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Abstract 6 

The hydrological and biogeochemical processes that operate in catchments influence the ecological 7 

quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. Most 8 

models that seek to characterise the delivery of diffuse pollutants from land to water are reductionist. The 9 

multitude of processes that are parameterised in such models to ensure generic applicability make them 10 

complex and difficult to test on available data. Here, we outline an alternative – data-driven – inverse 11 

approach. We apply SCIMAP, a parsimonious risk based model that has an explicit treatment of 12 

hydrological connectivity. We take a Bayesian approach to the inverse problem of determining the risk 13 

that must be assigned to different land uses in a catchment in order to explain the spatial patterns of 14 

measured in-stream nutrient concentrations. We apply the model to identify the key sources of nitrogen 15 

(N) and phosphorus (P) diffuse pollution risk in eleven UK catchments covering a range of landscapes. 16 

The model results show that: 1) some land use generates a consistently high or low risk of diffuse 17 

nutrient pollution; but 2) the risks associated with different land uses vary both between catchments and 18 

between P and N delivery; and 3) that the dominant sources of P and N risk in the catchment are often a 19 

function of the spatial configuration of land uses. Taken on a case by case basis, this type of inverse 20 

approach may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for 21 

freshwater ecosystems. 22 

Keywords: Diffuse pollution; Hydrological connectivity; Land cover; Nutrients; Nitrogen; Phosphorus; 23 

Risk; Modelling. 24 

1. Introduction 25 

The source-mobilisation-delivery conceptualisation of diffuse pollution transfer from land to water is 26 

widely accepted (Heathwaite, 2010) and forms the basis of several existing diffuse pollution models that 27 

seek to explain the variation in river water quality over time in terms of the processes and pathways of 28 

delivery operating within a catchment. Much effort has been focused on characterising the variation in 29 

water quality timeseries (Burt et al., 2011; Howden et al., 2010; Kirchner et al., 2004; Neal et al., 2010a) 30 
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or producing a good fit between modelled processes and measured water quality (Lazar et al., 2010; 31 

Whitehead et al., 2007) but such effort does not elucidate the spatial signals in a catchment. Not all 32 

locations in a river catchment (even if they have the same land use) contribute equally to the delivery of 33 

sediment or nutrients and hence to in-stream sedimentation and water quality degradation (Heathwaite 34 

et al., 2000; Lane, 2008; Page et al., 2005; Pionke et al., 2000). Critical source areas (CSAs) in 35 

catchments are characterised by the capacity to entrain material and to connect and hence deliver it to 36 

the drainage network (Sharpley et al., 2008; 2009). The environmental degradation associated with 37 

diffuse nutrient and sediment losses from land to water may be redefined as comprising a series of 38 

spatially-distributed sources of varying size (often fields, or even parts of fields) where particularly risky 39 

uses of land combine with a high probability of connection of those risks to the river network (Heathwaite 40 

et al., 2000; Lane et al., 2006; Lane 2008). Focusing intervention measures on reducing diffuse pollution 41 

delivery from these risky land uses should maximise the return on investment in terms of improvements 42 

to ecological quality (Collins and McGonigle, 2008; Heathwaite, 2010; Living With Environmental 43 

Change, 2011). 44 

A range of modelling approaches have been developed to meet the challenge of identifying the locations 45 

within a catchment that have the greatest probability of contributing high diffuse pollution loads to 46 

receiving waters. Lane et al. (2006) classify diffuse pollution models into three main groups: (1) transfer 47 

function modelling – which predicts nutrient export on the basis of simple empirical transfer functions 48 

driven by known fertiliser and manure inputs coupled with soil nutrient status (e.g., Ekholm et al., 2005; 49 

Heathwaite et al., 2003a; Johnes, 1996; Johnes et al., 2007; Jordan et al., 1994; Khadam and 50 

Kaluarachchi, 2006); (2) land unit modelling – which applies physically-based (sometimes called 51 

mechanistic) models of nutrient cycling to individual land units in order to determine export (e.g. 52 

Matthews, 2006; Priess et al., 2001; Vatn et al., 2006); (3) land transfer modelling – which combines the 53 

kind of analysis described in (2) with a physically-based, sometimes dynamic, treatment of how material 54 

is transferred across the landscape (e.g. Easton et al., 2008; Neumann et al., 2010; Wade et al., 2002). 55 

The latter (see Radcliffe et al., 2009) ought to capture effectively the delivery of diffuse pollutants. The 56 

main difficulty is whilst they are physically-based they contain parameters or require data whose values 57 

either: (i) cannot be determined from available data; or (ii) need to be adjusted, calibrated, so as to force 58 

the model to fit known system response (Oreskes et al., 1994). The information demanded in terms of 59 

data and model parameters may exceed the information content of calibration data (Heathwaite, 2003; 60 
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2010; Kirchner, 2006) and different model realisations (i.e. model runs with different parameter 61 

combinations) may have very similar levels of success (i.e. equifinality, Beven, 1993).  62 

Mathematical models are constructed through a process where, in response to a perception of what 63 

matters to the system of interest, the processes that need to be modelled are identified (e.g. rainfall, 64 

evapotranspiration, infiltration, runoff generation, biogeochemical processing, mobilisation of material 65 

into solution and its subsequent transformation in transit, etc). A suitable model to represent these 66 

processes will then be identified, modified or developed. This process is implicitly reductionist and points 67 

to the development of ever more complex models given the multitude of processes that could be 68 

included to guarantee that the model can be applied in many situations. There are two responses to this 69 

challenge. The first couples conventional predictive models with differing levels of process complexity at 70 

different scales (e.g. Hewett et al., 2009; Quinn, 2004). Each level contains process complexity that is 71 

appropriate to the information available to that scale of enquiry. Information is then exchanged between 72 

scales as a means of scaling up. The second, which we focus on here, uses a risk-based analysis with a 73 

single simplified model to represent all scale ranges. These approaches have proved very effective in 74 

diffuse pollution modelling (e.g. Heathwaite et al., 2003a, b; Johnes and Heathwaite, 1997; Jordan et al., 75 

1994; Munafo et al., 2005; Siber et al., 2009; Weld and Sharpley, 2007).  Their primary assumption is 76 

that the amount of material that is exported from a land unit can be traced to the properties of that land 77 

unit (e.g. physical attributes like slope and soil type) and how it is managed (e.g. levels of fertiliser 78 

application). Measurements have allowed identification of associated export coefficients, which in many 79 

cases have some kind of a priori or logical basis (e.g. export coefficients for a pollutant that is eroded 80 

whilst bound to fine sediment are greater for land uses where vegetation cover is bare for part of the 81 

year). We label this ‘forward modelling’.  82 

This paper presents an alternative conceptualisation, in which we consider the problem and use a 83 

Bayesian approach to determine the weightings that must be given to different land uses in order to 84 

explain spatial patterns of measured in-stream nutrient concentrations. Following Mosegaard and 85 

Tarantola (2002), inverse modelling involves using a physical theory (or set of theories) to connect a set 86 

of model parameters to a set of observations. In an inverse model, the forward model is inverted so as to 87 

predict the model parameters that reproduce those observations. In some cases this inversion is 88 

tractable using maximum likelihood methods but not in all cases (Mosegaard and Tarantola, 2002). The 89 

inverse problem can also be approached by pseudo-randomly generating a large collection of (forward) 90 
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models, then analyzing and displaying the models to convey information on the relative likelihoods of 91 

model properties (Mosegaard and Tarantola, 1995). This can be accomplished using a Monte Carlo 92 

method even in cases where no explicit formula for the a priori distribution is available (Mosegaard and 93 

Tarantola, 1995). It is this latter approach that we adopt here, with the objective of making as few a priori 94 

assumptions as possible about what might be driving river water quality patterns (Lane 2008).  95 

Following observations regarding critical source areas, we retain the assumption that locations will vary 96 

spatially in their ability to generate and deliver diffuse pollution risk. It is clear that in trying to understand 97 

the relative contribution of diffuse pollutants in catchments, model assumptions have a material impact 98 

upon the way a system is modelled (e.g. the assumed contribution of point and diffuse pollution sources 99 

will fundamentally impact upon the extent to which a model must focus upon point source delivery of 100 

discharges from sewage treatment plants and urban drainage). By taking an inverse approach, we ‘train’ 101 

each model to the local characteristics of each catchment, avoiding the need for a generic model in 102 

which many model parameters may end up being superfluous and where training (or calibration) is 103 

difficult because there is rarely enough data to distinguish between different model formulations (Beven, 104 

1989). The aim of this paper is to present our approach to the inverse problem for two key nutrients 105 

associated with diffuse pollution: phosphorus (P) and nitrogen (N). Both nutrients are particularly 106 

important controls on the ecological quality of freshwater systems (Heathwaite, 2010). We use the 107 

results of our analysis to show that policy interventions designed to reduce the risk of diffuse pollution 108 

need to be sensitive to the relationship between nutrients, relative land use dominance and catchment 109 

characteristics, including land use configuration and hydrological properties.  110 

 111 

2. Methods 112 

2.1. The SCIMAP model 113 

We use SCIMAP to produce a risk-based estimation of diffuse pollution (see Lane et al., 2006 and 114 

Reaney et al., 2011) and a full description is provided in the Supplementary Online Material that 115 

accompanies this manuscript (Appendix 1). SCIMAP conceptualises catchments as comprising a 116 

collection of flow paths that accumulate spatially distributed sources that may result in the pollution of 117 

receiving waters from across the landscape and deliver them into the river corridor. It is within the river 118 
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corridor that diffuse pollution may become ‘visible’, either through detection of temporal changes in water 119 

quality via routine monitoring (e.g. elevated nitrate concentrations) or through the more limited, evidence 120 

from physical water quality deterioration (e.g. algal blooms, Hilton et al., 2006; or long-term changes in 121 

ecological quality, Reaney et al., 2011). Given an observed change in catchment water quality a primary 122 

challenge is to attribute this to its sources, whether point source or diffuse. If the latter, the challenge 123 

becomes over which locations are likely to be the significant CSAs. SCIMAP’s approach is relative in 124 

that, subject to data availability, the model can be applied at any scale, with the predictions relative to the 125 

scale at which the model is used. It allows successive identification (in relative terms) of the catchments 126 

that merit prioritisation, followed by the sub-catchments and then eventually the associated fields. A full 127 

description and application of the model is provided in Reaney et al. (2011) who show how SCIMAP can 128 

be used to understand the relationships between land use, hydrological connectivity and the spatial 129 

distributions of salmonid populations. In this paper, we use an inverse approach to estimate the 130 

generation risk by inferring how land uses need to be weighted to optimise the explanation of spatial 131 

patterns of measured water quality parameters. We use an informal Bayesian likelihood estimation 132 

procedure conceptually similar to the Generalised Likelihood Uncertainty Estimation approach (Beven 133 

and Binley, 1992; Vrugt et al., 2009).. We use water quality data that are available through the 134 

Environment Agency for England and Wales (EA) General Quality Assessment (GQA) monitoring 135 

network (see: http://bit.ly/EA-GQA). These datasets are described in more detail later in the paper. 136 

