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ABSTRACT

We propose a new ray-tracing algorithm to measure the weak-lensing shear and convergence
fields directly from N-body simulations. We calculate the deflection of the light rays lensed
by the 3D mass density field or gravitational potential along the line of sight on a grid-by-grid
basis, rather than using the projected 2D lens planes. Our algorithm uses simple analytic
formulae instead of numerical integrations in the computation of the projected density field
along the line of sight, and so is computationally efficient and straightforward to implement.
This will prove valuable in the interpretation of data from the next generation of surveys that
will image many thousands of square degrees of sky.

Key words: gravitational lensing: weak — methods: analytical — methods: numerical —
cosmology: theory — large-scale structure of Universe.

1 INTRODUCTION

Weak gravitational lensing (WL) (Bartelmann & Schneider 2001) is
a promising tool to map the matter distribution in the Universe and
constrain cosmological models, using the statistical quantities pri-
marily constructed out of the observed correlations in the distorted
images of distant source galaxies. In 2000, four teams announced
the first observational detections of cosmic shear (Bacon, Refregier
& Ellis 2000; Kaiser, Wilson & Luppino 2000; van Waerbeke et al.
2000; Wittman et al. 2000; Maoli et al. 2001). Since then improved
observational results have been published (Hoekstra et al. 2006; Fu
et al. 2008; Schrabback et al. 2010), and it has been extensively
used to investigate key cosmological parameters, such as the matter
density parameter €2, and the normalization of the matter power
spectrum, o g, as well as to constrain the neutrino mass (Tereno et al.
2009). Much theoretical progress has also been made in assessing
the utility of cosmic shear in, for example, estimating the equa-
tion of state of dark energy w (Bridle & King 2007; Crittenden,
Pogosian & Zhao 2009; Li et al. 2009), as well as its role in test-
ing theories of modified gravity (Schmidt 2008; Zhao et al. 2009,
2010a,b; Song et al. 2010) and constraining the quintessence dark
energy (Chongchitnan & King 2010).

On linear scales, one can use the linear perturbation theory to cal-
culate the WL observables for a given cosmology, such as the shear
power spectrum or the aperture mass statistic, and compare these
predictions to observational data to constrain the model parame-
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ters. However, the observables on non-linear scales, which cannot
be predicted theoretically without the help of N-body simulations,
can also provide valuable information to prove or falsify cosmo-
logical models. Making such predictions using N-body simulations
becomes increasingly important as we move into a new era in weak
lensing using large observational surveys. The next generation of
cosmic shear surveys, for example, the Dark Energy Survey (DES;
www.darkenergysurvey.org), will be more than an order of magni-
tude larger in area than any survey to date, covering thousands of
square degrees and using several filters that allow photometric red-
shift estimates for the source galaxies to be derived. These surveys
have the potential to map dark matter in 3D at unprecedented pre-
cision, testing our structure formation paradigm and cosmological
model.

To obtain the statistics for WL from the outputs of N-body simula-
tions, one needs to construct numerous virtual light rays propagating
from the source to the observer. By tracing these light rays along the
lines of sight (l.o.s.), one could, in principle, calculate how much
the original source image is distorted, and magnified.

Conventional ray-tracing algorithms generally project the matter
distribution along the paths of light rays on to a series of lens
planes and use the discrete lensing approximation to compute the
total deflection of the light rays on their way to the observer (Jain,
Seljak & White 2000; Hilbert et al. 2009). The lens planes could be
set up either by handling the simulation outputs after the N-body
simulation is completed or by recording corresponding light-cones
on-the-fly (Heinamaki et al. 2005) and projecting later. Although
this algorithm is the most frequently used in the literature, it requires
a large amount of data, such as particle positions, to be stored and
this would be difficult for simulations with very high mass resolution
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or very big box-sizes, which are increasingly more common today.
Furthermore, projecting particles on to a number (~20-30) of lens
planes will inevitably erase the detailed matter distribution along
the l.o.s. (Martel, Premadi & Matzner 2000; Vale & White 2003)
and oversimplify the time-evolution of the large-scale structure.

One can also perform the lensing computation during the N-
body simulation process to obtain the projected (surface) density
and/or convergence field directly (White & Hu 2000). This method
avoids the expensive storage of dump data at numerous redshifts and
allows the detailed matter distribution to be probed. However, it does
involve numerical integrations in the calculation of the projected
density field and therefore certain overheads, because in order to
make the integrals accurate one has to sample the density field along
the l.o.s. rather densely.

Motivated by the promise of cosmic shear surveys, and the need
to make predictions of observables on non-linear scales using cos-
mological simulations, in this work, we introduce a new algorithm
to preform ray tracing on-the-fly, which is based on that of White
& Hu (2000). We calculate the deflection of a light ray as it goes
through the N-body simulation grids using the 3D density field in-
side the grids, instead of using the density field projected on to
discrete 2D lens planes. Furthermore, the numerical integration is
replaced by some exact analytic formulae, which could further sim-
plify the computation. We will show our results in comparison with
the fitting formula, and discuss how our algorithm can be applied to
particle or potential outputs recorded in large simulations and how
we can go beyond the Born approximation and include the lens—lens
coupling effect.

This paper is organized as follows. We will introduce our algo-
rithm in the next section, describe our simulation and present the
results in Section 3, and close with a section of discussion and
conclusions. Although we do not include lens—lens coupling and
corrections to the Born approximation in our simulations, we will
outline in Appendix A how these can be done. For simplicity, we
shall consider a spatially flat universe throughout this work, but the
generalization to non-flat geometries is straightforward. We shall
use ‘grid” and ‘grid cell’ interchangeably to stand for the smallest
unit of the mesh in the particle-mesh (PM) N-body simulations.

2 METHODOLOGY

In this section, we will first briefly review the traditional ‘plane-by-
plane’ ray-tracing algorithm and then detail our improved ‘grid-by-
grid’ prescription.

2.1 Conventional ray-tracing algorithm

We work in the weak-lensing regime, meaning that the light rays can
be well approximated as straight lines (Mellier 1999; Bartelmann
& Schneider 2001). The metric element is given by

ds? = a*[(1 +2®)d7? — (1 — 2&) dx - dx] e))

where a is the scalefactor normalized so that a = 1 today, 7 is
the conformal time, & is the gravitational potential and x is the
comoving coordinate. We use units such that ¢ = 1.

