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Numerical overcooling in shocks
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ABSTRACT
We present a study of cooling in radiative shocks simulated with smoothed particle hydrody-
namics and adaptive mesh refinement codes. We obtain a similarity solution for a shock-tube
problem in the presence of radiative cooling, and test how well the solution is reproduced in
GADGET and FLASH. Shock broadening governed by the details of the numerical scheme (artifi-
cial viscosity or Riemann solvers) leads to potentially significant overcooling in both codes.
We interpret our findings in terms of a resolution criterion, and apply it to realistic simulations
of cosmological accretion shocks on to galaxy haloes, cold accretion and thermal feedback
from supernovae or active galactic nuclei (AGN). To avoid numerical overcooling of accretion
shocks on to haloes that should develop a hot corona a particle or cell mass resolution of
106 M� is required, which is within reach of current state-of-the-art simulations. At this mass
resolution, thermal feedback in the interstellar medium of a galaxy requires temperatures of
supernova- or AGN-driven bubbles to be in excess of 107 K at densities of nH = 1.0 cm−3, in
order to avoid spurious suppression of the feedback by numerical overcooling.

Key words: hydrodynamics – shock waves – methods: numerical – galaxies: formation –
galaxies: ISM.

1 IN T RO D U C T I O N

Radiative cooling and shocks are two important ingredients in
galaxy formation theory (White & Rees 1978). Whilst most codes
used in astrophysics have facilities for handling both of these, the
scales at which these operate and interact are challenging. We will
start with a short tour of the processes and of the numerical codes we
will use to simulate them. We describe a one-dimensional model
problem of a radiatively cooling shock with an analytic solution
which we model with two popular codes in astrophysical simu-
lations, FLASH (Fryxell et al. 2000), an adaptive mesh refinement
(AMR) code, and GADGET (Springel 2005), a smoothed particle hy-
drodynamics (SPH) code (Gingold & Monaghan 1977; Lucy 1977).
The results of our simulations give appropriate criteria with which
we can analyse the efficacy of our numerical schemes in a wide
variety of astrophysical environments. We also investigate the mit-
igating factors such as the ratio of the cooling to dynamical times,
which may enable a simulation to give approximately correct re-
sults when otherwise we would consider there to be insufficient
resolution.

There has been considerable discussion on the treatment of dis-
continuities in SPH (Price 2008; Read, Hayfield & Agertz 2010),
motivated by problems illustrated by Agertz et al. (2007), but the
issues highlighted in this paper are of a different nature. Those pa-
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pers focus on spurious forces introduced by the SPH scheme, whilst
we focus on evaluating the errors introduced as we approach the
resolution limit, which are to some extent unavoidable.

1.1 Astrophysical shocks

The science of astrophysics is an ideal domain for the investigation
of shock fronts on a variety of scales. Stellar winds form shocks
as they push in to the interstellar medium (ISM). On larger scales
supernovae (SNe) form very high Mach number shocks as they
plough into the surrounding gas and form remnants. On larger scales
still, galactic winds, driven by starbursts and active galactic nuclei
(AGN), shock against the intergalactic medium (IGM). In the con-
text of galaxy formation we can also consider accretion shocks,
where gravitationally accelerated infalling gas shocks to form a hot
corona in the dark matter potential well.

Of particular interest to us in this paper are radiatively cooling
shocks. To an extent, all the aforementioned shocks have radiative
cooling; however, the cosmological accretion shocks and SNe are
particularly topical. In galaxy formation simulations the SNe at
early times form remnants well below the resolution of current
simulations and need to be modelled with subgrid physics (see Kay
et al. 2002 for a review of feedback methods). The cooling of the
hot gas causes a transition from a thermally driven to a momentum-
driven phase, losing a significant fraction of the SNe energy. A
similar transition is thought to occur in the thermal to momentum
transition of winds powered by an AGN (Booth & Schaye 2009).
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Cooling in accretion shocks may affect the fuelling of star for-
mation in the host galaxy. If the gas is shocked to too high a temper-
ature it will not cool over a Hubble time, preventing star formation
(though non-spherical geometries may allow the gas to compress
first and thus cool faster; see e.g. Birnboim & Dekel 2003). In a cos-
mological simulation, however, the resolution around these cooling
regions may be so coarse as to resolve these cooling regions with
only a few particles. In this paper we intend to probe the effect
of limited numerical resolution in these cases, and how these may
affect the outcome of the simulation.

