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GROWTH RATE OF CLUSTER ALGEBRAS

ANNA FELIKSON, PAVEL TUMARKIN, MICHAEL SHAPIRO, AND HUGH THOMAS

Abstract. We complete the computation of growth rate of cluster algebras. In particular, we show
that growth of all exceptional non-affine mutation-finite cluster algebras is exponential.

Contents

1. Introduction 1
2. Exchange matrices and diagrams 4
3. Block decompositions of diagrams 5
4. Growth of non-exceptional cluster algebras 6
5. Exceptional cluster algebras of exponential growth 10
6. Growth rates of affine cluster algebras 18
7. Coefficients 21
References 21

1. Introduction

This is the fourth paper in the series started in [9, 10, 11].
Cluster algebras were introduced by Fomin and Zelevinsky in the series of papers [14], [15], [2], [17].

Up to isomorphism, each cluster algebra is defined by a skew-symmetrizable n × n matrix called its
exchange matrix. Exchange matrices admit mutations which can be explicitly described. The cluster
algebra itself is a commutative algebra with a distinguished set of generators. All the generators are
organized into clusters. Each cluster contains exactly n generators (cluster variables) for a rank n
cluster algebra.

Clusters form a nice combinatorial structure. Namely, clusters can be associated with the vertices
of n-regular tree where the collections of generators in neighboring vertices are connected by relations
of an especially simple form called cluster exchange relations. Exchange relations are governed by the
corresponding exchange matrix which in its turn undergoes cluster mutations as described above. The
combinatorics of the cluster algebra is encoded by its exchange graph, which can be obtained from
the n-regular tree by identifying vertices with equal clusters (i.e., the clusters containing the same
collection of cluster variables).

This paper is devoted to the computation of the growth rate of exchange graphs of cluster algebras.
We say that a cluster algebra is of exponential growth if the number of distinct vertices of the exchange
graph inside a circle of radius N , i.e., that can be reached from an initial vertex in N mutations, grows
exponentially in N . We say that the growth of a cluster algebra is polynomial if this number grows
at most polynomially depending on N .

Research was partially supported by DFG grant FE-1241/2 (A.F.), grants DMS 0800671 and DMS 1101369 (M.S.),
an NSERC Discovery Grant (H.T.), and RFBR grant 11-01-00289-a (P.T.).
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In [12] Fomin, Shapiro and Thurston computed the growth of cluster algebras originating from
surfaces (or simply cluster algebras from surfaces for short). This special class of cluster algebras is
characterized by their exchange matrices being signed adjacency matrices of ideal triangulations of
marked bordered surfaces. In particular, these matrices are skew-symmetric (we call a cluster algebra
skew-symmetric if its exchange matrices are skew-symmetric, otherwise we call it skew-symmetrizable).
Such an algebra has polynomial growth if the corresponding surface is a sphere with at most three
holes and marked points in total, and exponential growth otherwise.

Cluster algebras from surfaces have another interesting property: the collections of their exchange
matrices (called mutation classes) are finite. We call such algebras (and exchange matrices) mutation-
finite. It was shown in [9] that signed adjacency matrices of ideal triangulations almost exhaust the
class of mutation-finite skew-symmetric matrices, namely, there are only eleven (exceptional) finite
mutation classes of matrices of size at least 3 × 3 not coming from triangulations of surfaces. It was
also proved in [9] that skew-symmetric algebras that are not mutation-finite (we call them mutation-
infinite) are of exponential growth.

In [10], we classify skew-symmetrizable mutation-finite cluster algebras. The geometric meaning of
this classification is clarified in [11]: all but seven finite mutation classes of skew-symmetrizable (non-
skew-symmetric) matrices can be obtained via signed adjacency matrices of ideal triangulations of
orbifolds. In the same paper [11] we show that the exchange graph of every cluster algebra originating
from an orbifold is quasi-isometric to an exchange graph of a cluster algebra from a certain surface.
In this way we compute the growth rate of all cluster algebras from orbifolds.

In [15], Fomin and Zelevinsky classified all finite cluster algebras, i.e., cluster algebras with finitely
many clusters. Their ground-breaking result states that any finite cluster algebra corresponds to one
of the finite root systems. More precisely, a “symmetrization” of some of the exchange matrices in the
corresponding mutation class is a Cartan matrix of the corresponding root system. This observation
justifies the following terminology. We say that a cluster algebra is of finite (or affine) type if a
certain sign symmetric version of one of the exchange matrices in the corresponding mutation class is
the Cartan matrix of the root system.

Now we are ready to formulate the main result of the current paper. For simplicity reasons we
state our result in terms of diagrams (see Section 2) rather than in terms of matrices.

Theorem 1.1. A cluster algebra A has polynomial growth if one of the following holds

(1) A has rank 2 (finite or linear growth);
(2) A is of one of the following types:

(a) finite type An, Bn, Cn, Dn, E6, E7, E8, F4, or G2, then A is finite;

(b) affine type Ãn, B̃n, C̃n, or D̃n, then A has linear growth;
(3) the mutation class contains one of the following three diagrams shown in Fig. 1.1:

(a) diagram Γ(n1, n2), n1, n2 ∈ Z>0, then A has quadratic growth;
(b) diagram ∆(n1, n2), n1, n2 ∈ Z>0, then A has quadratic growth;
(c) diagram Γ(n1, n2, n3), n1, n2, n3 ∈ Z>0, then A has cubic growth;

(4) A is of one of the following exceptional affine types:

(a) Ẽ6, Ẽ7, Ẽ8, then A is skew-symmetric of linear growth;

(b) G̃2, F̃4, then A is skew-symmetrizable of linear growth.

Otherwise, A has exponential growth.

Remark 1.2. Another independent proof of exponential growth for tubular cluster algebras (namely,

D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 ) is obtained recently in [3].

Remark 1.3. In the paper we consider cluster algebras with connected diagrams only. Nathan
Reading mentioned to us that growth of cluster algebras with non-connected diagrams can also be
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Figure 1.1. Diagrams for the cluster algebras of quadratic and cubic growth. All
triangles are oriented. Orientations of the remaining edges are of no importance.

derived from Theorem 1.1. Indeed, the number of pairs of vertices in a disjoint union of several
rooted graphs at total distance N from the roots is a convolution of the respective functions for the
connected components. In particular, this implies that the growth of a cluster algebra is polynomial if
and only if for every connected component of its diagram the growth of corresponding cluster algebra
is polynomial; the only cluster algebras of linear growth are affine ones with connected diagrams.

The plan of the proof is as follows. Note first that the case (1) of rank two cluster algebras is
evident: the exchange graph is either a finite cycle (finite case: A2, B2, G2) or it is an infinite path
implying linear growth rate of the cluster algebra. The case (2a) is also clear.

As the next step we mention (Lemma 4.1) that any mutation-infinite cluster algebra has exponential
growth (see also [9]). The latter implies that it remains only to determine the growth rate of cluster
algebras of finite mutation type.

We collect all already known results on the growth of cluster algebras from surfaces and orbifolds in
Section 4. This covers cases (2b) and (3). The polynomial growth of skew-symmetric affine exceptional
types (case 4a) is proved using the categorification approach to cluster algebras (see Section 6). The
case (4b) follows from (4a) via the unfolding construction recalled in Section 2.2. Thus, we are left to
prove exponential growth of all the remaining exceptional mutation-finite cluster algebras.

The mapping class group of a cluster algebra consists of sequences of mutations that preserve the
initial exchange matrix. All nontrivial elements of the mapping class group change the cluster, in
particular, different elements of the mapping class group produce different clusters from the initial
one. Hence, the exponential growth of the mapping class group implies the exponential growth of the
cluster algebra.

To prove exponential growth of remaining exceptional cases we utilize the famous “ping-pong
lemma” used in the proof of Tits alternative, that allows us to find a free group with two generators
as a subgroup of the mapping class group of a corresponding cluster algebra. This provides an
exponential growth of the mapping class group which, in its turn, implies exponential growth of the
corresponding cluster algebra.
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To apply the ping-pong lemma we consider mutations of g-vectors (see Section 5.2). The strategy
consists of finding two elements of the mapping class group such that their actions on the space of
g-vectors satisfy conditions of the ping-pong lemma. The proof is accomplished by the detailed case-
by-case analysis of g-vector mutations for an appropriate pair of elements of the mapping class group
in each exceptional case.