Then, the change in the photon’s angular direction as it propagates
back in time is (Lewis & Challinor 2009)

suo—so=—2A

where yx is the comoving angular diameter distance, £ is the angular
position perpendicular to the Los., §, = &(x = 0), V; denotes

%X — X

S

Ved dy, )

the covariant derivative on the sphere with respect to & and ® =
® (x, &) is the gravitational potential along the l.o.s. The 2 x 2
distortion matrix is given by A;; = V;&; = Vg, &;(x), where & is
the ith component of &, and is equal to

A,‘j

Xs

8(X Xxs)

—2/ X2 s Vgongj(D(X,g)dX—F(Sfj
0

Xs
g(X;Xs)
_2/ Pz Ve, Ve, @ (x, £)dx + 8. ®)
0

with i, j = 1, 2 running over the two components of &, and

(s — X)X

N

8(X, Xs) = “4)

Note that to obtain equation (3) we have made the approximation
Ve, & Vg, which means that lens-lens coupling is ignored. We
shall discuss how to go beyond this approximation in Appendix A.
This matrix is related to the convergence « and shear components
V1.2 by
l—k=y  -p-o

A= , 5
-t I —k+y )

where w stands for the rotation and y = (y? + y)!/? is the shear
magnitude. In the weak-lensing approximation, once the conver-
gence is obtained, the shear is determined as well; therefore, in
practice, we only need to compute «,

Al + A2 %
1—L4742=/]ﬂLmW@Wx (6)
0

Under the Limber approximation (White & Hu 2000), the 2D Lapla-
cian in equation (6) can be replaced with the 3D Laplacian, because
the component of the latter parallel to the l.o.s. is negligible on small
angular scales (Jain et al. 2000). Then, using the Poisson equation

3 B
Vi = 5szmygg, 7

K =

where § is the matter overdensity and a the scalefactor, we can
rewrite equation (6) as

3 Xs 8
k(&) = EQmHOZ/ 8(x; )(s)ﬂ dx., ®)
0 a

in which we have written explicitly the x; dependence of k (the x
dependence is integrated out in the projecting process). Equation (8)
is the starting point of most ray-tracing simulations.

The most commonly used ray-tracing method is the discrete lens-
plane approximation. In this approach, the density field is projected
on to a number of lensing planes (usually ~20-30) and the light
rays are treated as if they were deflected only by these lens planes.
Correspondingly, the term g(x, x) in equation (8) is evaluated only
at the positions of these planes.

The method of White & Hu (2000) incorporates the integration in
equation (8) directly into their N-body simulation code and performs
the integral at every time-step. To realize this, N}, straight L.o.s. are
generated to be traced. The rays have specified origin (the observer
at redshift 0), opening (e.g. 3 x 3deg?) and orientation. As the
N-body simulation process evolves to the source redshift, zs, the
convergence is computed along each l.o.s. using equation (6) or
equation (8). The l.o.s. integration is then carried out numerically
for each time-step, during which the photon travels from y; to xy,
where the subscripts ‘i’ and ‘f” literally stand for initial and final,
respectively, and hence they are used as the integration boundaries.
The integrand gvgzd)/ x? in equation (6) or g&(x) in equation (8)
is considered to be constant during each time-step and the integral
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Figure 1. Two examples of the 1.0.s. (lines) crossing a cubic cell of the simulation box at points A and B. The segment AB lies inside the cube. Pyy; (x, y, z =
0, 1) are the eight vertices of the cube. Projecting AB into the plane perpendicular to the z-direction and passing point A, ¥ is the angle between the projection
and x-direction, and 6 is the angle between AB and the plane. For the given l.o.s. and cube, A, B, 6 and ¥ are known or can be computed easily, and we also
know the density values at the eight vertices; we then want to integrate the density field along AB (or part of it).

is approximated by summing over all the time-steps. The time-
sampling has to be sufficiently fine so as to guarantee the required
numerical accuracy.

One advantage of this algorithm is that ¥ is computed step by
step on-the-fly, so one can avoid the expensive disc storage required
for storing particle dumps and the time-consuming post-processing
analysis. Moreover, in this approach, there is no difficulty to make
ultrafine time-sampling (the number of time-slices can be as many
as the number of time-steps for the simulation after z;) and probe
the detailed 3D matter distribution (because the l.o.s. integration
is performed on a grid-by-grid basis, and remember that there are
at least hundreds of grid cells in each simulation box). Note that
a relatively small number of lens planes in the discrete lens-plane
approximation do have a non-negligible impact on the computed
lensing observables; for example, Vale & White (2003) show that
increasing the number from ~20 to ~90 could change the conver-
gence power spectrum by ~10 per cent.

However, one does have to carry out the numerical integration in
equation (6) or equation (8), and to make the result accurate, one
has to sample the value of the integrand very densely [e.g. ~100
sampling points are dynamically chosen for each time-step in White
& Hu (2000)], which might cause certain overheads when a large
number of light rays are traced and ultrafine time-stepping is used.

2.2 Improved ray-tracing algorithm

In this work, we propose an improved ray-tracing algorithm by
computing the convergence, shear and projected density fields on
the very grid cells on which the N-body simulation is performed. In
our grid-by-grid approach, the l.o.s integration can be carried out
analytically, making the computation more efficient and accurate
than the numerical integration. Also, the light rays are deflected
by the detailed matter distribution exactly as seen in the N-body
simulations, making the ray-tracing and N-body simulations more

© 2011 The Authors, MNRAS 415, 881-892
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consistent with each other. A detailed derivation of the relevant
formulae is given in Sections 2.2.1 and 2.2.2, and the basic idea
is as follows. Take equation (8), for example, where the integrand
is gé(x). Since our PM code automatically computes §(x) on the
regular mesh, the value of §(x) at any point can be obtained by
interpolation, and in particular we can compute the value along the
l.o.s. as a function of the comoving distance x, and the values of
8(x) at the vertices of the grid containing the said point.! Note that
the vertices themselves are the regular grid points and the values of
8(x) on the vertices are known. Using certain interpolation schemes,
trilinear, for example, §(x) can be expressed as a polynomial of x;
thus, the integral can be carried out analytically. Therefore, no nu-
merical integration is needed to compute k. Similarly, our algorithm
can also be used to compute the integral of equation (6) analytically,
as detailed in Section 2.2.2.

Note that when the algorithm is applied to the density field §(x),
there is some subtlety, and this will be clarified in Section 2.2.1.

2.2.1 Method A

To compute the projected density field, we need to integrate along
the lL.o.s., and in practice this integration can be carried out pro-
gressively along the segments of l.o.s. within individual cubic grid
cells. The reason for such a prescription will become clear soon.
Throughout this subsection, we will use z to denote the coordinate
rather than redshift.

