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We have studied the nonlinear structure formation of the environmentally dependent dilaton
model using N-body simulations. We find that the mechanism of suppressing the scalar fifth force
in high-density regions works very well. Within the parameter space allowed by the solar system
tests, the dilaton model predicts small deviations of the matter power spectrum and the mass
function from their ΛCDM counterparts. The importance of taking full account of the nonlinearity
of the model is also emphasized.

I. INTRODUCTION

Modifying gravity on large scales is one of the plausi-
ble ways of explaining the recent acceleration of the ex-
pansion of the universe. So far, the construction of valid
models of modified gravity has been fraught with difficul-
ties. The most serious one is already present in the orig-
inal Pauli-Fierz formulation of massive gravity [1] and
involves the existence of a ghost in curved backgrounds1.
This phenomenon seems to be generic as suggested by Os-
trograski’s theorem[2] which states that higher derivative
theories have a Hamiltonian which is unbounded from
below. Higher dimensional versions of modified gravity
such as the DGP model [4] also suffer from the presence
of a ghost in their spectrum at low energy. This problem
is nicely avoided in f(R) models [5] which turn out to
be equivalent to a particular type of scalar-tensor the-
ories [6]. In these models, the compatibility with solar
system and laboratory tests of gravity is not straightfor-
ward and can only be achieved thanks to the so-called
chameleon mechanism [7–12]. Indeed, the existence of a
nearly massless scalar field on cosmological scales could
jeopardize gravity locally. This issue is common to all
known models of dark energy coupled to matter [13].
In a large class of dark energy models involving a lin-
ear coupling to matter and a non-linear potential, the
chameleon mechanism, whereby the scalar field mass be-
comes dependent on the ambient environment, would be
sufficient to hide away the dark energy field locally. Sim-
ilarly, in models of gravity such as the DGP or Galileon
[14, 15] theories for which a shift symmetry only allow
for non-linearities in the scalar field kinetic terms, the
Vainshtein mechanism [16] can be at play and prevent
the existence of a fifth force locally. In this paper, we will
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focus on a different type of models involving a scalar field.
These models are inspired from the string dilaton in the
strong coupling regime [17–19]. Their gravitational va-
lidity relies on an environmentally dependent form of the
Damour-Polyakov mechanism [20] whereby the coupling
to matter is driven to vanish cosmologically. Here, the
coupling to matter is negligible in dense regions and in
the vicinity of dense bodies. This prevents the existence
of a fifth force in galaxies. Constraints on the parameter
space of these models springing from local tests of gravity
have already been obtained in [21]. Here we will study the
cosmology of these models in the non-linear regime when
structures form (see [22] for an analysis of the bispec-
trum of matter distribution in this model). This requires
large computer simulations. As a result, we have access
to non-linear properties of the dilaton models such as the
non-linear power spectrum or the number of dark matter
halos for a given mass. Moreover we will be able to probe
how much the local tests of gravity constrain large scale
structure formation and deviations from general relativ-
ity. We find that the dilaton models differ from GR at
most at the level of a few percent once the local (i.e.
solar–system) constraints have been imposed. Although
possibly detectable in principle, observing such small de-
viations will be challenging in the near future.
The arrangement of this paper is as follows: in Sect. II

we briefly review the dilaton model under study and de-
rive the field equations in the Newtonian limit, which
are relevant for the study of structure formation on sub-
horizon scales and at late times. In Sect. III we describe
the algorithm and code of our N -body simulations, and
perform relevant tests of the code. More technical details
are given in the appendices. The numerical results and
their analysis are summarised in Sect. IV and finally we
conclude in Sect. V. The metric convention is (−,+,+,+)
and we use c = 1 unless stated otherwise.

II. THE ENVIRONMENTALLY DEPENDENT

DILATON

In this section we very briefly summarise the essen-
tial ingredients of the environmentally dependent dilaton

http://arxiv.org/abs/1102.3692v1
mailto:philippe.brax@cea.fr
mailto:c.vandebruck@sheffield.ac.uk
mailto:a.c.davis@damtp.cam.ac.uk
mailto:b.li@damtp.cam.ac.uk
mailto:d.j.shaw@damtp.cam.ac.uk


2

model, which will be used for the simulations and discus-
sions below. For more details about the model the reader
is referred to [21].

A. The Model

The dilaton model is fully specified by the following
Einstein-Hilbert action in the Einstein frame:

S =

∫ √−gd4x
[

R

2κ2
− k2(ϕ)

κ2
∇aϕ∇aϕ− V (ϕ)

]

+Sm

(

Ψi, A
2(ϕ)gab;ϕ

)

, (1)

in which g is the determinant of the metric gab, κ
2 ≡ 8πG

with G the gravitational constant, ϕ is the dilaton field,
and V (ϕ) its potential, which is derived from string the-
ory in the strong coupling limit. In the matter action Sm,
Ψi collectively represents the matter fields and A2(ϕ)gab
is the metric governing the geodesics of matter particles.
In the Einstein frame, the particles feel an extra, or fifth,
force whose strength is determined by the coupling func-
tion β(ϕ) ≡ [lnA(ϕ)],ϕ where a comma denotes partial

differentiation. The function k(ϕ) is given by

k(ϕ) ≈ λ−1
√

1 + 3λ2β2ϕ (2)

where λ is a constant. Throughout this paper Latin
indices a, b, c, . . . run over 0, 1, 2, 3 and Greek indices
α, β, . . . run over 1,2,3.
Varying the action with respect to the metric gab, we

obtain the total energy-momentum tensor of the model,

κ2Tab = κ2A(ϕ)Tm
ab − κ2gabV (ϕ)