1.2 Physical shock fronts

Before we concentrate on the numerical aspect of cooling in shocks,
we begin by briefly considering the processes that occur in a real
physical shock front. A shock front is a region where one of the
usually conserved fluid properties, entropy, is allowed to change. It
is worth considering why such a property is otherwise treated as a
constant, and why shocks are a special case.

In the kinetic theory of gases, a gas is described as a large num-
ber of particles (e.g. atoms, molecules, ions) in constant random
motion. The frequency of collisions defines a time-scale and also
a typical length between collisions, the mean free path. If all pro-
cesses acting on the gas happen on time-scales much greater than
the time between collisions, then the classical theory of adiabatics
tells us that there will be another conserved property which, for
an ideal gas, is p/ργ . Here, p, ρ and γ are the pressure, density
and adiabatic index, respectively. This property is a function of the
entropy, and in astrophysics is often used as a proxy.

It is worth recalling that processes which change the fluid en-
tropy (e.g. shocks, radiative absorption, thermal conduction) will
occur on time-scales of the order of, or shorter than, the period
between collisions (or over lengths of the order of the collision
length). Mechanisms which heat the gas on slower time-scales will
be adiabatic processes, and will alter the thermal energy with only
very small increases in entropy.1

Now we come to shock fronts. A canonical example of a shock
front would be a one-dimensional system where the upstream fluid
travels supersonically with respect to the downwind fluid (i.e. faster
than the thermal velocities of the particles), until it reaches the
shock, where the majority of its mechanical energy (the bulk motion
of the particles) is converted into thermal energy. This happens
because the pairs of particles that collide can have very different
velocities: particles in the shock front change their energy on a time-
scale of the order of the collision time between a pair of upwind
and downwind particles, which is much shorter than that between
two downwind, or two upwind, particles. From this description we
immediately see that physical shocks must occur over length-scales
of the order of the mean free path, which is usually much smaller
than other physical length-scales in the problem.

The mean free path (�x) depends upon the number density of
particles (n) and their collisional cross-section (σ ), as

�x = 1

nσ
. (1)

1 One can of course construct systems in which the time-scale of inter-
est is long enough such that viscosity, thermal diffusion, etc. dominate the
large scales too. These problems, however, have low Reynolds and Péclet
numbers, respectively, and are the exception rather than the norm in com-
putational astrophysics.

In the case of a partially or fully ionized gas, particles may interact
on a shorter length-scale (Zel’Dovich & Raizer 1967), that of the
plasma skin depth/plasma oscillation length:

�x = c

(
4πnee

2

me

)−1/2

≈ 106
( ne

1 cm−3

)−1/2
cm . (2)

Since the particles are not interacting via Coulomb collisions this
is known as a ‘collisionless shock’; the mechanism of interaction is
the plasma oscillation (coupling together charged particles). Care
must be taken, however, as the post-shock gas may be out of thermal
and ionizational equilibrium for the problem in question (something
that would not be a concern if the collision length is small), making
these cases challenging to simulate.

The trapping of relativistic ions between magnetic fields in the
upstream and downstream phases and subsequent acceleration is
also believed to be the origin of the power-law spectrum of high-
energy cosmic rays, a Fermi acceleration process.

Finally, we should complete this discussion by mentioning tur-
bulence as a source of entropy. In general the bulk oscillations of
fluids will occur on scales much larger than the mean free path and
is thus unable to change the entropy. Transfer of spectral energy to
shorter wavelengths, however, implies that eventually bulk oscilla-
tions reach the scale of the mean free path and will be dissipated
into thermal energy (Kolmogorov 1941).

1.3 Shocks in simulations, artificial viscosity

Now let us consider shocks in simulations. Almost exclusively,
the resolution of simulations will be much coarser than a physical
shock width. This is not necessarily a problem, however, as the
bulk properties of the post-shock gas may be deduced from the
conservation of energy and momentum, and the assumption that the
shock process does not produce oscillations on scales much larger
than the mean free path.