Fig. 1 shows two examples of such configurations, in which the
part AB of a lo.s. lies in a grid cell (see the figure caption for

! Because the L.o.s. is by approximation a straight line, once the comoving
distance x to a point is known, the corresponding x, y, z-coordinates of that
point can be expressed in terms of x and orientation angles, which are fixed
when the l.o.s. are assumed to be straight, and computable otherwise.
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more information). The density value at a given point on AB could
be computed using trilinear interpolation, as long as we know the
corresponding values at the vertices, which are denoted by p,,. (x,
v,z =0, 1). To be more explicit, let us define

Co = Pooo>

€1 = P100 — P000,

€2 = 0010 — L0005

€3 = L0o01 — L0005

€4 = P110 — Po10 — P100 + Pooo,
€5 = Po11 — Poo1 — Po10 + Pooo,
C6 = P101 — Poo1 — P100 + Pooo,
€7 = P111 — Pott — P1o1 — P110

+p100 + Poor + Lo1o — Pooo- ©)

Suppose the point on AB we are considering has the coordinate (x,
¥, z), then the density value is given by

p(x,y,2) = o+ Cc1Ax + Ay + c3Az + c4AxAy

+ csAyAz + ccAxAz + c7AxAyAz, (10)

where

1 1
Ax = Z(x —X9) = A [a + (x — xa)cosO cos ],

1 1 .
Ay = Z(y —Y) = I [b+ (x — xa)cosOsiny],

1 1
AZEz(Z_ZO) = Z[C+(x—xA)sin9], (11)

where L denotes the size of the cubic grid cell, (xo, yo, zo) is the
coordinate of the vertex Pyo, x4 is the x value at point A, and a, b,
c are the coordinates of point A relative to Pogg.

Because we express p(x, y, z) in terms of x only, the line integral
along AB could be rewritten as an integral over x, and we have

1 Xu
;/ x(Xs — x)p(x, y,z) dx

— ZdN/ xOts = 000 = xa)™Hdx
Xl

Xs N2

I
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i~
§“

/ (X + x) (s — xa — 0D XV dx
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=
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pat
=z
|
xt
=
N

— Xs
4 d x
N A S N+1 S N+1
+ 1-222 -
> (1)
4
3 dy L(XNH_XINH) (12)
N+2x ’

in which x; > x4 and x, < x> are the lower and upper limits of

the integral, respectively, ¥ = X — Xa> Xu = Xu — XAs X1 = X1 — Xa

2 Note that A and B are the intersections between the 1.o.s. and the grid cell,
and not necessarily the two ends of the l.0.s. in one time-step. However, the
integration is carried out for each time-step and so we do not always have
X1 =xaand xuy = xp.

and we have also defined

1
dy=co+ — (ac1 + bey + cc3)
|
(abC4 + bces + acce) + —abee,
d 1 0 cos ey + ! 0 sinyc, + L 0
= —cosfcosyc; + —cosfsinyc, + —sinfe
=7 1t 27 3
1
+ 12 cos 8 siny (acy + ccs)
1
+ 2 cosf cos y (bey + ccp)
. b ) 1 b
+ 2 sin6 (bcs + acg) + YA sinfabcy
1 1
+ Y5 cos O sinraccy + Y5 cos 6 cos ybeey,

1 1
d; = I cos? 6 sin Y cosyey + Iz sin @ cos 6 sin Y cs

4+ — sin6 cos 6 cos Ycg + sm 6 cos 6 sin Yracy

L2
+ E sin 6 cos 8 cos Ybc;

1 24
+ Y& cos” 6 sin { cos Yreey,

1
dy = Esin@coszesinwcoswa. (13)

Note that by writing the result in the above form, we have separated
the treatments for four types of variables:

(1) a, b, c, xa, %ui: a, b, c and x4 are determined by the direction
of the light ray and the specific grid cell under consideration, and
Xu1 depend only on the considered time-step and x 4. Note that a, b
and ¢ must be determined carefully, and for each grid cell at least
one of them vanishes, but exactly which of them vanishes varies
from ray to ray and from grid cell to grid cell;

(ii) 6, : these specify the direction of the light ray, and terms
involving them only need to be computed once, that is, at the be-
ginning of the simulation, for a given l.o.s.;

(iii) co_7: these are determined by the values of p at the vertices
of a grid cell and must be evaluated for each grid cell that the light
ray passes through;

(iv) L, xs: these are constants for a given simulation.

Therefore, once p,,, is known, the integral can be performed
analytically without much computational effort. This is not unex-
pected, because once the density is known at the vertices of the
grid, we should know the density at any point inside the grid using
interpolation, and no more information is needed to carry out the
integral. If we consider a different grid, a different set of p,,. needs
to be used, and this is why our algorithm is based on the individual
grids.

There are two technical points which need to be noted. First,
in equation (12), p should be replaced by p/a in practice. It is
true that a could be expressed as a function of x as well, once
the background cosmology is specified, but this will lead to more
complicated expressions. Therefore, in our simulations, we simply
take a to be constant during each time-step. This is certainly only an
approximation, but we should note that a is considered as constant
during each time-step in the N-body simulations anyway. Indeed,

© 2011 The Authors, MNRAS 415, 881-892
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as we see in Section 2.2.2, the factor 1/a does not appear if we use
VZ® instead of p in the integral.?

Secondly, as has been mentioned by various papers (e.g. Jain et al.
2000; White & Hu 2000), the use of the 3D Laplacian [equation (8)]
instead of the 2D one [equation (6)] is at best an approximation.
We have to test the validity of this approximation. In fact, as we
show below, the error caused by this approximation is actually not
negligible. To see this, recall that

Xs
/c:/ g(Vz—Vi)CDdX
0

3 2 xs 8 Xs
EQmHO g—dx — [gVXCD}O
0 a

Xs Xs
+/ gV, ddy +/ ¢V, ® dy (14)
0 0

in which a prime (overdot) denotes the x (time) derivative and the
last three terms come from the treatment of Vicb, including the
integration by parts. The common argument is that the second term
actually vanishes as g =0 and V, ® < ocoat x = x5 and x =0,
and the last two terms are negligible. This is true in the ideal case,
but while our algorithm [and that of White & Hu (2000)] is applied,
the second term is no longer zero because of the following reasons:

(i) It is unrealistic to make the simulation boxes big enough to
contain the whole light-cone and, in practice, people tile different
simulations to form a complete light-cone. Unless a periodic tiling
of the same box is adopted, we expect the matter distribution and
thus the potential ® to be discontinuous at the tiling boundaries. As
a result, the second term in equation (14) should read

[gvxcb}gs = [gV,®]" + [gvxcp];“; 4ot [gvxcb}g"”

in which yx, correspond to the values of x when the light ray goes
through a given box, which is labelled as 1, 2, ..., N. If the matter
distribution is smooth at the boundaries of the boxes, then V, ®(x =
xn) = V,®(x = xw) and so on, so all terms cancel. However, if
the matter distribution is not smooth, as is the case for many tiling
treatments, then such cancelling will not happen and [gV, ®@]¢" will
turn out to be non-zero in the numerical calculation, although it
should be zero in theory.