+k2(ϕ) [2∇aϕ∇bϕ− gab∇cϕ∇cϕ] (3)

where Tm
ab is the energy-momentum tensor for fluid mat-

ter, i.e., baryons, radiation and cold dark matter (CDM).
Note that there is a factor A(ϕ) in front of Tm

ab. T
ab
m is

not, in general, conserved but instead:

∇aT
ab
m =

A,ϕ(ϕ)

A(ϕ)

[

Tm∇bφ− T ab
m ∇aφ

]

. (4)

For pressureless dust, where T ab
m = ρmu

aub, uau
a =

−1, Eq. (4) implies that the usual continuity equation
holds, ∇a(ρmu

a) = 0, and hence ρm is conserved. In a
Robertson–Walker spacetime, this means that the usual
conservation equation for matter still holds:

˙̄ρm + 3Hρ̄m = 0, (5)

in which ˙≡ d/dt, subscript m denotes matter, H = ȧ/a
is the background expansion rate with a the scale fac-
tor, and an overbar stands for the background value of
a physical quantity. The gravitational field equation, or
Einstein’s equation, is given as usual:

Gab ≡ Rab −
1

2
gabR = κ2Tab, (6)

where Gab, Rab and R are respectively the Einstein ten-
sor, Ricci tensor and Ricci scalar.
Varying the action with respect to the scalar field ϕ,

we obtain its equation of motion:

∇a [k(ϕ)∇aϕ]

=
4πG

k(ϕ)
[−V (ϕ) − β(ϕ) (A(ϕ)Tm − 4V (ϕ))] (7)

where Tm is the trace of Tm
ab. The energy-momentum ten-

sor of an individual particle with mass m0 at position r0
is given by

T ab
m (r) =

m0√−g δ (r− r0) ṙ
a
0 ṙ

b
0, (8)

where r is the general spatial coordinate. Using the
Bianchi identity we get

r̈a0 + Γa
bcṙ

b
0ṙ

c
0 = −β(ϕ)∇aϕ− β(ϕ)ϕ̇ṙa0 , (9)

in which Γa
bc is the Levi-Civita connection. Clearly, if β =

0 then this reduces to the geodesic equation in general
relativity, as expected.
Eqs. (6, 3, 7, 9) contain all the physics for the analysis

below, though to implement them in N -body simulations
we still have to simplify them using appropriate approxi-
mations. These will be carried out below.
In this paper, we focus on the particular model of [21],

which is motivated from string theory, specified by

A(ϕ) = 1 +
1

2
A2 (ϕ− ϕ0)

2
, (10)

β(ϕ) = A2 (ϕ− ϕ0) , (11)

k2(ϕ) = 3A2
2 (ϕ− ϕ0)

2
+ λ−2, (12)

V (ϕ) = A4(ϕ)V0e
−ϕ (13)

where A2 ≫ 1 is a parameter and ϕ0 is the current back-
ground value of ϕ. V0 is another parameter of mass di-
mension 4. Because the potential is exponential, we are
free to shift the value of ϕ so that ϕ0 = 0. Clearly
Vc = V0e

−ϕ0 = V0 should be chosen carefully so that it
can play the role of dark energy today. Both the param-
eters A2 and λ are crucially constrained by local tests.
In the numerical simulations, we will choose values of the
parameters which are on the verge of the allowed parame-
ter space in order to enhance the possible effects on large
scales.

B. Nonrelativistic Limit

Eqs. (6, 3, 7, 9) are general relativistic equations.
To implement them into N -body simulations for large
scale structure formation, it suffices to work in the non-
relativistic limits, since the simulations only probe weak-
gravity regime and small volumes compared with the cos-
mos.
We write the perturbed metric in the conformal New-

tonian gauge as

ds2 = −a2(1 + 2φ)dτ2 + a2(1− 2ψ)γµνdx
µdxν (14)
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where τ, xµ are respectively the conformal time and co-
moving coordinate, γµν is the metric of a 3-D Euclidean
space, and φ, ψ respectively the Newtonian potential and
the perturbation to the spatial curvature. For complete-
ness, we list the expressions of the components of Gab

in terms of the metric variables using our convention in
Appendix A.
Let us first look at the scalar field equation of motion

Eq. (7). For this, we define ξ such that ∇aξ = k(ϕ)∇aϕ,
and write ∇a [k(ϕ)∇aϕ] to first order in the metric per-
turbation variables as

a2∇a [k(ϕ)∇aϕ] ≈ −(1− 2φ)ξ′′ +∇2
x
ξ

−ξ′
[

2
a′

a
(1− 2φ)− (φ′ + 3ψ′)

]

where ′ ≡ d/dτ , and ∇x is the derivative with respect to
the comoving coordinate x. Substituting this expression
into Eq. (7), and removing the background equation of
motion

[k(ϕ̄)ϕ̄′]
′
+ 2

a′

a
k(ϕ̄)ϕ̄′

=
4πGa2

k(ϕ̄)
[V (ϕ̄)− β(ϕ̄) (A(ϕ̄)ρ̄m + 4V (ϕ̄))] , (15)

we obtain the perturbation part of this equation:

∇x · [k(ϕ)∇xϕ]

