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Bright matter-wave soliton collisions at narrow barriers

J. L. Helm, T. P. Billam, and S. A. Gardiner
Department of Physics, Durham University, Durham DH1 3LE, United Kingdom

(Received 14 March 2012; published 16 May 2012)

We study fast-moving bright solitons in the focusing nonlinear Schrödinger equation perturbed by a narrow
Gaussian potential barrier. In particular, we present a general and comprehensive analysis of the case where two
fast-moving bright solitons collide at the location of the barrier. In the limiting case of a δ-function barrier, we
use an analytic method to show that the relative norms of the outgoing waves depends sinusoidally on the relative
phase of the incoming waves, and to determine whether one, or both, of the outgoing waves are bright solitons.
We show using numerical simulations that this analytic result is valid in the high velocity limit: outside this limit
nonlinear effects introduce a skew to the phase dependence, which we quantify. Finally, we numerically explore
the effects of introducing a finite-width Gaussian barrier. Our results are particularly relevant, as they can be used
to describe a range of interferometry experiments using bright solitary matter-waves.
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I. INTRODUCTION

Bright solitary matter-waves are solitonlike dynamical
excitations observed in atomic Bose-Einstein condensates
(BECs) with attractive interatomic interactions [1–3]. They are
solitonlike in the sense that they propagate without dispersing
[4], emerge largely unscathed from collisions with other bright
solitary matter-waves and with external potentials [5,6], and
have center-of-mass trajectories which are well described by
effective particle models [7–9]. They derive these solitonlike
properties from their analogousness to the bright soliton
solutions of the focusing nonlinear Schrödinger equation
(NLSE), to which the mean-field description of an atomic BEC
reduces in a homogeneous, quasi-one-dimensional (quasi-1D)
limit. These bright soliton solutions of the 1D focusing NLSE
have been extensively explored in nonlinear optics, both in
the context of solitons in optical fibers [10–14] and as stable
structures existing in arrays of coupled waveguides [15,16]
which are described by a discretized NLSE. Although the
quasi-1D limit is experimentally challenging for attractive
condensates [17], bright solitary matter-wave dynamics remain
highly solitonlike outside this limit [3,6]. Consequently, bright
solitary matter-waves present an intriguing candidate system
for future interferometric devices [2,6,18–22].

A key component of a bright solitary matter-wave inter-
ferometer is a mechanism to coherently split and recombine
bright solitary matter-waves: the collision of a bright solitary
wave with a narrow potential barrier is one way to create
such a beamsplitter. Within a quasi-1D, mean-field description
of an atomic BEC, collisions of single solitary matter-waves
with potential barriers and wells have been extensively studied
[23–28], and sufficiently fast collisions with potential barriers
have been shown to lead to the desired beamsplitting effect
[27,28]. When, in nonlinear optics, the soliton exists in an in-
homogeneous array of discrete waveguides, the soliton can be
reflected, split, or captured at the position of the inhomogeneity
[29–31]. This is equivalent, in the continuum limit of an infinite
number of waveguides, to splitting a soliton in the GPE at a
δ function [29]—a phenomenon which has been called the
“optical axe” [14]. Such splitting has been considered in the
context of soliton molecule formation [21], within a mean-field
description, and also in the context of many-body quantum

mechanical descriptions: in the latter it has been demonstrated
that macroscopic quantum superpositions of solitary waves
could be created, offering intriguing possibilities for future
atom interferometry experiments [19,20]. Recently Martin and
Ruostekoski, in Ref. [22], considered an interferometer using
a narrow potential barrier as a beamsplitter for harmonically
trapped solitary waves, based on the particular configuration of
a recent experiment [32]. In particular this work demonstrated
that such a potential barrier can also be used to recombine
solitary waves, by arranging for them to collide at the location
of the barrier. In such collisions, the relative norms of the
two outgoing solitary waves was shown to be governed by
the phase difference � between the incoming ones. In the
mean-field description the relative norms of the outgoing
waves exhibit enhanced sensitivity to small variations in the
phase �; however, a simulation of the same system including
quantum noise, via the truncated Wigner method [33], showed
increased number fluctuations that ultimately negated this
enhancement [22].