Note that up to this moment we work in coefficient-free settings. In Section 7 we show that growth
of cluster algebras does not depend on the coefficients, so the main theorem holds in full generality.

Acknowledgments. It is a pleasure to thank the Hausdorff Research Institute for Mathematics
whose hospitality the second author enjoyed in the summer of 2011, and the Banff Research Center
for hosting a workshop on cluster algebras in September 2011 where the final version of the paper was
prepared. We are grateful to L. Chekhov, V. Fock, S. Fomin, M. Gekhtman, Chr. Geiss, N. Ivanov,
B. Keller, B. Leclerc, and A. Vainshtein for stimulating discussions. We thank the anonymous referee
for valuable comments and suggestions. We also thank N. Reading for Remark 1.3.

2. Exchange matrices and diagrams

2.1. Diagram of a skew-symmetrizable matrix. Following [15], we encode an n × n skew-
symmetrizable integer matrix B by a finite simplicial 1-complex S with oriented weighted edges called
a diagram. The weights of a diagram are positive integers.

Vertices of S are labeled by [1, . . . , n]. If bij > 0, we join vertices i and j by an edge directed from i
to j and assign to this edge weight −bijbji. Not every diagram corresponds to a skew-symmetrizable
integer matrix: given a diagram S, there exists a skew-symmetrizable integer matrix B with diagram
S if and only if a product of weights along any chordless cycle of S is a perfect square.

Distinct matrices may have the same diagram. At the same time, it is easy to see that only finitely
many matrices may correspond to the same diagram. All weights of a diagram of a skew-symmetric
matrix are perfect squares. Conversely, if all weights of a diagram S are perfect squares, then there is
a skew-symmetric matrix B with diagram S.

As it is shown in [15], mutations of exchange matrices induce mutations of diagrams. If S is the
diagram corresponding to matrix B, and B′ is a mutation of B in direction k, then we call the diagram
S′ associated to B′ a mutation of S in direction k and denote it by µk(S). A mutation in direction k
changes weights of diagram in the way described in Fig. 2.1 (see e.g. [15]).

a ab b

c d

kk

µk

±√c±
√
d =
√
ab

Figure 2.1. Mutations of diagrams. The sign before
√
c (resp.,

√
d) is positive if

the three vertices form an oriented cycle, and negative otherwise. Either c or d may
vanish. If ab is equal to zero then neither the value of c nor the orientation of the
corresponding edge changes.

For a given diagram, the notion of mutation class is well-defined. We call a diagram mutation-finite
if its mutation class is finite.

The following criterion for a diagram to be mutation-finite is well-known (see e.g. [10, Theorem
2.8]).
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Lemma 2.1. A diagram S of order at least 3 is mutation-finite if and only if any diagram in the
mutation class of S contains no edges of weight greater than 4.

2.2. Unfolding of a skew-symmetrizable matrix. In this section, we recall the notion of unfolding
of a skew-symmetrizable matrix.

Let B be an indecomposable n × n skew-symmetrizable integer matrix, and let BD be a skew-
symmetric matrix, where D = (di) is diagonal integer matrix with positive diagonal entries. Notice
that for any matrix µi(B) the matrix µi(B)D will be skew-symmetric.

We use the following definition of unfolding (communicated to us by A. Zelevinsky) (see [10] and [11]
for details).

Suppose that we have chosen disjoint index sets E1, . . . , En with |Ei| = di. Denote m =
n∑

i=1

di.

Suppose also that we choose a skew-symmetric integer matrix C of size m×m with rows and columns
indexed by the union of all Ei, such that

(1) the sum of entries in each column of each Ei × Ej block of C equals bij ;
(2) if bij ≥ 0 then the Ei × Ej block of C has all entries non-negative.
Define a composite mutation µ̂i =

∏
ı̂∈Ei

µı̂ on C. This mutation is well-defined, since all the
mutations µı̂, ı̂ ∈ Ei, for given i commute.

We say that C is an unfolding for B if C satisfies assertions (1) and (2) above, and for any sequence
of iterated mutations µk1

. . . µkm
(B) the matrix C′ = µ̂k1

. . . µ̂km
(C) satisfies assertions (1) and (2)

with respect to B′ = µk1
. . . µkm

(B).

3. Block decompositions of diagrams

In [12], Fomin, Shapiro and Thurston gave a combinatorial description of diagrams of signed ad-
jacency matrices of ideal triangulations. Namely, such diagrams are block-decomposable, i.e. they are
exactly those that can be glued from diagrams shown in Fig. 3.1 (called blocks) in the following way.

Call vertices marked in white outlets. A connected diagram S is called block-decomposable if it can
be obtained from a collection of blocks by identifying outlets of different blocks along some partial
matching (matching of outlets of the same block is not allowed), where two edges with the same
endpoints and opposite directions cancel out, and two edges with the same endpoints and the same
directions form an edge of weight 4. A non-connected diagram S is called block-decomposable either
if S satisfies the definition above, or if S is a disjoint union of several diagrams satisfying the definition
above. If S is not block-decomposable then we call S non-decomposable.

I II IIIa IIIb IV V

Figure 3.1. Blocks. Outlets are colored in white.

As it was mentioned above, block-decomposable diagrams are in one-to-one correspondence with
adjacency matrices of arcs of ideal (tagged) triangulations of bordered two-dimensional surfaces with
marked points (see [12, Section 13] for the detailed explanations). Mutations of block-decomposable
diagrams correspond to flips of triangulations. In particular, this implies that mutation class of any
block-decomposable diagram is finite.
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It was shown in [10, 11] that diagrams of signed adjacency matrices of arcs of ideal triangulations
of orbifolds can be described in a similar way. For this, we need to introduce new s-blocks shown in
Fig. 3.2.

ĨIIa ĨIIb ĨV Ṽ1 Ṽ2 Ṽ12 ṼI

2
2

2
2

2 2
2

2
2

2

2

2

2 2
2 2

4

Figure 3.2. s-blocks. Outlets are colored in white.

We keep the idea of gluing. A diagram is s-decomposable if it can be glued from blocks and
s-blocks. We keep the term “block-decomposable” for s-decomposable diagrams corresponding to
skew-symmetric matrices.

Like block-decomposable diagrams, s-decomposable diagrams are in one-to-one correspondence with
adjacency matrices of arcs of ideal (tagged) triangulations of bordered two-dimensional orbifolds with
marked points and orbifold points of degree two (see [11]). As above, mutations of s-decomposable
diagrams correspond to flips of triangulations. This implies that mutation class of any s-decomposable
diagram is also finite.

Therefore, s-decomposable diagrams form a large class of finite mutation diagrams (and therefore
exchange matrices). Moreover, in [10] we proved that together with diagrams of rank 2 they provide
almost all diagrams of finite mutation type.

More exactly, the following theorems hold.

Theorem 3.1 (Theorem 6.1 [9]). A connected non-decomposable skew-symmetric mutation-finite di-

agram of order greater than 2 is mutation-equivalent to one of the eleven diagrams E6, E7, E8, Ẽ6,

Ẽ7, Ẽ8, X6, X7, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 shown in Figure 3.3.

Theorem 3.2 (Theorem 5.13 [10]). A connected non-decomposable skew-symmetrizable diagram, that
is not skew-symmetric, has finite mutation class if and only if either it is of order 2 or its diagram

is mutation-equivalent to one of the seven types G̃2, F4, F̃4, G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , F

(∗,∗)
4 shown in

Fig. 3.4.

Remark 3.3. In Fig.3.4, we have chosen representatives from the mutation classes of non-decomposable
diagrams that are slightly different than the ones from [10, Theorem 5.13]. This is done for simplifi-
cation of computations in Section 5.