≈ 4πGa2

k(ϕ)
{β(ϕ) [A(ϕ)ρm + 4V (ϕ)]− V (ϕ)}

−4πGa2

k(ϕ̄)
{β(ϕ̄) [A(ϕ̄)ρ̄m + 4V (ϕ̄)]− V (ϕ̄)} . (16)

Note that in the above derivation we have dropped terms

such as φ′, ψ′ and a′

a φ, since we are working in the quasi-
static limit in which the time derivative of a quantity is
much smaller than its spatial gradient, i.e., |∇xφ| ≫ |φ′|.
Using the expressions given in Appendix A, we can

write the 00-component of the Ricci scalar as

a2R0
0 ≈ −∇2

x
φ+ 3

[

a′′

a
−
(

a′

a

)2
]

(1− 2φ)

−3ψ′′ − 3(1− 2φ)
a′

a
(φ′ + ψ′)

again up to first order in the perturbed metric variables.
Similarly,

8πGT ≈ −8πG [A(ϕ)ρm + 4V (ϕ)]

+k2(ϕ)
2

a2
(1− 2φ)ϕ′2

where T is the trace of the total energy-momentum ten-
sor. Then the 00-component of the Einstein equation

Rab = 8πG

(

Tab −
1

2
gabT

)

, (17)

with the background part, i.e., the Raychaudhuri equa-
tion,

3

[

a′′

a
−
(

a′

a

)2
]

= −4πGA(ϕ̄)ρ̄ma
2

−2k2(ϕ̄)ϕ̄′2 + 8πGV (ϕ̄)a2 (18)

removed, can be written as

∇2
x
Φ ≈ 4πG [A(ϕ)ρm − A(ϕ̄)ρ̄m] a

3

−8πG [V (ϕ)− V (ϕ̄)] a3, (19)

where we have defined Φ ≡ aφ for convenience.
Finally, for the equation of motion of matter particles,

Eq. (9), using the relationship between physical coordi-
nates r and comoving distance x, we can rewrite it as

ẍ+ 2
ȧ

a
ẋ = − 1

a3
∇xΦ− 1

a3
∇x(aϕ) − βϕ̇ẋ. (20)

Defining the conjugate momentum to x as p = a2ẋ, this
equation could be decomposed as

dx

dt
=

p

a2
, (21)

dp

dt
= −1

a
∇xΦ− 1

a
β(ϕ)∇x(aϕ)− β(ϕ)ϕ̇p. (22)

Note that there are two components of the fifth force, as
discussed in [25]
Eqs. (16, 19, 21, 22) are all that we need to put into the

N -body simulation code to study structure formation in
the nonlinear regime. Before that we have to discretise
these equations and write them using code units, so that
they can be applied on a mesh with finite grid size. These
lengthy expressions are given in Appendix B, where we
also discuss the subtleties in the numerical implementa-
tion.

III. THE N-BODY SIMULATIONS

In this section we briefly describe the algorithm and
model specifications of the N -body simulations we have
performed. We also give results for the tests of the code,
which show that the scalar-field solver works quite well.

A. Outline of the Simulation Algorithm

For our simulations we have used a modified version of
the publicly-available N -body code MLAPM [27]. The mod-
ifications we have made follow the detailed prescription
of Ref. [25], and here we only give a brief description.
The MLAPM code has two sets of meshes: the first in-

cludes a series of increasingly refined regular meshes cov-
ering the whole cubic simulation box, with respectively
4, 8, 16, · · · , Nd cells on each side, where Nd is the size of
the domain grid, which is the most refined of these reg-
ular meshes. This set of meshes are needed to solve the
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Poisson equation using multigrid method or fast Fourier
transform (for the latter only the domain grid is neces-
sary). When the particle density in a cell exceeds a pre-
defined threshold, the cell is further refined into eight
equally sized cubic cells; the refinement is done on a
cell-by-cell basis and the resulting refinement could have
arbitrary shape which matches the true equal-density
contours of the matter distribution. This second set of
meshes are used to solve the Poisson equation using the
linear Gauss-Seidel relaxation scheme.
The dilaton field is the most important ingredient in

the model studied here, and we have to solve it to obtain
detailed information about the fifth force. In our N -body
code, we have added a new scalar field solver which is
based on Eqs. (B13, B14, B15, B16). It uses a nonlin-
ear Gauss-Seidel scheme for the relaxation iteration and
the same criterion for convergence as the default Pois-
son solver in MLAPM. But it uses V-cycle [28] instead of
the self-adaptive scheme in arranging the Gauss-Seidel
iterations.
The value of u (see definition in Appendix B) solved in

this way is then used to calculate the total energy den-
sity including that of the scalar field, and this completes
the computation of the source term to the modified Pois-
son equation. The latter is then solved using fast Fourier
transform on the domain grid and Gauss-Seidel relax-
ation on refinements, according to Eq. (B18).
With the gravitational potential Φ and the scalar field

u at hand, we can use Eq. (B20) to evaluate the total force
on the particles and update their momenta/velocities.
Then Eq. (B19) is used to advance the particles in space.
For more details about the implementation see [25].