 137 

2.2. Application 138 

The SCIMAP model framework has five general steps; the focus of the inverse approach reported in this 139 

paper is Step (1), which is described in full below. Further detail of Steps (2) to (5) and full justification is 140 

given in Reaney et al. (2011) and in the Supplementary Online Material (Appendix 1); only a brief 141 

summary is given here. Step (1) seeks to identify, in relative terms and for each location in a landscape, 142 

the risks of diffuse pollution generation. Step (2) determines the risk of delivery, the delivery index, for 143 

each location. This is based upon the assumption that the driest point along a flow path between a 144 

location, i, and the river is the one that is most likely to control the extent to which material moving over 145 

the surface or the shallow subsurface moves vertically as opposed to laterally and, in so doing, becomes 146 

hydrologically-disconnected from the surface water system. Lane et al. (2009) show that using this 147 
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measure to determine a delivery index can explain a significant proportion of the tendency towards 148 

hydrological connection. We derive the delivery index from 10 m resolution digital elevation models 149 

collected using airbourne Interferrometric Synthetic Aperture Radar (see Reaney et al. 2011). We 150 

emphasise that the analysis makes a specific assumption that topography exerts a primary control on 151 

the spatial structure of soil moisture in agricultural catchments. Each location then has a risk of diffuse 152 

pollution generation and a risk of delivery. These are scaled to give relative generation and delivery risks 153 

for each location in the catchment and multiplied together (Step 3). In Step 4, the resultant location risks 154 

are routed through the catchment to the river network, using the same topographic data used in Step 2. 155 

Step 4 results in a monotonically increasing level of risk with distance downstream in the river network 156 

and so in Step 5 we correct this by dividing the result by the upslope contributing precipitation for each 157 

location in the river network, using annual average precipitation data, based on the UKCP09 baseline 158 

(Perry and Hollis, 2005). 159 

 160 

2.2.1.	
  Generation	
  Risk	
  	
  161 

In this paper, we use a sampling approach to the inverse problem in Step (1). Step (1) is underpinned by 162 

the assumption that some land use and/or land management combinations are more likely to generate 163 

diffuse pollution risk than others, and we can use land cover as a first approximation of this risk. There 164 

are well-established approaches for determining the risk of diffuse pollution generation from land cover, 165 

ranging from the simpler export coefficient models (e.g. Heathwaite et al., 2003a; Johnes, 1996) through 166 

to more complex models of sediment entrainment and nutrient cycling (e.g. Vatn et al., 2006). Here, we 167 

use an informal Bayesian inference methodology to infer the risk weighting that needs to be given to 168 

each land cover in order to optimise a spatially-distributed set of water quality observations. Our analysis 169 

is focused on P and N risk as two of the key consequences of agricultural diffuse pollution and drivers of 170 

the deterioration of ecological quality in freshwaters. Here, we assume that: different land covers 171 

generate different diffuse pollution risks; within land cover risk variability is small relative to that between 172 

land covers; and the pattern of land covers is fixed over the observation period. The aim of Step (1) is 173 

then to infer the optimum land cover risk weighting in the SCIMAP framework, so as to maximise the 174 

level of explanation in a spatially-variable, measured, risk indicator. 175 

 176 



7 of 52 

2.2.2.	
  Land	
  cover	
  177 

Our starting point for Step 1, the estimation of the generation risk, is identification of land cover classes 178 

from the UK Land Cover Map 2000, a digital map derived from a computer classification of satellite 179 

scenes obtained mainly from Landsat satellites and with a resolution of 25 m (Fuller et al., 2002). We 180 

use the data in raster format (converted from the original vector database) resampled to the same 181 

resolution as the elevation data (10 m) using a nearest neighbour algorithm. These data represent the 182 

finest resolution and most precise UK wide land cover dataset that was available at the time of analysis. 183 

The Foresight Land Use Futures Report (2010) highlighted the difficulties in obtaining accurate and 184 

current land use data for the UK, partly as a result of the way the data is collected but also because 185 

synthesising very different data sources to produce a UK land use map remains a challenge. The Land 186 

Cover Map records 16 classes and 27 subclasses within the ‘Broad Habitats’ classification (Jackson, 187 

2000). We grouped these broad habitats and their subcomponents into ten land cover classes that have 188 

potential to contribute varying magnitudes of diffuse pollutants to receiving waters. The ten classes 189 

chosen with respect to their likely linkage to diffuse pollution sources are: improved grassland, rough 190 

grass, moorland, bog, urban, cereals, horticulture, non-rotational horticulture, woodland, and ‘other’, 191 

which was set to represent those land covers (e.g. lakes) with zero risk. Table 1 gives the relationship 192 

between the broad habitat classes and the ten SCIMAP classes. Improved grassland is regularly re-193 

seeded and receives significant nutrient inputs usually as slurry and/or fertiliser; the dominance of 194 

palatable grasses gives these areas a distinct spectral signature (Fuller et al., 2002). Rough grass land 195 

covers are dominated by very low productivity grasses, they are not normally improved by reseeding or 196 

fertilizer applications because the land tends to be physically-limiting (e.g. too wet, too steep, too rocky) 197 

and can include areas dominated by Pteridium aquilinum at the height of the growing season. Moorland 198 

cover is characterised by large expanses (> 25%) of ericaceous species and gorse. Bogs are either 199 

upland or lowland areas that are permanently, seasonally or periodically waterlogged defined based on 200 

both vegetation (ericaceous, herbaceous and mossy swards) and peat depth (> 0.5 m from peat drift 201 

maps). Urban land covers range from single buildings to large towns or cities and include: roads, derelict 202 

ground, and gardens. Cereals include spring and winter crops; horticulture includes arable bare ground 203 

and non-cereal spring crops; and non-rotational horticulture includes orchards and non-grass setaside. 204 

Woodland includes both broad-leaved and coniferous woodland. 205 

<Table 1 near here> 206 
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 207 

2.2.3.	
  Risk	
  indicator	
  208 

The inverse approach requires time-integrated, spatially-distributed datasets that can provide an 209 

indication of water quality. Here, we use the General Quality Assessment (GQA) data collected by the 210 

EA, which has over 7000 observation sites across England and Wales. The EA GQA scheme does not 211 

routinely determine total P. Most samples are analyses for the inorganic dissolved P fraction with P 212 

determined as orthophosphate on unfiltered water samples with a limit of detection of 0.0082 mg l-1 PO4
3-213 

-P and a reporting limit of < 0.02 mg l-1 PO4
3--P. Like P, total N is not routinely analysed in the GQA 214 

scheme. The most robust data are records of nitrogen as nitrate (NO3
--N) for unfiltered water samples 215 

calculated by the difference between Total Oxidised Nitrogen (TON) and NO2
--N. The limit of detection is 216 

0.0294mg l-1 NO3
--N and the reporting limit is < 0.2mg l-1 NO3

--N. 217 

The viability of the GQA dataset for our application is governed by the spatial distribution of the 218 

observations. The GQA sample locations are not chosen exclusively to monitor the impact of diffuse 219 

pollution on water quality; legislative drivers are particularly important (e.g. monitoring point source 220 

discharges and water abstraction). Consequently, there is some bias towards sampling sites above and 221 

below point sources such as sewage treatment works. Here, we take advantage of this bias: rather than 222 

excluding urban land cover from the analysis and taking measured nutrient concentrations and trying to 223 

apportion them into ‘point’ and ‘non-point’ sources, we use inference (see below) to work out the 224 

required risk weighting, and hence indicate the relative importance of ‘urban’ and ‘non-urban’ sources to 225 

explaining spatial patterns of water quality. Thus, a catchment where urban land covers are inferred to 226 

need a high weighting will be one where the spatial structure of measured water quality is influenced 227 

strongly by pollution associated with urban sources rather than agricultural sources (Davies and Neal, 228 

2007). The inference works on the assumption that the location of a sewage works is approximated by 229 

the flow paths identified through an urban setting. Whilst urban drainage is commonly gravity driven, 230 

urban drainage is complex and hence there is a possibility for error arising from deviation between the 231 

flow paths inferred from topographic data in urban areas and the actual areas of the landscape (i.e. 232 

urban drainage) that contribute to a sewage works. 233 

The GQA scheme is designed to collect one sample per month and data were available for a 15 year 234 

period, 1990-2005, with a mean of 155 observations per site. Following Davies and Neal (2007) and 235 
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Rothwell et al., (2010a), and given that the analysis is at the scale of England and Wales we use the 236 

arithmetic mean rather than flow weighted GQA concentrations from each site. This allows us to take 237 

advantage of the large number of available sites that are critical to our approach, despite the lack of flow 238 

data with which to develop rating curves at these sites. The highly episodic nature of nutrient transport 239 

within rivers (Burt et al., 2011; Doyle, 2005; Edwards and Withers, 2008; Walling and Webb, 1985), 240 

suggests that the lack of flow weighting may introduce error in the mean concentration estimates 241 

(Johnes, 2007) and although our own tests suggest that the number of concentrations samples is large 242 

enough to capture the range of observed discharges (see Appendix 2), the results should be considered 243 

in the light of this limitation. However, our approach is more robust to this measurement error than 244 

others, since the relative rather than absolute magnitude of the concentrations is more important in a risk 245 

based framework.  246 

 247 

2.2.4.	
  Inference of land cover risk weightings	
  	
  248 

The inference of land cover risk weightings used a Monte Carlo sampling framework. We undertook 249 

5,000 model simulations, randomly selecting weightings in the range 0 to 1 for each land cover for each 250 

simulation (see Appendix 3 in the Supplementary Online Material for details on our choice of 5000 251 

simulations). No a priori likelihood is assigned to these weightings. For each simulation, an objective 252 

function is determined, in this case a correlation coefficient, that describes the level of association 253 

between the water quality indicator (the spatially-distributed, mean GQA P and N concentrations) and 254 

their spatially-corresponding risk estimates.  255 

In philosophical terms, our approach mirrors that adopted in Generalized Likelihood Uncertainty 256 

Estimation and recognised in associated problems of equifinality in hydrological models (Beven and 257 

Binley, 1992; Beven 1993). Equifinality refers to a situation where different combinations of model 258 

parameters can result in the same or similar model predictions. Most commonly, it is identified when 259 

model predictions are compared to independent measurements, and those measurements cannot 260 

distinguish between different model realisations. Our null hypothesis is that there is no systematic 261 

variation in model performance between model realisations as a function of the values of a given land 262 

use weighting. If we can reject the null hypothesis for a given land use, we can infer that a particular land 263 

use weighting influences model performance and therefore influences instream nutrient concentrations. 264 
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If we accept the null hypothesis for a land use then the influence of its weighting on model performance 265 

and therefore instream nutrient concentrations cannot be identified.  266 

We suggest four possible reasons why the null hypothesis might be true and these are both 267 

methodological and substantive. First, it may be because a given land use has little or no coverage in a 268 

catchment. The inverse approach uses the influence of the land use on observations to define its risk so 269 

a land use must be present in order to exert an influence. If the influence is subtle and the coverage is 270 

limited the signal from this land use will be very weak. Second, high risk weightings for one land cover 271 

may offset low risk weightings in another such that optimum performances can be attained with a range 272 

of weightings for these land covers. This situation arises when the fraction of the landscape in a given 273 

land cover class (weighted by the average delivery index for that class) for each of the water quality 274 

measurement points covaries with one or more other landscape fractions. To some extent, this is a 275 

function of the available water quality data: i.e. the equifinality will becomes less severe with more 276 

measuring points, if the fractions become progressively more differentiated. However, if present, we 277 

cannot resolve this problem without additional data that avoid the covariance problem. Third, a land use 278 

class may be too broad to have a single coherent weighting if it encompasses a range of management 279 

practices and therefore of nutrient availability. Fourth, the model may not represent processes that are 280 

important in explaining the variability in observed nutrient concentrations (e.g. instream uptake). This 281 

problem is inherent to all models since they necessarily simplify the system; it tempts the developer 282 

toward ever more complex models, as discussed above. One way of establishing the models suitability 283 

may be its ability to explain the variance in the observations.  284 

The inverse approach provides information on three properties: identifiability, influence and importance. 285 