4. Growth of non-exceptional cluster algebras

As was proved in [9], a mutation-infinite skew-symmetric cluster algebra has exponential growth.
Very similar considerations lead to the following lemma (it can also be easily derived from the results
of Seven [26]).

Lemma 4.1. Any mutation-infinite skew-symmetrizable cluster algebra has exponential growth.

Therefore, we are left to describe the growth of mutation-finite cluster algebras.
According to the results of [9] and [10, 11], almost all mutation-finite cluster algebras originate

from surfaces or orbifolds. The growth of cluster algebras from surfaces was computed in [12] by
investigating mapping class groups of surfaces. In [11], we compute the growth of cluster algebras
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E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

E
(1,1)
6

E
(1,1)
7

E
(1,1)
8

X6

X7

4

4

4

4

4

4

4

4

Figure 3.3. Non-decomposable skew-symmetric mutation-finite diagrams of order
at least 3

2

2

2

22

2

33

3

3

34

G̃2 F4

F̃4

G
(∗,∗)
2G

(∗,+)
2

F
(∗,+)
4 F

(∗,∗)
4

Figure 3.4. Non-decomposable mutation-finite non-skew-symmetric diagrams of or-
der at least 3
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from orbifolds by making use of unfoldings and proving quasi-isometry of the corresponding exchange
graphs (which is a much stronger statement than needed for growth computation), see [11, Section 10].
Below we define a mapping class group of a cluster algebra, and then follow [12, Section 13] to present
a uniform explanation for both cases.

Let n = {1, 2, . . . , n}. We denote by W = Z2 ∗ · · · ∗Z2 the free product of n copies of Z2 with i ∈ n
being a generator of ith copy of Z2. W is the set of all words without letter repetitions in alphabet n.

A word w = i1 i2 . . . ik ∈ W can be interpreted as a sequence µw of mutations of cluster algebra
A, namely, µw = µik ◦ · · · ◦ µi2 ◦ µi1 .

Definition 4.2. We call a word w ∈ W trivial if µw(xi) = xi for any cluster variable xi, i ∈ n,
of the initial cluster. Trivial words form a subgroup We ⊂ W that we call the subgroup of trivial
transformations.

Definition 4.3. A word w ∈ W is mutationally trivial if µw preserves the initial exchange matrix
B. All mutationally trivial words form a subgroup of mutationally trivial transformations denoted by
WB ⊂W .

Lemma 4.4. We ⊂WB is a normal subgroup.

Proof. Note first that any word w ∈ We preserves exchange matrix B by [19] and therefore We ⊂WB .
Note also that for all w ∈ We, u ∈ WB the word u−1wu preserves all initial cluster variables and,
hence, belongs to We. �

Definition 4.5. The quotientM = WB/We is a colored mapping class group of cluster algebra A.

Example 4.6. (cluster algebras of rank 2)

(1) The group of trivial transformations We of the coefficient-free cluster algebra A of type A2

with the initial exchange matrix B =

(
0 1
−1 0

)
consists of all words (12)5k and (21)5k. It

is generated by word (12)5. (Note that (21)5 = (12)−5.) The group WB of mutationally
trivial transformations is formed by all words (12)ℓ and (21)ℓ. It is generated by the word
(12) implying that the colored mapping class groupM = WB/We ≃ Z5.

(2) Similarly, for cluster algebras of types B2 and C2 with exchange matrices B =

(
0 2
−1 0

)
and

B =

(
0 1
−2 0

)
respectively, the colored mapping class groupM≃ Z6. For cluster algebra of

type G2 with exchange matrix B =

(
0 3
−1 0

)
the colored mapping class groupM≃ Z8

(3) For cluster algebras of non finite type with exchange matrix B =

(
0 a
−b 0

)
, where ab ≥ 4,

the subgroup We of trivial transformations is trivial while WB is still generated by (12) and
the mapping class group is an infinite cyclic group,M≃ Z.

Example 4.7. Markov cluster algebra. The Markov coefficient-free cluster algebra is a rank 3 cluster

algebra with initial exchange matrix B =




0 2 −2
−2 0 2
2 −2 0


. Any simple cluster transformation

changes the sign of the exchange matrix. Therefore, words (12), (13), (21), (23), (31), (32) generate
subgroup WB . Note that (21)(12) = (13)(31) = (23)(32) = Id. Hence, WB is generated by three
mutationally trivial words (12), (13), and (23). Recall, that the Markov cluster algebra is a cluster
algebra of triangulations of once punctured torus whose mapping class group is known to be isomorphic
to SL2(Z), and mutationally trivial words represent all the elements of the mapping class group of the



GROWTH RATE OF CLUSTER ALGEBRAS 9

torus. The word (12) corresponds to α =

(
1 0
2 1

)
∈ SL2(Z), the word (23) to β =

(
1 −2
0 1

)
∈ SL2(Z)

and the word (13) to γ =

(
−1 2
−2 3

)
∈ SL2(Z). Note that αβγ−1 = − Id. It is known (see., e.g., [28]),

that elements α, β, − Id generate a principle congruence subgroup Γ(2) of SL2(Z), consisting of
matrices congruent to Id modulo 2. The quotient SL2(Z)/Γ(2) is isomorphic to the group Σ3 of
permutations of three elements. Therefore, the index |SL2(Z) : Γ(2)| = 6.

Denote by Σn the symmetric group of permutations on n. Any element σ ∈ Σn acts on any cluster
of cluster algebra by a permutation of indices σ(xi) = xσ(i). This action conjugates the exchange

matrix by the corresponding permutation matrix Mσ ∈ SLn(Z), i.e. B 7→ M−1
σ BMσ. We consider

also the action of Σn on W by a permutation of the letters of the alphabet n.

Definition 4.8. We call the elements of the set W̃ = W × Σn enhanced words.

Enhanced word w × σ ∈ W × Σn act on cluster algebra by composition σ ◦ µw.

Remark 4.9. It is easy to see that W̃ is a group. Indeed, the definition of an operation is evident.
The composition (w1 × σ1) ◦ (w2 × σ2) can be written again as an enhanced word w1σ

−1
1 (w2)× σ1σ2.

In particular, (w × σ)−1 = σ(w−1)× σ−1.

Definition 4.10. An enhanced word w×σ is trivial if (w×σ)xi = xi ∀i ∈ n. We denote the subgroup

of trivial enhanced words by W̃e. We also denote the subgroup of mutationally trivial enhanced words

by W̃B, and the mapping class group of cluster algebra A(B) by M̃ = W̃B/W̃e.

Example 4.11. (cluster algebras of rank 2)

(1) case A2: The group W̃e of trivial enhanced transformations of the coefficient-free cluster

algebra A of rank 2 with the initial exchange matrix B =

(
0 1
−1 0

)
consists of enhanced words

of the following four types: (12121)2k × Id, (21212)2k × Id, (12121)2k+1 × σ, (21212)2k+1× σ,
where σ ∈ Σ2 is the permutation (1↔ 2). It is generated by element (12121)× σ. The group

W̃B is generated by (1)× σ (note that (2)× σ = ((1)× σ)
−1

, (21212)× σ = ((12121)× σ)−1,

and, finally, (12121)× σ = ((1)× σ)5). Hence, M̃ ≃ Z5.
(2) cases B2, C2, and G2: Similarly, the mapping class groups for B2, C2, and G2 are isomorphic

to Z6, Z6, and Z8, respectively.
(3) cluster algebra of non finite type: the mapping class group is Z.

There is a natural embedding i : W → W̃ , i(w) = (w× Id). Clearly, i(We) ⊂ W̃e and i(WB) ⊂ W̃B .

Therefore, i induces a homomorphism i :M→ M̃.

Lemma 4.12. The map i is an embedding.

Proof. Indeed, assume that i(w) ∈ W̃e. Then, w × Id ∈ W̃e. Hence, w × Id(xj) = xj implying
µw(xj) = xj ∀j. Therefore, w ∈ We. �

Remark 4.13. Evidently, i(M) is a finite index (normal) subgroup of M̃. Therefore, the growth

rate ofM and M̃ is the same.