In this paper we will contrast two schemes for numerical hy-
drodynamics that are popular in cosmology: SPH and AMR. SPH
(Gingold & Monaghan 1977; Lucy 1977; see Monaghan 2005 and
Springel 2005 for recent reviews) is a (pseudo-) Lagrangian scheme
in which the fluid is represented by a set of particles that move
along with the flow. In this paper we will illustrate the behaviour
of SPH using the GADGET SPH implementation of Springel (2005).
AMR follows how fluid flows across a (stationary) computational
mesh, whose cell size may be locally ‘refined’ or ‘de-refined’ based
on some criterion. In this paper we use the FLASH code, a block-
structured AMR implementation by Fryxell et al. (2000).

The physical process of kinetic energy dissipation by particle col-
lisions is represented in the continuum approximation by a viscous
term in the Navier–Stokes equations,

∂

∂t
(ρvi) + ∂

∂xj

(ρvivj ) = ∂p

∂xi

+ ∂

∂xj

σij , (3)

where

σij = η

(
∂vi

∂xj

+ ∂vj

∂xi

− 2

3

∂vk

∂xk

δij

)
+ ζ

∂vk

∂xk

δij (4)

is the viscous stress tensor, and η and ζ are known as the shear and
bulk viscosity coefficients, respectively. These coefficients can be
measured for real fluids; however, in most astrophysical flows they
are so small that the viscous term is insignificant outside of shocks
(i.e. the flows have high Reynolds number).

The variant of SPH used in this paper handles shocks with a
prescription known as artificial viscosity (although Godunov-type
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3708 P. Creasey et al.

methods for SPH also exist; see Inutsuka 2002). Artificial viscosity
was originally developed for grid codes (von Neumann & Richtmyer
1950), and uses the bulk viscosity term in equation (3), however,
with the coefficient raised by several orders of magnitude. These
larger values prevent the shocks generating large unphysical oscil-
lations due to the coarseness of the sampling (see the numerical
stability criterion of Friedrichs & Lax 1971). In SPH they also ful-
fil a second role of preventing particle interpenetration (see Bate
1995 for a thorough discussion). A number of artificial viscosity
prescriptions are in use, the most common being that of Monaghan
and Balsara (Balsara 1995), a Lax–Friedrichs style viscosity that is
turned on for compressing flows. The implementation in our version
of GADGET is based on signal velocities (Monaghan 1997).

In mesh codes shocks can be treated with artificial viscosity
but more commonly a conservative Riemann solver (based upon
Godunov’s scheme, Godunov & Ryabenki 1964) is used. Riemann
solvers (see e.g. the HLL solver, Harten, Lax & van Leer 1983)
give exact solutions in one-dimensional or planar shock problems
with homogeneous pre- and post-shock fluids, but are somewhat
diffusive in other cases. They are still the preferred method for grid
codes, however, and the default used in FLASH is a directionally split
Riemann solver (Colella & Woodward 1984). Oscillations near the
discontinuities are controlled with a monotonicity constraint.

1.4 Radiative cooling

Radiative cooling is an essential ingredient in galaxy formation as
it is the process which allows the baryons in dark matter haloes to
dissipate thermal energy and thus collapse to form galaxies. Multi-
ple cooling mechanisms are important in the astrophysical domain;
however, in this paper we will primarily be interested in collisional
line cooling and, at higher temperatures, thermal bremsstrahlung.
The evolution of the specific thermal energy, u, due to cooling can
be written as

ρu̇|
 = −
(T ; Z)n2 , (5)

where ρ is the density, T the temperature, Z the metallicity and n the
particle number density (for brevity we will subsequently refer to the
radiative component of the specific cooling rate u̇|
 as u̇
). When
baryon–photon interactions with the cosmic microwave background
(CMB) and an ionizing background are important, we have followed
the prescriptions of Wiersma, Schaye & Smith (2009a; see also
Fig. 7 below).