The identifiability of a particular land cover weighting defines the extent to which we can identify an 286 

optimum risk weighting given the uncertainty associated with those individual model realisations that give 287 

the best results. We use here the standard deviation of the risk weighting for those best results and 288 

where this is lower, we can conclude that the risk weighting is more identifiable. If the risk weighting is 289 

more identifiable, we conclude that it has a greater influence over the model’s performance than where it 290 

is less identifiable. However, the link between identifiability and influence can be disrupted by equifinality 291 

so that while we can infer influence from an identifiable weight, we cannot infer a lack of influence from a 292 

less identifiable weight. 293 
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The importance of a particular land cover for instream nutrient concentrations is then defined by its risk 294 

weighting (assuming that the model representation is suitable and the weighting identification is without 295 

error). Land covers with below average weightings (0.5) will lower (or dilute) the diffuse pollution risk 296 

whereas those with above average weightings will increase the risk. For weightings less than 0.5, the 297 

land cover is a ‘diluter’ of the diffuse pollution signal with increasing importance as the risk tends to zero. 298 

For weightings greater than 0.5, the land cover is a contributor to the diffuse pollution signal with 299 

increasing importance as the risk tends to one. Identifiability remains relevant here since it informs the 300 

degree of certainty with which the weighting can be identified. Errors in model structure (e.g. process 301 

representation) will affect the extent to which the identified weightings reflect true risk associated with a 302 

given land cover but are not represented within the identifiability since these errors can disrupt 303 

identifiability or alter identified weightings (e.g. by inflating a land cover’s risk weighting to account for 304 

more efficient delivery). 305 

To visualise the relationship between model realisations and model parameters, we plot land cover risk 306 

weighting against objective function to create ‘dotty plots’ (Figure 1a). These plots contain considerable 307 

scatter as a result of parameter interactions. For example, if the best objective function value is 308 

associated with a risk weighting of 0.8 for improved grassland, not all simulations with the improved 309 

grassland weighting close to 0.8 will produce good objective function values as the full set of simulations 310 

are considered, within which the weightings assigned to other land covers will not be optimal. However, 311 

pattern in the scatter (e.g. trend) suggests that the improved grassland weighting exerts an influence on 312 

the model’s performance and the form of this trend gives some indication as to the range of reasonable 313 

weightings that might be assigned to that land cover class. In the illustrative example, Figure 1a shows 314 

that simulations with a high weighting for improved grassland are more likely to generate high 315 

correlations with the water quality data being used to judge each simulation. The plots also identify rough 316 

grass, horticulture and urban land covers as influential with rough grass and horticulture requiring a low 317 

risk weighting and urban areas a weighting of ~0.4. The other land covers show no clear pattern in their 318 

dotty plots, and therefore we are unable to identify their influence on the models performance or their 319 

importance as a source of nutrients in this catchment. As discussed above, not all land covers will 320 

necessarily have identifiable weightings, especially since some land covers are absent in some 321 

catchments (e.g. non-rotational horticulture in Figure 1a) and are included only to maintain a consistent 322 

approach across the catchments. 323 
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The cloud of points in the dotty plots is not uniformly dense. We convert the dotty plots into two 324 

dimensional probability density functions (pdfs) using non-overlapping bins of length 0.05 in x and y. 325 

These pdfs (Figure 1b) show the probability of achieving a given value of the objective function 326 

conditional on a particular risk weighting for the land cover class in question, and assuming a random 327 

attribution of weightings for all the other land cover classes. This allows us to understand the relationship 328 

between risk weighting and model performance better than if we look only at the trend in the upper or 329 

lower limits to the dotty plot, or view the cloudiness as an indication that land cover effects cannot be 330 

resolved.  331 

Ranking each simulation by its correlation coefficient gives a ranked simulation list that is a measure of 332 

the likelihood of each simulation having the most correct set of weightings. Starting with the x most likely 333 

simulations, we determine the mean and standard deviation of the risk weightings associated with those 334 

x simulations, then progressively increase x; each time recalculating the mean and the standard 335 

deviation. The minimum value of x considered was 0.5% of the total number of simulations (25 336 

simulations in this application) to enable stable calculations of means and standard deviations (after 337 

testing their stability for x = 5 : 100 for a single catchment). The plot of mean and standard deviation of 338 

weighting against correlation, which we term an ‘optimisation plot’ (Figure 1c) shows: (1) the land covers 339 

with clearly identifiable risk weightings, characterised by a narrow range of weightings, or a small 340 

standard deviation; and (2) the magnitude of the weighting associated with a given correlation, which 341 

determines the importance of a land cover in contributing high (weightings closer to one, diffuse pollution 342 

sources) or low levels of risk (weightings closer to zero, diffuse pollution dilution). A narrow standard 343 

deviation implies that the weighting of that land cover is identifiable; a high mean weighting (e.g. 344 

improved grassland in Figure 1c) implies that it is an important source of risk relative to other land 345 

covers; a low weighting (e.g. rough grass or horticulture in Figure 1c) implies an important source of 346 

dilution (i.e. it acts to dilute the nutrient concentrations in the catchment). High standard deviations (e.g. 347 

~0.3 for bog, moorland, non-rotational horticulture) indicate that we cannot identify the risk weighting for 348 

that land cover either because it is uninfluential or because its influence is not identifiable due to 349 

equifinality. Finally, we use the mean and standard deviation of the optimum risk weightings in a t-test to 350 

identify the confidence with which we can reject the null hypothesis that the mean weightings are a result 351 

of random noise. Where the risk weightings are important and identifiable the null hypothesis will be 352 
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rejected. Where they are either not important (mean risk close to 0.5) or not identifiable (standard 353 

deviation close to 0.3) the null hypothesis will be accepted. 354 

Note that: (1) areal effects (i.e. large area, low magnitude) are implicitly corrected for as the estimate of 355 

risk is calculated with an upslope contributing precipitation weighting; and (2) differential connectivity 356 

effects are corrected for through the delivery index. This latter point is important as the likelihood of 357 

delivery will interact with the spatial distribution of a given land cover to determine the propensity with 358 

which a location can both generate and deliver risk. Here, we are finding the land cover weighting 359 

required for generation risk taking into account that different locations within the landscape have different 360 

likelihoods of delivery. 361 

<Figure 1 near here > 362 

2.3. Case study catchments 363 

The approach has been applied to eleven catchments across England and Wales (Figure 2a) that are 364 

relatively data rich, either as a result of additional EA monitoring as part of the Catchment Sensitive 365 

Farming programme (http://bit.ly/EA-CSF) or through ongoing academic research. Land cover and land 366 

management (including livestock) data provide important indicators as to the potential source of 367 

pollutants in a catchment. In particular, the relative percentage of agriculture versus urban may be 368 

important with respect to the pathways and forms of delivery of contaminants from land to water. For 369 

each of the eleven catchments, the relative balance between agriculture (arable and improved 370 

grassland) and urban land covers is shown in Figure 2b. Rough grassland, woodland, moorland and bog 371 

are grouped together as other in this graph. For agricultural land covers and diffuse pollution risk, the 372 

ratio of improved grassland (pasture) to arable may be particularly important in characterising different 373 

forms of diffuse pollution risk. We use a pasture-arable index (PAI) to reveal the difference (% area) 374 

normalised to the total agricultural area: PAI = (A – P) / (A + P); where: P is the percentage of the 375 

catchment that is pasture; and A is the percentage of the catchment that is arable. Index values can 376 

range from -1 (all pasture) to 1 (all arable). This index is plotted relative to the hydrological regime in 377 

Figure 2c. The hydrological regime defines the connectivity between pollutant and river and is influenced 378 

by the topographic gradients within a catchment and the properties of its soil and rock and can be 379 

broadly evaluated in terms of the mean baseflow index. SCIMAP’s hydrological treatment is most suited 380 
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to a surface and shallow subsurface flow regime, where residence times are short and flows are 381 

predominantly lateral rather than vertical (i.e. a low base flow index; BFI).  382 

<Figure 2 near here> 383 

Catchments are distributed across England and Wales and range from: surface water to groundwater 384 

dominated (captured through the catchment average BFI); pasture to arable dominated (captured 385 

through the PAI); and predominantly upland to predominantly lowland. Upland catchments have higher 386 

mean elevation, with more variability in elevation and (due to orographic rainfall enhancement) tend to 387 

have higher catchment mean annual precipitation (MAP) and more variability in annual precipitation over 388 

the catchment. To generalise the findings from these catchments we have compared the means and 389 

standard deviations of the risk weightings for each land cover for N and P with a set of independent 390 

variables chosen to describe the catchments’ characteristics. We use: the Ordnance Survey coordinates 391 

of the catchment centre point to represent their relative location; catchment area to define their size; 392 

mean and standard deviation of elevation to describe their topography; mean and standard deviation of 393 

mean annual precipitation to capture their rainfall conditions; mean base flow index to quantify the 394 

relative dominance of ground water or surface water; the pasture arable index to capture the relative 395 

dominance of pasture or arable land use; and the percentage cover of each land cover to establish the 396 

influence of percentage cover on mean and standard deviation of risk weighting. We regressed these 397 

catchment characteristics against means and standard deviations of risk weightings for each catchment 398 

recording the best fit from linear, power, exponential and logarithmic least squares analysis. 399 

 400 

3. Results 401 

A detailed analysis of the results is given below for one of the catchments – the Hampshire Avon – 402 

followed by more general analysis of the data across all eleven catchments. The detailed analysis serves 403 

to demonstrate the methodology and to illustrate how the inferred land cover weightings can be used to 404 

interpret diffuse pollution sources. The general analysis seeks to make substantive conclusions 405 

regarding diffuse pollution processes across the 11 catchments considered. 406 
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3.1. Example catchment – the Hampshire Avon 407 

The inverse approach provides information on the influence of land cover on in-stream nutrient 408 

concentrations in the form of: (1) scatter plots (Figure 3a) and pdfs (Figure 3b) of the relationship 409 

between model performance and risk weighting assigned to each land cover; (2) optimisation plots 410 

(Figure 3c) showing the mean and standard deviation of the weightings for model runs which performed 411 

better than a given threshold; (3) optimised mean weightings and their standard deviations from the best 412 

0.5% of model runs (Table 2); and (4) t-test results to identify the confidence with which we can reject 413 

the null hypothesis that the mean weightings are a result of random noise (Table 2). These pieces of 414 

evidence then need to be interpreted to establish the contribution of each land cover to diffuse pollution 415 

risk. In the following section we will: interpret these four outputs for woodland as an example; then show 416 

how the outputs can be combined for all the Avon land covers; and finally interpret these to draw some 417 

general conclusions about land cover types and diffuse pollution in the Avon. 418 

<Figure 3 near here> 419 

The dotty plots and pdfs (Figure 3a and b) show a strong negative relationship between model 420 

performance and the risk weighting assigned to woodland areas (Table 2). The optimisation plots (Figure 421 

3c) show a consistent decline in both the mean weighting and its standard deviation as the model runs 422 

are refined to include only the best performances. For the optimum model performances: (1) mean 423 

weightings are very low suggesting that woodland should be assigned a low risk to achieve the best 424 

results; and (2) the standard deviation of the weightings is also very low suggesting that this weighting is 425 

identifiable and can be assigned with a higher degree of certainty. Table 2 shows that woodland 426 

weightings for the Avon are significantly different from the expected random weighting, at 99.9% 427 

confidence for both P and N. These outputs from the inverse approach are summarised in Table 2 and 428 

the outputs support one another to show that woodland is clearly identifiable as a low risk land cover and 429 

is an important source of dilution for both P and N. 430 

 431 

<Table 2 near here> 432 

Table 2 shows that the different outputs from the inverse approach are often consistent in their indication 433 

of a land cover’s risk and the identifiability of that risk for a particular nutrient (e.g. rough grassland, 434 
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moorland, urban, cereals, horticulture) although they may differ between nutrients. In some cases there 435 

are differences between the outputs for a single nutrient, such as improved grassland for P, where the 436 

dotty plot and pdf indicate that it exerts some identifiable influence on model performance but the 437 

significance test shows that its optimum risk weighting is not significantly different from the null case. 438 