Example 4.14. (Markov cluster algebra) The mapping class group coincides with the mapping class
group of two-dimensional torus with one puncture which is known to be SL2(Z).

One can note that the mapping class groupMS of the bordered surface (or bordered orbifold) S

is a subgroup of the mapping class group M̃A(S) of the corresponding cluster algebra A(S). Indeed,
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fix a triangulation T of the orbifold. Any element g of the mapping class group of the orbifold can
be obtained by some sequence of cluster mutations sg(T ) = µi1 ◦ . . . ◦ µik which, however, depends
on T . At the same time, if the triangulation T ′ is obtained from T by a mapping class group action,
then sg(T

′) = sg(T ) = µi1 ◦ . . . ◦ µik . Therefore, if the mapping class group of the surface (orbifold)
contains a free group with at least two generators then the cluster algebra has exponential growth.

Remark 4.15. If the number m of interior marked points on a surface (or orbifold) S is greater than
one or m = 1 and the surface has a nonempty boundary, then the mapping class group MS of the

surface is a proper normal subgroup of M̃A(S) and the quotient M̃A(S)/MS ≃ Z
m
2 . If m = 0 or m = 1

and the surface has no boundary, then M̃A(S) ≃MS . Indeed, this follows easily from [12] for surfaces
(and [11] for orbifolds) where it was shown that for m > 1 any tagged triangulation can be obtained
from any other by a series of flips. Comparing it with the classical result that any two triangulations of
the surface are connected by a sequence of flips, and a sequence of flips gives an element of the mapping
class group of the surface if and only if the adjacency of the arcs of triangulations are preserved by
this sequence, we see that in the first case we can obtain any tagging of marked points, which results
in extra Z2 for every puncture. If m = 1 and there is no boundary components or if m = 0, then
mutations do not change any tagging.

Let us call a feature of an orbifold (or surface) a hole, a puncture, or an orbifold point.
The above considerations lead to the following theorem.

Theorem 4.16 ([12], [11]). Cluster algebras corresponding to orbifolds (or surfaces) of genus 0 with
at most three features have polynomial growth. Cluster algebras corresponding to the other orbifolds
(surfaces) grow exponentially.

Rephrasing this result in terms of diagrams, we obtain the following theorem in [11].

Theorem 4.17. Let A be a cluster algebra with an s-decomposable exchange matrix B. Then A has
polynomial growth if it corresponds to one of the following diagrams:

• finite type An, Bn, Cn, or Dn (finite);

• affine type Ãn, B̃n, C̃n, or D̃n (linear growth);
• diagram Γ(n1, n2)(n1, n2 ∈ Z>0) shown in Fig 1.1 (quadratic growth);
• diagram ∆(n1, n2)(n1, n2 ∈ Z>0) shown in Fig. 1.1 (quadratic growth);
• diagram Γ(n1, n2, n3)(n1, n2, n3 ∈ Z>0) shown in Fig. 1.1 (cubic growth).

Otherwise A has exponential growth.

5. Exceptional cluster algebras of exponential growth

We are left with a short list of exceptional algebras. This section is devoted to the proof of the
following theorem.

Theorem 5.1. Cluster algebras with diagrams of types X6, X7, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , G

(∗,+)
2 , G

(∗,∗)
2 ,

F
(∗,+)
4 , and F

(∗,∗)
4 all have exponential growth.

The remaining algebras (of affine types G̃2, F̃4, Ẽ6, Ẽ7, Ẽ8) are treated in the next section.

5.1. Ping-pong lemma. We consider subgroups of the mapping class group G of the corresponding
cluster algebra, or the fundamental group of the groupoid of cluster mutations. The elements of the
mapping class group are formed by sequences of mutations preserving the chosen initial diagram.

For each exceptional cluster algebra we will find a free subgroup with at least two generators of the
mapping class group of the corresponding cluster algebra. Since the free group with two generators
grows exponentially, this implies an exponential growth of the mapping class group. Different elements
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of the mapping class group produce different clusters from the initial one, so exponential growth of
the mapping class group implies exponential growth of the cluster algebra.

The proof is based on a case-by-case study of the cluster algebras in question. The main tool is the
famous ping-pong lemma.

The ping-pong lemma was a key tool used by Jacques Tits in his 1972 paper [27] containing the
proof of Tits alternative. Modern versions of the ping-pong lemma can be found in many books,
e.g. [23] and others. We will use the following modification of classical ping-pong lemma [24].

Lemma 5.2. Let G be a group acting on a set X and let H1, H2, . . . , Hk be nontrivial subgroups of
G where k ≥ 2, such that at least one of these subgroups has order greater than 2. Suppose there exist
disjoint nonempty subsets X1, X2, . . . , Xk of X such that the following holds:

For any i 6= j and for any h ∈ Hi, h 6= 1 we have h(Xj) ⊂ Xi.
Then 〈H1, . . . , Hk〉 = H1 ∗ · · · ∗Hk.

Corollary 5.3. With the assumptions of Lemma 5.2, if we further assume that all Hi are infinite
cyclic groups then 〈H1, . . . , Hk〉 is a free group with k generators.

To make the analysis of the mapping class group simpler we will use a tropical degeneration of
cluster mutations. Namely, we consider the piecewise linear action of cluster mutations on the space
of g-vectors.

5.2. Mutation of g-vectors. In this section we recall the definition of g-vectors.
Denote by Tn the n-regular tree of clusters of the cluster algebra A of rank n, and let t0 ∈ Tn.

Denote by B the exchange matrix at t0.

Proposition 5.4 ([17], Proposition 3.13, Corollary 6.3). Every pair (B; t0) gives rise to a fam-

ily of polynomials Fj;t = FB;t0
j;t ∈ Z[u1, ..., un] and two families of integer vectors gj;t = gB;t0

j;t =

(g1j;t, . . . , gnj;t) ∈ Z
n (where j ∈ N and t ∈ Tn) with the following properties:

(1) Each Fj;t is not divisible by any ui, and can be expressed as a ratio of two polynomials in
u1, . . . , un with positive integer coefficients, thus can be evaluated in every semifield P.

(2) For any j and t, we have

xj;t = x
g1j;t
1 · . . . · xgnj;t

n

Fj;t|F (ŷ1, . . . , ŷn)
Fj;t|P(y1, . . . , yn)

, (5.1)

where the elements ŷj are given by ŷj = yj
∏

i x
bij
i .

Here the tropical semifield P can be assumed to be trivial for our purposes, and F can be assumed
to be a field of rational functions in (x1, . . . , xn) with rational coefficients.

Mutations of g-vectors are described by the following conjecture [17].

Conjecture 5.5 ([17], Conjecture 7.12). Let t0 ←→ t1 be two adjacent vertices in T
n, and let B1 =

µk(B
0). Then, for any t ∈ T

n and a ∈ Z
n
≥0, the g-vectors gB

0;t0
a;t = (g1, . . . , gn) and gB

1;t1
a;t =

(g′1, . . . , g
′
n) are related as follows:

g′j =

{
gk, if j = k;
gj + [B0

jk]+gk −B0
jk[gk]−, if j 6= k,

(5.2)

where X+ = max(X, 0) and X− = min(X, 0) denote the positive and the negative part of the real
number X.

For skew-symmetric exchange matrices B0(B1) the conjecture was proved in [7].
In order to prove exponential growth we will use Equation 5.2. Moreover, we will also apply Equa-

tion 5.2 to particular skew-symmetrizable exchange matrices. However, all the skew-symmetrizable
exchange matrices we consider have skew-symmetric unfoldings, so Equation 5.2 clearly holds.
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We will consider all the exceptional types of cluster algebras one by one. Our aim is to find two
sequences of mutations acting on the space EG of g-vectors as in Lemma 5.2.

5.3. X6 and X7. We start with cluster algebras with diagrams X6 and X7 shown in Fig. 3.3. Let us
label vertices of the diagram X6 as shown in Fig. 5.1.