(i1) Using the same argument as above, we could find that this
discontinuity problem appears not only on the boundaries of the tiled
simulation boxes, but also at each time-step in the simulations and
each time the light ray passes through a grid of the simulation box.
For the former case, suppose that during one time-step the l.o.s. ends
at point C, then C is also the point where this l.o.s. starts during the
next time-step. However, the values of V, ® at point C are generally
different in the two time-steps because particles have been advanced
and so a discontinuity appears. For the latter case, our piecewise
L.o.s. integral and the interpolation scheme dictate that the values of
V, ® at a point D on the interface of two neighbouring grids could
depend on which grid is supposed to contain point D (remember that
the interpolation scheme uses the values of V, ® at the vertices of the
containing grid cell), and naturally a discontinuity in V, & appears
at the interface of the two grids. Note that these discontinuities
are inevitable due to the nature of the numerical simulation (the
discreteness in time), and decreasing the grid size or the length of

Xs
X1

3 This just reflects the fact that during each time-step of the N-body simula-
tion, the 1/a factor in the Poisson equation is treated as constant. The nature
of the numerical simulation (discreteness in time) dictates that we cannot do
better, say, by decreasing the length of time-steps, which we cannot always
keep doing in reality.

© 2011 The Authors, MNRAS 415, 881-892
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time-steps does not help because then such discontinuities will only
appear more frequently.*

The way to tackle these problems is as follows: we know that
[gV, ®];5° vanishes rigorously, in principle, but is non-zero because
of the nature of the simulation; meanwhile, the same discontinuity
problem also appears when calculating the first quantity on the
right-hand side of equation (14). The errors in the numerical values
for these two quantities are caused by the same discontinuity and
could cancel each other. The exact value of this error can be obtained
by computing [gV, @], because this quantity is zero in theory and
its non-zero value is completely the error. In our simulations, we
compute [gV, @] explicitly whenever the light ray passes a grid and
subtract it according to equation (14); this way we can eliminate the
error in the integration of gé/a due to the discontinuities.

As for the third and fourth terms in equation (14), the third
term is non-zero but small in reality, but in our simulations, it
vanishes because @ is assumed to be constant during any given
time-step. This will cause certain unavoidable errors that we anyway
expect to be small. The fourth term has as small a contribution, but,
fortunately, we can perform the integral exactly and analytically as
we have done for the first term in equation (14).

We have run several tests to check the accuracy of the approxi-
mations and found the following:

(1) If we simply replace the 2D Laplacian in equation (6) with a
3D one, as in equation (8), then the difference is of the order of 10
per cent and even much larger for the rays for which |« | is small.
This agrees with the discovery of White & Hu (2000), which shows
that the difference between the values of k¥ computed using these
two expressions is of, on average, 0.003, while the theoretical value
of k is mostly of the order of 0.01-0.1. Note that equation (6) can
be evaluated exactly as will be described in Section 2.2.2.

(ii) If we explicitly calculate the term [gV, ®];° for each cell
crossed by a ray and subtract it according to equation (14), the
difference between equations (6) and (8) is brought down to the
level of 1-2 per cent.

(iii) If we further include the contribution from the fourth term
of equation (14), the difference will fall well within the per cent
level.

2.2.2 Method B

The method described in Section 2.2.1 is only applicable to equa-
tion (8), while there are also motivations for us to consider equa-
tion (6). For example, the use of the 3D Laplacian instead of the
2D Laplacian in equation (8) is at best an approximation and only
works well on small angular scales. This is even worse in the dis-
crete lensing approximation, because the photons at equal distance
from the observer are certainly not in a plane but on a spherical
shell, and this has motivated more accurate treatments such as the
prescription proposed by Vale & White (2003). As another example,
within the current framework, the shear is not computed directly but
from its relation with «. There is certainly no problem with this, but
it will be even better if we can compute y; , directly and compare
with the results obtained from «.

“4Interestingly, the discrete lens-plane approximation does not have this
problem (as long as simulation boxes are tiled periodically so that the matter
distribution is smooth on the tiling boundaries), because it does not treat the
l.o.s. integral on a grid-by-grid basis.
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Our generalized treatment here is quite simple, taking advantage
of the fact that the PM codes also give us the values of ®(x) and
(if necessary) V,;V;® at the regular grid points. For simplicity, let
us assume that (1) the central l.o.s. is parallel to the x-axis; and (2)
the opening of the l.o.s. bundle is a square with its sides parallel
to the y-axis and z-axis. In the 2D plane perpendicular to the lL.o.s.,
the i = 1 and 2 directions are set to be the longitude and latitude,
respectively. We also define

nw =V, V, P,
v =V,V,d,
n = V.V,

¢ =V,\V,® = V,V,,
w =V,V.® = V. V,],
o=V, V,® =V, VP, (15)

to lighten the notation. Then, given the values of u, v, ... at the
vertices of a grid, their values at any point inside that grid can be
obtained using trilinear interpolation just as we have done for p in
Section 2.2.1.