In this paper we consider the focusing NLSE perturbed
by a narrow, Gaussian potential barrier of the form V (x) =
qe−x2/2σ 2

/
√

2πσ , and investigate the dynamics of two fast-
moving bright solitons which collide at the location of the
barrier. We investigate such collisions for the general initial
condition [Fig. 1(a)]

ψ(x) = 1

2 + 2b

{
sech

(
x + x0

2 + 2b

)
eivx

+ bsech

(
b[x − x0]

2 + 2b

)
e−i(vx+�)

}
, (1)

with b > 0. For large x0 this approximates an exact two-
soliton solution comprising two bright solitons with unequal
norms, 1/(1 + b) and b/(1 + b), oppositely directed and equal
velocities, ±v, and relative phase � [12].

By examining such collisions for general b, �, q, and σ

we give a detailed explanation of the nonlinear recombination
which occurs after the solitons collide at the potential barrier
at time t1 = 2x0/v, and are recombined into left- and right-
traveling waves in a phase-sensitive way. This general and
comprehensive treatment of two-soliton collisions at a barrier
constitutes the main result of the paper. For the case of solitons
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FIG. 1. (Color online) (a) Schematic of the collisions we con-
sider: two bright solitons [one in the case b = 0 (a)(i)] (solid lines)
collide at a narrow Gaussian potential barrier (dashed line). The norms
of the two outgoing waves are nonlinearly dependent on the relative
phase � between the solitons, as illustrated in (b) for equal-amplitude
solitons [the case b = 1 (a)(iii)]; solid red (dashed blue) lines indicate
the outgoing wave in the negative (positive) x domain. Here the soliton
velocity is v = 2 and the barrier width is characterized by σ = 0.28.

of equal size (as reported in Ref. [22]) we illustrate this phase
dependence in Fig. 1(b). In this paper we present an analytic
description of the recombination for the general two-soliton
case (b > 0) in the limit of a δ-function barrier (σ → 0).
This description is derived from an exact description of the
single-soliton case (b = 0) in the same limit [27,28]. We
compare this to numerical simulations, and find the analytic
description is exact in the limit of high velocity. In addition
to yielding useful predictions for the relative norms of the
recombined waves, this analytic method allows us to estimate
whether one, or both, of the outgoing waves are bright solitons.
We also numerically investigate the case of a Gaussian barrier
σ > 0. Particular cases of interest are b = 0 (b → ∞)—
corresponding to a single soliton—and b = 1—corresponding
to equal-sized solitons; these correspond, respectively, to the
splitting and recombination stages of a bright solitary wave
interferometer. While in the context of atomic BECs the NLSE
represents a quasi-1D condensate with tight radial trapping and
either zero or very weak axial trapping (e.g., a periodic “ring”
trap [34], or a waveguide or weak harmonic trap [17]), we
emphasise that the equation we study here remains general
and could also be used to describe similar systems in, for
example, nonlinear optics. However, as a particular example,
our analysis directly allows us to understand the operation of
a bright solitary wave interferometer in a ring trap, illustrated
schematically in Fig. 5(a).

The paper is structured as follows: in Sec. II we derive the
NLSE, perturbed by a narrow Gaussian barrier, in the context
of an attractively interacting atomic BEC. The subsequent
sections comprise our analysis of the collisions given by initial
condition Eq. (1). We consider first the single-soliton case
(b = 0) for δ function (Sec. III A) and Gaussian (Sec. III B)
barriers, and subsequently the two-soliton case (b > 0), again
for δ function (Sec. IV A) and Gaussian (Sec. IV B) barriers.
In Sec. V we conclude by interpreting our results in the context
of current and future atomic BEC experiments.