The implementation of cooling in our versions of GADGET and
FLASH is performed by an adaptive time-step integration over each
cell/particle. The effects of cooling are included in the hydrody-
namic solver by operator splitting, i.e. the separation of the two
processes A (radiative cooling) and B (shock heating) into individ-
ual steps,

Ẋ = (A + B) X (6)

Xt+�t − Xt ≈ A(�t)B(�t)X , (7)

where the errors on the latter term of the order of the time-step �t
depend upon the commutator [A, B]. Since the physical process of
shock heating should occur over a much shorter time-scale than that
of radiative cooling, we can justify this being zero. The numerical
implementation of shock heating will of course take a longer time-
scale and thus would interact with the cooling if operator splitting
was not introduced; however, there is no physical motivation to
prefer such a scheme in this case.

2 R A D I AT I V E LY C O O L I N G SH O C K S ,
A MODEL PROBLEM

A typical test problem in numerical hydrodynamics is that of the
formation of a one-dimensional shock in a ‘test tube’. In one form of
this problem a tube is initialized with gas of constant polytropic in-
dex γ , the left and right halves converging with opposing velocities
v0 and −v0. For a sufficiently high velocity v0 a shock will form,
creating a downstream region with higher temperature, pressure and
density. This problem has a similarity solution for constant γ . In
our set-up the gas is allowed to cool radiatively, and the downstream
region can then cool to form a dense post-shock region. The initial
conditions are thus

ρ(x, t0) = ρ0 (8)

p(x, t0) = p0 (9)

T (x, t0) = T0 (10)

v(x, t0) =
{

v0, x < 0

−v0, x > 0. (11)

We note that the symmetry of this problem makes it equivalent to
the wall shock (where there is an immovable boundary at x = 0;
Monaghan 1997). In order to minimize the amount of modification
in our SPH code, we chose to set up the symmetric problem rather
than implement an immovable boundary.

2.1 Similarity solution for a radiative one-dimensional shock

If the temperature dependence of the cooling rate is sufficiently
simple, then this one-dimensional shock problem has a similarity
solution even in the presence of cooling. Such is the case for a cool-
ing function which is a piecewise linear function of the temperature,
such that the rate of radiative cooling, u̇|
, of the specific energy, u,
is given by a ‘cooling spike’:

ρu̇|
 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, T < T0

−
n2(T − T0)/T0, T0 ≤ T ≤ 1
2 (T1 + T0)

−
n2(T1 − T )/T0,
1
2 (T1 + T0) ≤ T ≤ T1

0, T1 ≤ T ,
(12)

where 
 is a positive constant and cooling is maximum at T =
1
2 (T1 + T0). For simplicity, in all simulations discussed below we
initialize the temperature to T0 (where the cooling vanishes), so the
initial gas is not cooling.

The gas is chosen to be pure atomic hydrogen, i.e.

γ = 5

3
(13)

ρ = mpn (14)

p = nkBT . (15)

For comparison the reader should see the simulations of
Hutchings & Thomas (2000) who used a more realistic astrophysical
cooling function, at the expense of not having an analytic solution.
For the cooling post-shock region we find analytic solutions in a
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Numerical overcooling in shocks 3709

Figure 1. Solid lines represent the analytic solution for the colliding gas problem discussed in Section 2 when cooling is included. Incoming gas from the left
and right shocks and then compresses and cools to form a cold dense region in the centre. For the example shown, the Mach number of the upstream gas is
1.5 with respect to the cold, central gas and the time is 5.1 �x
/c0 (see equation 17). For comparison, dashed lines show the solution without cooling at the
corresponding time. At early times (i.e. t � �x
/c0) the cooling profile is not of given form, as it has not had sufficient time to reach a stationary state (details
of the similarity solution for cooling through a shock can be found in Appendix A1).

similarity variable λ ≡ ρ/ρ0 of the form (see Appendix A1 for
details)

T /T0 = [(a + 1)λ−1 − aλ−2]

x − x0 = −vskBT0

(γ − 1)
n0

[
γ − a

a − 1
log(1 − λ−1)

+ 1 − aγ

(a − 1)a2
log(1 − aλ−1)

−a + 1

a
λ−1 − γ + 1

2
λ−2

]

a ≡ ρ0v
2
s

p0
.