Now, for the configuration depicted in Fig. 1, we have, after some
exercise of geometry,

ViVi® = x?cos?@(usin® ¢ 4 vcos® ¥ — ¢ sin2y),
VoVo® = x2(pcos? ¥ sin? 6 + v sin® ¥ sin? 6 4 n cos? 0)
+ x%¢ sin2y sin® @ — x 2w cos ¥ sin 20
— x?wsin sin 26,

1 1
V\Vod = Exz sin 20 5(v — ) sin 2y + ¢ cos 2y

+ x%cos? 0 (w siny — wcos ),
V,V,® = pcos? ¥ cos? 0 + v sin® ¥ cos® 6 + nsin’ 0
+ ¢ sin 2y cos® 6 + @ cos i sin 26
+ wsin ¥ sin 26. (16)

Note that the above expressions are all linear in p, v, . . ., making
the situation quite simple. As an example, for V;® = V'V, ® +
V2V, ®, we have

V:® = (sin? ¢ + cos® ¥ sin® O
+ (cos? i + sin® ¢ sin® @)y + n cos? 6
— ¢ sin24 cos® 6 — w cos Y sin 20 — w sin ¥ sin 26,

as is consistent with Castro, Heavens & Kitching (2005), and be-
cause ¥ and 0 are constants for a given ray,

Xs —
/ X(Xs — X) V2o dy
0 Xs

= (sin® ¢ + cos? ¥ sin® 0) () — (¢) sin 24 cos* O
+ (cos? ¥ + sin® ¥ sin® 0)(v) + () cos> O

— (o) cos ¥ sin 260 — (w) sin ¥ sin 26, 17)
where
Xs o —
() E/ Mde (18)
0 Xs

(and similarly (v), ...) are computed exactly as in equation (12).
Note that we only need to compute (i), ... during the N-body

simulations and multiply appropriate coefficients as in equation (17)
to obtain « finally. The components of the shear field (y1, y») could
be computed using the same formula as equation (17), but with
V:® replaced with V!, ® — V3 ® and V', ®, respectively, using the
expressions given in equation (16).

3 N-BODY AND RAY-TRACING SIMULATIONS

To test our algorithm, we have performed a series of N-body simula-
tions for a concordance cosmology using the publicly available code
MLAPM (Knebe, Green & Binney 2001). As it is not our intention
to carry out very high resolution simulations here, we only use the
PM part of MLAPM so that our simulation grid is not self-adaptively
refined. We have also developed a c code, RATANA (Which stands
for ANAlytic RAy-Tracing), to compute the convergence and shear
fields on-the-fly as described in the above section. This section is
devoted to a summary of our results.

3.1 Specifications for N-body simulations

We consider a concordance cosmology with the cosmological pa-
rameters 2, = 0.257, Q5 =0.743, h = Hy/(100km s~ Mpc™!) =
0.719, ny = 0.963 and o3 = 0.769. The simulations start at an initial
redshift z; = 49.0 and initial conditions (i.e. initial displacements
and velocities of particles) are generated using GRAFIC (Bertschinger
1995). In this work, we only consider a source redshift z, = 1.0,
though other values of z; or even multiple source redshifts can easily
be implemented. The field of view is 5 x 5 deg? and we trace 1024?
light rays.

A source at redshift z, = 1.0 is about 2374 A~! Mpc away from us
(z=0) in terms of the comoving angular diameter distance and it is
unrealistic for us to have a simulation box which is large enough to
cover the whole light-cone. In this work, we adopt the tiling scheme
introduced by White & Hu (2000). They use multiple simulation
boxes to cover the light-cone between z = 0 and z, and the sizes
of the simulation boxes are adjusted so that smaller boxes are used
as the light rays get closer to the observer. It has been argued
that the use of multiple tiling boxes can compensate the lack of
the statistical independence of fluctuations caused by using the same
simulation box repeatedly. Also the variable box-sizes mean that one
can get better angular resolutions by using smaller boxes near the
observer.

Similar to White & Hu (2000), we choose six different box-sizes
and 20 tiles between z = 0 and z,, and the details are summa-
rized in Table 1. For the N-body simulations (regardless of the
box-sizes), we use a regular mesh with 512 x 512 x 512 cu-
bic cells. We use the triangular-shaped cloud (TSC) scheme to
assign the matter densities in the grid cell and to interpolate the
forces (Hockney & Eastwood 1981; Knebe et al. 2001). Given
the matter densities in the cells, the gravitational potential & is
computed using fast Fourier transform (FFT) and the gravitational
forces (first derivatives of ®) as well as the second derivatives
of ® are then obtained by performing finite differences. These
derivatives of & are subsequently utilized by RATANA to com-
pute the convergence and shear fields as described in the above
section.

Note that unlike in many other works, we use the same grid
for both N-body and ray-tracing simulations. The TSC scheme we
are using then results in some small-scale details of the matter
distribution being smoothed out, as compared to the conventional

© 2011 The Authors, MNRAS 415, 881-892
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Table 1. The tiling solution of our N-body simulations. Here aqy is the
scalefactor at the time when the light rays which are traced leave a given
tile and B is the size of the simulation box in units of A~! Mpc. Each
simulation uses exactly 400 time-steps from z = 49 to 0. Ny is the number
of realizations for each value of box-size. To obtain a tiling solution, we
randomly pick out two different simulation boxes with B = 240, two with
B = 200, two with B = 160, two with B = 120, two with B = 100 and 10
with B = 80 — a total of 20 simulation boxes of different sizes.

Aout B (h_l Mpc) Nreal Aout B (h_l Mpc) Nreal
0.527 240 10 0.799 80 20
0.561 240 — 0.819 80 —
0.593 200 10 0.838 80 —
0.628 200 — 0.860 80 -
0.657 160 10 0.880 80 —
0.686 160 — 0.902 80 —
0.711 120 10 0.927 80 -
0.735 120 — 0.951 80 —
0.757 100 10 0.976 80 -
0.780 100 — 1.000 80 —

g

100.0

10.0

& (k)

0.1

L L IR
0.1 1.0
k (h/Mpc)

st
[=}

Figure 2. Plotted is the A2 (k) = k* P(k)/(272), in which P(k) is the matter
power spectrum, as a function of the wavenumber k in units of A Mpc~!.
The symbols with error bars represent averaged results at z = 0 from 10
realizations for the B = 804~ Mpc simulations. The solid curve is the
corresponding result using the Smith et al. (2003) fit and the same set of
cosmological parameters.

nearest grid point (NGP) or cloud-in-cell (CIC) density-assignment
schemes.’ We will comment on this point later.

3.2 Numerical results

In this section, we summarize the numerical results from our N-body
and ray-tracing simulations.

In Fig. 2, we compare the matter power spectra [or equivalently
A2 (k) defined in the figure caption), computed from our N-body
simulations (box-size 80 h~! Mpc), to the prediction of the analytic
fitting formula of Smith et al. (2003). We can see a good agreement,
except in the range of 0.5 < k < 2.0hMpc~' where the N-body
simulations predict a slightly higher power. However, the agreement
becomes poor for k > 5.0/ Mpc~! because the resolution of our

5 In the TSC scheme, the density on a grid cell depends on the distribution
of particles on all the 26 neighbouring grid cells; in the CIC (NGP) scheme,
it depends on the matter distribution on the six direct neighbouring grid cells
(the particles in that cell only).
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simulations is not high enough, but this could be overcome in future
higher resolution simulations.