These cases highlight a need for careful examination of the outputs together. Often these conflicting 439 

results suggest that the risk associated with a land cover is not identifiable but in some cases (e.g. 440 

improved grass for P) they can highlight important information not captured in one or more of the 441 

outputs.  442 

Other land covers have no identifiable influence in all the outputs (dotty plots, pdfs, optimisation plots 443 

and optimised values). Bog and non-rotational horticulture do not show identifiable patterns, for P or N 444 

(Figure 3a and b), they have mean values close to 0.5 (Table 2) and standard deviations ~0.3, the 445 

expected values for a random sample from a uniform distribution. This may be because they have little 446 

or no coverage in the Avon, highlighting an important property of our approach: it cannot make 447 

predictions on the consequences of introducing new land cover types into the catchment. This is a 448 

function of the inverse approach, which uses the land cover’s influence on observations to define its risk 449 

rather than defining it a priori (as in the forward approach).  450 

Other land covers such as improved grassland cover a large proportion of the catchment but still display 451 

considerable scatter in their dotty plots. This may reflect: (1) equifinality due to covariance in its coverage 452 

with other land covers across the sub-catchments; (2) within class variability in the available nutrients; or 453 

(3) unrepresented processes that disrupt the signal from this land cover.  454 

In general, the results for the Avon suggest that woodland, rough grass and moorland are low risk land 455 

covers for both P and N (Table 2). These land covers might be considered as sources of water with low 456 

P and N concentrations that dilute rather than generate diffuse pollution. Woodland in particular is 457 

consistently important as a ‘diluting’ land cover in the Avon. The differences in the strengths of 458 

relationships between rough grass and moorland (Table 2) suggest that rough grass can be more 459 

confidently identified as a source of dilution for P while moorland is more identifiable for N. It is important 460 

to stress that the risk weightings that we have identified for land covers in the Avon are relative (rather 461 

than absolute). As such, no matter how low the instream concentrations in a catchment, there will always 462 

be some land covers contributing more nutrients and others contributing less (acting to dilute). 463 
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Land covers identified as high risk by the inverse approach appear to have differing signals according to 464 

the nutrient being considered. Urban land cover appears an important source for P but not for N in the 465 

Avon (Table 2, Figure 3), potentially linked to point source P inputs at sewage treatment works. Likewise, 466 

horticulture appears to be an important source for P but is less important for N (Table 2). This may be 467 

associated with excess nutrient applications to horticultural crops. Unpublished data using the 468 

Phosphorus Indicators Tool (Heathwaite et al. 2003a) identified horticultural land cover as a high source 469 

of P with a high delivery potential. Haygarth (2004) suggests that glass house and nursery stock pose a 470 

high risk of nutrient loss through excess use of liquid fertiliser. Relative to the value of the crop the cost 471 

of nutrient fertilizers is low. Cereals in the Avon have a low P risk (Table 2, Figure 3c) but very high N 472 

risk and may be associated with locations that favour subsurface nutrient flux over surface runoff. The 473 

spatial distribution of cereal crops in the Avon, which is predominantly chalk with a high Base Flow Index 474 

(BFI, Table 8) tends to be focused on plateau areas some distance from receiving waters. Thus, 475 

hydrological connection will be infrequent and delivery risk may be overestimated for nutrients which rely 476 

on surface pathways for delivery, while those that can be effectively transported by groundwater flow will 477 

remain connected. 478 

 479 

3.2. Extensive analysis of all 11 study catchments 480 

3.2.1.	
  Phosphorus	
  481 

For P, cereals and horticulture are an important source of risk (i.e. risk weighting significantly greater 482 

than average 0.5) in only one catchment and three catchments respectively. Despite its limited coverage 483 

non-rotational horticulture is an important source of risk in two other catchments (Table 3). This suggests 484 

that arable land cover is sometimes a source of P in UK catchments. However it is neither the most 485 

consistent nor the most dominant source. Urban land covers require a high risk weighting in nine out of 486 

eleven catchments, with seven of these requiring a weighting greater than 0.77 (Table 3). Improved 487 

grassland is important (i.e. has risk weightings that are significantly different from the null case) in six of 488 

the eleven catchments but has an above average weighting in only three of these (Table 3). The risk 489 

weightings for land covers associated with extensive land use practices (e.g. rough grass, moorland and 490 

woodland) are clearly identifiable (they have low standard deviations) and are generally important 491 
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sources of dilution (they have low mean risks). Rough grass has significant weightings in ten of the 492 

eleven catchments and needs to be given a low weighting (<0.23) in all of these (Table 3). Moorland and 493 

woodland weightings are significant in fewer catchments (3 for each) but almost always require a low 494 

weighting. Bogs cover only a very small proportion of any catchment and have no significant weightings.  495 

< Table 3 near here> 496 
 497 

3.2.2.	
  Nitrogen	
  498 

For N, one or more arable land covers are an important source of risk in eight out of eleven catchments. 499 

Of the remaining three, urban land cover is important for two catchments and improved grassland for the 500 

other. Cereals, horticulture and non-rotational horticulture appear to represent an important source of 501 

risk in five, five and two catchments respectively (Table 4). Improved grassland appears to be a more 502 

important land cover for N than for P, although its influence is still highly variable. It has significant 503 

weightings in eight of the eleven catchments but has an above average weighting in only four of these 504 

(Tables 3 and 4). For the extensive land uses (rough grass, moorland, woodland) the results for N are 505 

broadly similar to P. Rough grass has a significant weighting in fewer catchments for N as compared 506 

with P (eight out of eleven) but must be given a low weighting in all of these catchments. Woodland has 507 

a significant weighting in seven catchments and is generally low risk (<0.19 for five catchments) but 508 

occasionally a source of risk (>0.69 for two catchments). Moorland has more significant weightings in 509 

more catchments for N than for P, and almost always requires a low weighting with seven catchments in 510 

which its risk weighting must be set to <0.36 (although it has a high weighting for the Frome). 511 

<Table 4 near here> 512 

 513 

3.2.3. Land cover areal extent effects 514 

Tables 3, 4 and 5 show that, notwithstanding the upslope contributing precipitation weighting, the land 515 

covers that exert a significant influence on model performance are often those that cover the largest 516 

proportion of the catchment. We explored this observation by considering the standard deviation (SD) of 517 

the risk weightings from the best 0.5 % of model runs for each land cover for each nutrient. Lower 518 

standard deviations imply that a particular land cover has a risk weighting that is clearly identifiable using 519 
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the inverse approach. Generally, as the area covered by a given land cover increases, so the standard 520 

deviation becomes narrower (Figure 4). Non-rotational horticulture, which has generally low catchment 521 

cover, has a range of standard deviation values, suggesting that its identifiability varies between 522 

catchments, and is generally uninfluenced by the proportion of the catchment it covers (Figure 4a and c). 523 

Urban land cover accounts for <10% of all catchments studied but often has a low standard deviation 524 

(indicating that its risk weighting is often clearly identifiable) and appears to be independent of 525 

percentage cover. Cereals and horticulture vary in percentage cover from 2% to 36% but the standard 526 

deviations are negatively correlated with the percentage cover (Error! Reference source not found.), 527 

suggesting that where these land covers have a high spatial coverage they tend to be clearly identifiable 528 

(Figure 4a and c). Improved grassland often has a very large share of the catchment but there is no 529 

negative relationship between percentage cover and standard deviation. Even high percentage covers 530 

have high standard deviations. This suggests that the weighting associated with improved grassland is 531 

often very difficult to identify even when it makes up a very large proportion of the catchment. As in the 532 

specific case of the Avon, this may reflect: equifinality due to covariance in its coverage with other land 533 

covers; within class variability in the available nutrients; or unrepresented processes that disrupt its 534 

influence.  535 

 536 

<Table 5 and Figure 4 near here> 537 

3.2.4.	
  Catchment	
  Characteristics	
  538 

We have tested the ability of a set of independent variables that represent catchment characteristics to 539 

predict the variance in both the mean (representing importance as a source of risk or dilution) and the 540 

standard deviation (representing identifiability) of the risk weightings assigned to each land cover.  541 

Percentage cover is consistently the most effective predictor of the standard deviation of the weightings 542 

(Error! Reference source not found.). For P, it is the only significant predictor for 3 land covers 543 

(horticulture, non-rotational horticulture and woodland) and the dominant predictor (highest r2) for one 544 

other (cereals). For N, it is the only significant predictor for one land cover (urban) and the dominant 545 

predictor for two others (rough grass and moorland). In every case identifiability improves as percentage 546 

cover increases. The other catchment characteristics have a less consistent influence on identifiability, 547 

either in terms of the number of land covers that they influence or the direction of their influence (i.e. to 548 
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improve or reduce identifiability). There are only two land covers for P (rough grass and moorland) and 549 

two for N (cereals and woodland) where another variable is a better predictor of identifiability than 550 

percentage cover (Error! Reference source not found.). 551 

For P, moving north across the UK, risk weightings for rough grass become more identifiable (negative 552 

trend between northing and standard deviation of risk weighting r2=0.53). The weightings for moorland 553 

become less identifiable as catchments become more pasture rather than arable dominated; they 554 

become more identifiable in upland catchments (where elevation and average annual rainfall are both 555 

higher and more variable). For both N and P, the risk weighting for cereals becomes less identifiable in 556 

upland catchments and more identifiable with distance east and in pasture dominated catchments 557 

(Error! Reference source not found.). For P these relationships are weak relative to the strong 558 

influence of percentage cover. Whereas for N the influence of percentage cover is weaker.  559 

Percentage cover exerts little influence on mean weightings (it is a significant predictor in only four land 560 
covers, all for N, and dominant in only one); instead, mean weightings are more effectively predicted by 561 
other catchment characteristics ( 562 

Table 6). For P, moving north across the UK, mean risk weightings for rough grass tend to decrease while 563 
those for improved grassland increase ( 564 
Table 6). Upland catchments have higher weightings for rough grass, improved grassland, urban areas 565 
and horticulture. This is reflected in strong correlations with mean elevation and its variability and with 566 
catchment average annual rainfall and its variability. The relationships between catchment characteristics 567 
and the risk weighting assigned to improved grassland are particularly strong. Improved grassland risk 568 
weightings increase significantly with distance north (r2=0.52;  569 
Table 6) and with increased variability in rainfall and elevation (r2=0.57) suggesting that in upland-570 

dominated northern catchments, improved grassland constitutes a more important source of risk than for 571 

lowland catchments in the south. However, the dominant control on improved grassland risk weighting 572 

for P appears to be catchment average BFI (r2=0.91). This suggests that improved grassland represents 573 

a lower risk land cover for P in ground water than in surface water dominated catchments. These 574 

relationships are much stronger than the very limited control that percentage cover exerts on the 575 

improved grassland risk weighting (r2=0.05). 576 

< 577 
Table 6 and 7 near here> 578 

There are more significant relationships between catchment characteristics and mean risk weightings for 579 
N than for P ( 580 

Table 6) suggesting that the mean risk weightings for N are more sensitive to these characteristics. This 581 

is perhaps unsurprising given the dominance of urban point sources for P.  582 
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For N, northern catchments have lower risk weightings for rough grass (r2=0.43) and high weightings for 583 
woodland (r2=0.42) while eastern catchments have high weightings for rough grass (r2=0.43) but lower 584 
for cereals and horticulture (r2 of 0.44 and 0.57 respectively in  585 

Table 6). As catchments become increasingly dominated by upland areas the risk weightings for rough 586 
grass fall while the weightings for cereals and horticulture increase ( 587 
Table 6). This is unlikely to be related to differences in the percentage cover of these land covers in 588 
upland and lowland catchments since percentage cover is a relatively weak predictor of weighting for 589 
these covers. As catchments become increasingly groundwater rather than surface water dominated, the 590 
weightings for woodland and improved grassland reduce (r2 of 0.52 and 0.41 respectively in  591 
Table 6). 592 