II. PHYSICAL SYSTEM

In general a weakly interacting atomic BEC, in the limit of
zero temperature, can be described by the 3D Gross-Pitaevskii

equation (GPE) [35]:

ih̄
∂�(r)

∂t
=

[
− h̄2

2m
∇2 + Vtrap(r)

+Vext(r) + g3D|�(r)|2
]
�(r). (2)

Here g3D = 4πh̄2asN/m, and N , m, and as are the atom
number, mass, and s-wave scattering length, respectively. For
attractive interatomic interactions as < 0. The wave function
� is normalized to 1. The potential Vtrap(r) = mω2

r (y2 + z2)/2
represents the trapping potential, which we take to be a
cylindrically symmetric waveguide; such a configuration is
approximately achieved in an atomic waveguide trap, or in
a toroidal “ring” trap [34] which also introduces periodicity
in x.

By increasing the radial trapping one can reach a quasi-
1D regime, as defined in detail in Ref. [17], where the
radial trapping is tight, but not such that the scattering is
no longer 3D [as � (h̄/mωr )1/2]. In this regime we can
separate the radial and axial dynamics with the ansatz �(r) =
�1D(x)(mωr/πh̄)1/2 exp (−mωr [y2 + z2]/2h̄). After factoring
out global phases associated with the radial harmonic ground
state energies, this yields the quasi-1D GPE

ih̄
∂�1D(x)

∂t
=

[
− h̄2

2m

∂2

∂x2
+Vext(x) + gN |�1D(x)|2

]
�1D(x).

(3)

The nonlinearity is quantified by g = 2h̄ωras . We model the
external potential as

Vext(x) = h̄
2

8�
e−2x2/xr . (4)

This can be generated by an off-resonant Gaussian light sheet
propagating in the z direction with 1/e2 radii xr and yr (yr �
xr ). In this case � = ωL − ω0 is the detuning of the light
sheet’s frequency ωL from the optical transition frequency ω0,
and 
 is the Rabi frequency at the center of the light sheet [36].

Working in “soliton units”—position units of h̄2/mgN ,
time units of h̄3/mg2N2, and energy units of mg2N2/h̄2

[17]—yields the dimensionless, quasi-1D GPE

i
∂ψ(x)

∂t
=

[
−1

2

∂2

∂x2
+ q

σ
√

2π
e−x2/2σ 2−|ψ(x)|2

]
ψ(x), (5)

where the dimensionless wave function is ψ = h̄�1D/
√

mgN ,
the normalized barrier width is σ = (h̄2/2mgN )xr and the
barrier strength is given by

q = xr

2
√

2π

32ωrasN�
. (6)

III. ONE-SOLITON SPLITTING ON A NARROW BARRIER
(b = 0)

A. δ-function barrier (σ → 0)

In this section we examine the splitting of a single bright
soliton (b = 0) on a δ-function barrier. The assumption of a
δ-function barrier facilitates an analytic treatment and is valid
for narrow barriers with σ → 0. A detailed analytic treatment
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single-bright-soliton splitting on such a barrier is given by
Holmer et al. in Ref. [27]. Here we briefly restate two key
results of Ref. [27] within our own notation.

First, the transmission coefficient for a fast-moving bright
soliton splitting on a δ-function barrier is approximately equal
to the transmission coefficient for plane waves incident on
an identical δ-function barrier in linear quantum mechanics,
Tq(v), given by

Tq(v) = |tq(v)|2 = v2

v2 + q2
= 1

1 + α2
. (7)

Here tq(v) is the transmission amplitude associated with a
δ-function barrier in linear quantum mechanics, and the soliton
velocity v plays a role analogous to the wave number of the
incident wave. The transmission and reflection amplitudes
tq(v) and rq(v) are defined as

tq(v) = iv

iv − q
and rq(v) = q

iv − q
. (8)

The quantity α characterises the transmission in the linear
case, and hence the transmission of bright solitons in the high
velocity limit. The exact relation between Tq(v) and the actual
transmission coefficient for the incident bright soliton,

T s
q (v) = lim

t→∞

∫ ∞

0
|ψ(x,t)|2dx, (9)

is determined in Ref. [27] to be

T s
q (v) = v2

v2 + q2
+ O(v1−3η/2)

= Tq(v) + O(v1−3η/2), as v → ∞, (10)

provided that the initial offset is x0 � −v1−η and α = q/v is
fixed. Here η is a parameter linked to the duration for which
the soliton interacts with the barrier, and must satisfy 2/3 <

η < 1. The brevity of this duration for a fast-moving bright
soliton, which allows one to treat the splitting as a linear
process, is fundamental to the proof of the above result [27].
The error term in Eq. (10) is minimized for brief collisions
(η → 1), in which case it decays with velocity as v−1/2.