To show that our ray-tracing simulations produce reasonable re-
sults, we first consider the convergence and shear maps from a cho-
sen realization of the tiling solution; these are shown in Fig. 3. We
have computed the convergence field « (&), using the two methods
outlined in Sections 2.2.1 [Method A, equation (14), left-hand panel
of Fig. 3] and 2.2.2 [Method B, equation (17), right-hand panel of
Fig. 3]. The two methods give almost identical results and, as we
have checked, the difference is in general well within the per cent
level. The shear field (y1, y2) is also calculated using two methods:
method A using an equivalence of equation (17) as described in the
figure caption (left-hand panel) and method B which is often used in
the literature, namely by Fourier transforms of the convergence field
which only works in the weak-lensing regime (right-hand panel).
The shear fields are shown in rods along with the convergence map
shown as images. Again, the agreement for the shear field is very
good, indicating that our ray-tracing algorithm works well.

We also show the lensing convergence power spectrum measured
from our ray-tracing simulations in Fig. 4. Due to our limited field
of view of 5 x 5 deg?, we cannot measure the spectrum at multiple
moments £ < 100. Also, there is a roll-oft of power at £ > 2000,
which is because (1) the resolution for our N-body simulations is not
high enough; and (2) the TSC density-assignment scheme smoothes
out the small-scale structure more than the CIC and NGP schemes
do. Both factors tend to suppress the convergence power spectrum at
high ¢ and we hope to solve this problem by using higher resolution
simulations and more suitable interpolation schemes, which is left
for our future study. Otherwise, we find that the ray-tracing result
agrees reasonably well with the analytic prediction using the fitting
formula for the matter power spectrum by Smith et al. (2003) in
some £ range, that is, 100 < £ < 2000. On some scales, we see that
the numerical result is slightly higher than the theoretical prediction.
This is, however, as expected because we have seen from Fig. 2 that
the N-body simulations give a higher matter power spectrum than
the Smith et al. (2003) fit on some scales. The fact that a difference in
the matter power spectra from simulations and analytic fitting could
cause differences in the computed convergence power spectra has
been reported and discussed by many authors, for example, Vale
& White (2003), Hilbert et al. (2009) and Pielorz et al. (2010).
Note that on small scales (¢ > 3000, k > 1 Mpc~! ) baryons, with
their more complex physics, become important in predicting the
matter power spectrum (e.g. White 2004; Zhan& Knox 2004; Rudd,
Zentner & Kravtsov 2008; Guillet, Teyssier & Colombi 2010); thus,
one has to include the hydrodynamical process for baryons in the
simulation to obtain an accurate prediction for the weak-lensing
statistics on those scales.

In Fig. 4, we overplot the expected observational uncertainty from
the DES using the survey parameters fg, ~ 0.12, 7, = 10 arcmin 2
and y2, ~ 0.16, where fy,, i, and y2 denote the sky coverage,
number of galaxies per arcminute squared and the mean-square
intrinsic ellipticity, respectively. We can see that the cosmic variance
and the shot noise dominate the noise budget on large and small
scales, respectively, and our simulation result agrees with the Halofit
prediction well within the DES sensitivity.

Here we have only used the DES as an example for compari-
son, for which the error bars are quite large compared with those
of the simulations, which seems to imply no point of using high-
precision numerical simulations instead of the analytical fittings.
However, other surveys, such as the Large Synoptic Survey, Kunlun
Dark Universe Survey Telescope (Zhao et al. 2010c) and Extremely
Large Telescopes, will have smaller error bars on the lensing power

¥102 ‘T A2\ uo ARlqiT AaseAlUN weylng e /B1o'sfeulnolpioixo seluw//:dny wouy pepeojumoq


http://mnras.oxfordjournals.org/

888 B. Lietal

method A

method B

convergence K

]
-0.02075 0.04529 0.1000

Figure 3. Convergence and shear maps (5 x 5 deg?) for one realization from the tiling solutions. The convergence field « is shown as a colour-scale plot and
the values are indicated by the colour bar below; the shear field (y 1, y2) is shown as a flow plot and superposed on the « field for comparison. As expected,
the shear field is tangential around high-« regions. Note that: (1) the « field in the left-hand panel is computed according to equation (14) with the last three
correction terms incorporated as described in Section 2.2.1; (2) the « field in the right-hand panel is computed using equation (17); (3) the (v, y2) field in
the left-hand panel is computed using equation (17) but with ViCD replaced by V12<I> - V%fb (for 1) and VV,® (for y2); and (4) the (y1, y2) field in the

right-hand panel is computed indirectly by Fourier transforming « (@) to ©(I), computing (71, 72) = (

(71, 72) to (¥ 1, ¥2)-

Multipole ¢

Figure 4. The convergence power spectrum A% = [2C;/(270) as measured
from our ray-tracing simulations (symbols with error bars). The result is
obtained by averaging 120 realizations of the tiling solution. The solid
curve is again obtained using the Smith et al. (2003) fit of the matter power
spectrum (Kaiser 1992; Jain & Seljak 1997) and the filled band illustrates
the expected observational uncertainty from the DES.

spectrum. The accuracy with which simulations can be performed
matters more and more for these and further-future facilities. Also,
since our algorithm will be used to study cosmologies with more
exotic physics, for which we do not generally have fitting formulae
such as that of Smith et al. (2003), it is important to test its reliabil-
ity using the A cold dark matter paradigm, which is what we have
done here. Furthermore, other statistics, such as cross-correlation
functions, are straightforward to construct from our ray-tracing sim-
ulations, but these will be left for future work.

Note that in our numerical simulations we have not included
the lens—lens coupling and second-order corrections to the Born

2_12
Aie, b
,
22 2

&) and finally inverse Fourier transforming

approximation. In Appendix A, we will outline how these can be
incorporated in future higher resolution simulations.

4 DISCUSSION AND CONCLUSIONS

The correlations in the distorted images of distant galaxies, induced
by cosmic shear, hold information about the distribution of matter
on a wide range of scales in the universe. In order to take the full
advantage of current and future weak-lensing data sets to constrain
cosmology, using information from both the linear and non-linear
regimes, one needs a sophisticated algorithm to measure the shear
and convergence fields from N-body simulations, and to construct
statistical quantities. This is traditionally done using the ‘plane-by-
plane’ discrete lens-plane algorithm — trace the virtual light rays
and calculate the deflection caused by the density field projected on
to a number of 2D lens planes.

