all particles are con-
sidered outgoing.

color A list of strings representing the color tensors associated
with the vertex, written as a polynomial combination of the
elementary tensors given in Table 5.

lorentz A list of Lorentz objects representing the spin tensors asso-
ciated with the vertex.

couplings A list of Coupling objects associated with the decomposition
of the vertex in the color ⊗ spin space.

Table 4

’f(1,3,-1)*f(-1,2,4)’,

’f(1,4,-1)*f(-1,2,3)’],

lorentz = [L.VVVV1, L.VVVV2, L.VVVV3],

couplings = {(0,0):C.GC_1,

(1,1):C.GC_1,

(2,2):C.GC_1}

)

The Vertex class is probably one of the most important features of the UFO
format, since the vertices associated with a Lagrangian are at the heart of
every implementation of a BSM model into a matrix-element generator. It
requires five arguments, which are summarized in Table 4. First, each vertex
is identified by an identification tag, its name. Next, the attribute particles
contains the list of all Particle objects entering the considered vertex (by
convention, all particles are considered outgoing). Since these objects are de-
fined in the file particles.py, it is necessary to issue at the beginning of the
file vertices.py the command

import particles as P

and a particle object G is now referred to as P.G. The attributes color and
lorentz contain two lists with the color and Lorentz tensors associated with
the vertex, i.e., the quantities Ca1...an

i and Lℓ1...ℓn
j (p1, . . . , pn) appearing in Eq.

14

Table 5: Elementary color tensors

Trivial tensor (for non-colored particles) 1

Kronecker delta δ̄2 i1 Identity(1,2)

Fundamental representation matrices (T a1)̄3 i2 T(1,2,3)

Structure constants fa1a2a3 f(1,2,3)

Symmetric tensor da1a2a3 d(1,2,3)

Fundamental Levi-Civita tensor ǫi1i2i3 Epsilon(1,2,3)

Antifundamental Levi-Civita tensor ǫı̄1 ı̄2 ı̄3 EpsilonBar(1,2,3)

Sextet representation matrices (T a1
6)β̄3

α2
T6(1,2,3)

Sextet Clebsch-Gordan coefficient (K6)
ı̄2 ̄3

α1
K6(1,2,3)

Antisextet Clebsch-Gordan coefficient (K̄6)
ᾱ1

i2j3 K6Bar(1,2,3)

Table 5

(2.1), and are represented inside an UFO module as,

(Ca1a2a3a4
0 , Ca1a2a3a4

1 , Ca1a2a3a4
2) ↔ [’f(1,2,-1) * f(-1,3,4)’, ...] ,

(Lµ1µ2µ3µ4

0 , Lµ1µ2µ3µ4

1 , Lµ1µ2µ3µ4

2) ↔ [L.VVVV1, L.VVVV2, L.VVVV3] .

Each color tensor is given as a string representing a polynomial combination
of elementary color tensors, whose arguments are integer numbers referring to
the position of the particle in the list particle. If two indices are contracted,
they are represented by a negative integer. The set of all the elementary color
tensors currently included in the UFO format, together with the corresponding
Python syntax, is given in Table 5. Using these conventions, the color tensors
related to the four gluon vertex are given by

fa1a2b f ba3a4 ↔ ’f(1,2,-1) * f(-1,3,4)’ ,

fa3a2b f ba2a4 ↔ ’f(1,3,-1) * f(-1,2,4)’ ,

fa1a4b f ba2a3 ↔ ’f(1,4,-1) * f(-1,2,3)’ .

Since the list of color tensors associated with a vertex is a mandatory argument
of the Vertex object, we define the trivial color structure associated with an
interaction among non-colored particles as the color tensor ’1’.

Spin structures such as those appearing in the vertex decompositions in color
⊗ spin space are implemented as instances of the class Lorentz. All the struc-
tures necessary for the whole model are declared in the lorentz.py file and
we must hence issue at the beginning of the file vertex.py the instruction

15

Table 6: Elementary Lorentz structures

Charge conjugation matrix: Ci1i2 C(1,2)

Epsilon matrix: ǫµ1µ2µ3µ4 Epsilon(1,2,3,4)

Dirac matrices: (γµ1)i2i3 Gamma(1, 2, 3)

Fifth Dirac matrix: (γ5)i1i2 Gamma5(1,2)

(Spinorial) Kronecker delta: δi1i2 Identity(1,2)

Minkowski metric: ηµ1µ2
Metric(1,2)

Momentum of the N th particle: pµ1

N P(1,N)

Right-handed chiral projector:
(

1+γ5
2

)

i1i2
ProjP(1,2)

Left-handed chiral projector
(

1−γ5
2

)

i1i2
ProjM(1,2)

Sigma matrices: (σµ1µ2)i3i4 Sigma(1,2,3,4)

Table 6

import lorentz as L

Hence, the Lorentz objects used in vertex.py, declared in the lorentz.py

Python module, are preceded by the prefix L. As illustrated in the example
of the four-gluon vertex, the lorentz attribute of the Vertex class contains
the list of the relevant structures. A Lorentz object is instantiated as

FFV1 = Lorentz(name = ’FFV1’,

spins = [2, 2, 3],

structure = ’Gamma(3,2,1)’)

All attributes are mandatory. While the attribute name is defined in the usual
way, the attribute spins contains the list of the values of the spins, written as
(2s + 1), of the particles entering the vertex. The last argument, structure,
gives the analytical formula of the Lorentz structure as a string. The conven-
tions for the spin indices is similar to the convention for the color indices: a
positive integer i points to the entry i in the list spins while negative inte-
gers are contracted indices. By default, all the Lorentz indices are supposed
to be upper indices, and repeated Lorentz indices are contracted using the
Minkowski metric. The list of all objects that can be used to define a Lorentz
structure is given in Table 6.