B. Simulation Details

The physical parameters we use in the simulations are
as follows: the present dark-energy fractional energy den-
sity ΩΛ = 0.743 and Ωm = 0.257, H0 = 71.9 km/s/Mpc,
ns = 0.963 and σ8 = 0.769. We use two sets of simula-
tion box which have sizes of 32h−1 Mpc and 64h−1 Mpc
respectively, in which h = H0/(100 km/s/Mpc). We sim-
ulate four models, with parameters (A2, λ) = (4×106, 2),
(4 × 105, 10), (2 × 105, 100) and (2 × 106, 30). These pa-
rameters are chosen so that they predict local fifth forces
which are allowed by current experiments and observa-
tions2. In all those simulations, the particle number is
2563, so that the mass resolution is 1.114× 109h−1 M⊙

for the 64h−1 Mpc simulations and 1.393× 108h−1 M⊙

for the 32h−1 Mpc simulations. The domain grid is a
128 × 128 × 128 cubic and the finest refined grids have

2 The values are taken from near the boundary of the allowed
region in the parameter space in Fig. 1 of [21]. As a result we
expect that they should give us the biggest effect on large-scale
structure while satisfying constraint from local experiments.

FIG. 1. A first test of the scalar field solver. For this test we
use a simulation box of 256h−1 Mpc on each side, and set the
density field to be homogeneous in the box. The exact value of
β, βth, is known analytically. The differences between βth the
initial guess of β in the grid cells along the x-axis are shown as
symbols, while that between βth and the β after relaxation are
shown as the continuous curve. Clearly the relaxation works
accurately.

16384 cells on each side, corresponding to a force resolu-
tion of about 12h−1 kpc and 6h−1 kpc respectively for
the two sets of simulations. The force resolution deter-
mines the smallest scale on which the numerical results
are reliable. We have also run a ΛCDM simulation with
the same physical parameters.
Our simulations are purely N -body, which means that

baryonic physics has not been included in the numerical
code. We use the same initial conditions for the dilaton
and the ΛCDM simulations, because before the initial
redshift zi = 49 the fifth force is strongly suppressed
so that the effect of the dilaton on the matter power
spectrum is negligible.

C. Code Tests

Before displaying the numerical results from the N -
body simulations, we show some evidence that our nu-
merical procedure works correctly. As our modification
to the default MLAPM code is only in the scalar field part,
we focus on tests of the scalar field solver and the fifth
force only.
The scalar field solver uses the nonlinear Gauss-Seidel

relaxation scheme to compute β, and an indicator that
it works is to show that, given the initial guess of the
solution that is very different from the true solution, the
relaxation could produce the latter within a reasonable
number of iterations. Consider a simulation box with ho-
mogeneous density, then the true solution to β, βth, could
be calculated analytically. We therefore make an initial
guess for β which is randomly scattered around βth and
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FIG. 2. A second test of the scalar field solver. For this test
we use a simulation box of 128h−1 Mpc on each side, and set
the density field to be the equivalent of having a point mass at
x = y = z = 0 and zero otherwise. Far from the point mass,
the solution to β can be approximately solved analytically
(the continuous curve). The symbols show the results for β
from the numerical code. The two show good agreement in a
wide range of x.

let the scalar solver try to recover βth. In Fig. 1 we have
shown |β − βth| before (symbols) and after (curve) the
relaxation: as can be seen there, before the relaxation
the difference between the initial guess β and βth is of
order 0.01, while after the relaxation it reduces to 10−6.
Note that 10−6 corresponds to the error caused by using
floating-point numbers, and as a result this shows that
the scalar solver works accurately.

As a second test of the scalar field solver, consider hav-
ing a point mass at the origin x = y = z = 0 and the vac-
uum density otherwise. This could be achieved by filling
the densities in the cells of the simulation grid according
to [29]

ρc = 10−4N3
d (23)

for the cell with i = j = k = 0, in whichNd is the number
of cells on each side of the domain grid, and ρc = 10−4

for all other cells.

Outside the particle it is the vacuum, in which the
scalar field equation of motion can be approximately lin-
earised as

∇2
x
δβ ≈ 8πGV0A2a

2 3β̄(1− 2β̄) + 2λ−2

(

3β̄2 + λ−2
)2

δβ, (24)

where we remind the reader that β = A2ϕ (see eq. 10
with ϕ0 = 0), and δβ ≡ β− β̄. β̄ is the background value
of β, which can be analytically calculated as [21]

β̄ =
ΩΛa

3

Ωm + 4ΩΛa3
. (25)

Using the code units (see Appendix B), this can be writ-
ten as

∇2δβ ≈ m2
effδβ (26)

with

m2
eff =

(BH0)
2

ac2
3ΩΛa

3A2

3β̄(1− 2β̄) + 2λ−2

(

3β̄2 + λ−2
)2

δβ. (27)

Here B is the box size of the simulation box, and c is
the speed of light, which we have restored to make the
dimension explicit. The analytic solution is thus

δβ(r) =
C

r
e−meffr (28)

where C is some constant determined by the value of the
point mass and r the distance from the origin. Because
C is unknown, we fix its value by requiring that Eq. (28)
be equal to the numerical solution at r = 10h−1 Mpc.
The normalised analytical solution to β is shown as the

continuous curve in Fig. 2, while the numerical solutions
are shown as symbols. We see that the two agree over a
wide range of r (note that |δβ| changes by several orders
of magnitude). Note that when r is small the agreement is
not perfect, because linearisation does not work very well
near the high density region; meanwhile, for very big r the
value of |δβ| drops below O(10−6) and numerical error
due to using floating-point numbers becomes important.
In summary, Figs. 1 and 2 show that our scalar solver

works well. Below, we also show that the fifth force agrees
with analytic approximations in certain regimes.

IV. NUMERICAL RESULTS

In this section, we shall present our simulation results,
including the snapshots, the matter power spectrum and
the halo mass function.