Secondly, it is also determined in Ref. [27] that the outgoing
waves resulting from splitting a bright soliton on a δ-function
barrier are composed of either one, or two, bright solitons,
and a time-decaying radiation term. This is significant, as
previously the transmitted and reflected waves were considered
to be only solitonlike [26,28]. The resulting bright solitons are
described, for high velocity, by

ψ(x,t) = ψT (x,t) + ψR(x,t) + O([t − |x0|/v]−1/2)

+O(v1−3η/2), (11)

where

ψT (x,t) = eiϕT ei(xv+[AT −v2]t/2)AT sech(AT [x − x0 − tv]),

ψR(x,t) = eiϕR ei(−xv+[AR−v2]t/2)ARsech(AR[x + x0 + tv]).

The amplitudes of the transmitted and reflected solitons are
given by

AT = max(0,2|tq(v)| − 1) and AR = max(0,2|rq(v)| − 1),

(12)

in the case that AT (AR) is equal to zero, the transmitted
(reflected) outgoing wave does not contain a soliton, but only
radiation. More generally, the inequalities AT < T s

q (v) and
AR < 1 − T s

q (v) hold. The phases imparted by the splitting
process are defined by

ϕT = arg (tq(v)) + ϕ0(|tq(v)|) + [
1 − A2

T

]|x0|/2v,
(13)

ϕR = arg (rq(v)) + ϕ0(|rq(v)|) + [
1 − A2

R

]|x0|/2v,

where

ϕ0(ω) =
∫ ∞

0
ln

(
1 + sin2(πω)

cosh2(πζ )

)
ζ

ζ 2 + (2ω − 1)2
dζ. (14)

B. Gaussian barriers (σ > 0)

We now analyze, numerically, the bright soliton splitting
process at a Gaussian barrier. Our numerical simulations use a
Fourier pseudospectral split-step method with a periodic grid.
We ensure that grid size and spacing are chosen such that
the bright solitons are well separated and the effects of the
periodicity are negligible.

Our initial condition takes the form

ψ(x) = 1
2eivxsech([x − x0]/2), (15)

where x0 < 0. Figure 2(a) shows the transmission coefficient
T s

q (v) obtained from numerical simulations of a single bright
soliton splitting on a Gaussian barrier with width σ = 0.1, and
with α = q/v = 0.6, 0.8, 1.0, 1.2, and 1.4. In our numerics
we define T s

q (v) by the integral of ψ(x,t1) over the positive x

domain,

T s
q (v) =

∫ ∞

0
|ψ(x,t1)|2dx. (16)

Here t1 = 2|x0|/v, such that at this time an unimpeded bright
soliton would have reached the point x = +|x0|; at this time the
outgoing waves are well separated. The results are comparable
to the δ-function barrier case explored in Ref. [27] and the
previous section.

Figure 2(a) shows that as α increases so does the discrep-
ancy between the asymptotic δ-function limit and T s

q (v). This
can be understood by considering how the strength of the
barrier compares to the (particle-like) kinetic energy of the
soliton v2/2. In the region where the strength of the barrier
is greater than the soliton’s kinetic energy the wave function
decays, reducing transmission. By equating these two values,

v2

2
= q

σ
√

2π
e−xd/2σ 2

, (17)

we determine that the distance over which the wave function
decays, xd , is described by

x2
d = 2σ 2 ln

(√
2

π

α

|v|σ

)
. (18)

It is clear that, for a given v and σ , as we increase α (by
increasing q) we increase xd . This is inconsistent with the
assumption of a brief barrier-soliton interaction period, which
is required in the δ-function case of soliton splitting. This
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FIG. 2. (Color online) (a) Plot of numerically obtained bright
soliton transmission T s

q (v) as a function of velocity v for a range of
fixed α = q/v and a narrow Gaussian barrier with width σ = 0.1.
Dashed lines show the transmission through a δ function in the linear
regime for the same range of α. (b) Numerically obtained bright
soliton transmission for α = 1 and with a range of barrier widths σ .

insconsistency causes an increase in the attenuation of the
wave function, reducing transmission.