3.2.5.	
  Overall	
  Model	
  Performance	
  	
  593 

Table 8 shows the correlation coefficients of the best model performances for P and N. In general, the 594 
results are encouraging and do suggest that this approach can reconcile a significant amount of the spatial 595 
variability in the statutory water quality data used here. The results also suggest that SCIMAP is 596 
calibrated more effectively for N than P.   597 
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Figure 5 suggests that SCIMAP performs well for upland catchments (positive correlation with mean and 598 

standard deviation of catchment elevation) that have higher and more variable annual rainfall; while it 599 

performs less well for catchments that are groundwater dominated (negative correlation with base flow 600 

index) and predominantly arable (negative correlation with pasture arable index). The model is more 601 

sensitive to these controls for N than P, and the model performance for Nitrate appears to be particularly 602 

strongly controlled by variability in annual rainfall across the catchment and average elevation. These 603 

two variables are likely to be strongly related to one another through the control that orographic rainfall 604 

enhancement exerts on the spatial variability in rainfall across UK catchments. Maximum correlation 605 

coefficients for N are very low for lowland catchments with little rainfall variability but rise very rapidly so 606 

that they are all >0.8 for catchments with mean elevation >100 m and standard deviation of annual 607 

rainfall >100 mm/a. These controls may reflect the hydrological basis of the analysis of connectivity used 608 

here. In particular, the model’s assumptions are best suited to catchments where steeper topographic 609 

and hydraulic gradients and impermeable bedrock encourage lateral surface or subsurface flow rather 610 

than deep infiltration and ground water flow. The recharge of streams by groundwater sources may both 611 

dilute but also re-introduce N and P in ways that are not represented in our analysis.  612 

<Table 8 and   613 
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Figure 5 near here> 614 

 615 

4. Discussion  616 

The relative risk weighting assigned to each land cover is not consistent across the 11 catchments 617 
investigated here, suggesting that the importance of a particular land cover in contributing to a given in-618 
stream water quality parameter is both geographically-variable (across the study catchments considered) 619 
and nutrient dependent (e.g. Table 3).  This was confirmed by comparison of inferred risk weightings 620 
with catchment characteristics ( 621 

Table 6). It implies that it will be difficult to identify universal nutrient availability risks for particular land 622 

covers that can be applied to all catchments as in the export coefficient modelling approach (e.g. 623 

Johnes, 1996; Johnes et al., 2007) and the phosphorus indicators tool (Heathwaite et al., 2003a, 2005a). 624 

Thus, a careful consideration of catchment characteristics will be needed a priori in defining risky land 625 

covers. Inverse approaches have a role to play in identifying for a given catchment and parameter (e.g. 626 

nutrient) those land covers that are most likely to be sources. Approaching the inverse problem for water 627 

quality without both a risk generation and a risk connection treatment is likely to be difficult because 628 

spatial variability in connectivity and dilution effects may impart significant spatial variability on the water 629 

quality data in ways that make finding the land cover signal particularly difficult.  630 

The level of variability between catchments is surprising since we might expect the risk associated with 631 
each land cover to be similar (at least in relative terms). To some extent, the variability may reflect 632 
differences in risk availability on these land covers resulting from different land management practices 633 
between catchments. However, it is also likely to reflect the spatial structure of the catchment in terms of 634 
the dominance of particular land cover types (Davies and Neal, 2007;   635 
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Figure 4). Further, at least some of the variability in risk weighting may be related to an implicit 636 
parameterisation of hydrological processes that are not currently represented in SCIMAP. This is 637 
illustrated in the detailed analysis for the Hampshire Avon and the differences general improvement in 638 
model performance in surface water dominated catchments (  639 
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Figure 5). Our results illustrate the importance of inverse approaches in situations such as this, where 640 

there are known and possible process inadequacies that can’t be dealt with easily through model 641 

reformulation. Such inadequacies will be manifest as reductions in the extent to which good results (here 642 

correlations with the water quality data) can be found.  643 

We can be more certain about the land covers that represent low risks (rough grass, moorland and 644 

woodland). These land covers are important since they act to dilute nutrient fluxes from other sources in 645 

the catchment. This is perhaps unsurprising since they are areas expected to have little or no nutrient 646 

application (Jackson, 2000). However, it is encouraging for the model that these land cover types are 647 

consistently identified as low risk without any kind of a priori tuning. In fact the model highlights an 648 

important point: that land uses like rough grazing, moorland and woodland have an important 649 

contribution to make to the overall spatial signal of instream nutrient concentrations whilst they are 650 

maintained in a low input state. If their status changes and their capacity to dilute is affected this may 651 

have important consequences for water quality downstream. 652 

In general terms, urban land covers tend to need high weightings for in-stream P concentrations in many 653 

of the catchments. This is consistent with recent UK studies linking P concentrations to the percentage 654 

urban cover (Rothwell et al., 2010a), population density (Davies and Neal, 2004, 2007) and number of 655 

known point sources (Rothwell et al., 2010b) in catchments. It suggests the continued importance of 656 

point source pollution for in-stream P concentrations, particularly from sewage treatment works (Jarvie et 657 

al., 2006; Muscutt and Withers, 1996; Neal et al., 2010b). A key advantage of the inverse approach used 658 

here (taking account of possible bias of sample sites to urban areas) is that it is not necessary to 659 

separate a priori a possible point signal from a non-point signal, so resolving the dilemma regarding the 660 

relative significance of point and non-point sources. This significance is revealed through the analysis, 661 

which identifies when non-urban sources are dominant. 662 

For N, we found that arable areas were a more important source of risk. This is consistent with the 663 

results of statistical analysis by Ferrier et al. (2001), who found nitrogen concentrations in Scottish rivers 664 

to be highly correlated with the extent of arable land. Other UK studies also found that the extent of 665 

arable land was a significant predictor for N but much less significant for P concentrations (Davies and 666 

Neal, 2007; Rothwell et al., 2010a, 2010b).  667 
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The optimum risk weightings do not identify improved grassland as a dominant driver for N or P, this is 668 

surprising given the high levels of N and P application associated with this land cover (Johnes, 1996; 669 

Johnes and Butterfield, 2002); and results from export coefficient modelling (Johnes et al., 2007), which 670 

highlight livestock waste as an important contributor to diffuse agricultural nutrient loading. However, 671 

Davies and Neal (2007) also found no relation between grassland cover and P concentration suggesting 672 

that the strong urban signal masks the contribution from improved grassland. The dotty plots for 673 

individual catchments often show complex patterns for improved grassland. In some cases high risk 674 

weightings producing reasonable model performances but low to medium risks were required for the 675 

best model performances; and those low-medium risks then have the best and some of the worst model 676 

performances. This may be in part a result of the true relative risk associated with improved grasslands, 677 

which have intermediate nutrient application and availability. However, it may also reflect equifinality due 678 

to covariance in its coverage with other land covers; the influence of unrepresented processes; or limits 679 

to the available land cover data which are unable to distinguish between grasslands that are managed in 680 

very different ways and as a result should be assigned different risk weightings (the model’s data 681 

requirements and the limits to current data are discussed in detail below). 682 

 683 

An important distinction between our approach and others is our simple but explicit representation of the 684 

probability that material will be delivered to the river network. There is a recognition in the literature: that 685 

this probability of delivery is important in defining diffuse pollution risk (Beven et al., 2005; Haygarth et 686 

al., 2005); that some parts of the catchment are more connected than others both in terms of the 687 

frequency and duration of connection (Bracken and Croke, 2007; Jensco et al., 2009; Lane et al., 2009); 688 

and that representing this connectivity is essential to effectively capturing delivery (Frey et al., 2008; 689 

Heathwaite et al., 2005b; Neumann et al., 2010). There is also a recognition that attempts to capture 690 

connectivity and delivery resort to spatially explicit models that are data hungry and computationally 691 

intensive (Neumann et al., 2010; Radcliffe et al., 2009); and that these models are too complex to 692 

provide predictions at a fine enough resolution over areas large enough to be relevant for decision 693 

making (Heathwaite, 2003; Neumann et al., 2010). Our approach, using a simple static metric for 694 

hydrological connectivity, which has been shown to capture both the frequency and duration of 695 

connection (Lane et al., 2009), enables us to run the model over large areas (e.g. ~2300 km2 for the 696 

River Eden catchment) at fine resolutions (<20m). Figure 3 shows that there is some uncertainty in the 697 
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inferred weightings that optimize our water quality measures. As it is easy to propagate these 698 

uncertainties through the risk analysis, it provides the basis of balancing: the feasibility of the kind of 699 

interventions that might reduce risk; their locations; their spatial extents; and the number of interventions; 700 

given the uncertainties associated with particular land use effects. Any intervention will, equally, be 701 

sensitive to changes in the spatial scale of impact: locations with a more certain land use weighting; that 702 

are well-connected; and larger in extent are more likely to have effects that propagate through to larger 703 

spatial scales. Changing small patches of land of a few 100 m2 is unlikely to be detectable given these 704 

uncertainties, but this approach still provides a means of delivering decision maker needs in relation to 705 

the prioritization of sub-catchments and reaches (Heathwaite, 2003; Johnes et al., 2007) and the spatial 706 

extent over which prioritized reaches might impact downstream. We emphasise the need, however, to be 707 

careful regarding spatial scale effects below.  The model proceeds by time-integrated, rather than a 708 

dynamic treatment of the system and a risk based rather than explicit nutrient balance approach. We feel 709 

that these simplifications are appropriate in developing a tool for prioritization where time integrated 710 

relative risk is the crucial factor; and given the available data. The difficulty with our approach is the 711 

underpinning assumption of what element of the hydrological cycle drives water quality response, in this 712 

case surface and shallow subsurface flows, and this is reflected in the poorer optimisation for 713 

catchments with higher BFI and hence groundwater impacts. 714 

 715 

Our model requires three sets of spatial information. Firstly, it requires information on the connectivity of 716 

each location in the catchment to the river network. This is derived from fine resolution topographic data 717 

under a set of assumptions and is used to define the delivery index. Given the availability of fine 718 

resolution topographic data it is likely to be the assumptions (e.g. exponential decline in hydraulic 719 

conductivity with depth, surface parallel water table; Lane et al., 2006) rather than the data that limit this 720 

component. 721 

 722 

Secondly, the model requires a data set that identifies units of land that we expect to be similar in terms 723 

of their nutrient availability (these are not limited to the land cover classes used here). The more 724 

internally consistent these units are (i.e. the more between class rather than within class variability) the 725 

more effective an inverse approach will be at identifying the risks associated with them. Therefore, the 726 
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suitability of our land cover based classes will be defined by: 1) the strength of the association between 727 

land cover, land use and management; and 2) the spatial resolution at which the land cover can be 728 

resolved, this will be particularly important in heterogeneous landscapes where there is a patchwork of 729 

different land covers with different availabilities. This highlights an issue for diffuse pollution modelling if 730 

the data on nutrient availability is limited both in spatial resolution and level of detail. In our case, satellite 731 

derived land cover data are the best available data for the UK but are unable to distinguish between 732 

grassland areas with very similar spectral signatures but very different management practices (e.g. 733 

silage vs. permanent grazing). Some land cover classes (e.g. horticulture and cereals) are spectrally 734 

very different but may reflect differences for that year rather than in the long term where both sets of 735 

fields may be managed in the same way (e.g. crop rotation); the land use in these areas and as a result 736 

the long term nutrient availability may be similar or even the same. In other settings, with better land 737 

cover measurement systems, this may be less of an issue. 738 

 739 

Finally, in-stream observations drive the risks assigned to these availability units (land covers), the 740 

choice of observation will define the risks that are assigned. For example, different risk weightings 741 

assigned to N and P in this study. These data need to reflect the interest for the catchment (e.g. N or P 742 

in this study); they need to be time-integrated (in our case using the mean of the observations) but 743 

representative (this can be particularly difficult for nutrients mobilized in storm events). The observations 744 

need to be spatially rich and the inverse approach hinges on having observations sites that contain a mix 745 

of land cover types and that mix being different from one observation point to the next. Large numbers of 746 

observation points (e.g. >100 for the Eden catchment) will enable both a good mix of upstream land 747 

covers and redundancy between points, ensuring that no single observation is defining the identified risk 748 

weightings. Importantly though, this method does not require that the observation points are independent 749 

of one another and as a result nested catchments and sub-catchments can all provide useful data for the 750 

inverse approach. 751 

In using this approach, we emphasise that there are three critical elements of the approach that may be 752 

problematic. First, as we explained in the methodology, the observation that there is no systematic 753 

relationship (e.g. in a ‘dotty plot’) between an Objective Function describing model performance and the 754 

values of a land cover weighting has four different interpretations. First, the land cover does not exert an 755 
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influence on the model’s performance and as such is not important either as a source of risk or dilution. 756 