1

2 3

4

5

6

44

Figure 5.1. Diagram for X6

We consider two following mutation sequences a = [3, 2, 1]10 and b = [3, 5, 4, 2, 6]4 (by [i1, . . . , ik]
we mean a sequence of mutations µik . . . µi1). By direct calculation we observe that both a and b

preserve the diagram shown in Fig. 5.1, or, in other words, they are elements of the mapping class
group of X6.

Note that both a and b act on the space EG of g-vectors of X6 as described in Section 5.2.
Let us define following subsets of EG:

X+
a (ε) := {(T − ν,−T, 0, 0, 0, ν), where T > 0, ν > 0, ν < εT },

X−
a
(ε) := {(T,−T + ν,−ν, 0, 0, ν), where T > 0, ν > 0, ν < εT },

X+
b
(ε) := {(ν, T − ν,−T, 0, 0, T ), where T > 0, ν > 0, ν < εT },

X−
b
(ε) := {(−ν, T − ν,−T + ν, 0, 0, T ), where T > 0, ν > 0, ν < εT }.

We see by inspection for ε < 1/15 that a, a−1,b,b−1 act linearly on X±
a

(X±
b
, correspondingly).

In particular,

a(T − ν,−T, 0, 0, 0, ν) = (T + 14ν,−T − 15ν, 0, 0, 0, ν),
a−1(T,−T + ν,−ν, 0, 0, ν) = (T + 15ν,−T − 14ν,−ν, 0, 0, ν),
b(ν, T − ν,−T, 0, 0, T ) = (−ν, T + 2ν,−T − 3ν, 0, 0, T + 3ν),
b−1(−ν, T − ν,−T + ν, 0, 0, T ) = (−ν, T + 2ν,−T − 2ν, 0, 0, T + 3ν).

Note also that X+
a (ε) is invariant under a. Indeed,

a(T − ν,−T, 0, 0, 0, ν) = (T ′ − ν,−T ′, 0, 0, 0, ν),

where T ′ = T + 15ν. Clearly, ν < εT ≤ εT ′.
Similarly,

a−1(X−
a (ε)) ⊂ X−

a (ε), b(X+
b
(ε)) ⊂ X+

b
(ε), b−1(X−

b
(ε)) ⊂ X−

b
(ε).

Moreover, for any vz ∈ X+
a we have

lim
n→∞

an(vz)

|an(vz)|
= (

1√
2
,− 1√

2
, 0, 0, 0, 0),

and, similarly

lim
n→∞

a−n(vz)

|a−n(vz)|
= (

1√
2
,− 1√

2
, 0, 0, 0, 0, 0) for vz ∈ X−

a
,
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lim
n→∞

bn(vz)

|bn(vz)|
= (0,

1√
3
,− 1√

3
, 0, 0,

1√
3
) for vz ∈ X+

b
,

lim
n→∞

b−n(vz)

|b−n(vz)|
= (0,

1√
3
,− 1√

3
, 0, 0,

1√
3
) for vz ∈ X−

b
.

Computations in Maple show that

a10(0, 1,−1, 0, 0, 1) ∈ X+
a ( 1

15 ), a−10(0, 1,−1, 0, 0, 1) ∈ X−
a ( 1

15 ),

b10(1,−1, 0, 0, 0, 0) ∈ X+
b
( 1
15 ), b−10(1,−1, 0, 0, 0, 0) ∈ X−

b
( 1
15 ).

Since a±10, b±10 act continuously on EG, there is a sufficiently small ǫ > 0 and an integer N > 0
such that

aN
(
X+

b
(ǫ)

)
⊂X+

a
(ǫ), a−N

(
X+

b
(ǫ)

)
⊂X−

a
(ǫ), aN

(
X−

b
(ǫ)

)
⊂X+

a
(ǫ), a−N

(
X−

b
(ǫ)

)
⊂X−

a
(ǫ).

Similarly,

bN
(
X+

a
(ǫ)

)
⊂X+

b
(ǫ), b−N

(
X+

a
(ǫ)

)
⊂X−

b
(ǫ), bN

(
X−

a
(ǫ)

)
⊂X+

b
(ǫ), b−N

(
X−

a
(ǫ)

)
⊂X−

b
(ǫ).

Now define
Xa = X−

a
(ǫ) ∪X+

a
(ǫ), Xb = X−

b
(ǫ) ∪X+

b
(ǫ)

Let Ha = 〈aN 〉, Hb = 〈bN 〉 be two infinite cyclic subgroups of mapping class group. One can
easily see that the collection Ha, Hb and two subsets Xa, Xb satisfy assumptions of Corollary 5.3.

Therefore, we obtain the following.

Lemma 5.6. The cluster algebra of type X6 has exponential growth.

Corollary 5.7. The cluster algebra of type X7 has exponential growth.

Proof. Indeed, the diagram X7 contains the diagram X6 as a subdiagram. Hence, exchange graph of
X7 contains exchange graph of X6 as a subgraph, and therefore also grows exponentially. �

5.4. G
(∗,+)
2 and its unfolding E

(1,1)
6 . There are two skew-symmetrizable matrices with diagram

G
(∗,+)
2 . They are denoted by G

(1,3)
2 and G

(3,1)
2 according to Saito’s notation for extended affine root

systems [25]. These two matrices clearly define isomorphic cluster algebras. It was shown in [10] that

both exchange matrices with diagram G
(∗,+)
2 have an unfolding with diagram E

(1,1)
6 . We will prove

exponential growth of the cluster algebra with diagram G
(∗,+)
2 , and then deduce from it exponential

growth of E
(1,1)
6 .

The considerations are similar to those of Section 5.3. Let us index the vertices of G
(∗,+)
2 as shown

in Fig. 5.2. The choice of labels (3, 1) and (1, 3) indicates which of the two matrices with this diagram
we choose: the entries ±3 are located in the first and second columns and the third and fourth rows.

We will use the following two mutation sequences: a = [1, 2, 3]2 and b = [2, 3, 4]2. As above, both

a and b are elements of the mapping class group of G
(∗,+)
2 , i.e. they preserve the diagram shown in

Fig. 5.2. Note that a,b span a subgroup 〈a,b〉 in the mapping class group of the diagram.
Consider the actions of a and b on the space EG of g-vectors. Endow EG with the standard dot

product. For a vector v ∈ EG or subspace V ⊂ EG we denote their orthogonal complements by v⊥ or
V ⊥. Let va = (−1,−1, 3, 0). For sufficiently small ǫ we define cone

Ca(ǫ) =

{
αva + w, where α > 0, w ∈ v⊥

a
,
|w|
α|va|

< ǫ

}

As we have mentioned above, the action of a on EG is piecewise linear. However, the action turns
out to be linear on Ca(ǫ) if ǫ is sufficiently small.

More precisely, a maps the g-vector vz = va+ z̄ for sufficiently small z̄ = (z1, z2, z3, z4) to the vector

a(vz) = va + (2z1 + 2z2 + z3, z1 + 3z2 + z3,−3z1 − 6z2 − 2z3, z4). (5.3)
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1 2

34

3, 1 1, 3

Figure 5.2. Diagram for G
(∗,+)
2 . The weight “m,n” on the arrow from vertex i to

vertex j means that the ratio of |bij | and |bji| is equal to m/n.

Direct computation shows that a = T−1




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


T , where T ∈ GL4. Note that the linear

operator a contains (as a direct summand) the Jordan block with eigenvalue one and corresponding
eigenvector va.

Then powers of a act on Ca(ǫ) for small epsilon as follows. Denote the second coordinate of the
vector T z̄ by κa, a simple computation shows κa = z1 + 2z2 + z3.

Then ar(vz) = vz + rκa(vz)va.
Define X+

a
(ǫ) = Ca(ǫ) ∩ {κa > 0}. Then

lim
n→∞

anvz
|anvz|

=
va
|va|

if vz ∈ X+
a (ǫ).

Similarly, define X−
a
(ǫ) = Ca(ǫ) ∩ {κa < 0}. We have

lim
n→∞

a−nvz
|a−nvz|

=
va
|va|

for vz ∈ X−
a (ǫ).

From Equation 5.3 we see that each X±
a
(ǫ) is invariant under a±1 for ǫ small enough.