We show the computed dependence of the transmission on
the barrier width σ in Fig. 2(b). These computations were
carried out with α = 1. For wider barriers or in the higher
velocity range, where the peak height of the potential is less
than the (particle-like) kinetic energy v2/2 of the incident
soliton, the amount of transmission is greatly increased. This
illustrates the classical transmission regime where the soliton
simply passes through the potential, and, for the Gaussian
barriers considered, boils down to an argument that we must
have

v2

2
� q

σ
√

2π
⇒ |v| � 2α

σ
√

2π
(19)

to be definitely out of the classical transmission regime. From
Eq. (19) it is apparent that for satisfactorily large v we will
always enter the classical transmission regime for any given
finite Gaussian barrier. This regime cannot be retrieved in the
δ-function case.

The comparison to the δ-function case is valid in the
quantum transmission regime, where the velocity is low
enough (for a given q, σ ) that the soliton cannot classically
pass through the barrier and must tunnel through instead.
For example, this is true when 0.5 � v � 2 and σ � 0.28
(Fig. 2). Within the quantum transmission regime [Eq. (19)]
the δ-function limit of 0.5 is reached (from below) by reducing
σ . This allows for larger values of v, as is consistent with

Holmer and Marzuola’s work in Ref. [27], where results are
general for any v � 1 (and so is in the high velocity regime).

Figure 2(b) shows that the transmission approaches the
analytic prediction for a δ-function barrier as the barrier width
σ tends to zero. This confirms that the analytic expressions
given in Ref. [27] and the previous section for the δ-function
barrier can be quantitatively useful for realistic Gaussian
barrier widths. For example, Fig. 2(b) indicates the analytic
prediction is reasonably quantitatively accurate for σ � 0.28
in soliton units. For a condensate of 85Rb and using typical
experimental parameters of N ∼ 6 × 103 atoms, as ∼ 5a0 (the
Bohr radius) and ωr ∼ 17 Hz this translates to a splitting beam
with a full width at half maximum of ∼9 μm. These parameters
are consistent with the experimental setup in Ref. [3]. For a
similarly sized condensate of 7Li atoms tuned to a similar
scattering length this width becomes ∼2 μm. This parameter
regime is consistent with [1] apart from the radial trapping
frequency, which we reduced from 2π × 710 to 2π × 200 Hz.

IV. TWO-SOLITON COLLISIONS AT NARROW BARRIERS
(b > 0)

A. Analytic treatment for δ-function barrier (σ → 0)

We now give an approximate analytical description of the
dynamics of two fast-moving bright solitons colliding at a δ-
function barrier, which we subsequently compare to numerical
simulations in order to give a fuller picture of the real dynamics
that we might expect to see in an experiment. This analysis
stops short of the full analytic rigor used in Ref. [27] but is
consistent within its assumptions of linearity. As previously
stated, during the time over which one bright soliton interacts
with the potential we can describe the system as linear [27].
Here we extend this argument to a scenario in which two bright
solitons collide at a δ-function potential, as described by the
equation

i
∂ψ(x,t)

∂t
=

[
−1

2

∂2

∂x2
+ qδ(x) − |ψ(x,t)|2

]
ψ(x,t), (20)

and initial condition

ψ(x,0) = ψ+(x) + ψ−(x),

ψ−(x) = 1

2 + 2b
sech

(
x + x0

2 + 2b

)
eivx, (21)

ψ+(x) = b

2 + 2b
sech

(
b(x − x0)

2 + 2b

)
e−i[vx+�]

[Eq. (1)]. We achieve this by making use of the second result
of Ref. [27], which we apply to the positive and negative
domain bright solitons, ψ+ and ψ−, separately, before taking
a linear combination of the results. This means that at some
time |x0|/v < t < v−η + |x0|/v after the barrier collision the
solution can be written as a sum of four sech profiles, two in
each of the positive and negative domains:

ψ(x,t) = ψ+T (x,t) + ψ−R(x,t) + ψ−T (x,t) + ψ+R(x,t).