Second, the land cover does exert an influence on model performance but it is not identifiable as a result 757 

of equifinality due to covariance in the coverage of land cover classes. Third, the data are inadequate to 758 

resolve the influence of the land cover class (e.g. where nutrient availability is highly variable within a 759 

class). Fourth, the model may not represent processes that are important in explaining the variability in 760 

observed nutrient concentrations. In the second case, the available water quality data are unable to 761 

resolve the influence of this land cover. If the analysis was undertaken over a smaller spatial scale, with 762 

a very high density of monitoring sites, then this parameter might be shown to be important. This 763 

analysis is, in effect, a relative one in that its findings apply to the spatial extent over which the water 764 

quality data are available. Care must be shown in considering spatial units very much smaller or very 765 

much larger than suggested by these data. However, we emphasise that when a systematic relationship 766 

is found then this provides very important information at the scale of analysis over what is contributing to 767 

the observed spatial variation in a water quality parameter. The second critical element of the approach 768 

is related to the spatially-distributed water quality data themselves. Such datasets are rare and even 769 

where available may not have sufficient temporal resolution to be representative of the actual water 770 

quality signal at a point in a catchment. It is necessary to consider: (1) the representativeness of the 771 

spatial distribution of sites; and (2) the representativeness of the temporal variability in water quality; 772 

through a careful analysis of those data; before deciding to use them in the manner we demonstrate in 773 

this manuscript. Third, some of the variability in the risk weightings between catchments may be related 774 

to an implicit parameterisation of unrepresented hydrological processes (e.g. groundwater flow) arising 775 

from incorrect assumptions in SCIMAP. Such assumptions are likely to be manifest in lower levels of 776 

optimal agreement between predictions and observations and this level of agreement, in a Bayesian 777 

approach, may be a useful wider indicator of the extent to which the assumptions being made in the 778 

model are acceptable. Such an evaluation needs to be catchment-by-catchment, and checked against 779 

other contextual data such as BFIs. 780 

5. Conclusion 781 

The inverse approach developed in this paper allows us to draw four broad conclusions. First, the 782 

relative risk weightings assigned to each land cover are not consistent across all catchments, suggesting 783 

that the importance of a particular land cover in contributing to river water quality is variable between 784 
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catchments. Second, some of this variability is due to catchment properties suggesting that diffuse 785 

pollution policy needs to be carefully tuned on a catchment-by-catchment basis to reflect both the land 786 

cover mix and catchment characteristics. Third, trends differ between the two nutrients, P and N, 787 

considered here. For P, urban land covers are often high risk; rough grass and moorland are generally 788 

low risk; improved grasslands are intermediate risk and arable land covers do not always require a high 789 

risk weighting, although this may be partly because the measured water quality data are unable to 790 

resolve arable land cover effects due to equifinality resulting from covariance in the coverage of arable 791 

land covers. Point source pollution reflected in the weightings given to urban land covers appears to 792 

exert a dominant control on in-stream P concentrations in many, but not all, catchments. For N, urban 793 

land covers are less dominant and often low risk; rough grass and moorland remain low risk; and arable 794 

land covers are generally important N sources in many catchments. This highlights the ability of our 795 

analysis to identify when non-urban sources are dominant, resolving the dilemma regarding the relative 796 

significance of point and non-point sources and negating the need for their a priori separation. Finally, 797 

differences in the dominant pollution source depending on the pollutant raise intriguing questions about 798 

whether they result from differences in nutrient availability or in delivery. Improved model performance 799 

for N relative to P suggests that this is at least partly related to delivery and may reflect differences 800 

between nutrients in: hydrologic flow paths; the extent to which they are conservative during transport; 801 

and / or the ease with which they can be measured. 802 

One final theme emerges from this paper: the kinds of generalisation that might be possible in relation to 803 

possible diffuse pollution causes. Ideally, we would have shown that it is possible to isolate a subset of 804 

predictors that can be used to profile diffuse pollution risks in any one catchment. Such a generalisation 805 

would then allow the refinement of diffuse pollution policy. Work with further predictors might lead to 806 

such a generalisation but such work may also be misplaced as it assumes that all the possible 807 

candidates for a more complex generalisation are both known and quantifiable. The generalizable 808 

element of this paper is not the relative importance of land covers, but rather a methodology that 809 

combines a relatively simply model with spatially-distributed extant measurements, to infer the 810 

parameters that matter. The simplicity of the model (and the associated Monte Carlo method) means 811 

that the analysis is not computationally demanding, can be fully automated, and yields information on the 812 

uncertainty of model findings simultaneously with model predictions. As such, it may be a preferable 813 
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approach than using a more complex model where the data and computational demands of a more 814 

complex model cannot be readily met.  815 
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Tables 996 

Table 1: Centre for Ecology and Hydrology Land Cover Map for 2000 classes and their translation to 997 
SCIMAP classes. Land covers that were either absent from the catchments or expected to contribute zero 998 
risk are classed as other (modified from Jackson, 2000 and Fuller et al., 2002). 999 

Land cover  Description SCIMAP Class 

Broad-leaved 
woodland 1.1 deciduous, mixed, open birch, scrub Woodland 

Coniferous woodland 2.1 conifers, felled, new plantation Woodland 

Arable cereals 4.1 barley, maize, oats, wheat, cereal (spring), cereal (winter) Cereals 

Arable horticulture 4.2 arable bare ground, carrots, field beans, linseed, potatoes, 
peas, oilseed rape, sugar beet, mustard, non-cereal (spring) Horticulture 

Non rotational 
horticulture 4.3 orchard, arable grass (ley), setaside Non Rotational 

Horticulture 

Improved grassland 5.1 intensive, grass (hay/ silage cut), grazing marsh Improved grassland 

Set aside grass 5.2 grass set aside Rough grass 

Neutral grass 6.1 rough grass (unmanaged), grass (neutral / unimproved) Rough grass 

Calcareous grass 7.1 calcareous (managed), calcareous (rough) Rough grass 

Acid grass 8.1 acid, acid (rough), acid with Juncus, acid with 
Nardus/Festuca/Molinia Rough grass 

Bracken 9.1 Bracken Rough grass 

Dwarf shrub heath 10.1 dense ericaceous, gorse  Moorland 

Open dwarf shrub 
heath 10.2 ericaceous, gorse  Moorland 

Fen, marsh, swamp 11.1 swamp, fen/marsh, fen willow Bog 

Bog 12.1 bog: shrub, grass/shrub, undifferentiated (all on deep peat) Bog 

Water (inland) 13.1 water (inland) Other 

Montane habitats  15.1 Montane Moorland 

Inland Bare Ground 16.1 despoiled, semi-natural Other 

Suburban/rural 
developed 17.1 suburban/rural developed Urban 

Continuous Urban 17.2 urban residential/commercial, urban industrial Urban 

Supra-littoral rock 18.1 Rock Other 

Supra-littoral 
sediment 19.1 shingle, shingle (vegetated), dune, dune shrubs Other 

Littoral rock 20.1 rock, rock with algae Other 

Littoral sediment 21.1 mud, sand, sand/mud with algae Other 

Saltmarsh 21.2 saltmarsh, saltmarsh (grazed) Other 

Sea / Estuary 22.1 Sea Other 

 1000 
  1001 
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Table 2: a summary of the influence of each land cover type on Orthophosphate (PO4
3--P) and Nitrate (NO3

--1002 
N) risk inferred from inverse modelling for the Hampshire Avon including: a description of the relationship 1003 
between risk weighting and model performance from the dotty plots and pdfs; the mean and standard 1004 
deviation of the optimum risk weightings; and whether these mean risks were significantly different from 1005 
those expected from random sampling. Bog land cover is not listed since it is not present in the Avon.  1006 

      Orthophosphate         Nitrate       

Land cover 
type 

Cover 
(%)  

Correlation 
risk v model 
fit 

Optimum 
mean/ 
standard 
deviation 

Signif 
Summary of 
Influence on 
P risk 

 
Correlation 
risk v model 
fit 

Optimum 
mean/ 
standard 
deviation 

Signif 
Summary of 
Influence on 
N risk 

Improved 
grassland 29  weak (+) 0.61/0.23 no medium  risk  none  0.57/0.25 no not influential 

Rough grass 11  weak (-) 0.24/0.16 99% low risk  v weak (-) 0.27/0.19 95% low risk 

Moorland 2  weak (-) 0.28/0.21 95% low risk  strong (-) 0.09/0.09 99.9% low risk 

Urban 8  weak (+) 0.65/0.26 90% high risk  none 0.44/0.29 no not influential 

Cereals 22  strong (-) 0.16/0.08 99.9% low risk  v strong (+) 0.78/0.18 99% v high risk 

Horticulture 14  v strong (+) 0.83/0.13 99% v high risk  weak (+) 0.69/0.19 95% High risk 

Non rotational 
Horticulture 1  none 0.45/0.30 no not influential  none 0.53/0.29 no not influential 

Woodland 13  strong (-) 0.12/0.09 99.9% v low risk  v strong (-) 0.05/0.04 99.9% v low risk 

 1007 

Table 3: optimised land cover risk weightings from SCIMAP based on the GQA in-stream Orthophosphate 1008 
(PO4

3--P) measurements in 11 UK catchments. Mean risk weightings that are significantly different from 1009 
those expected based on random sampling with >90% (bold), 95% (*), 99% (**) and 99.9% (***) confidence 1010 
are in red where they are high and blue where they are low risks. Blank entries result where that land cover 1011 
is absent from a catchment. 1012 
 1013 

Land cover Avon Deben Eden Frome Rother Slapton Till Wensum Wye Wyre Yealm 
Improved 
grassland 0.61 0.40 0.38 0.06*** 0.57 0.56 0.71* 0.13*** 0.65 0.75** 0.22** 
Rough grass 0.24** 0.09*** 0.16*** 0.23** 0.42 0.31* 0.07*** 0.16*** 0.34* 0.13*** 0.16*** 
Moorland 0.28* 0.36 0.19** 0.50  0.51 0.41  0.12*** 0.52 0.37 
Bog  0.48 0.62 0.50   0.59 0.46 0.55 0.45 0.48 
Urban 0.65 0.13*** 0.82** 0.69* 0.82** 0.77** 0.77** 0.85*** 0.78** 0.30* 0.87*** 
Cereals 0.16*** 0.84*** 0.65 0.34* 0.09*** 0.32* 0.24** 0.18** 0.29* 0.55 0.31* 
Horticulture 0.83** 0.28* 0.51 0.13*** 0.15*** 0.69* 0.53 0.24** 0.78** 0.16*** 0.40 

Non Rotational 
Horticulture 

0.45 0.31* 0.65 0.68* 0.44   0.53 0.53   

Woodland  0.12*** 0.31* 0.14*** 0.71* 0.11*** 0.46 0.51 0.47 0.35 0.60 0.45 

 1014 
 1015 
Table 4: optimised land cover risk weightings from SCIMAP based on the GQA in-stream Nitrate (NO3