Let vb = (0,−1, 1, 1). We consider the action of b on EG in a neighborhood of the ray {α·vb
∣∣α > 0}.

Define the cone Cb(ǫ) =
{
αvb + w, where α > 0, w ∈ v⊥

b
, |w|
α|vb|

< ǫ
}
.

For sufficiently small z̄ = (z1, z2, z3, z4), b maps the g-vector vz = vb + z̄ to the vector

b(vz) = vb + (z1, 4z2 + 2z3 + z4,−3z2 − z3 − z4,−3z2 − 2z3) (5.4)

The action is linear on Cb(ǫ) and the corresponding linear operator is a direct sum of the identity
operator on 2-dimensional space and a 2 × 2 Jordan block with eigenvalue 1 with corresponding
eigenvector vb.

Let κb(vz) = z2 +(2/3)z3+(1/3)z4, then we have br(vz) = vz + rκb(vz)vb for any positive integer
r. Denote X+

b
(ǫ) = Cb(ǫ) ∩ {κb > 0}. Then Equation 5.4 implies that

lim
n→∞

bnvz
|bnvz |

=
vb
|vb|

for vz ∈ X+
b
(ǫ).

Similarly, we can define X−
b
(ǫ) = Cb(ǫ) ∩ {κb < 0}. Then

lim
n→∞

b−nvz
|b−nvz|

=
vb
|vb|

for vz ∈ X−
b
(ǫ).
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One can also note that X+
b
(ǫ) is invariant under b and X−

b
(ǫ) is invariant under b−1 for sufficiently

small ǫ. Straightforward computations using Maple show that b±10(va) ∈ Cb(ǫ), where ǫ is small
enough for Equation 5.4 to hold. Moreover, κb(b

10(va)) > 0, while κb(b
−10(va)) < 0.

Vice versa, a±10(vb) ∈ Ca(ǫ), where ǫ is small enough for Equation 5.3 to hold. Also, κa(a
10(vb)) >

0, while κa(a
−10(vb)) < 0.

Hence, for any ǫ > 0 small enough we can find a sufficiently large positive integer Nǫ such that
bNǫ(Xa(ǫ)) ⊂ X+

b
(ǫ), b−Nǫ(Xa(ǫ)) ⊂ X−

b
(ǫ), aNǫ(Xb(ǫ)) ⊂ X+

a
(ǫ), a−Nǫ(Xb(ǫ)) ⊂ X−

a
(ǫ).

Note that the collection of two infinite cyclic groups Ha = 〈aNǫ〉, Hb = 〈bNǫ〉, and two sets Ca(ǫ),
Cb(ǫ) satisfy the assumptions of Corollary 5.3. Thus,

Lemma 5.8. A cluster algebra with diagram of type G
(∗,+)
2 has exponential growth.

Corollary 5.9. The cluster algebra of type E
(1,1)
6 has exponential growth.

Proof. The exchange matrix with diagram E
(1,1)
6 is an unfolding of the exchange matrix with diagram

G
(∗,+)
2 . In particular, any mutation in G

(∗,+)
2 is lifted to a sequence of mutations of E

(1,1)
6 , and the

mapping class group of E
(1,1)
6 contains the mapping class group of G

(∗,+)
2 as a subgroup. Hence, the

growth of E
(1,1)
6 is exponential. �

5.5. G
(∗,∗)
2 and its unfolding E

(1,1)
8 . There are two distinct skew-symmetrizable matrices with dia-

gram G
(∗,∗)
2 , which are denoted by G

(3,3)
2 and G

(1,1)
2 (see [10, Table 6.3]). We will prove that cluster

algebras corresponding to matrices G
(1,1)
2 and G

(3,3)
2 have exponential growth. The considerations are

almost identical: one needs to take the same sequences of mutations, but different vectors va, vb, κa, κb.

We will indicate below details that differ. Then exponential growth of the unfolding E
(1,1)
8 of G

(1,1)
2

follows.
The reasoning is similar to that from Section 5.4. The following diagram represents G

(1,1)
2 , see

Fig. 5.3. The diagram of G
(3,3)
2 is obtained by reversing the orientation of all the arrows.

4

1 2

34

3, 1

1, 3

Figure 5.3. Diagram for G
(1,1)
2

Set a = [4, 1, 2]4, va = (−2, 1, 0, 1) (va = (2,−3, 0,−1) for G
(3,3)
2 ), and b = [4, 3, 2]4, vb =

(0,−1, 2,−1) (vb = (0, 3,−2, 1) for G(3,3)
2 ).

Define cones Ca(ǫ) and Cb(ǫ) as above.
For small z̄ = (z1, z2, z3, z4) define the g-vector vz = va + z̄. Then

a(vz) = va + (13z1 + 18z2 + 6z4,−6z1 − 8z2 − 3z4, z3,−6z1 − 9z2 − 2z4). (5.5)

For G
(3,3)
2 we have

a(vz) = va + (13z1 + 6z2 + 6z4,−18z1 − 8z2 − 9z4, z3,−6z1 − 3z2 − 2z4). (5.6)
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As above, the action of a on EG is a linear transformation, which is a direct sum of the identity
operator on 2-dimensional space and a 2× 2 Jordan block with unit eigenvalue and eigenvector va.

Define κa(vz) = 6z1+9z2+3z4 (κa(vz) = 6z1+3z2+3z4 for G
(3,3)
2 ). Then for any positive integer

r we have ar(vz) = vz − rκa(vz)va (ar(vz) = vz + rκa(vz)va in the case of G
(3,3)
2 ).

Define X+
a (ǫ), X−

a (ǫ), X+
b
(ǫ), and X−

b
(ǫ) as above.

From Equation 5.5 ( 5.6) we see that each X∓
a (ǫ) is invariant under a±1 for ǫ small enough. If

vz ∈ X−
a
(ǫ) then limn→∞

anvz
|anvz |

=
va
|va|

. If vz ∈ X+
a
(ǫ) then limn→∞

a−nvz
|a−nvz |

=
va
|va|

.

For sufficiently small z̄ = (z1, z2, z3, z4) define the g-vector vz = vb + z̄. Then

b(vz) = vb + (z1,−8z2 − 6z3 − 3z4, 18z2 + 13z3 + 6z4,−9z2 − 6z3 − 2z4) (5.7)

For G
(3,3)
2 we have

b(vz) = vb + (z1,−8z2 − 18z3 − 9z4, 6z2 + 13z3 + 6z4,−3z2 − 6z3 − 2z4) (5.8)

The corresponding linear transformation is a direct sum of an identity operator on 2-dimensional
space and a Jordan block of size 2 × 2 with eigenvalue one and the corresponding eigenvector vb.

If κb = 9z2 + 6z3 + 3z4 (κb = 3z2 + 6z3 + 3z4 for G
(3,3)
2 ) then br(vz) = vz + rκb(vz)vb (br(vz) =

vz − rκb(vz)vb for G
(3,3)
2 ).

Note now, that b(X+
b
(ǫ)) ⊂ X+

b
(ǫ), and b−1(X−

b
(ǫ)) ⊂ X−

b
(ǫ). Furthermore, as in the previous

case, we have

limn→∞
bnvz
|bnvz|

=
vb
|vb|

for vz ∈ X+
b
(ǫ),

limn→∞
b−nvz
|b−nvz |

=
vb
|vb|

for vz ∈ X−
b
(ǫ).

Again, b±10(va) ∈ X±
b
(ǫ), a±10(vb) ∈ X∓

a
(ǫ), where ǫ is small enough for Equations 5.5 and 5.7 to

hold.
Therefore, we can conclude that for any ǫ > 0 small enough we can find a sufficiently large

positive integer Nǫ such that bNǫ(Xa(ǫ)) ⊂ X+
b
(ǫ), b−Nǫ(Xa(ǫ)) ⊂ X−

b
(ǫ), aNǫ(Xb(ǫ)) ⊂ X−

a (ǫ),
a−Nǫ(Xb(ǫ)) ⊂ X+

a
(ǫ).

Now we apply Corollary 5.3 to get the result.