A. Snapshots

As we have seen, in the dilaton model β and thus the
fifth force is suppressed in high density regions. In this
subsection we demonstrate these qualitative features us-
ing some snapshots.
Fig. 3 shows the comparison of the magnitudes of the

fifth force and gravity for the four models we have con-
sidered, at three different output times a = 0.2, 0.5 and
1.0. For this, we pick out a thin slice from the middle
of the z = 16h−1 Mpc simulation box, and compute the
fifth force and gravity on the particles within that slice.
At early times, the density is high everywhere and we

expect the fifth force on all particles in all the four models
to be strongly suppressed, and this is confirmed by the
first row of Fig. 3, which shows that the fifth force is much
weaker than gravity. Note that the degree of suppression
of the fifth force is dependent on the value of A2: the
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FIG. 3. The magnitude of the fifth force (the vertical axis) versus that of gravity (the horizontal axis), for the particles (black
points) selected from a thin slice of the 32h−1 Mpc simulation box. We show this for the four models we have simulated and at
three different output times, as given in the subtitle of each panel. Note that both forces are expressed using the internal unit
(see Appendix B), which is H2

0/B times the physical force unit.

larger A2 is, the more the fifth force is suppressed. Also,
the fifth force is weaker in higher density regions (where
gravity is stronger) than in lower density regions (where
gravity is weaker), showing a strong dependence on the
environment.
As the Universe expands, the overall density decreases

and the fifth force becomes stronger, which could be seen
in the lower rows of Fig. 3. If there is no suppression on
the fifth force, then its strength should be

α =
β̄2

3β̄2 + λ−2
(29)

times that of gravity [21]. For comparison, in the low-
est row (a = 1) we have over-plotted α times gravity as
continuous curves. We can see that in the model with
smaller A2 (the middle two columns) Eq. (29) gives a
relatively good description of the fifth force at least in
some regions. But for the models with big A2 (the first
and fourth columns) the fifth force is strongly suppressed
even today.
Since β determines the strength of the fifth force

[cf. Eq. 9], we are also interested in it. Fig. 4 shows the

values of β as a function of position in the same slices as
Fig. 3. As expected, at very early times (a = 0.2) β ≪ 1
because the fifth force is strongly suppressed. As the Uni-
verse expands, β increases (the colour on the points be-
comes blue rather than black), but in the high density
regions β remains very small. Also, for the models with
big A2 (the first and fourth columns) the values of β in
high and low density regions tend to have stronger con-
trast, showing stronger environment-dependence. This is
clearer in the third row, which shows the result at a = 1.0.
This is consistent with what we have seen in Fig. 3.

B. Matter Power Spectrum

The nonlinear matter power spectrum is an important
structure formation observable and could be used to dis-
tinguish amongst different structure formation scenarios.
In Ref. [21] it has been shown that the growth rate of
linear matter density perturbations in the dilaton model
differs from that of ΛCDM only slightly, and therefore the
dilaton model (with its parameters constrained by solar
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FIG. 4. (Colour Online) The colour scale plot of the value of β as a function of coordinates x, y, for the same thin slice of
the 32h−1 Mpc simulation box as in Fig. 3. We show this for the four models we have simulated and at three different output
times, as given in the subtitle of each panel. Each point represents a particle, and the colour of the point depends on the value
of β at the position of that particle: for all the panels the lightest colour (white) denotes β = 0.3 and the darkest colour (black)
denotes β = 10−7; the blue colour is interpolated linearly between these two extremes

system tests) does not deviate at more than the percent
level from ΛCDM in practice. On the other hand, the fifth
force in the dilaton model has a finite range and is ex-
pected to only take effect on the scales of galaxy clusters
(∼ O(Mpc)) and smaller, which already fall into the non-
linear regime. We are therefore interested in seeing how
the fifth force affects the growth of density perturbations
on these scales.

Fig. 5 displays the fractional difference of the dilaton
nonlinear matter power spectrum from that of the ΛCDM
model, defined as (P (k)− PΛCDM(k)) /PΛCDM(k). From
this we can see that the difference is strongly suppressed
even on small scales where the fifth force is expected to
take effect. This is different from the linear perturbation
prediction of [21] (c.f. Fig. 3 therein), which shows that
the growth rate of density perturbation on small scales is
significantly higher than that on large scales. The reason
for this is that by linearising the scalar field equation,
the nonlinearity of the dilaton model, which is the very
mechanism that suppresses the fifth force in high density
regions, is artificially removed (at least partially), and the

strength of the fifth force is determined by the average,
instead of the local, matter density. In contrast, the N -
body simulation overcomes this problem by taking full
account of the suppression of the fifth force.
The results indicate that it is even more difficult to

use the nonlinear matter power spectrum to constrain
the dilaton model or distinguish it from ΛCDM as the
differences to the ΛCDM power spectrum are only a few
percent on very small length scales at late times.

C. Mass Function

The halo mass function is another key structure forma-
tion observable. It is defined to be the number density of
dark matter halos within a given mass range. Clearly, in
case of a fifth force which could boost the clustering of
matter, we expect more halos to form. In Fig. 6 we have
shown the mass functions of the dilaton models compared
with that of ΛCDM, at z = 0. Although the dilaton mod-
els do have higher mass functions than ΛCDM, especially
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FIG. 5. (Colour Online) The fractional difference between the dilaton and ΛCDM nonlinear matter power spectra, which is
defined to be (P (k)− PΛCDM(k)) /PΛCDM(k). The black, green, pink and purple curves are respectively for the models with
(A2, λ) = (4 × 106, 2), (4 × 105, 10), (2 × 105, 100) and (2 × 106, 30). The four panels (upper-left, upper-right, lower-left and
lower-right) are results at a = 0.3, 0.5, 0.7 and 1.0.

for small halos which generally live in low-density regions
where the fifth force is less suppressed, the differences are
again very small, making all these models hard to distin-
guish in practice at present and a challenge for future
surveys.