For a given vertex, the Gij quantities appearing in Eq. (2.1) are the ‘coordi-
nates’ corresponding to the decomposition of a vertex into the color ⊗ spin

16

basis. The couplings attribute of the Vertex class contains hence a Python
dictionary relating the coordinate (i, j) to a Coupling object, declared in the
file couplings.py,

Gij ↔ (i,j):C.GC 1 ,

By convention, only non-vanishing coordinates Gij are included in this dictio-
nary. Moreover, the Coupling objects must be imported at the beginning of
the vertices.py file through the command

import couplings as C

The declaration of the Coupling objects in the file couplings.py is similar to
the one of internal parameters. Going back to the example of the four-gluon
vertex in Eq. (2.3), the coupling GC_1 is defined by

GC_1 = Coupling(name = ’GC_1’,

value = ’complex(0,1)*G**2’,

order = {’QCD’:2}

)

The attribute value is a string giving the algebraic expression of the cou-
pling in terms of internal and/or external parameters. The last attribute of a
Coupling object, order, is a Python dictionary where the key for each entry
is a string and the value a non-negative integer. In the example above, this
means that the four-gluon vertex is proportional to two powers of the strong
coupling. This feature allows certain matrix-element generators to generate
only subclasses of Feynman diagrams at runtime. This subclass is determined
by giving an upper limit for a given interaction type, specified by the key in
the dictionary order. This concept, together with its implementation into the
UFO format, is explained in the next section.

2.5 Controlling various types of couplings in a perturbative expansion

In this section we discuss how to control the different types of expansion
parameters that might appear in a perturbative expansion. To illustrate this
concept, let us consider the production of a weak boson in association with jets
at a hadron collider, e.g., p p→ Z+4 jets. This process is dominated by QCD
production, while diagrams involving off-shell weak boson exchanges are highly
suppressed. In order to speed up the event generation for this process, it is thus
desirable to focus exclusively on the strong production of the additional four
jets, neglecting all Feynman diagrams with weak boson exchanges. In other
words, we would like to select the subset of all the diagrams contributing to
the process p p→ Z +4 jets that involve at most one electroweak vertex, i.e.,
at most one power of the electromagnetic coupling constant e.

17

This can be achieved using tags that allow to count the number of couplings of
a given type present in a diagram. In the previous section, we have introduced
the order attribute of the Coupling class. As examples, the order of g2s
was hence defined as {‘QCD’, 2}, whilst the one of e2 reads {‘QED’:2}. In
the case of the generation of the Feynman diagrams associated to the p p →
Z + 4 jets process, the coupling order feature allows to restrict the number of
couplings of type QED to be at most one, neglecting in this way the electroweak
production of any additional jet 3 . For certain models, it can be useful to
specify a default behavior for some types of coupling orders. This can be done
using the CouplingOrder class, which we describe in the rest of this section.

Coupling orders are instances of the class CouplingOrder and are instantiated
in the file coupling orders.py. As a first simple examples, let us consider
the coupling orders QCD and QED, corresponding to the coupling constants gs
and e, respectively. The definitions in coupling orders.py read

QCD = CouplingOrder(name = ‘QCD’,

expansion_order = 99,

hierarchy = 1

)

QED = CouplingOrder(name = ‘QED’,

expansion_order = 99,

hierarchy = 2

)

The class CouplingOrder has two mandatory attributes, apart from the ubiq-
uitous name attribute. First, the attribute expansion order is an integer spec-
ifying the maximal number of couplings of this type that should be included in
a given process. The default value is 99, indicating that any number is allowed.
The second attribute, hierarchy, is an integer that allows one to classify dif-
ferent types of interactions according to their relative strength. In the above
example, we have QCD.hierarchy = 1 and QED.hierarchy = 2, reflecting the
fact that g4s is of the same order of magnitude as e2. The CouplingOrder ob-
jects then allow certain matrix-element generators to define a default behavior
for the maximal number of couplings of a given type that can appear in a di-
agram, based on the upper bound set by expansion order and the relative
strength among the various couplings.

3 We stress that coupling orders are a property of the matrix-element generators,
i.e., the matrix-element generator in question needs to support this feature to use
it.