The value of the shock velocity vs and the final density in the
cold, post-shock region ρ0 can be found by imposing conservation
of mass and momentum (see Appendix A2). The solution is shown
in Fig. 1.

2.2 Shock stability

Chevalier & Imamura (1982) find that positive increasing linear
cooling functions produce stable shocks. Applying this to the cool-
ing function in equation (12) we see that we have stable shocks
provided the post-shock temperature Ts < 1

2 (T1 + T0) or Ts > T1,
which is the case for all the shocks we study later (we define

the shock temperature Ts as the temperature immediately after the
shock, which is computed in Appendix A2). If the gas is shocked
to 1

2 (T1 + T0) < Ts < T1 then the shock may be unstable as the
cooling function has a negative slope, ∂T (−ρu̇
) < 0. Intuitively
this can be understood in terms of the length of the cooling region:
if the length increases the shock velocity will be higher, causing
the post-shock gas to be hotter, which increases the cooling time,
which feeds back into a longer cooling region.

2.3 Numerical solution

2.3.1 Initial conditions

The similarity solution is described with two (dimensionless) pa-
rameters. The first is the ratio of the upper to the lower temperature
in the cooling spike, which we will set to 20, i.e. T1 = 20T0. This
is motivated by the temperature dependence of the radiative cool-
ing function of an astrophysical plasma (see also Fig. 7), where
individual elements contribute significantly to the cooling over ap-
proximately a 1-dex range in temperature.

The second parameter is the Mach number of the shock, which
we will quote in the rest frame of the problem (rather than the rest
frame of the post-shock gas, for example),

M ≡ v0

c0
, (16)
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3710 P. Creasey et al.

where c0 ≡ (γ p0/ρ0)1/2 is the upstream sound speed. Our tests are
performed at M = 4.70 and 6.04. The former has been chosen such
that the shock reaches a temperature somewhat below the maximum
of the cooling function, (T1 + T0)/2 (where the shock will be stable),
and the latter such that the shock reaches a temperature somewhat
above T1 (where there is no cooling).

We plot positions in units of the cooling length,

�x
 ≡ kBT0c0


n0
. (17)

Similarly, we express times in units of �x
/c0. As observed in
Monaghan (1997), numerical schemes (including both SPH and
AMR) usually produce a transient unphysical thermal bump at t =
0 when there is no post-shock region. To avoid contamination by
this transient, we run our simulation for a time 14.2�x
/c0 and
7.1�x
/c0 for the M = 4.7 and 6.04 shocks, respectively (i.e. we
simulate for several sound crossing times of the cooling region, to
make sure it is in a stationary state).

For our SPH simulations we set up a long box, periodic along all
boundaries. The particle mass is chosen to be

mSPH = ρ0(0.3�x
)3 , (18)

(i.e. a mean interparticle spacing of 0.3�x
). We note that this
set-up creates a rarefaction wave that propagates inwards from the
far edges of the computational volume (due to the discontinuity on
this boundary), and thus we need a box long enough such that these
rarefactions do not reach our domain of interest in the simulation
time. The particles were set up with a ‘glass’ distribution (White
1994) to minimize relaxation effects in the pre-shock fluid (the SPH
kernel allows a cubic lattice arrangement of particles to slightly re-
duce its density, and hence release some thermal energy, by relaxing
to a glass-like state). We also raised the level of the bulk artificial
viscosity constant, α, to 3 (from 1; see Springel 2005 for a complete
description of the artificial viscosity prescription). We found this to
be necessary to prevent ringing and the appearance of large scatter
in the entropy of SPH particles in the post-shock region (see also
Abel 2011).

For the AMR simulations we again set up a long box with cell
spacing 0.3�x
, with periodic boundaries in the y and z direc-
tions and inflowing gas along the (long) x-axis. No refinement was
allowed, effectively making this a uniform Eulerian mesh.

We considered allowing an alternative refinement criterion; how-
ever, the standard FLASH refinement schemes will refine a shock
to the maximum allowed level (since it contains a discontinuity),
reducing it to the uniform mesh case. We refer the reader to the
dashed lines in Figs 2 and 4 to compare resolutions.