(22)

Here ψ+T denotes the bright soliton transmitted to the negative
domain which originated in the positive domain, ψ−R denotes
the bright soliton originating from and reflected back into the
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negative domain, and so on. In this scheme

ψ+T (x,t) = ei(φ+T +ϕ+T +�)A+T sech(A+T [x − x0 + tv]),

ψ+R(x,t) = ei(φ+R+ϕ+R+�)A+Rsech(A+R[x + x0 − tv]),
(23)

ψ−T (x,t) = ei(φ−T +ϕ−T )A−T sech(A−T [x + x0 − tv]),

ψ−R(x,t) = ei(φ−R+ϕ−R )A−Rsech(A−R[x − x0 + tv]).

Two phase factors appear above; the φ±R/T are those associ-
ated with the standard soliton solution and are given by

φ±T = ∓vx + [
A2

±T − v2
]
t/2,

(24)
φ±R = ±vx + [

A2
±R − v2

]
t/2.

The ϕ±R/T factors are imparted by the collision, and are
described by

ϕ±T = [
1 − A2

±T

]|x0|/(∓2v) + arg (tq(v)) + ϕ0(|tq(∓v)|),
ϕ±R = [

1 − A2
±R

]|x0|/(∓2v) + arg (rq(v)) + ϕ0(|rq(∓v)|).
(25)

With b = 1, barrier height q = v, and fast-moving solitons
(v large) both initial bright solitons are split equally, such that
the amplitudes A±R/T are all equal and global phases can
be dropped. In this case Eq. (22) simplifies dramatically, and
shortly after the collision can be written as

ψ(x,t) = ψ++(x,t) + ψ−−(x,t),

ψ++(x,t) = P+(�)f+(x,t), (26)

ψ−−(x,t) = P−(�)f−(x,t),

where the terms

P−(�) = 1
2 {ei arg(rq (q)) + ei[arg(tq (q))+�]},

(27)
P+(�) = 1

2 {ei arg(tq (q)) + ei[arg(rq (q))+�]},
contain information about the constructive and destructive
interference between the transmitted and reflected waves. It
should be noted that this treatment allows us to infer the bright
soliton interactions, but does not give us a complete solution;
the terms f+ and f− contain information about the outgoing
wave profiles. By taking a linear superposition of the resultant
bright solitons we initially obtain a sech profile which is not
a single-soliton solution. However, in subsequent nonlinear
evolution this profile returns to a soliton profile to within a
known error, as documented in Appendix B of Ref. [27].

At a suitably large time after the collision, when the solitons
have again separated to the extent that they are again effectively
independent, inspection of |ψ |2 shows that the bright solitons
are modulated by the factors

|P−(�)|2 = 1
2 [1 − sin(�)],

|P+(�)|2 = 1
2 [1 + sin(�)]. (28)

These factors determine the norm of the outgoing waves in the
positive and negative domains, defined by

T± = ± lim
t→∞

∫ ±∞

0
|ψ(x,t)|2dx = |P±(�)|2. (29)

Within the analytic approach presented here T± are functions
of � alone. It should be noted that the symmetry of the

initial condition and linear interaction means that the phase
interactions apply to both the transmitted and reflected bright
solitons and the radiation terms. As a result the quantity
T± scribes the total density in the positive and negative
domains, not just the respective bright solitons. For suitably
high incident velocities this radiation becomes negligible, in
accordance with Eq. (11).