18

3 The FeynRules UFO interface

Even though it is possible to implement a model into the UFO format by hand,
this procedure can be a tedious and error-prone task, because all the vertices
need to be entered one at the time. In order to alleviate this problem, we have
implemented an interface into FeynRules that allows one to export a given
model directly in the UFO format. The FeynRules model contains, on the
one hand, basic model information (such as the particle content or the pa-
rameters of the model) which is implemented as described in Refs. [19,20,22].
In particular, a new feature of the FeynRules model files allows to specify the
hierarchy between the different types of couplings and the limit up to which
they should appear in the perturbative expansion (see Section 2.5). This
is achieved by including the global variables M$InteractionOrderHierarchy
and M$InteractionOrderLimit directly into the FeynRules model file 4 .
Considering the example of the types of couplings QED and QCD presented
in Section 2.5, the FeynRules model implementation includes then the def-
inition

M$InteractionOrderHierarchy = {

{QCD, 1},

{QED, 2}

}

M$InteractionOrderLimit = {

{QCD, 99},

{QED, 99}

}

Note that this new feature is optional for each type of coupling. If a given
type if not represented in one of the two lists, the default values assigned will
be 1 for the hierarchy and 99 for the expansion order.

The FeynRules UFO interface can be called in exactly the same way as all
the other FeynRules interfaces,

WriteUFO[L1,L2, . . . , options]

where L1,L2, . . . denote the Lagrangians of the model, and options denotes a
set of options supported by the interface. The interface shares all the options
of the function FeynmanRules[], plus some additional options summarized
in Table 7. When this command is issued, FeynRules internally calls the
function FeynmanRules[] to compute all the vertices associated with the

4 InteractionOrder is the FeynRules equivalent to the order attribute of the
UFO Coupling object presented in Section 2.4.

19

Table 7: Additional options of the function WriteUFO

Input A list of vertices computed previously and to be included
into the UFO output.

Output A string, the name of the output directory. The default is
the value of the FeynRules variables M$ModelName with
UFO appended.

DialogBox If Off, no dialog boxes open up when running the interface.
The default is On.

Table 7

Lagrangians Li. After the complete list of Feynman rules has been obtained,
the vertices are decomposed into a color ⊗ spin basis 5 according to Eq. (2.1),
and the different Lorentz and Coupling objects are identified. At the end of
the procedure, all the information about the model is written to files according
to the format presented in Section 2, and saved in a directory called * UFO,
where * denotes the name of the model.

Note that there is a crucial difference between the UFO interface and the other
existing interfaces included in the FeynRules package. While all other in-
terfaces select the subset of vertices that are supported by the matrix-element
generators (in general, this subset consists more or less into renormalizable
operators) while rejecting all other vertices, the UFO interface is completely
agnostic of the matrix-element generator, and hence does not make any as-
sumptions on whether a given generator accepts a certain vertex structure.
The UFO output will hence always contain all the vertices of the model, and
it is then up to the matrix-element generator to assure that only allowed
vertices are processed.

4 The UFO format beyond tree level

During the last five years, a lot of progress has been made in the automation
of the computation of next-to-leading order matrix elements, both regarding
the generation of the real corrections with the appropriate subtraction terms
[31,32,33,34,35,36], and the development of algorithms for calculating loop
amplitudes numerically [37,38,39,40,41,42].

Although currently the focus of the UFO is to provide a common input
for tree-level Monte Carlo programs, the format is by no means restricted

5 Note that this decomposition might not be unique.

20

to tree-level generators only. Hence, the one-loop matrix-element generator
GoSam [24,25,26] contains an interface to the UFO format, where the infor-
mation from the Python module described in Section 2 is translated into
a model definition for the QGraf package [43] together with a Form [44]
module substituting the expressions from the Feynman rules. This setup has
been successfully applied to simple one-loop calculations in the Minimal Su-
persymmetric Standard Model, where the renormalization can still be worked
out by hand. For more involved computations, however, one would like to
automate not only the calculation of the matrix elements but also the deriva-
tion of the counterterms associated with a given renormalization procedure.
Although FeynRules in its current version does not yet support the calcula-
tion of renormalization constants and counterterms, we propose in this section
a generic prescription for their inclusion in the UFO format.

Assuming a multiplicative renormalization prescription, the relation between
bare and renormalized quantities is given by m0 = Zmmr = (1 + δZm)mr,

where m represents a generic parameter, and by Ψ0 = Z
1/2
Ψ Ψr = (1+ 1

2
δZΨ)Ψr

for the fields. The general case of propagator mixing allows the last equation
to take a matrix form. Furthermore, it is assumed that the ultraviolet di-
vergences have been regularized dimensionally, the renormalization constants
being thus expressed as Laurent series in ǫ = (4−D)/2 where D is the number
of space-time dimensions. Taking into account that the format should not be
restricted to one type of perturbative corrections but should be extendable to
any αn1

s αn2

EW order of the perturbative expansion, we can make the ansatz

δZi =
∞
∑

n1,n2=1

αn1

s αn2

EW

(2π)n1+n2

∞
∑

p=−∞

z(p)n1,n2
ǫp, (4.1)

where, in general, only a small subset of the coefficients z(p)n1,n2
is non-zero.

To include the renormalization constants associated with a parameter, we
propose to add an attribute to the Parameter class denoted counterterm.
Taking the example of the strong coupling constant introduced in Section 2.3,
G, its definition is augmented by

G.counterterm = { (1,0): {-1: ’2./3*NF*TF-11./6*CA’} }

in order to include the QCD one-loop effects on the strong coupling constant.
The renormalization constant is represented by a Python dictionary where
the keys are the pairs (n1, n2) introduced in Eq. (4.1) and the values are the
Laurent series in ǫ. The latter are represented by dictionaries with the powers
of ǫ as keys and strings representing Python expressions as values. Let us
note that the symbols NF, TF and CA which have been introduced must be
either replaced by their proper values or be defined as model parameters. For
models containing more than two coupling constants, the pairs (n1, n2) are
replaced by the corresponding n-tuples. Similarly, wave function renormaliza-

21

tion constants 6 are included in the counterterm attribute which is added
to the Particle class. It contains the object δZΨ, implemented following a
structure identical to the one described for the Parameter class.