We note that the use of inflowing boundary conditions in FLASH

allowed us to avoid the rarefaction waves we created in SPH, and
thus we could use a much shorter box (by a factor of 10). To set the
scene we begin by looking at shocks in the absence of cooling.

2.3.2 Test without cooling

The test problems in the absence of cooling are compared in the
upper panels of Figs 2 and 4 (M = 4.7 and 6.04, respectively).
Provided we use the higher than usual value of the artificial viscosity
(α = 3) in GADGET, both the SPH and AMR codes handle this shock
well (as expected), with the shock smeared out over a few times the
resolution length h in SPH, and a few cells in FLASH. At GADGET’s
default value for the artificial viscosity (α = 1) we find that this is too
high a Mach number shock to be handled (we do, however, return to
the original value when we study the lower Mach number shocks in

Figure 2. Upper panel plots the temperature in a Mach M = 4.7 shock
without cooling. Each blue cross represents a column of FLASH cells (the tube
is orthogonal to the mesh), each red point represents a GADGET particle, the
black line is the analytic solution. Red dashes denote the smoothing lengths
of the GADGET particles, blue dashes the separation of FLASH cells (right
axes). Incoming gas from the left (and right, not shown) collides to form
a homogeneous hot, rarefied region in the centre. As expected, both codes
reproduce the correct profile relatively well. The shock is seen to be spread
over several cells (FLASH) or smoothing lengths (GADGET). Lower panel as
for top panel but including cooling. The analytical solution shows that the
gas shocks to a lower temperature (due to the smaller difference between
the incoming gas velocity and the shock velocity), followed by a ‘cooling
tail’ in the post-shock region. When simulated using GADGET, SPH particles
shock in several steps before reaching their maximum temperature. As they
do so, particles cool to some extent in the smoothed shock and hence reach a
lower maximum temperature than the analytical solution (the SPH shock is
also offset to the left of the analytic shock). In the FLASH run gas gets shocked
to higher temperatures, closer to the analytical solution. Note that as the gas
gets compressed the downstream SPH smoothing length is smaller than the
FLASH cell size.

Section 3). In Fig. 3 we tested both altering the value of the artificial
viscosity and adjusting the maximum time-step (between GADGET’s
default adaptive scheme and a global minimum Courant step applied
to all particles). The higher value of artificial viscosity was found to
significantly reduce the scatter in the post-shock thermal energies,
superior to a reduction in the global time-step. We would, however,
expect that at very high Mach number shocks a more conservative
time-step would be required.

2.3.3 Test with cooling

First let us consider the case of cooling for the M = 4.7 shock.
This should result in a gas temperature of less than (T1 + T0)/2,
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Numerical overcooling in shocks 3711

Figure 3. Comparison of the effects of altering the viscosity and time-step
on the shock from the upper panel of Fig. 2. Red lines show the higher
viscosity (α = 3) scheme with adaptive time-steps, green lines the same
viscosity but a global minimum time-step (set to the minimum Courant step
of all particles) and purple lines the global minimum time-step but with the
default viscosity (α = 1), black line the analytic solution. Dashed lines show
the 10th and 90th percentiles.

i.e. we are on the left side of the cooling spike. The initial collision
of gas can result in higher temperatures and follows an evolution
for which we have no analytic solution, before settling down to our
stationary case.

In Fig. 2 (lower panel) we see the FLASH and GADGET represen-
tations of these shocks. Both codes reach a maximum temperature
which is lower than that of the similarity solution. In SPH we at-
tribute this to ‘pre-shocking’, i.e. particles will shock in several
stages and cool as they are being shocked. In FLASH we attribute
this to the cooling operation being applied after the hydrodynamics
in a time-step, such that we do not record the post-shock tempera-
ture. Neither GADGET nor FLASH has the resolution to reproduce the
cooling tail particularly well here, although the final cold state is
achieved in both cases.