Lemma 5.10. Cluster algebras of type G
(1,1)
2 and G

(3,3)
2 have exponential growth.

Equivalently,

Corollary 5.11. Cluster algebras with diagram of type G
(∗,∗)
2 have exponential growth.

The fact that E
(1,1)
8 is an unfolding of G

(1,1)
2 implies the following corollary.

Corollary 5.12. The cluster algebra of type E
(1,1)
8 has exponential growth.

5.6. F
(∗,+)
4 , its unfolding E

(1,1)
7 , and F

(∗,∗)
4 . In this section we will prove exponential growth for

F
(∗,+)
4 , its unfolding E

(1,1)
7 , and F

(∗,∗)
4 . The arguments follow almost literally the arguments of

Sections 5.4 and 5.5. Therefore we describe below only the differences between the cases in question

and the cases G
(∗,∗)
2 , G

(∗,+)
2 .

The diagram representing F
(∗,+)
4 is shown in Fig. 5.4 (again, labels show the choice of one of the

two matrices, which differ by permutations of rows and columns only).
Let a = [5, 4, 3, 2, 1] and b = [2, 1, 6, 5, 4], va = (−1, 0, 0, 0, 1, 0), vb = (0, 1, 0,−1, 0, 0).

In a neighborhood of va set vz = va + (z1, z2, z3, z4, z5, z6). Then

a(vz) = va + (−z1 − z2 − z3 − z4 − 2z5, 2z1 + z2 + z3 + z4 + 2z5, z2, z3, z4 + z5, z6) (5.9)
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1 2

3

45

6

1,2

2,1

Figure 5.4. Diagram for F
(∗,+)
4

for sufficiently small (z1, z2, z3, z4, z5, z6).
Note that the Jordan form of the linear operator a is a direct sum of an identity operator, negative

one times an identity operator, a rotation operator of order four (with eigenvalues of magnitude one)
and a 2× 2 Jordan block with eigenvalue one whose eigenvector is va.

Computing coordinates of the corresponding transformation matrix we set κa = 1
2 (z1 + z2 + z3 +

z4 + z5). Then ar(vz) = vz + rκa(vz)va whenever r is a multiple of four.
In a neighborhood of vb we denote vz = vb + (z1, z2, z3, z4, z5, z6). Then

b(vz) = vz + (z6, 2z1 + z2, z3,−2z1 − 2z2 − z4 − 2z5 − 2z6, z1 + z2 + z4 + z5 + z6, z5) (5.10)

for sufficiently small (z1, z2, z3, z4, z5, z6).
Similarly, the linear transformation b is a direct sum of the 2× 2 Jordan block with eigenvalue one

and an identity operator, negative one times an identity operator, and a rotation of order four. The
eigenvector corresponding to the Jordan block is vb.

Set κb = z1 + (1/2)z2 + (1/2)z4 + z5 + z6. Then br(vz) = vz + rκb(vz)vb whenever r is a multiple
of four.

As above, using Corollary 5.3 we conclude:

Lemma 5.13. The cluster algebra of type F
(∗,+)
4 has exponential growth.

Corollary 5.14. The cluster algebra of type E
(1,1)
7 has exponential growth.

Proof. E
(1,1)
7 is an unfolding of F

(∗,+)
4 . �

Finally, we show that the growth of cluster algebras with diagram F
(∗,∗)
4 is exponential. As in the

case of G
(∗,∗)
2 , there are two distinct skew-symmetrizable matrices with this diagram, which corre-

spond to extended affine root systems F
(1,1)
4 and F

(2,2)
4 (see [10]). Below we consider F

(1,1)
4 . The

considerations for F
(2,2)
4 are almost identical; we give the differing details in parentheses.

The diagram representing F
(1,1)
4 is shown in Fig. 5.5. The diagram representing F

(2,2)
4 is obtained

by reversing the orientations of all the arrows.
In both cases we considered the same pair of elements of the mapping class group a = [1, 2, 3, 4, 5]2

and b = [4, 5, 6, 1, 2]2.

Then choose va = (−1,−1,−1, 1, 1, 0), vb = (−1/2, 1, 0,−1/2,−1/2, 1/2) for F
(1,1)
4 (for F

(2,2)
4

va = (1, 1, 1,−2,−2, 0), vb = (1,−2, 0, 2, 2,−1)).
In a neighborhood of va, denote vz = va + (z1, z2, z3, z4, z5, z6). Then

a(vz) = va + (−z3 − 2z4,−z1 − z2 − z3 − 2z4 − 2z5, z1, z2 + z3 + 2z4 + z5, z3 + z4 + z5, z6) (5.11)

for sufficiently small (z1, z2, z3, z4, z5, z6) (for F
(1,1)
4 ).
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1 2

3 4

56
1,2

2,1

Figure 5.5. Diagram for F
(1,1)
4

For F
(2,2)
4 we have

a(vz) = va+

+ (z3, z1 + z2 + z3 + z4, z1 + 2z2 + 2z3 + z4 + z5,−2z1 − 2z2 − 2z3 − z4 − z5,−2z2 − 2z3 − z4, z6).
(5.12)

The linear operator a is a direct sum of a Jordan block of size 2 with eigenvalue one and eigenvector
va, an identity operator, and a rotation of order three.

Define κa = 1
3z1 + 2

3z2 + z3 + 4
3z4 + 2

3z5 (κa = 1
3z1 + 2

3z2 + z3 + 2
3z4 + 1

3z5 for F
(2,2)
4 ), then

ar(vz) = vz + rκa(vz)va whenever r is a multiple of three.
In a neighborhood of vb, denote vz = vb + (z1, z2, z3, z4, z5, z6). Then

b(vz) = vb+

+ (2z5 + z6,−z2 − 2z4 − 4z5 − 2z6, z3, z4 + z5 + z6, z1 + z2 + z4 + 2z5 + z6,−z1) (5.13)

for sufficiently small (z1, z2, z3, z4, z5, z6).

For F
(2,2)
4 we have

b(vz) = vb+

+ (z5 + z6,−z2 − z4 − 2z5 − 2z6, z3, z4 + z5 + 2z6, 2z1 + 2z2 + z4 + 2z5 + 2z6,−z1). (5.14)

The linear operator b is a direct sum of an identity operator, a rotation of order three and a 2× 2
Jordan block with eigenvalue one and eigenvector vb.

Define κb = 2
3z1 +

4
3z2 +

4
3z4 +

8
3z5 + 2z6 (κb = 1

3z1 + 2
3z2 + 1

3z4 + 2
3z5 + z6 for F

(2,2)
4 ). Then

br(vz) = vz − rκb(vz)vb whenever r is a multiple of three.
As above, using Corollary 5.3 we conclude

Lemma 5.15. Cluster algebras of type F
(1,1)
4 and F

(2,2)
4 have exponential growth.

Equivalently,

Corollary 5.16. Cluster algebras with diagram of type F
(∗,∗)
4 have exponential growth.

6. Growth rates of affine cluster algebras

We are left with exceptional cluster algebras of affine type. This section is devoted to the proof of
linear growth of affine cluster algebras. We start with skew-symmetric (simply-laced) affine cluster
algebras (whose diagrams can be understood as quivers), and then use unfoldings to complete the
proof of Theorem 1.1 in the coefficient-free case.

Let Q be a quiver without oriented cycles, and with n vertices. Let AQ be the cluster algebra
associated to Q.
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Let k be an algebraically closed field. We write kQ for the path algebra of Q, and kQ-mod for
its module category. The bounded derived category of this abelian category is denoted Db(kQ).
This category is triangulated, and therefore equipped with a shift autoequivalence [1]; it also has an
Auslander-Reiten autoequivalence τ .

Given a triangulated category and an auto-equivalence, there is an orbit category, in which objects
in the same orbit with respect to the autoequivalence are isomorphic. By definition, the cluster
category is the orbit category CQ = Db(kQ)/[1]τ−1, which is again triangulated by a result of Keller
[20]. This category is called the cluster category associated to Q, and was introduced in [4].