In addition to the renormalization constants, one also needs analytical ex-
pressions for the counterterms. In general, they can be described as vertices,
starting from two-point vertices for the propagator counterterms, which are
included in the files ctvertices.py and ctcouplings.py. Analogously, the
initialization file init .py contains, in addition to the lists described in the
previous section, the lists all ctvertices and all ctcouplings. Similarly
to Section 2.4, the file ctvertices.py contains all the counterterm vertices
represented by objects of the Vertex class, and the related couplings are in-
cluded in the file ctcouplings.py. These couplings reflect the nature of the
renormalization constants as Laurent expansion in ǫ. Using the generic struc-
ture for vertices presented in Eq. (2.1) 7 , we can write a counterterm coupling
as

Gij = g
(0)
ij

∞
∑

n1,n2=1

αn1

s αn2

EW

(2π)n1+n2

∞
∑

p=−∞

c
(p)
ij,n1,n2

ǫp . (4.2)

This ansatz allows for some freedom with respect to numeric factors that can
be part of either g

(0)
ij or cij,n1,n2

. However, the power of the coupling constants

in g
(0)
ij must correspond to the one included in the associated tree level vertex.

Hence, the counterterm coupling can be easily declared using the Coupling

class,

GCT_1 = Coupling(name = ’GCT_1’,

value = ’complex(0,1)*G**2’,

counterterm = {(1,0): {-1: G.counterterm}},

order = {’QCD’:2}

)

The prefactor g
(0)
ij is stored in the value attribute whereas all relative cor-

rections c
(p)
ij,n1,n2

are mapped to the attribute counterterm, using the same
philosophy as in the case of the classes Parameter and Particle. Finally, the
attribute order reflects the interaction order of g

(0)
ij and does not take into

account the additional powers of coupling constants coming from the sum over
n1 and n2.

The amendments described in this section transmit all information necessary
for an efficient computation of ultraviolet counterterms by a matrix-element
generator. Furthermore, the same approach could be used in order to include

6 Mixing of on-shell particles is assumed to be zero. However, in propagators, mixing
is realized through two-point vertices.
7 The basis in the color ⊗ spin space associated to a counterterm vertex might be
different from the corresponding tree-level one.

22

other counterterm-like objects, such as the rational R2 terms [45,46,47,48] in
the OPP approach [49,50].

5 An example

An UFO model contains the full set of vertices of a model, i.e., all the Lorentz
and color structures appearing in all the vertices together with their coeffi-
cients. Consequently, it is also suited for models with Lorentz structures that
are not SM-like, a characteristic shared by all models with higher-dimensional
operators. In the following, we illustrate the UFO format on the example of
the Strongly Interacting Light Higgs (SILH) model [51]. The SILH model is
an effective theory describing the interactions of the Higgs boson considering
it as the Goldstone boson linked to a new strongly interacting sector. Since it
is already implemented in FeynRules [20], this model can easily be exported
to the Monte Carlo tools via the corresponding FeynRules interfaces.

The particle content of the SILH model is the same as in the SM. The par-
ticularities of the model come solely from the new interactions induced by
dimension-six operators involving SM fields. In this short example, we focus
on the decay of the Higgs boson H into two W -bosons. The non-SM part of
the SILH Lagrangian affecting this decay rate reads

LHWW
SILH =

cH
2f 2

∂µ
(

H†H
)

∂µ
(

H†H
)

+
icW g

2g2ρf

(

H†σi←→DµH
)

(DνWµν)
i

+
icHW g

16π2f 2
(DµH)†σi(DνH)W i

µν (5.1)

where f is the suppression scale for the new operators, g and gρ are the cou-
pling constants of the weak and the new strong interaction, respectively, and
cH , cW and cHW are free coefficients. In the expression above, we have intro-
duced the covariant derivative Dµ (taken in the appropriate representation),
the W -boson field strength tensor Wµν , and the Pauli matrices σi. The effec-
tive Lagrangian has been obtained after an expansion in 1/f up to O(1/f 2).
Hence, the HWW vertex reads now

ig2w

[

v

2

(

1− cH
ξ

2

)

ηµ2,µ3
+ cHW ξ

pµ2

1 pµ3

2 + pµ3

1 pµ2

3 − (p1.p2 + p1.p3) ηµ2,µ3

32π2v

+cW ξ
(p2.p2 + p3.p3) ηµ2,µ3

− pµ2

2 pµ3

2 − pµ2

3 pµ3

3

2vg2ρ

]

,(5.2)

where ξ = v2

f2 , v being the vacuum expectation value of the neutral component
of the Higgs doublet, and pi are the momenta of the interacting particles.

23

After an UFO implementation of the model via the corresponding FeynRules
interface has been obtained, this vertex appears in vertices.py as

V_22 = Vertex(name = ’V_22’,

particles = [P.W__minus__, P.W__plus__, P.H],

color = [’1’],

lorentz = [L.VVS1, L.VVS5, L.VVS8],

couplings = {(0,1):C.GC_56,(0,2):C.GC_59,

(0,0):[C.GC_30, C.GC_68]}).