For our second cooling test we look at a more extreme case,
M = 6.04. This shocks the gas up to a temperature T > T1 from
which it cannot cool; hence, the analytic solution is the same as
for a shock without cooling. In Fig. 4 we show the left-hand side
of the shocked regions. Here the FLASH simulation reproduces the
analytical result very well, but the GADGET simulation suffers from
much more severe numerical overcooling through the pre-shock
region, which prevents the gas from reaching the temperature from
which it is unable to cool [due to our choice of 
(T)]. As a result we
see pile-up of high-density cold gas around x = 0, and the shocked
region is left far behind that of the FLASH run.2 As a result of this
overcooling the SPH simulation fails to form any hot gas at all.
We note, however, that this is a general problem and not specific to
either GADGET or SPH.

2.4 Convergence study for GADGET results

As it stands, we can be confident that the results we have just given
for SPH are not converged, as they have failed to reach our stable

2 Note that if cooling is prevented, the shock speed will be much higher
relative to the rest frame. This is easily understood in terms of conservation
of mass, the gas is shocked to a lower density and a much larger region is
required to contain it.

Figure 4. As for Fig. 2 but for an M = 6.04 shock. Upper panel shows
the case without cooling, with a higher post-shock temperature than Fig. 2.
Lower panel, the case with cooling. Here the SPH particles shock over
several smoothing lengths, allowing them time to cool. Unfortunately, this
means they never reach the higher temperature where cooling vanishes and
their temperatures decline to the pre-shock value, forming a cold dense
region similar to that in Fig. 2. The shift of the position of the shock front
is due to the conservation of mass; cooling allows the post-shock gas to
be compressed down to a small region around x = 0. We note here that
FLASH adequately captures the post-shock temperature even when cooling is
included.

analytic solution. The problem we have attempted to solve involves
no elements that an SPH code would not be expected to handle in
the limit where the SPH resolution length h → 0, and using a good
prescription for artificial viscosity. The outstanding question here
is thus only one of how much resolution is required; to this end we
reran the M = 4.7 simulation with a factor of 8 increase in the
particle count3 (from ≈80 000 to ≈660 000). Let us first, however,
make some general remarks about the problem.

Given the maximum temperature, Ts, of the radiating shock we
can estimate the error �T of the SPH maximum temperature by es-
timating the radiative cooling over the shock (the physical shock is
non-adiabatic and so occurs on time-scales many orders of magni-
tude shorter than that of the cooling, as discussed in Section 1).
Assuming the width of the SPH shock is ∼h, the temperature

3 One can, of course, successively reduce the width of the shock tube
in a three-dimensional simulation to achieve the same scaling as a one-
dimensional one, i.e. h ∝ N−1

SPH. In an astrophysical simulation, however,
this option is usually unavailable as the shock will be embedded in an
environment which needs to be simulated in full three-dimension.
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Figure 5. As for the lower panel of Fig. 2, but for two different SPH particle
resolutions: red points are the SPH particles as for the lower panel of Fig. 2,
whereas green points are for a two times better resolution run (i.e. a factor of
8 times more particles). The lower resolution run reproduces the temperature
peak to within 25 per cent, for the higher it is around 15 per cent. When
the simulation is close to convergence, we would expect �T ∝�u ∝ h, the
smoothing length, i.e. to get within 1 per cent of the temperature we would
need a factor of ∼104 more particles (compared to the lower resolution
run). At higher resolutions the offset between the exact and simulated shock
fronts is also reduced.

difference will be given, to first order, by

�T

T0
∼ h

v0kBT0
mp |u̇
(Ts)| ∼ h

�x


, (19)

where we have assumed that all the mechanical energy has been con-
verted into thermal energy, and that Ts 
 T0. For larger smoothing
lengths we expect �T to become sublinear in the smoothing length,
since the cooling is weaker at lower temperatures (assuming we are
on the left-hand side of the ‘cooling spike’).

If we apply this argument to Fig. 5 we see that increasing the
number of particles by a factor of ∼8 (i.e. reducing h by a factor
of 2) reduces the temperature error by a factor of ∼1.5, suggesting
that we are not quite in the linear regime. To reach a temperature
within 1 per cent of the analytic temperature would seem to require
increasing the particle count by a factor of ∼104. Although this
is (barely) possible for this particular case, such resolution is not
feasible in cosmological calculations. Most shocks in cosmological
simulations will occur at lower resolution than we have used in
this test case. Therefore, we should seek an alternative solution
involving a switch to prevent cooling during the shock process. We
intend to explore such a switch in a further paper.