--N) 1016 
measurements in 11 UK catchments. Mean risk weightings that are significantly different from those 1017 
expected based on random sampling with >90% (bold), 95% (*), 99% (**) and 99.9% (***) confidence are in 1018 
are in red where they are high and blue where they are low risks. Blank entries result where that land cover 1019 
is absent from a catchment. 1020 
 1021 

 Land cover Avon Deben Eden Frome Rother Slapton Till Wensum Wye Wyre Yealm 
Improved 
grassland 0.57 0.66 0.56 0.02*** 0.26** 0.77** 0.72* 0.06*** 0.42 0.71* 0.37 
Rough grass 0.27* 0.21** 0.12*** 0.43 0.29* 0.62 0.10*** 0.52 0.13*** 0.16*** 0.14*** 
Moorland 0.09*** 0.36 0.15*** 0.65  0.44 0.09***  0.22** 0.19** 0.08*** 
Bog  0.66 0.53 0.52   0.49 0.54 0.64 0.49 0.54 
Urban 0.44 0.83** 0.40 0.56 0.87*** 0.25* 0.58 0.45 0.58 0.06*** 0.85*** 
Cereals 0.78** 0.63 0.73* 0.56 0.11*** 0.64 0.56 0.04*** 0.69* 0.52 0.56 
Horticulture 0.69* 0.14*** 0.63 0.49 0.26** 0.85*** 0.87*** 0.77** 0.80** 0.64 0.41 

Non Rotational 
Horticulture 0.53 0.42 0.72* 0.80** 0.52   0.43 0.61   

Woodland  0.05*** 0.14*** 0.10*** 0.59 0.19** 0.35 0.69* 0.55 0.17*** 0.71* 0.44 
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Table 5: the percentage area covered by each of the SCIMAP land cover classes for each of the catchments 1022 
under consideration. 1023 
 1024 

 Land cover Avon Deben Eden Frome Rother Slapton Till Wensum Wye Wyre Yealm 
Improved grassland 28.6 4.4 44.3 29.1 30.4 35.5 20.3 7.9 32.8 42.9 36.0 
Rough grass 11.2 12.5 25.2 4.8 10.0 8.3 14.8 6.5 30.1 13.8 17.5 
Moorland 1.6 0.8 7.6 4.9 0.0 0.1 5.1 0.0 4.8 6.0 5.7 
Bog 0.0 0.6 2.8 0.3 0.0 0.0 0.8 0.1 0.2 1.9 0.5 
Urban 8.1 7.2 2.6 7.5 5.3 7.1 1.3 6.9 3.9 10.8 7.5 
Cereals 22.2 31.3 2.9 21.1 15.6 24.5 25.8 36.0 4.8 3.6 13.5 
Horticulture 13.9 28.4 1.6 14.4 18.0 12.9 23.5 32.9 8.5 13.4 7.1 

Non Rotational 
Horticulture 

1.3 2.4 2.9 2.8 0.3 0.0 0.0 0.1 0.1 0.0 0.0 

Woodland 12.8 8.3 8.8 12.5 19.1 6.9 7.5 9.2 14.2 4.7 10.9 
 1025 
 1026 
Table 6: r2 values for significant correlations (>95% confidence) between catchment characteristics and the 1027 
mean risk weighting for each catchment for a given land cover. Red text indicates positive correlations 1028 
blue text indicates negative correlations. Bold text indicates r2 values significantly different from zero at 1029 
99.9% confidence. 1030 
 1031 

 Land cover Northing Easting MAP MAP 
sigma Elevation Elevation 

Sigma BFI % cover 

         
Improved 
grassland 
 

0.52 (P)   0.42 (P)  0.57 (P) 0.91 (P) 
0.41 (N) 

0.41 (N) 

Rough 
grass 
 

0.41 (P) 
0.43 (N) 

0.43 (N)  0.43 (N) 0.43 (N) 0.76 (N)  0.56 (N) 

Urban 
 

    0.32 (P)   0.66 (N) 

Cereals 
 

 0.44 (N)   0.33 (N) 0.31 (N)   

Horticulture 
 

 0.56 (N) 0.35 (N) 0.39 (N) 0.45 (P) 
0.56 (N) 

   

Woodland 
 

0.42 (N)      0.52 (N) 0.47 (N) 

 1032 
 1033 
Table 7: r2 values for significant correlations (>95% confidence) between catchment characteristics and the 1034 
standard deviation of risk weighting for each catchment for a given land cover. Red text indicates positive 1035 
correlations blue text indicates negative correlations. Bold text indicates r2 values significantly different 1036 
from zero at 99.9% confidence. 1037 
 1038 

 Land cover Northing Easting Area MAP MAP 
sigma Elevation Elevation 

Sigma PAI % cover 

          
Rough 
grass 
 

0.53 (P)    0.42 (N) 0.46 (N) 0.51 (N)  0.88 (N) 

Moorland 
 
 

   0.40 (P) 0.66 (P) 0.64 (P) 0.54 (P) 
0.41 (N) 

0.54 (P) 0.47 (P) 
0.52 (N) 

Urban 
 

        0.33 (N) 

Cereals 
 
 

 0.50 (N)  0.42 (P) 
0.38 (N) 

0.39 (P) 
0.36 (N) 

 0.34 (P) 
0.57 (N) 

0.46 (P) 
0.42 (N) 

0.77 (P) 
0.39 (N) 

Horticulture 
 

        0.44 (P) 

Non 
rotational 
horticulture 
 

        0.35 (P) 

Woodland 
 

  0.36 (N)      0.41 (P) 

 1039 
  1040 
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Table 8: correlation coefficients for the optimum SCIMAP model performance based on the GQA in-stream 1041 
measurements of Orthophosphate (PO4

3--P), and Nitrate (NO3
--N) in 11 UK catchments with the values for 1042 

independent variables used to represent catchment characteristics. The ordnance survey grid reference of 1043 
the catchment centre point; mean and standard deviation of mean annual rainfall; mean and standard 1044 
deviation of elevation; catchment area; the pasture arable index; and mean base flow index. Correlation 1045 
coefficients are labelled where they are significant with 95% (*) and 99.9% (**) confidence. 1046 
 1047 

Catchment OS Grid 
Reference 

Mean (σ) 
annual 
rainfall 
(mm/a) 

Mean (σ) 
elevation 
(m) 

Area 
(km2) 

 Pasture 
-Arable 
Index 

Base 
Flow 
Index 

Optimum Correlation Coefficients 
 

Orthophosphate Nitrate 
Avon  407200,136491 806 (47) 120 (47) 1716  0.13 0.87 0.71** (n=54) 0.89** (n=50) 
Deben 629571,254581 582 (10) 29 (18) 745  0.87 0.58 0.68** (n=32) 0.57** (n=32) 
Eden  355981,534572 1162 (328) 242 (153) 2274  -0.71 0.48 0.71** (n=80) 0.86** (n=80) 
Frome 377582,92295 892 (50) 88 (62) 867  0.14 0.70 0.36* (n=48) 0.60** (n=40) 
Rother 580450,126894 775 (52) 47 (42) 571  0.05 0.42 0.63** (n=41) 0.72** (n=38) 
Slapton 277209,44517 1023 (69) 81 (46) 135  0.03 0.61 1.00** (n=6) 0.99** (n=6) 
Till  393953,634235 725 (86) 137 (129) 1286  0.42 0.46 0.77** (n=25) 0.93** (n=25) 
Wensum 599667,320954 661 (20) 49 (16) 699  0.79 0.64 0.78** (n=17) 0.28 (n=17) 
Wye 321295,243964 1063 (288) 242 (140) 3049  -0.42 0.54 0.83** (n=108) 0.92** (n=107) 
Wyre 347216,444615 1099 (173) 77 (112) 561  -0.43 0.44 0.87** (n=37) 0.92** (n=37) 
Yealm 261514,55322 1300 (212) 144 (123) 215  -0.27 0.57 0.66* (n=16) 0.96** (n=16) 

 1048 
 1049 
  1050 
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Figures 1051 

Figure 1: Illustrative outputs from SCIMAP. Figure 1a shows the ‘dotty plots, the correlation achieved for 1052 
each simulation associated with the land cover risk weighting in that simulation. Figure 1b expresses the 1053 
dotty plots in Figure 1a as two dimensional probability density functions. Darker areas indicate a high 1054 
density of points within the ‘dotty plot’ and therefore a high probability that SCIMAP predictions with that 1055 
land cover risk weighting will fit the observations with that correlation coefficient (assuming random 1056 
sampling for all other land cover weightings). Figure 1c shows the mean and standard deviation of 1057 
weightings associated with correlations at or above the values shown on the y-axis; the lines are bold 1058 
where the risk weighting is significantly different from the null (no influence) case with 95 % confidence. In 1059 
each plot the red horizontal lines show correlation values required for 95 % (dashes), and 99 % (solid) 1060 
confidence in the correlation. 1061 

 1062 
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Figure 2: Catchment properties for the eleven study catchments. Figure 2a shows the location of each 1063 
catchment in the UK superimposed on a topographic map. Figure 2b shows the percentage area of each 1064 
catchment that is managed for agriculture (arable and improved grassland) compared to that which is 1065 
urban to provide some indication of the relative impact of diffuse relative to point source pollution. The 1066 
rest of the land cover classes are grouped together as ‘other’. Figure 2c shows the hydrologic and 1067 
agricultural setting for each catchment by plotting base flow index as an indicator of hydrologic regime 1068 
against the pasture-arable index as an indicator of the dominant agricultural regime within the catchment.  1069 

 1070 

  1071 



44 of 52 

Figure 3: Model results for P and N in the (Hampshire) Avon. 3a shows the dotty plots, 3b the two-1072 
dimensional probability density functions, and 3c the risk weighting optimisation plots, showing the mean 1073 
(solid line) and standard deviation (dashed line) of the weightings associated with correlations with GQA 1074 
data greater than or equal to the associated correlation; the lines are bold where the risk weighting is 1075 
significantly different from the null (no influence) case with 95 % confidence. Red horizontal lines show 1076 
correlation values required for 95 % (dashes), and 99 % (solid) confidence in the correlation. In each 1077 
section the top row shows results for P and the bottom row for N. 1078 

 1079 

  1080 
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Figure 4: Scatter plots comparing the identifiability of the risk weighting assigned to each land cover with 1081 
its percentage share of the catchment. Identifiability is quantified using the standard deviation of the 1082 
optimum risk weighting for each land cover in each catchment. Plots are split to show results for: P (a and 1083 
b) and N (c and d) for: high risk (a and c) and low risk (b and d) land covers. 1084 
 1085 

 1086 

  1087 
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Figure 5: Scatter plots showing the relationship between SCIMAP performance and catchment 1088 
characteristics. Model performance is quantified using the correlation coefficient of predicted risk against 1089 
GQA observations for the optimum SCIMAP run. The catchment characteristics are quantified through a 1090 
set of metrics to represent mean and variability in annual rainfall (a and d); mean and variability in 1091 
elevation (b and e); hydrological regime using the baseflow index (c) and catchment land use from the 1092 
pasture arable index (f). 1093 
 1094 

 1095 
 1096 
  1097 
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Appendix 1: SCIMAP Model Structure 1098 

Formulation of the model requires: 1) determination of the generation risk (pg
i); 2) determination of the 1099 

delivery index, or connection probability (pc
i) for that entrained material; 3) convolution of (1) and (2) to 1100 

get the locational risk (pgc
i); 4) routing of the locational risk to determine a risk loading (Lj); and 5) 1101 

transformation of the risk loading to a risk concentration (Cj). An overview of the processing steps for the 1102 

generation of the risk map is shown in Figure 6. 1103 

Figure 6: SCIMAP processing steps 1104 

 1105 

Generation	
  Risk	
  1106 

Generation risk (pg
i) is defined as the likelihood that a location (i) in the catchment can generate (g) risk. 1107 