D. Halo Profile of β

In Fig. 7 we show the profile of β inside the dark mat-
ter halos, which are assumed to be spherical. Because β
characterises the strength of the fifth force, this can also
provide information about the fifth force in halos. We
have selected three halos with different masses (respec-
tively 3.5× 1014, 6.0× 1013 and 1.6× 1013 solar mass) to
check the results.
As can be seen from Fig. 7, β (and thus the strength

of the fifth force) increases from inner to outer regions of
the halos as the matter density is highest and the fifth
force most severely suppressed in the central region. Fur-

thermore, the fifth force is stronger for smaller halos, be-
cause those generally reside in low-density regions where
the fifth force is less suppressed. However, for all these
selected halos β is at most ∼ O(10−2) and typically less
than ∼ O(10−3) except near the halo edge, which mean
that well inside the halos (such as where the solar system
is) the fifth force is much weaker than gravity and has
negligible effects (and we have not even included baryons
in the simulations, which are generally much denser than
dark matter in galaxies).

The results are consistent with what we have seen in
the nonlinear matter power spectra and mass functions,
all of them showing that the fifth force has little influence
in the structure formation of the dilaton models (as long
as solar system tests are passed).
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FIG. 6. (Colour Online) The mass functions for the ΛCDM
model (black solid curve), and the four dilation models with
(A2, λ) = (4 × 106, 2), (4 × 105, 10), (2 × 105, 100) and (2 ×

106, 30) (the coloured curves). All the curves are very close.

V. SUMMARY AND CONCLUSION

The dilaton model of [21] is an interesting alterna-
tive to the chameleon models with a different mecha-
nism by which the fifth force produced by a coupling
between matter and scalar field(s) could be suppressed
in high density regions. The theory therefore evades all
solar system constraints while at the same time leav-
ing open the possibility of significant effects on cosmo-
logical scales. The dilaton model has the advantage of
being motivated from fundamental string theory. Given
the parameter space allowed by local experiments, we
have found that the effects of the fifth force on linear-
perturbation evolution is weak. Here we have studied the
possible imprints on the nonlinear evolution of large-scale
structure using N -body simulations.

By solving the whole nonlinear equation instead of us-
ing linearisation, N -body simulations could fully capture
the environment-dependence of the (scalar) dilaton field,
and our results confirm the expectation that the high
matter density in galaxy clusters strongly suppresses the
strength of the fifth force. Consequently, the key cosmo-
logical observables such as the nonlinear matter power
spectrum and mass function of the dilaton model are even
closer to the corresponding ΛCDM predictions than that
suggested by the linear perturbation analysis.

These results show that the suppression of the
environment-dependent coupling strength in the dilaton
model is very efficient, and the model in practice satisfies
all the known constraints, from solar system to cosmo-
logical. On the other hand, this also means that it is dif-
ficult to distinguish the dilaton model from the ΛCDM
paradigm using the current (and possibly next genera-
tion of) cosmological observations. There may, however,
be larger imprints of the fifth force in the galaxy clusters

which reside in voids, where the overall density is low and
the fifth force could be as strong as gravity. However, the
spatial and mass resolutions of our simulations do not
allow a detailed analysis of this.

Note that in the simulations of this work we have only
included dark matter but not baryons. However, as long
as the scalar field has a uniform coupling to different mat-
ter species, we expect that all the results will qualitatively
remain. In particular, in the inner regions of the halos,
baryon density is much higher than that of dark matter,
which could further suppress the fifth force compared to
what we have seen in our simulations.

In conclusion, while observationally hard to distinguish
from the ΛCDM model, the environmentally dependent
dilaton model is a very effective way to shield the dilaton
from observations.
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Appendix A: Useful Expressions

Up to first order in the perturbed metric variables φ, ψ,
the nonzero components of the symmetric Levi-Civita
connection are

Γ0
00 =

a′

a
+ φ′, (A1)

Γ0
0µ = φ,µ, (A2)

Γµ
00 = φ,µ, (A3)

Γµ
0ν =

(

a′

a
− ψ′

)

δµν , (A4)

Γ0
µν = γµν

[

a′

a
(1 − 2φ− 2ψ)− ψ′

]

, (A5)

Γµ
νρ = −ψ,ρδµ ν − ψ,νδ

µ
ρ + ψ,µγνρ. (A6)
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FIG. 7. The profiles for β(r) in some chosen halos. The diamond, triangle and box represent results for three halos with masses
equal to 3.5× 1014, 6.0× 1013 and 1.6× 1013 h−1M⊙ respectively. The horizontal axis is the distance from the halo centre, in

unit of h−1 kpc.