The color tensor is trivial since all particles are color singlets. On the contrary,
the spin structure is more complicated because of the non-trivial tree-level
Lorentz structures of Eq.(5.2). As an example, the VVS8 spin tensor is defined
in the file lorentz.py as

VVS8 = Lorentz(name = ’VVS8’,

spins = [3, 3, 1],

structure = ’P(1,3)*P(2,1) + P(1,2)*P(2,3)

- P(-1,1)*P(-1,3)*Metric(1,2)

- P(-1,2)*P(-1,3)*Metric(1,2)’)

The product of VVS8 and GC_59 corresponds to the second term of Eq. (5.2).
The coupling order of the coupling is given by NP=1, indicating that it contains
one power of ξ. It is important to note that VVS1, the Lorentz structure of
the first term in Eq.(5.2) is associated with two coefficients, split according to
their coupling order. In particular, GC_30 is the SM part and corresponds to
the order QED=1, while GC_68 is the new physics contribution proportional to
cH and of order NP=1. Interferences between SM and new physics operators can
be extracted from the interaction order of the vertex. Indeed, due to our choice
for the ci coefficients, the new physics pieces of the vertex have an interaction
order equal to NP=1 and QED=0. Therefore, the interference is obtained by
computing the difference between all the contributions (NP=1 QED=1) and the
pure SM (NP=0 QED=1) and SILH (NP=1 QED=0) ones.

The Lagrangian of Eq. (5.1) is truncated at order O(1/f 2), or equivalently at
order O(ξ). Computation of matrix elements at higher order in ξ would hence
not be reliable without adding the corresponding terms in the expansion of
the Lagrangian. For instance, the production of a Higgs-boson pair by weak
boson fusion involves a diagram containing two vertices with order NP=1, as
presented in Fig. 1, but also an additional diagram related to the expansion
of the Lagrangian at order O(ξ2), which is absent from our SILH model im-
plementation. To prevent the user from such issues, the model builder should
warn him that O(ξn) amplitudes, with n ≥ 2, cannot be in general computed
using the implemented Lagrangian, and that the NP order should be at most
equal to one. This restriction is easily included in the UFO model through to

24

Fig. 1. Feynman diagram contributing to W+W− → HH at O(ξ2). The shaded
boxes represents the O(ξ) part of the HWW vertex in Eq. (5.2).

160 180 200 220 240 260 280 300

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

mH

D
G

G
SM

UFO+ALOHA+MG5

Analytic

Fig. 2. The relative correction ∆Γ
ΓSM

≡ ΓSILH−ΓSM

ΓSM
to the decay width of the Higgs

boson into two W bosons in the SILH model for gρ = 1, f = 1 TeV, ξ = 0.060623,
cH = 4, cW = 2 and cHW = 800. Only the interference terms between SM and
diagrams involving the new operators are taken into account in ΓSILH (see Eq.
(6.6) of Ref. [20] and references therein).

the expansion order argument of the CouplingOrder object

NP = CouplingOrder(name = ‘NP’,

expansion_order = 1,

hierarchy = 2

)

The hierarchy argument being set to 2 ensures that the new physics contri-
butions are not removed by default in the weak processes.

We choose to validate our UFO model by using the computation tools Mad-
Graph version 5 [13], which thanks to the Aloha module [52], allows for
a full support of the higher dimensional operators. We have computed the
Higgs partial decay width into a W -boson pair, using a very large value for
cHW in order to render the associated new physics contribution dominant
and to subsequently test the treatment of the higher-dimensional operators
by MadGraph. Moreover, this contribution is not proportional to the SM
result, contrary to the others. In Fig. 2, we confront the results to hand-made
analytical calculations and found perfect agreement.

25

6 Conclusion

In this paper, we have presented a new model format for matrix-element gen-
erators, the Universal FeynRules Output (UFO) format. While most of the
present generators have implicit assumptions on the color and/or Lorentz
structures appearing in the different interaction vertices of a given model,
the UFO format has been designed to go beyond these constraints, by being
agnostic of any, even unforeseen, restrictions. Indeed, unlike the more tradi-
tional table-based model formats (as used by many Monte Carlo codes), the
UFO represents all the information about a model terms of abstract Python
classes that can accommodate any (reasonable) particle physics model. As an
example, despite the fact that so far only color singlet, triplet, sextet and octet
particles have been implemented into the UFO format, the extension to more
exotic representations of the QCD gauge group is in principle straightforward,
without requiring any change to the UFO format itself. A similar change would
be very hard to perform in some of the existing table-based model formats.
Finally, we emphasize that the format gives a full support to Les Houches
accord conventions for model parameters and we also illustrate how it could
be extented in the context of the next-to-leading order tools, including, e.g.,
counterterms and the so-called R2 terms. Presently, the UFO format is already
used by the MadGraph version 5 and GoSam generators and will be used
in a near future by Herwig++.