B. Numerical treatment for δ-function and Gaussian barriers
(general σ )

In Fig. 3 we present results of numerical simulations of
fast (v � 1) bright soliton collisions at both δ-function1 and
Gaussian barriers. The norms of the outgoing waves, defined
in our numerics by

T± = ±
∫ ±∞

0
|ψ(x,t1)|2dx, (30)

agree qualitatively with the predictions of our analytic treat-
ment, but with a noticeable skew in the predicted sinusoid. This
skew is also visible in the results for the Gaussian barrier case
shown in Fig. 1. We parametrize this skew by ε and describe
the norms of the outgoing waves T± as

T± = 1 ± sin(� + ε)

2
. (31)

This skewness parameter is less pronounced for increasing
velocities, that is,

lim
v→∞ max(ε) = 0. (32)

The presence of the skew in simulations with both Gaussian
and δ-function barriers rules out any explanation in terms of the
barrier structure. However, it is well known that when solitons
collide in the absence of a barrier they induce a small phase
and position shift in one another [12,21,38]. We propose that
the skew is a result of interactions between the solitons while
approaching the barrier; more fundamentally, this is a result
of the condition of a brief interaction not being fully satisfied.
For instance, from initial condition Eq. (1) the phase (ϕ′

l) and
position (x ′

l ) shift on the left-hand soliton are given by

2x ′
l

1 + b
+ iϕ′

l = 2 ln

(
v + i

v + i[(1 − b)/(1 + b)]

)
. (33)

In the case of equal amplitudes and velocities total phase
difference reduces to ϕ′ = ±4 arctan(1/v) or, in the limit of
high velocity, ϕ′ ≈ ±4/v. In our scenario only part of this
phase shift can occur before the solitons enter the linear regime,
and so we expect that our skewness parameter ε will be some
fraction of ϕ′. What we have observed from our numerics is
that ε oscillates with � but the maximum value is εmax ≈ ϕ′/8.
This is consistent with the behavior we observe in the high
velocity limit.

It should also be noted that the interference effect is present
in collisions between solitons of differing amplitudes. By
taking b = eβ we see that there is still interference between

1Within our Fourier pseudospectral method a δ-function barrier can
be implemented with high accuracy in momentum space using the
approach outlined in Ref. [37].
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FIG. 3. (Color online) Phase skew of numerical results with
respect to analytic prediction for equal-size (b = 1) bright soliton
collisons at a narrow barrier. (a) Numerically obtained data showing
the dependence of the norm of the outgoing wave in the positive
domain T+ after Gaussian barrier collision, on phase difference
�. Shown here are interference curves for solitons moving with
velocity v = 1 (fuchsia, solid), 2 (light blue, long dashed), 3 (red,
short dashed), 4 (green, dotted), and 5 (dark blue, dot-dashed).
The width of the barrier was σ = 0.14. (b) [see (a)] Collisions
at a δ-function barrier. Notice the qualitatively identical form of
the curves, illustrating that both δ-function and Gaussian barriers
exhibit the same skew, and so both undergo the same nonlinear
effects. (c) Numerically obtained data showing the phase perturbation
ε [Eq. (31)] due to nonlinear effects in a soliton collision at a
δ-function barrier. Shown here, in order of descending amplitude, are
the skewness parameters (ε) of the interference curves for solitons
moving with velocity v = 1, 2, 3, 4, and 5 colliding at a δ-function
barrier. (a)–(c) are the upper left quarters of the full data set; the plots
are both symmetric about the lower and right hand axes. All results
shown are calculated for α = q/v = 1.

the transmitted positive and reflected negative bright solitons
(and vice versa) (Fig. 4). Along the line β = 0, where the
amplitudes of the incoming bright solitons are equal, we can
clearly see a sinusoidal dependence on �. For nonzero β there
is still a notable dependence on the incoming phase difference,
but this effect is soon washed out if the difference in initial
amplitudes becomes too large. It is true, however, that the
solitons do not have to be of similar size to constructively or
destructively interfere.
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FIG. 4. (Color online) Numerically computed transmission coef-
ficient T+ illustrating the interference between solitons of different
initial amplitudes (b = eβ ) colliding at a δ-function barrier. Even
in the case of a large difference in initial amplitude (large |β|)
there is still interference between the solitons. The contour lines
show the boundary between having one (interior regions) and two
(exterior region) outgoing bright solitons in the analytic treatment
[see Eq. (12)]. All results shown are calculated for α = q/v = 1 and
v = 5.