Thanks to the embedding of objects of kQ-mod as stalk complexes in degree zero inside Db(kQ),
there is a functor from kQ-mod to CQ, which embeds kQ-mod as a (non-full) subcategory of CQ. We
write Pi for the indecomposable projective kQ module with simple top at vertex i; we also write Pi

for the corresponding object of CQ via the above embedding.

An object E in CQ is called rigid if it satisfies Ext1CQ
(E,E) = 0. The crucial result relating the

cluster algebra to the cluster category is the following [8, 5]: the cluster variables in the cluster algebra
AQ are naturally in one-one correspondence with the rigid indecomposables of CQ. We will make the
(slightly non-standard) choice of identifying the cluster variable ui from the initial seed with Pi. A
(basic) cluster tilting object in CQ is the direct sum of the collection of rigid indecomposables objects
corresponding to the cluster variables of some cluster.

Say that two rigid indecomposable objects E,F in CQ are compatible if Ext1CQ
(E,F ) = 0. (By the

2-Calabi-Yau property of cluster categories, this is equivalent to the condition that Ext1CQ
(F,E) = 0.)

Two rigid indecomposables are compatible if and only if the corresponding cluster variables are both
contained in some cluster. Cluster tilting objects can be given a representation-theoretic description:
T is a cluster tilting object if T is the direct sum of a maximal collection of pairwise-compatible
distinct rigid indecomposable objects in CQ.

The autoequivalence τ of Db(kQ) descends to an autoequivalence of CQ. It therefore induces an
action on the indecomposable objects of CQ. Write Xp

i for the indecomposable object τpPi, where
p ∈ Z and 1 ≤ i ≤ n. These objects are pairwise non-isomorphic, and each is rigid. We refer to
these indecomposables as transjective. It will be convenient to define a function q on the transjective
indecomposable modules by setting q(Xp

i ) = p.
There are also a finite number of other rigid indecomposable objects in CQ. They are referred to

as the regular rigid indecomposable objects. They lie in finite τ -orbits.
We now prove a sequence of lemmas:

Lemma 6.1. Any cluster tilting object contains at least two (non-isomorphic) indecomposable tran-
sjective summands.

Proof. We first show that no cluster tilting object has exactly one transjective summand. Suppose
that X ⊕ R were a cluster tilting object, with X indecomposable tranjective, and R regular. Since
all the regular indecomposable summands of R lie in finite τ -orbits, there is some non-zero m ∈ Z

such that τmR ≃ R. Since τ is an auto-equivalence of CQ, it follows that τ tmP is compatible with
τ tmR ≃ R for any t ∈ Z. This would mean that the cluster algebra AQ has a collection of n−1 cluster
variables contained in an infinite number of clusters, which is impossible. (It is always the case that
n− 1 cluster variables are contained in either 0 or 2 clusters.)

It now follows that no cluster tilting object in CQ contains zero tranjective summands either, since
any cluster tilting object can be obtained by a finite number of mutations from the cluster tilting
object

⊕
i Pi [4]. Since each mutation changes exactly one summand of the cluster tilting object, a

sequence of mutations leading to a cluster tilting object with no transjective summands would have to
pass through a cluster tilting object with exactly one transjective summand, which we have already
shown is impossible. This proves the lemma. �
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Lemma 6.2. There is a bound N such that any tranjective rigid indecomposable compatible with Xp
i

is of the form Xr
j with for some 1 ≤ j ≤ n and p−N ≤ r ≤ p+N .

Proof. Since τ is an autoequivalence, it suffices to check the statement for one element in each tran-
sjective τ -orbit. We will check it for each Pi.

Fix i with 1 ≤ i ≤ n. Consider the cluster algebra Ai obtained by freezing the vertex i. The
principal part of the exchange matrix of Ai corresponds to the quiver Q with the vertex i removed.
This is a collection of Dynkin quivers, and thus corresponds to a cluster algebra of finite type. It
follows that there are only finitely many cluster variables in Ai. These cluster variables correspond to
the cluster variables of AQ which are compatible with Pi. Since there are only finitely many of them,
we can pick a bound Ni so that all the indecomposable transjective objects compatible with Pi are of
the form Xr

j with −Ni ≤ r ≤ Ni. Now set N to be the maximum of all the Ni. �

Let T be a cluster tilting object. Take the mean value of q(E) as E runs through the transjective
indecomposable summands of T (a non-empty set by Lemma 6.1), and denote that mean value by
q(T ).

Corollary 6.3. If M is a transjective summand of a cluster tilting object T , then |q(T )− q(M)| ≤ N .

Lemma 6.4. If T and T ′ are cluster tilting objects related by a single mutation, then |q(T ′)− q(T )| ≤
N .

Proof. Let M be the summand of T which does not appear in T ′, and let M ′ be the summand of T ′

which does not appear in T . If neither M not M ′ is transjective, then q(T ′) = q(T ), and we are done.
Otherwise, without loss of generality, suppose that M is transjective.

If E is any other transjective summand of T (and there is at least one such E by Lemma 6.1), then
|q(E) − q(M)| ≤ N by Lemma 6.2. This implies the desired result if M ′ is not transjective.

If M ′ is transjective, |q(M ′)−q(E)| ≤ N by Lemma 6.2 again. It follows that the difference between
the sum of the q-values of T and T ′ is at most 2N , and thus their mean values differ by at most N . �

Theorem 6.5. The growth rate of any affine simply-laced cluster algebra is linear.

Proof. Pick a starting cluster T . Let M be a transjective summand of T . Let T ′ be obtained by
applying k mutations to T . Let M ′ be any transjective summand of T ′. Applying Corollary 6.3 twice
and Lemma 6.4 once, it follows that |q(M ′) − q(M)| ≤ N(k + 2). The number of transjective inde-
composable objects within this range is 2nN(k+2), while the number of regular rigid indecomposable
objects is finite. It follows that the number of cluster variables which can be obtained by k mutations
starting from a given cluster is linearly bounded in k, as desired. �

Corollary 6.6. The growth rate of any affine cluster algebra is linear.

Proof. The diagrams B̃n and C̃n are s-decomposable, therefore, the vertices of the exchange graph of
any cluster algebra with one of these diagrams are indexed by the triangulations of the corresponding
orbifold (depending only on the diagram). This implies that the growth is the same for any skew-

symmetrizable matrix with diagram B̃n (or C̃n). Further, for any of these diagrams there is a matrix

with an affine unfolding (D̃n+1 for B̃n, and D̃n+2 for C̃n). Since the growth rate of any cluster algebra
is not faster than the growth rate of any its unfolding, we obtain linear growth for any cluster algebra

with diagram B̃n or C̃n.

For either of the diagrams F̃4 and G̃2 there are two skew-symmetrizable matrices with these dia-

grams, see [10, Table 6.3]. All four matrices have affine unfoldings, namely, Ẽ6 and Ẽ7 for F̃4, and

D̃4, Ẽ6 for G̃2. Again, this implies linear growth. �

The latter Corollary accomplishes the proof of Theorem 1.1 in coefficient-free case.
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7. Coefficients

In this section we prove the following lemma.

Lemma 7.1. The growth rate of a cluster algebra does not depend on its coefficients.

Proof. It is easy to see from the definition that the exchange graph of a cluster algebra covers the
exchange graph of the coefficient-free cluster algebra with the same exchange matrix. In particular, we
have nothing to prove for algebras with exponential growth, so we only need to explore cases (1)–(4)
from Theorem 1.1.

In [16], Fomin and Zelevinsky conjectured [16, Conjecture 4.14] that the exchange graph of a cluster
algebra depends only on the exchange matrix. This conjecture is known to be true in many cases,
including:

• for cluster algebras of finite type [15], which covers case (2a);
• for cluster algebras of rank 2 (immediately following from the finite type case), which covers
case (1);
• for cluster algebras from surfaces [13] and orbifolds [11], which covers cases (2b) and (3).
• for skew-symmetric cluster algebras [6], which covers case (4a) (and parts of the previous
cases).

Further, the unfolding argument does not depend on coefficients, so case (4b) is implied by (4a).
�

This completes the proof of Lemma 7.1 and thus also the proof of Theorem 1.1.
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