Acknowledgments

The authors are grateful to Priscila de Aquino, Neil Christensen, Will Link and
to the whole MG5 development team for useful and constructive discussions.
ClD and BF are grateful to the CP3 Louvain for the hospitality at various
stages during this project. CeD is a Research Fellow of the ‘Fonds National
de la Recherche Scientifique’ (FNRS), Belgium. OM is ‘Chercheur scientifique
logistique postdoctoral F.R.S-FNRS‘, Belgium. TR is supported by the Hum-
boldt Foundation, in the framework of the Sofja Kovaleskaja Award Project
“Advanced Mathematical Methods for Particle Physics”, endowed by the Ger-
man Federal Ministery of Education and Research. This work was partially
supported by the Theory-LHC France Initiative, by the Research Executive
Agency (REA) of the European Union under the Grant Agreement number
PITN-GA-2010-264564 (LHCPhenoNet), by the Belgian Federal Office for Sci-
entific, Technical and Cultural Affairs through the Interuniversity Attraction
Poles Program - Belgium Science Policy P6/11-P and by the ISN MadGraph
convention 4.4511.10.

26

References

[1] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. D. Polosa, ALPGEN, a
generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003)
001. arXiv:hep-ph/0206293.

[2] T. Gleisberg, S. Hoche, Comix, a new matrix element generator, JHEP 12 (2008)
039. arXiv:0808.3674, doi:10.1088/1126-6708/2008/12/039.

[3] A. Pukhov, et al., CompHEP: A package for evaluation of Feynman diagrams
and integration over multi-particle phase space. User’s manual for version 33,
arXiv:hep-ph/9908288.

[4] E. Boos, et al., CompHEP 4.4: Automatic computations from Lagrangians to
events, Nucl. Instrum. Meth. A534 (2004) 250–259. arXiv:hep-ph/0403113,
doi:10.1016/j.nima.2004.07.096.

[5] A. Pukhov, CalcHEP 3.2: MSSM, structure functions, event generation, batchs,
and generation of matrix elements for other packages, arXiv:hep-ph/0412191.

[6] A. Cafarella, C. G. Papadopoulos, M. Worek, Helac-Phegas: a generator for
all parton level processes, Comput. Phys. Commun. 180 (2009) 1941–1955.
arXiv:0710.2427, doi:10.1016/j.cpc.2009.04.023.

[7] G. Corcella, et al., HERWIG 6: An event generator for hadron emission reactions
with interfering gluons (including supersymmetric processes), JHEP 01 (2001)
010. arXiv:hep-ph/0011363.

[8] M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., Herwig++
Physics and Manual, Eur.Phys.J. C58 (2008) 639–707. arXiv:0803.0883,
doi:10.1140/epjc/s10052-008-0798-9.

[9] T. Stelzer, W. F. Long, Automatic generation of tree level helicity amplitudes,
Comput. Phys. Commun. 81 (1994) 357–371. arXiv:hep-ph/9401258,
doi:10.1016/0010-4655(94)90084-1.

[10] F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph,
JHEP 02 (2003) 027. arXiv:hep-ph/0208156.

[11] J. Alwall, et al., MadGraph/MadEvent v4: The New Web Generation, JHEP
09 (2007) 028. arXiv:0706.2334.

[12] J. Alwall, et al., New Developments in MadGraph/MadEvent, AIP Conf. Proc.
1078 (2009) 84–89. arXiv:0809.2410, doi:10.1063/1.3052056.

[13] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5 :
Going Beyond, JHEP 1106 (2011) 128. arXiv:1106.0522,
doi:10.1007/JHEP06(2011)128.

[14] T. Gleisberg, et al., SHERPA 1.alpha, a proof-of-concept version, JHEP 02
(2004) 056. arXiv:hep-ph/0311263.

27

http://arxiv.org/abs/hep-ph/0206293
http://arxiv.org/abs/0808.3674
http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/hep-ph/9908288
http://arxiv.org/abs/hep-ph/0403113
http://dx.doi.org/10.1016/j.nima.2004.07.096
http://arxiv.org/abs/hep-ph/0412191
http://arxiv.org/abs/0710.2427
http://dx.doi.org/10.1016/j.cpc.2009.04.023
http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/0803.0883
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/hep-ph/9401258
http://dx.doi.org/10.1016/0010-4655(94)90084-1
http://arxiv.org/abs/hep-ph/0208156
http://arxiv.org/abs/0706.2334
http://arxiv.org/abs/0809.2410
http://dx.doi.org/10.1063/1.3052056
http://arxiv.org/abs/1106.0522
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/hep-ph/0311263

[15] T. Gleisberg, et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007.
arXiv:0811.4622, doi:10.1088/1126-6708/2009/02/007.

[16] M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing matrix element
generator, arXiv:hep-ph/0102195.

[17] W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle Processes
at LHC and ILC, Eur. Phys. J. C71 (2011) 1742. arXiv:0708.4233,
doi:10.1140/epjc/s10052-011-1742-y.

[18] A. Semenov, LanHEP: A package for automatic generation of Feynman
rules from the Lagrangian, Comput. Phys. Commun. 115 (1998) 124–139.
doi:10.1016/S0010-4655(98)00143-X.

[19] N. D. Christensen, C. Duhr, FeynRules - Feynman rules made easy,
Comput. Phys. Commun. 180 (2009) 1614–1641. arXiv:0806.4194,
doi:10.1016/j.cpc.2009.02.018.