In this work, we propose an improved ray-tracing algorithm. We
calculate the deflection of the light rays caused by the detailed 3D
density fields living on the natural simulation mesh, rather than the
simplified density distribution projected on to some 2D planes. We
evaluate the shear and convergence fields by analytically integrating
the deflection as the light rays go through the individual simulation
grid cells. This approach is easy to implement. It avoids numerical
integration and expensive data storage since it is performed on-
the-fly. We apply the algorithm to our simulations and find good
agreement with the Smith et al. (2003) fit and consistency with the
published results in Sato et al. (2009).

The on-the-fly l.o.s. integration is computationally economic. In
the RATANA code, most computation time is spent on the N-body part.
Suppose N3 is the number of grid cells in our mesh, then the FFT
requires 3N log, N, operations each time-step, not including other
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operations such as differencing the potential to obtain the force on
the mesh, assigning particles, computing densities on all the grid
cells, and updating particle positions and velocities. In contrast, if
we let Nyos = N, (which is enough for accuracy), then there are
only N3 rays to trace, and for each ray we have <10* operations.
We have checked the simulation log file and found that there is no
observable difference in the times used by each step before and after
the ray-tracing part of RATANA has been triggered.

Analytic formulae are often more useful than purely numerical
results in tracing the physical contents of a theory. For example, in
equations (12) and (13), it is easy to check which terms contribute
the most to the final result: obviously, in the small-angle limit, that
is, 0, ¥ < 1, terms involving d; and d4, and a large part of d,
could be neglected because sin 6, sin iy < 1; also at least one of a,
b and ¢ vanishes and abc = 0 for all grid cells, further simplifying
d; and d,; furthermore, terms in equation (12) with the coefficient
1/x s contribute little because xs >> X..1. Such observations can be
helpful in determining which terms have most important effects in
certain regimes.

Note that the dependence on x [cf. equation (12)] could be taken
out of the analytical integration, meaning that the algorithm can be
straightforwardly generalized to include multiple source redshifts
with very little extra computational effort (mainly in determining
where to start the integration for a given source redshift). The algo-
rithm can also be easily generalized to compute the flexion, which
depends on higher order derivatives of the lensing potential, and is
expected to give more accurate results than the multiple-lens-plane
approximation.

The algorithm has many other flexibilities too. As an example,
the analytic integration of the projected density and potential fields
along the 1.0.s. can be performed on an adaptive rather than a regular
grid with careful programming, which means that higher resolution
can be achieved in high density regions, as in the adaptive PM sim-
ulations. Also, the analytic integration can be easily generalized to
other algorithms to compute the 3D shear field (Couchman, Barber
& Thomas 1999).

We also give prescriptions to include second-order corrections
to the results, such as the lens—lens coupling and corrections to the
Born approximation, in Appendix A. It is interesting to note that,
by running the N-body simulations backwards in time, we can still
compute the convergence and shear fields on-the-fly even if the light
rays are not straight.

To conclude, the algorithm described here is efficient and there-
fore suitable for the future ray-tracing simulations using very large
N-body simulations. It will be interesting to apply it to study the
higher order statistics of the shear field and the lensing excursion
angles, and these will be left for future work.
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APPENDIX A: BEYOND THE FIRST-ORDER APPROXIMATIONS

In the attempt to trace light rays on-the-fly, we set up a bundle of lL.o.s. before the N-body simulation starts. However, because we do not
know the exact paths of those light rays which finally end up at the observer, we have to assume that they are straight lines even though they
are not in reality. This so-called Born approximation is generally quite good in the weak-lensing regime, but can lead to non-negligible errors
on small scales (Hilbert et al. 2009). Furthermore, in the above treatment, we have also neglected the lens—lens coupling, which accounts for
the fact that the lenses themselves (the large-scale structure) are distorted by the lower redshift matter distribution.

Hilbert et al. (2009) take account of the lens—lens coupling and corrections to the Born approximation using the multiple-lens-plane
approximation. In such an approach, the light rays get deflected and their paths are recomputed when and only when they pass by a discrete
lens plane.

Since our algorithm goes beyond the discrete lens-plane approximation and is able to trace the detailed matter distribution, we want to
generalize it to include those corrections as well. In this appendix, we shall derive an analytical formula for the distortion matrix with the
lens—lens coupling taken into account and describe how the corrections to the Born approximation can be incorporated as well.

Obviously, to go beyond the Born approximation, the light rays are no longer straight and thus the l.o.s cannot be set up before the
N-body simulation has finished. Instead, we have to start from the observer today and go backwards in time to compute the distortion matrix
equation (3). We shall discuss below how this could be realized in practice, but at this moment let us simply assume that we can go backwards
in time and know the value of the lensing potential ® and its derivatives along the l.0.s.

A1l Corrections to the Born approximation

The corrections to the Born approximation are easy to implement. According to equation (2), the total deflection of a light ray is the sum of
the deflections by the matter in each grid that the ray passes on its way towards the lensing source. Suppose £ denotes the value of £ after
the light ray crosses the nth grid on its way (n increases with the distance from the observer, n = 1 corresponds to the grid which the observer
is in, and E(O) = §,), then

(n)

w_ gy [ B TXG gg Al
g _E - @ & X ( )
W XXs

where x" = min{x®, x§"} and x"” = max{x®, x\"}, in which x% > x are the x values at the two ends of the current time-step and
xg') > XXI) are the x-values of the two intersections between the light ray and the nth grid. Using the expressions given in Section 2.2.2,
it is easy to write Vg, ® and Vg, @ in terms of polynomials of x. Then, the above integral can be performed analytically as before. In this
way, each time the light ray crosses a grid, we update its orientation according to the above equation, and thus the corrections to the Born
approximation can be incorporated.

Note that in this approach the light rays are deflected many more times than in the multiple-lens-plane approximation and the detailed

matter distribution has been fully taken account of.

A2 Lens-lens coupling

As mentioned earlier, the lens—lens coupling has been neglected in the above treatment because in equation (3) we have used the approximation
V,o & V. Let us now have a look at what happens when this approximation is dropped.
Note that in the expression

~ Xs

88X Xs)

Ajj = —2/ TSVsO,Vs,-CD(X,E)dx + 8ij, (A2)
Jo

the argument of @ is & while one of the derivatives is with respect to §,. We can utilize the chain rule to write Vg, = (Vg &,)Ve; = A;; Vg,

where we have used the definition of A;; given in Section 2.1. Then, the above equation becomes

AL (4, ) =8 —2/ 800 XV Vi@ (1. §) AL (1. §)dx. (A3)
0

where for simplicity we have used V; = V. With the A’J‘. term in the integrand, equation (A3) now includes the lens—lens coupling and will
be our starting point here.