The black (white) contour on Fig. 4 shows where the final
population in the positive (negative) domain was not great
enough, after interference, for the final aggregation to form
a soliton. This is determined by treating the total positive
(negative) domain population as the transmission (reflection)
coefficient in Eq. (12). From Eq. (12) we see that |tq | and |rq |
must both be >0.5 to get two outgoing solitons. We determine
|tq | and |rq | numerically as

√
T± =

√∫ ±∞

0
|ψ |2dx. (34)

As such, the white contour marks where T− = 0.25 (T+ =
0.75) and the black contour marks where T+ = 0.25 (T− =
0.75).

V. APPLICATIONS AND CONCLUSIONS

As stated in Sec. I, an important aspect of our analysis is
that is directly allows us to describe the operation of the bright
solitary matter-wave Mach-Zender interferometer in a ring trap
shown in Fig. 1(c). In the quasi-1D limit we have considered
in this paper, such an interferometer can be described by

i
∂ψ(x)

∂t
=

{
−1

2

∂2

∂x2
+ q

σ
√

2π
[e−x2/2σ 2 + e−(x−L/2)2/2σ 2

]

− |ψ(x)|2
}

ψ(x), (35)

where x ∈ (−L/2,L/2] is now a periodic coordinate. In
Eq. (35) there are two narrow Gaussian potential barriers,
located on opposite sides of the ring trap. Our analysis can be
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FIG. 5. (Color online) (a) Schematic of a ring-trap interferometer;
(i) an incoming bright soliton (dotted, green) is split into two
equal-amplitude solitons at the first narrow barrier (dashed, black)
gaining relative phase ∼π/2; (ii) these solitons (solid, cyan) propagate
around the ring, accumulating an additional relative phase difference
�; (iii) at the second narrow barrier (dashed, black) these solitons
are recombined into outgoing waves [dot-dashed, red (blue) for
positive (negative) x domain]. The norms of the two outgoing waves
are shown as a function of � in (b), and illustrate the shift by ∼π/2
with respect to Fig. 1(b) caused by the initial splitting. Here the soliton
velocity is v = 2 and the barrier width is characterized by σ = 0.28.

applied to understanding such an interferometer by splitting its
operation into the following three stages (illustrated in Fig. 5).

First, a single initial bright soliton is incident on the barrier
at x = 0 [Fig. 5(a)(i)], at high velocity. Assuming an initial
displacement of x0 = L/4 is sufficient for the soliton to be
well separated from the barrier, and a barrier height q = v

(such that α = 1), the analysis of Sec. III applies, with b = 0.
Hence, we obtain two equal-sized outgoing bright solitons,
with relative phase π/2.

Secondly, these bright solitons propagate without disper-
sion in opposite directions around the ring. We assume that
the soliton in the positive x domain picks up an additional
phase shift � due to the effects of whatever interaction the
interferometer is measuring [Fig. 5(a)(ii)].

Thirdly, these bright solitons collide at the barrier at x =
L/2. Here the analysis of Sec. IV applies, with b = 1, α = 1,
and � → � − π/2 [Fig. 5(a)(iii)]. In our analytic treatment,
this means that the norms of the outgoing waves

T± = 1 ± cos(�)

2
. (36)

The predicted and computed � dependence of T± is shown in
Fig. 5(b). The skew with respect to the analytic prediction we
quantify in Sec. IV corresponds to the nonlinear enhancement
of the phase dependence reported in Ref. [22].

To conclude, we have presented a general and detailed
analysis of the collision of two fast-moving bright solitons
at a narrow potential barrier in the NLSE. We have developed
an analytic treatment of this problem, based on the assumption
of a δ-function potential and short collision times. Our
numerical simulations of the same problem reveal that this
analytic treatment is quantitatively accurate in the limit of
narrow barriers and fast solitons as described in Sec. III B.
At realistic soliton speeds and barrier widths, however, our
numerical results differ from the analytic prediction; we have
quantified this in terms of the phase-skew ε. Our analytic
treatment also provides an estimate of the regimes in which
the outgoing waves contain solitons. One important application
of our analysis is describing the operation of a bright solitary
matter-wave interferometer in a ring trap. However, we stress
that our analysis remains general, and could potentially be
used to describe a range of possible interferometry experi-
ments, either in bright solitary matter-waves or other physical
systems.
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