[20] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, et al., A
Comprehensive approach to new physics simulations, Eur.Phys.J. C71 (2011)
1541. arXiv:0906.2474, doi:10.1140/epjc/s10052-011-1541-5.

[21] N. D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner, Exploring the
golden channel for HEIDI models using an interface between WHIZARD and
FeynRules, arXiv:1010.3251.

[22] C. Duhr, B. Fuks, A superspace module for the FeynRules package,
Comput. Phys. Commun. 182 (2011) 2404–2426. arXiv:1102.4191,
doi:10.1016/j.cpc.2011.06.009.

[23] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3,
Comput. Phys. Commun. 140 (2001) 418–431. arXiv:hep-ph/0012260,
doi:10.1016/S0010-4655(01)00290-9.

[24] P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Scattering AMplitudes from
Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 1008 (2010)
080. arXiv:1006.0710, doi:10.1007/JHEP08(2010)080.

[25] G. Heinrich, G. Ossola, T. Reiter, F. Tramontano, Tensorial Reconstruction
at the Integrand Level, JHEP 1010 (2010) 105. arXiv:1008.2441,
doi:10.1007/JHEP10(2010)105.

[26] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola,
T. Reiter, F. Tramontano, Automated One-Loop Calculations with GoSam,
arXiv:1111.2034.

[27] K. Nakamura, et al., Review of particle physics, J.Phys.G G37 (2010) 075021.
doi:10.1088/0954-3899/37/7A/075021.

[28] P. Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger, et al., SUSY
Les Houches accord: Interfacing SUSY spectrum calculators, decay packages,
and event generators, JHEP 0407 (2004) 036. arXiv:hep-ph/0311123,
doi:10.1088/1126-6708/2004/07/036.

28

http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/hep-ph/0102195
http://arxiv.org/abs/0708.4233
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://dx.doi.org/10.1016/S0010-4655(98)00143-X
http://arxiv.org/abs/0806.4194
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/0906.2474
http://dx.doi.org/10.1140/epjc/s10052-011-1541-5
http://arxiv.org/abs/1010.3251
http://arxiv.org/abs/1102.4191
http://dx.doi.org/10.1016/j.cpc.2011.06.009
http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/1006.0710
http://dx.doi.org/10.1007/JHEP08(2010)080
http://arxiv.org/abs/1008.2441
http://dx.doi.org/10.1007/JHEP10(2010)105
http://arxiv.org/abs/1111.2034
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://arxiv.org/abs/hep-ph/0311123
http://dx.doi.org/10.1088/1126-6708/2004/07/036

[29] B. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema, et al.,
SUSY Les Houches Accord 2, Comput.Phys.Commun. 180 (2009) 8–25.
arXiv:0801.0045, doi:10.1016/j.cpc.2008.08.004.

[30] J. Alwall, E. Boos, L. Dudko, M. Gigg, M. Herquet, et al., A Les Houches
Interface for BSM Generators, arXiv:0712.3311.

[31] T. Gleisberg, F. Krauss, Automating dipole subtraction for QCD NLO
calculations, Eur. Phys. J. C53 (2008) 501–523. arXiv:0709.2881,
doi:10.1140/epjc/s10052-007-0495-0.

[32] M. H. Seymour, C. Tevlin, TeVJet: A general framework for the calculation of
jet observables in NLO QCD, arXiv:0803.2231.

[33] K. Hasegawa, S. Moch, P. Uwer, Automating dipole
subtraction, Nucl. Phys. Proc. Suppl. 183 (2008) 268–273. arXiv:0807.3701,
doi:10.1016/j.nuclphysbps.2008.09.115.

[34] R. Frederix, T. Gehrmann, N. Greiner, Automation of the Dipole Subtraction
Method in MadGraph/MadEvent, JHEP 09 (2008) 122. arXiv:0808.2128,
doi:10.1088/1126-6708/2008/09/122.

[35] M. Czakon, C. G. Papadopoulos, M. Worek, Polarizing the Dipoles, JHEP 08
(2009) 085. arXiv:0905.0883, doi:10.1088/1126-6708/2009/08/085.

[36] R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, Automation of next-to-leading
order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003.
arXiv:0908.4272, doi:10.1088/1126-6708/2009/10/003.

[37] G. Zanderighi, Recent theoretical progress in perturbative QCD,
arXiv:0810.3524.

[38] R. K. Ellis, K. Melnikov, G. Zanderighi, Generalized unitarity at work: first
NLO QCD results for hadronic W+ 3jet production, JHEP 04 (2009) 077.
arXiv:0901.4101, doi:10.1088/1126-6708/2009/04/077.

[39] C. F. Berger, et al., Precise Predictions for W + 3 Jet Production at
Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001. arXiv:0902.2760,
doi:10.1103/PhysRevLett.102.222001.

[40] A. van Hameren, C. G. Papadopoulos, R. Pittau, Automated one-loop
calculations: a proof of concept, JHEP 09 (2009) 106. arXiv:0903.4665,
doi:10.1088/1126-6708/2009/09/106.

[41] C. F. Berger, et al., Precise Predictions for W + 4 Jet Production at the
Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001. arXiv:1009.2338,
doi:10.1103/PhysRevLett.106.092001.

[42] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni,
et al., Automation of one-loop QCD corrections, JHEP 1105 (2011) 044.
arXiv:1103.0621, doi:10.1007/JHEP05(2011)044.