Our treatment of generation risk depends on whether the generation requires physical entrainment. We 1108 

assume that generation risk (pg
i) for P and N does not require physical entrainment, i.e. that these 1109 

nutrients can be dissolved in water, as a result the generation risk is solely a factor of the availability (pe
i) 1110 

of the nutrient at location i and we can equate pg
i with pe

i. 1111 

Equation 1 1112 
e
i

g
i pp =  1113 

Availability (pe
i) can be predicted using an inverse approach (Figure 7). We approach the inverse 1114 

problem of unknown land cover risk weightings by using an uncertainty analysis (see below) to identify 1115 

the values of pe
i that best reproduce the spatial structure of distributed in-stream nutrient concentrations: 1116 

i.e. we make no a priori assumptions about the pe
i or its relationship with land cover. Instead we are 1117 

matching SCIMAP predictions to in-stream nutrient observations in order to predict generation risk. 1118 

There are two potential methods of achieving this: 1) an optimisation procedure based upon perturbation 1119 

of the land use risk weightings to identify optimal set of risk values; or 2) a likelihood estimation 1120 
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procedure (e.g. Beven and Binley, 1992) in which we identify the range of plausible land use risk 1121 

weighting values. Both of these methods are with respect to independent validation data. We chose the 1122 

latter as we were interested in the extent to which the delivery index treatment, coupled with the risk 1123 

accumulation and dilution, yielded values that were logical with respect to what we know about the 1124 

relationship between landuse and nutrient availability. We run 5000 model simulations, randomly 1125 

selecting values in the range 0≤ pe
i ≤1 for each land cover for each simulation, i.e. with no a priori 1126 

likelihood of any one land cover having a particular value of pe
i. We determine an objective function to 1127 

assess model performance appropriate to the nature of the validation data available for each simulation. 1128 

In this case the selected objective function is the correlation coefficient from the relationship between 1129 

predicted risk and observed nutrient concentrations.  1130 

Figure 7: summary of the inverse modelling methodology  1131 

 1132 
 1133 

Connection	
  Risk	
  1134 

Our treatment of delivery or connection risk (pc
i) has three primary assumptions. First, that rapid lateral 1135 

surface or shallow subsurface flow is the dominant pathway for N and P delivery to the river network. 1136 

The connectivity index represents disconnection associated with these processes provided that 1137 

disconnection is controlled by a spatial distribution of soil moisture related to the condition where 1138 

bedrock topography and surface topography have the same morphology. This is likely to be most valid 1139 

for P, which is mostly sediment-bound (Walling et al., 1997; Withers et al., 1999), but also valid for some 1140 

elements of the lateral flux of N, which can be transported in solution. Second, that the frequency and 1141 

length of connected periods for each point in the landscape will be spatially structured, leading to a 1142 
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variable connection strength across the catchment. If we can find a reliable description of this spatial 1143 

structure then we can use it to determine the likelihood that generated material is delivered to the 1144 

drainage network. Third, that the topographic wetness index (Kirkby, 1975) can be used to describe 1145 

propensity to saturation and therefore the balance between lateral flux and vertical flux at a point. Flow 1146 

paths (from source to receiving water) where the soil columns are generally wetter throughout the flow 1147 

path, are more likely to be able to flux water, and hence material, laterally (Lane et al., 2009). If we can 1148 

identify the point along the flow path where flux is most likely to be vertical, and quantify the extent to 1149 

which that is the case, we have a measure of the likelihood of disconnectedness, the inverse of which is 1150 

the propensity to connect. Here, we use the network index (Lane et al., 2004) to determine this attribute: 1151 

this is the lowest value of the topographic index along the dominant flow path between a location in the 1152 

catchment and the river network. The topographic wetness index (TI) expresses the propensity to 1153 

saturation as the ratio of the upslope area per unit contour length (A) draining through a point in the 1154 

landscape and the tangent of the local slope (β), the latter assumed to represent the hydraulic gradient.  1155 

Equation 2 1156 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

βtan
ln ATI  1157 

Locations with a low value of the network index are assumed to have a particularly dry cell along their 1158 

flow path (Lane et al., 2004), and hence are less likely to hydrologically connect, whether through 1159 

shallow subsurface flow or surface flow. We map the network index onto the probability of connection 1160 

(pc
i) or delivery index using a distribution approach, scaling the network index between the 5th and 95th 1161 

percentiles and assigning risk values of zero and one at either end of this distribution. 1162 
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Figure 8: Schematic illustrating the Network index: Boxes A-C illustrate an example of cells on a 1163 

hillslope generating runoff during a rainstorm. Early in the storm cells near the channel with a 1164 

high propensity to saturation begin to generate runoff, these are connected to the river (green); 1165 

later as more rain falls and the catchment becomes wetter a patch with a slightly lower 1166 

propensity to saturation begins to generate runoff but these cells are not connected to the 1167 

channel (red) because there is no continuous flow path of runoff generating cells connecting 1168 

them with the channel. Finally the (white ringed) cell with a still lower propensity to saturation 1169 

begins to generate runoff and at this point all the cells upslope of it that are generating runoff 1170 

become connected to the channel (green). Boxes E and F show the differences between 1171 

propensity to saturation as defined by the topographic index (E) and propensity to connection as 1172 

defined by the network index (F). Note the red values in F which highlight cells where these two 1173 

values differ, and the white ring which highlights the cell controlling connectivity in this case. 1174 

 1175 
 1176 

Lane et al. (2009) compared the information on the spatial patterns of hydrological connectivity revealed 1177 

by continuous simulation using a physically based, distributed hydrological model with the network index. 1178 

They found that significant spatial variability in both the propensity to connection within a time period, as 1179 
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well as the duration of that connectivity, can be explained using the network index. Although specifically 1180 

formulated for surface overland flow, the analysis ought to apply equally for shallow subsurface flows 1181 

and fluxes of material in terms of vertical versus lateral fluxes. They found that, locations with a higher 1182 

Network Index are connected for longer, and the spatial signal of topographically induced wetness 1183 

results in partial control of the dynamics of surface overland flow connectivity and potentially delivery.  1184 

Locational	
  risk	
  1185 

We combine the generation and delivery risks to determine the locational risk of delivery of generated 1186 

material to the drainage network (pgc
i): 1187 

Equation 3 1188 
c
i

g
i

gc
i ppp ⋅=  1189 

Routing,	
  Accumulating	
  and	
  Dilution	
  of	
  locational	
  risk	
  	
  1190 

We route and accumulate the locational risk under the assumption that this is driven by the 1191 

topographically-driven accumulating area: i.e. the risk at a point is the sum of all locational risks 1192 

upstream of that point. This leads to the risk loading to a point in the drainage network (Lj) with j upslope 1193 

contributing cells that will increase monotonically with distance down through the drainage network: 1194 

Equation 4 1195 

∑
=

⋅=
j

i

c
i

g
ij ppL

1

 1196 

The risk loading takes no account of: 1) the propensity for dilution, where a high loading from a small 1197 

upstream contributing area will have a more serious environmental effect than a high loading from a high 1198 

upstream contributing area (e.g. Figure 2); or 2) loss of risk (e.g. due to deposition or chemical 1199 

transformation). In this report, we assume that (2) is negligible. However, dilution is a critical property of 1200 

drainage networks. The simplest way to deal with dilution is to scale the loading by the upslope 1201 

contributing area to give a risk loading per unit area, akin to a concentration (Cj); 1202 

Equation 5 1203 

∑

∑

=

=

⋅

⋅
= j

i
ii

j

i

c
i

g
i

j

ra

pp
C

1

1  1204 

where: ai is the cell size and ri is the rainfall weighting factor. This equation takes account of possible 1205 

rainfall variations between sub catchments and the propensity for such variation will increase with basin 1206 

size. This is represented by weighting upslope contributing areas by the amount of upstream contributed 1207 
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precipitation, using temporal averages that reflect the time-integration of the study. However, such an 1208 

analysis is complicated by the fact that spatial variability in precipitation should also result in spatial 1209 

variability in connectivity. Hence, the predicted relative long term average wetness also utilises the 1210 

rainfall weighting factor. 1211 

 1212 
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Appendix 3: Testing suitability of simple means to integrate monthly N and P concentrations 1233 
 1234 
In this paper we use the mean of a set of concentration measurements as a time integrated measure of 1235 
relative risk. Our approach aims to make use of the GQA data which are imperfect but are the best 1236 
spatially distributed observations available. This approach has been used for the same environment 1237 
agency datasets at other UK sites (Davies and Neal, 2007; Rothwell et al., 2010). It assumes that the 1238 
monthly samples an adequately representative sample of instream nutrient concentrations to give the 1239 
relative magnitudes of the mean concentrations. We tested this assumption for the Eden catchment where 1240 
we had both concentration and discharge data. Our GQA data record was 15 years long from 1990 to 1241 
2005. The mean number of observations per site was 155 with a standard deviation of 38 observations. 1242 
We compared the distribution of flows over which concentration samples were collected with the full 1243 
distribution of flows to check for a low flow bias to our samples.  1244 
 1245 
Figure 1 shows the results from our comparison of exceedance probabilities for only times that 1246 
concentration samples were collected and for the full record. The exceedance probability curves (Figure 1247 
1) suggest that concentration measurements were taken across a reasonable distribution of high and low 1248 
flows. On the basis of our results we suggest that the GQA data contain a large enough number of 1249 
samples over a long enough period to sample the range of flow conditions so that they do not suffer a 1250 
strong low flow bias. Flow weighting might improve the concentration estimates slightly but the number 1251 
of sites that could then be used would be limited by the availability of discharge data, which is even more 1252 
limited than concentration data in terms of spatial coverage. Since we are interested in the mean 1253 
concentrations as a time integrated measure of relative risk slight improvements in mean concentrations 1254 
are not worthwhile if they require significant reductions in spatial coverage.  1255 
 1256 
 1257 
Figure 9: Exceedance probabilities for discharge (on (a) a logarithmic scale and (b) a linear scale) for the Eden at 1258 
Sheepmount and for the discharges at which orthophosphate samples were collected from sites 1) Eden at 1259 
Beaumont; 2) Eden at Sheepmount; 3) Caldew at Bitts Park; 4) Eden at Eden Bridge. 1260 

 1261 
 1262 
 1263 
  1264 
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Appendix 3: Identifying the number of simulations required to sample the parameter space 1265 
 1266 
We have tested the influence of the number of simulations for the Hampshire Avon catchment by 1267 
calculating the optimum risk weightings using from 50 to 5000 simulations at 50 simulation increments. 1268 
Our results suggest that the means and standard deviations become stable at around 2500 simulations and 1269 
optimized means do not change their relative ranking beyond 3000 simulations (Figure 10). The 1270 
optimized mean weights vary by <0.08 (or <27% of their average standard deviation) between 4000 and 1271 
5000 simulations and standard deviations vary by <0.04 (or <20% of their average value). There is a 1272 
considerable reduction in this variability if considering only the high or low risks (significantly different 1273 
from the null case at 90% confidence). For these land covers the optimized means vary by <0.04 (or 1274 
<16% of their average standard deviation) between 4000 and 5000 simulations. These results suggested 1275 
that 3000 simulations might be adequate to produce stable estimates and that 5000 simulations would 1276 
include considerable redundancy. One of the reasons for the relatively low number of simulations 1277 
required to identify stable values may be the distribution of land covers in our catchments. In each 1278 
catchment some land covers have little or no coverage, reducing the number of dimensions for the 1279 
parameter space and therefore the number of required simulations.  1280 
 1281 
Figure 10: optimised risk weightings calculated based on different numbers of simulations for the Hampshire Avon. 1282 

 1283 
 1284 
 1285 
 1286 