The components of the Ricci tensor and Ricci scalar up
to first order in φ, ψ are then easy to compute as

R00 = φ,µ,µ − 3

[

a′′

a
−
(

a′

a

)2
]

+ 3ψ′′

+3
a′

a
(φ′ + ψ′) , (A7)

R0µ = 2ψ′
,µ + 2

a′

a
φ,µ, (A8)

Rµν = −ψ′′γµν − a′

a
(φ′ + 5ψ′) γµν − ψ,ρ

,ργµν

+

[

a′′

a
+

(

a′

a

)2
]

(1− 2φ− 2ψ)γµν

−(φ− ψ),µν , (A9)

R =
6

a2
a′′

a
(1− 2φ) +

1

a2
(

4ψ,µ
,µ − 2φ,µ,µ

)

− 6

a2

[

ψ′′ +
a′

a
(φ′ + 3ψ′)

]

. (A10)

Appendix B: Discretisation of Equations

To implement the nonrelativistic equations into our
numerical code, we have to rewrite them using code units,
which are given by

xc =
x

B
, pc =

p

H0B
, tc = tH0,

Φc =
Φ

(H0B)2
, ρc =

ρm
ρ̄m

, ∇c = B∇x (B1)

in which a subscript c denotes code unit, B is the size of
the simulation box and H0 = 100h km/s/Mpc. In what
follows we shall write ∇ = ∇c for simplicity.

1. Scalar Field Equation of Motion

Recall that in our model we have chosen ϕ0 = 0 such
that β(ϕ) = A2ϕ. It is then the same to solve for ϕ or
to solve for β. As A2 ≫ 1, β ≫ ϕ and so we shall solve
for β rather than ϕ to reduce possible numerical errors.
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The equation of motion for β could be obtained simply
by multiplying that for ϕ by A2:

∇x · [k(β)∇xβ]

≈ 4πGA2a
2

k(β)
[β {A(β)ρm + 4V (β)] − V (β)}

−4πGA2a
2

k(β̄)

[

β̄
{

A(β̄)ρ̄m + 4V (β̄)
]

− V (β̄)
}

,(B2)

where we have used β instead of ϕ as the variable.

As discussed in [21], β characterises the strength of the
fifth force. In high density environments, β ≪ 1 so that
the fifth force is too weak to be measured; in low den-
sity regions, however, we have β ∼ 0.23 today, indicating
that the fifth force is roughly as strong as gravity. Fur-
thermore, Eq. (B2) does not say anything about the sign
of β.

Obviously, because β ranges from O
(

10−6
)

to O(1),
using β directly in the numerical code could easily cause
big numerical errors in the regions where β is small. One
alternative is to use ln(β) as a new variable, but this

does not necessarily work because β might be negative.
Therefore, in this work, we shall use a different variable
u ≡ β1/n, with n being some odd positive integer, as
the redefined scalar field. More explicitly, we shall adopt
n = 9 which guarantees that u ∼ O(0.1−1), i.e., u spans
a much smaller range than β, making it easier to control
numerical errors. Furthermore, n being odd makes sure
that u is never undefined even if β < 0.
In terms of u, we have

k(u) =
√

3u2n + λ−2, (B3)

A(u) = 1 +
u2n

2A2

, (B4)

V (u) =

(

1 +
u2n

2A2

)4

V0 exp

(

−un

A2

)

. (B5)

Then, defining

λ̃ ≡ 8πGV0
3H2

0

, (B6)

and using the code units defined above, we could rewrite
the scalar equation of motion Eq. (B2) as

ac2

(BH0)
2
∇ · (b∇u)

≈ A2

k(u)

{[

3

2

(

1 +
u2n

2A2

)

Ωmρc + 6λ̃a3
(

1 +
u2n

2A2

)4

exp

(

−un

A2

)

]

un − 3

2
λ̃a3

(

1 +
u2n

2A2

)4

exp

(

−un

A2

)

}

− A2

k(β̄)

{[

3

2

(

1 +
β̄2

2A2

)

Ωm + 6λ̃a3
(

1 +
β̄2

2A2

)4

exp

(

− β̄

A2

)

]

β̄ − 3

2
λ̃a3

(

1 +
β̄2

2A2

)4

exp

(

− β̄

A2

)

}

(B7)

where we have defined

b(u) = nun−1
√

3u2n + λ−2, (B8)

and β̄ is the background value of β, which can be com-
puted as [21]

β̄ =
ΩΛa

3

Ωm + 4ΩΛa3
. (B9)

The full equation for u, Eq. (B7), contains the quan-
tity ∇ · (b∇u). To discretise it, we shall assume that the
discretisation is performed on a grid with grid spacing h.
We shall require second order precision which is the same
as the default Poisson solver in MLAPM, and then ∇u in
one dimension can be written as

∇u → ∇huj =
uj+1 − uj−1

2h
(B10)

where a subscript j means that the quantity is evalu-
ated on the j-th point. The generalisation to the three
dimensional case is straightforward.
The factor b in∇·(b∇u) makes this a standard variable

coefficient problem. We need also to discretise b, and do
it in this way (again for one dimension) [23]:

∇ · (b∇u)

→ 1

h2

[

bj+ 1

2

uj+1 − uj

(

bj+ 1

2

+ bj− 1

2

)

+ bj− 1

2

uj−1

]

,(B11)

in which bj± 1

2

= 1
2
(bj + bj±1). Generalising this to three

dimensions, we have
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∇ · (b∇u) → 1

h2

[

bi+ 1

2
,j,kui+1,j,k − ui,j,k

(

bi+ 1

2
,j,k + bi− 1

2
,j,k

)

+ bi− 1

2
,j,kui−1,j,k

]

+
1

h2

[

bi,j+ 1

2
,kui,j+1,k − ui,j,k

(

bi,j+ 1

2
,k + bi,j− 1

2
,k

)