29

http://arxiv.org/abs/0801.0045
http://dx.doi.org/10.1016/j.cpc.2008.08.004
http://arxiv.org/abs/0712.3311
http://arxiv.org/abs/0709.2881
http://dx.doi.org/10.1140/epjc/s10052-007-0495-0
http://arxiv.org/abs/0803.2231
http://arxiv.org/abs/0807.3701
http://dx.doi.org/10.1016/j.nuclphysbps.2008.09.115
http://arxiv.org/abs/0808.2128
http://dx.doi.org/10.1088/1126-6708/2008/09/122
http://arxiv.org/abs/0905.0883
http://dx.doi.org/10.1088/1126-6708/2009/08/085
http://arxiv.org/abs/0908.4272
http://dx.doi.org/10.1088/1126-6708/2009/10/003
http://arxiv.org/abs/0810.3524
http://arxiv.org/abs/0901.4101
http://dx.doi.org/10.1088/1126-6708/2009/04/077
http://arxiv.org/abs/0902.2760
http://dx.doi.org/10.1103/PhysRevLett.102.222001
http://arxiv.org/abs/0903.4665
http://dx.doi.org/10.1088/1126-6708/2009/09/106
http://arxiv.org/abs/1009.2338
http://dx.doi.org/10.1103/PhysRevLett.106.092001
http://arxiv.org/abs/1103.0621
http://dx.doi.org/10.1007/JHEP05(2011)044

[43] P. Nogueira, Automatic Feynman graph generation, J.Comput.Phys. 105 (1993)
279–289. doi:10.1006/jcph.1993.1074.

[44] J. Vermaseren, New features of FORM, arXiv:math-ph/0010025.

[45] G. Ossola, C. G. Papadopoulos, R. Pittau, On the Rational Terms of
the one-loop amplitudes, JHEP 0805 (2008) 004. arXiv:0802.1876,
doi:10.1088/1126-6708/2008/05/004.

[46] P. Draggiotis, M. Garzelli, C. Papadopoulos, R. Pittau, Feynman Rules for
the Rational Part of the QCD 1-loop amplitudes, JHEP 0904 (2009) 072.
arXiv:0903.0356, doi:10.1088/1126-6708/2009/04/072.

[47] M. Garzelli, I. Malamos, R. Pittau, Feynman rules for the rational part of
the Electroweak 1-loop amplitudes, JHEP 1001 (2010) 040. arXiv:0910.3130,
doi:10.1007/JHEP01(2010)040,10.1007/JHEP10(2010)097.

[48] M. Garzelli, I. Malamos, R. Pittau, Feynman rules for the rational part of the
Electroweak 1-loop amplitudes in the Rxi gauge and in the Unitary gauge,
JHEP 1101 (2011) 029. arXiv:1009.4302, doi:10.1007/JHEP01(2011)029.

[49] G. Ossola, C. G. Papadopoulos, R. Pittau, Reducing full one-loop amplitudes
to scalar integrals at the integrand level, Nucl.Phys. B763 (2007) 147–169.
arXiv:hep-ph/0609007, doi:10.1016/j.nuclphysb.2006.11.012.

[50] G. Ossola, C. G. Papadopoulos, R. Pittau, Numerical evaluation of
six-photon amplitudes, JHEP 0707 (2007) 085. arXiv:0704.1271,
doi:10.1088/1126-6708/2007/07/085.

[51] G. F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The Strongly-
Interacting Light Higgs, JHEP 06 (2007) 045. arXiv:hep-ph/0703164,
doi:10.1088/1126-6708/2007/06/045.

[52] P. de Aquino, W. Link,
F. Maltoni, O. Mattelaer, T. Stelzer, ALOHA: Automatic Libraries Of Helicity
Amplitudes for Feynman Diagram Computations, Comput.Phys.Commun. 183
(2012) 2254–2263. arXiv:1108.2041, doi:10.1016/j.cpc.2012.05.004.

30

http://dx.doi.org/10.1006/jcph.1993.1074
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/0802.1876
http://dx.doi.org/10.1088/1126-6708/2008/05/004
http://arxiv.org/abs/0903.0356
http://dx.doi.org/10.1088/1126-6708/2009/04/072
http://arxiv.org/abs/0910.3130
http://dx.doi.org/10.1007/JHEP01(2010)040, 10.1007/JHEP10(2010)097
http://arxiv.org/abs/1009.4302
http://dx.doi.org/10.1007/JHEP01(2011)029
http://arxiv.org/abs/hep-ph/0609007
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
http://arxiv.org/abs/0704.1271
http://dx.doi.org/10.1088/1126-6708/2007/07/085
http://arxiv.org/abs/hep-ph/0703164
http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://arxiv.org/abs/1108.2041
http://dx.doi.org/10.1016/j.cpc.2012.05.004

	1 Introduction
	2 The UFO format
	2.1 Initialization and structure of the objects and functions
	2.2 Implementation of the particle content of a model
	2.3 Implementation of the parameters of a model
	2.4 Implementation of the interactions of the model
	2.5 Controlling various types of couplings in a perturbative expansion

	3 The FeynRules UFO interface
	4 The UFO format beyond tree level
	5 An example
	6 Conclusion
	References