Again, let us consider the integral in equation (A3) after the light ray crosses the nth grid on its way towards the lensing source. The discrete
version of equation (A3) is

. , W5 (e — .
(")A’j — (n—l)Atj _ 2/ M (”)A’;V‘ Vie® dy, (A4)
™ X
X
where ™ A, is the value of A’ after the light ray has crossed the nth grid and A’ = §' as is easy to see. This formula has three advantages
as compared to the multiple-lens-plane approximation:

(i) As before, the light rays between z = 0 and z are divided into many more segments, and the fine structure of the matter distribution is
included naturally, without squeezing the matter and using impulse approximations.
(i) As will be shown below, the integration can be evaluated analytically rather than numerically.
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(iii) Note that we can use ™ A% rather than “~D A% in the integrand, which will give more accurate results, because using "~ A% would
mean that the contribution to the lens—lens coupling from the matter in the nth grid is ignored. In the multiple-lens-plane approximation,
which typically uses 20 ~ 30 lens planes, the nth plane could contain a significant amount of matter and neglecting its contribution could
make the results less accurate.

Equation (A4) is exact, but we only want the result to second order in VV®. Therefore, we can iterate once and write an approximate
solution as
(n)
. . Xu ( _ ) )
WAl A 0D AT _ 90D gk X =0 i
Al = A =2 A-f/(n) dx V'V ®

Xs
(n) ,
+4/: dy X(X;_ X =0 give . g)/ ay XX =X) (XX Gy, 0. &), (AS)
X s
Following the approach taken in Section 2.2.1, we can write
4 N-1

VIV OLE =Y K -] (A6)

N=I

where xf{') is defined in equation (A1) and Ky (N € {1, 2, 3,4})is a2 x 2 matrix whose ij-component depends on the orientation of the l.0.s.

segment inside the nth grid (where it is taken to be straight) and the values of V'V, ® at the vertices of the nth grid. Note, however, that Ky is

independent of x. The expressions are similar to equation (13) defined in Section 2.2.1 and we shall not write them explicitly here.
Substituting equation (A6) into equation (AS5), we find

4 4
WAL =D AL —22 LN)(Ky), “VAS+43 " " BN, M) (Ky)j Ky (A7)

N=1 M=1

in which we have written [again, by defining ¥ = x — x4, ¥’ = x' — x and )N(L(l"l) = XLE"]) x4

X _
X (Xs — x) m] V!
11(N>z/ ax By ]
X](n) Xs
B 1 . 1 X/({n) <~(n)>N <~(n))N N 1 | ZXE\n) (~(n))N+l <~(n))N+l
= NXA s Xu Xi N+l X Xu Xi
1 1 N+2 N+2
) () a9
N +2 xs
and
xW” N—1 [X M-1
Xs — X 7 /
(N, M)E/() dx [x—xk”} / dx'x (x—x’)[ xf{”}
Xln XS X](n)

@ M+N+3 ~ ) M+N+3 - M+N+2 ) M+N+2
(Xu ) - (Xl ) 1 (Xu ) - (Xl ) XXI)
M+DM+2D)M+N+3) 5, M~+1DM~+2)(M+N+2) Xs
M+N+2 _ () M+N+2 B M+N+1 _ () M+N+1
() (") e () =) L
MM+ 1)M+N+2)  x MM+1DM+N+1) "4 Xs
1 ™ 1 () M1 N+2 N+2
e[t ) s ) - ()
M x,  M+1 g N+2
(n)
Xa Lo L w ( <n>> 1 ( n )>N+‘ <~(n>>N+‘
— 1= — —
( XS){MXA +M+1X] Xl N+1 Xu X
1 XX'!) 1 Xl(n) ( (n)) M+1 1 ( (n)) N+1 (~(n)>N+l
M+1 y " M+2 x |\ N1 |\ X
(n)
Xa I w I w ( (n)) M1 ] (~<,1)>N <~(n)>N
1— — - ) (A9)
+[ Xs:||:M+1 +M+2X1 X1 N Xu Xi

The above expressions look rather heavy; however, they are analytic and as a result are very easy to implement in the ray-tracing simulation
codes, by wrltlng functions that take M, N, X(") x™ and Xl(") as parameters and return /; and /, as outputs. Furthermore, since the grid
size (<0.2 7! Mpc) in the N-body simulations is small enough compared with the typical interplane distances in the multiple-lens-plane
approximations (10 ~ 100 ~~! Mpc), we can drop the I;,(N, M) terms to a very good approximation, which will greatly simplify the results.
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Note that the distortion matrix Ail. computed in this way is not symmetric because of the matrix multiplications. However, using equation (5),
it is straightforward to compute y, = —(A', + A?)/2. In addition, we could also calculate the rotation  as @ = (A? — A})/2.

A3 Going back in time

As mentioned above, to include the actual deflections of the light rays which end up at the observer, we have to start from the observer and
go backwards in time until encountering the source. This obviously can only be done after the N-body simulation has finished.

One way to go backwards is to record the information about the gravitational potential ® and its derivatives in a light-cone during the
simulation, and then post-process the light-cone data. This means that a large amount of dump data have to be stored.

Alternatively, one can think of running the N-body simulation ‘backwards’. To be more explicit, the simulation is first run in the forward
direction from a high redshift until today and we obtain the particle positions and velocities at present; then, we reverse the directions of the
gravitational force and the particle velocities, and evolve the system back until z; using the same time-stepping scheme as in the forward
simulation. In this way, the actual light rays and distortion matrix could be built up on-the-fly, and there is no need to store a lot of dump data.

However, we must add a warning note here. There are currently no quantitative studies about reversing N-body simulations which the
authors are aware of and there is a possible danger that numerical noise would prevent one from doing this accurately. However, for our
simulations, we do not really need to go back to very high redshift (at most z; ~ a few). Also, if we have stored a sufficient number of
intermediate snapshots of the N-body history, then we can inverse the systems for short intervals of time with an algorithm similar to linear
or quadratic interpolation. We will test these in a future work.

This paper has been typeset from a TX/IATgX file prepared by the author.
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