+ bi,j− 1

2
,kui,j−1,k

]

+
1

h2

[

bi,j,k+ 1

2

ui,j,k+1 − ui,j,k

(

bi,j,k+ 1

2

+ bi,j,k− 1

2

)

+ bi,j,k− 1

2

ui,j,k−1

]

. (B12)

Then the discrete version of Eq. (B7) is

Lh (ui,j,k) = 0, (B13)

in which

Lh (ui,j,k) =
1

h2
ac2

(BH0)2

[

bi+ 1

2
,j,kui+1,j,k − ui,j,k

(

bi+ 1

2
,j,k + bi− 1

2
,j,k

)

+ bi− 1

2
,j,kui−1,j,k

]

+
1

h2
ac2

(BH0)2

[

bi,j+ 1

2
,kui,j+1,k − ui,j,k

(

bi,j+ 1

2
,k + bi,j− 1

2
,k

)

+ bi,j− 1

2
,kui,j−1,k

]

+
1

h2
ac2

(BH0)2

[

bi,j,k+ 1

2

ui,j,k+1 − ui,j,k

(

bi,j,k+ 1

2

+ bi,j,k− 1

2

)

+ bi,j,k− 1

2

ui,j,k−1

]

− A2
√

3u2ni,j,k + λ−2





3

2

(

1 +
u2ni,j,k
2A2

)

Ωmρc + 6λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)



uni,j,k

+
A2

√

3u2ni,j,k + λ−2

3

2
λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)

+
A2

√

3β̄2 + λ−2

[

3

2

(

1 +
β̄2

2A2

)

Ωm + 6λ̃a3
(

1 +
β̄2

2A2

)4

exp

(

− β̄

A2

)

]

β̄

− A2
√

3β̄2 + λ−2

3

2
λ̃a3

(

1 +
β̄2

2A2

)4

exp

(

− β̄

A2

)

. (B14)

Then the Newton-Gauss-Seidel iteration says that we can
obtain a new (and usually more accurate) solution of u,
unewi,j,k, using our knowledge about the old (and less acu-

rate) solution uoldi,j,k as

unewi,j,k = uoldi,j,k −
Lh
(

uoldi,j,k

)

∂Lh
(

uoldi,j,k

)

/∂ui,j,k
. (B15)

The old solution will be replaced with the new one once
the latter is ready, using a red-black Gauss-Seidel sweep-
ing scheme. Note that
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∂Lh(ui,j,k)

∂ui,j,k
=

1

2h2
d (ui,j,k)

ac2

(BH0)2
[ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − 6ui,j,k]

− 1

2h2
ac2

(BH0)2
[bi+1,j,k + bi−1,j,k + bi,j+1,k + bi,j−1,k + bi,j,k+1 + bi,j,k−1 + 6bi,j,k]

−
A2nu

n−1
i,j,k

√

3u2ni,j,k + λ−2





3

2

(

1 +
u2ni,j,k
2A2

)

Ωmρc + 6λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)





−
3
2
λ̃a3nun−1

i,j,k
√

3u2ni,j,k + λ−2

[(

1 +
u2ni,j,k
2A2

)

+ 4uni,j,k

](

1 +
u2ni,j,k
2A2

)3

exp

(

−
uni,j,k
A2

)

−
nu2n−1

i,j,k
√

3u2ni,j,k + λ−2





3

2
Ωmρcu

n
i,j,k − 6λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)





+
24λ̃a3nu3n−1

i,j,k
√

3u2ni,j,k + λ−2

(

1 +
u2ni,j,k
2A2

)3

exp

(

−
uni,j,k
A2

)

+
3nA2u

2n−1
i,j,k

(

3u2ni,j,k + λ−2

)3/2





3

2

(

1 +
u2ni,j,k
2A2

)

Ωmρc + 6λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)



uni,j,k

−
3nA2u

2n−1
i,j,k

(

3u2ni,j,k + λ−2

)3/2

3

2
λ̃a3

(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)

(B16)

where we have defined

d(u) ≡ db(u)

du

=
3n(2n− 1)u3n−2 + n(n− 1)λ−2un−2

√
3u2n + λ−2

.(B17)

In principle, if we start from some high redshift, then
the initial guess of ui,j,k could be chosen as the back-

ground value because we expect that any perturbations
should be small then. For subsequent time steps we can
use either the solution at the last time step or some an-
alytical approximated solution as the initial guess.

2. Poisson Equation

In terms of the newly-defined scalar field u and using
the code units, the modified Poisson equation becomes

∇2Φc =
3

2
Ωm

[(

1 +
u2ni,j,k
2A2

)

ρc,i,j,k −
(

1 +
β̄2

2A2

)

]

−3λ̃a3





(

1 +
u2ni,j,k
2A2

)4

exp

(

−
uni,j,k
A2

)

−
(

1 +
β̄2

2A2

)4

exp

(

− β̄

A2

)



 . (B18)

The discretisation of ∇2Φc is straightforward and will
not be presented here.

3. Particle Equation of Motion

Using the code units, Eq. (21) could be easily rewritten
as

dxc

dtc
=

pc

a2
. (B19)
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Similarly, Eq. (22) becomes

dpc

dtc
= −1

a
∇Φc −

1

a

nu2n−1
i,j,k

A2

ac2

(BH0)
2
∇u

− 1

A2

uni,j,k
aβ̇

H0

pc. (B20)
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