3 A R E S O L U T I O N C R I T E R I O N
F O R R A D I AT I V E SH O C K S

Having established the difficulty of modelling some shock problems
with radiative cooling, we now wish to obtain a criterion against
which we can judge simulations. Such a tool will allow us to identify
those simulations where resolution is not a problem and those where
more care is required. In the following section we will discuss the
effects of resolution in quite a general way before deriving a metric
from a simple model problem. We will frame our discussion in terms
of SPH; however, there will be analogous arguments for mesh codes.

Let us take a general case of a numerical simulation of a radia-
tive shock. We assume that we have pre-shock gas with velocity,
specific internal energy and density v, u, ρ which passes through

a shock and comes to rest (v is the velocity of the incoming gas
with respect to that of the post-shock gas). First we note that the
SPH shock has a width which is some multiple of the smoothing
length h ∝ (mSPH/ρ)1/3 (for a mesh this would be the width of a cell),
where the numerical factor will include some dependence on the
artificial viscosity prescription. The change in thermal energy will
be �u ∝ v2 by energy conservation, and thus we can define a rate
of ‘shock heating’,

u̇|shock = �u/�t (20)

= kv3

(
mSPH

4πρ/3

)−1/3

, (21)

where k is some constant depending upon the details of the SPH
scheme used (e.g. neighbour counts). This heating rate is entirely
numerical, as can be seen by the presence of the SPH particle
mass mSPH: in the continuum approximation of the underlying fluid
equations the shock heats the gas instantaneously, hence the heating
rate is singular. As we reduce the particle mass, h decreases and the
numerical rate at which particles are heated over the shock front
increases.

By taking the ratio of the physical rate of gas cooling to the
numerical rate at which the gas is shock heated (which, ideally, we
would wish to be almost infinite), we can analyse the effects of
shock resolution. Only if the absolute value of this dimensionless
ratio is small do we expect the shock heating to overwhelm the
cooling, i.e. we require

|u̇
| 1

c3 M3

(
mSPH

ρ

)1/3

< ηSPH (22)

for the numerical solution to achieve close to the correct post-shock
temperature, where η is a dimensionless parameter. Here we have
written the velocity of the incoming gas as v = Mc in terms of the
Mach number and the upstream sound speed, c ≡ c0. The equivalent
for a mesh code can be written with the side length h of a cubic
mesh cell written in terms of the mass enclosed, mAMR = ρh3, to
give

|u̇
| 1

c3 M3

(
mAMR

ρ

)1/3

< ηAMR . (23)

In the subsequent section we attempt to determine a reasonable
value of η which we can use to evaluate other simulations.

3.1 Heaviside cooling function

To achieve an extremely simple radiative shock we set up a wall
shock (see Section 2) with a low Mach number M = 2 and the
piecewise cooling function

u̇
 =
(

u
3/2
0

�x0

) ⎧⎪⎨
⎪⎩

0, u ≤ u0

−
̃

(
ρ

ρ0

)
, u0 < u, (24)

where �x0 ≡ (mSPH/ρ0)1/3 is the initial interparticle spacing, 
̃ > 0
a dimensionless cooling parameter, u0 the initial specific internal
energy and as in Section 2 we use γ = 5/3. In the SPH simulation
the particles are initially arranged on a cubic lattice of dimensions
1024 × 8 × 8 in units of �x0 (1024 referring to the long x direc-
tion). The simulations were all performed with periodic boundary
conditions. Usually, a cooling function would be independent of the
interparticle spacing; however, we chose to reuse our initial condi-
tions whilst adjusting the dimensionless constant 
̃, and in this way

C© 2011 The Authors, MNRAS 415, 3706–3720
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at U
niversity of D

urham
 on N

ovem
ber 24, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Numerical overcooling in shocks 3713

Figure 6. Specific thermal energy versus position for radiative shocks with
a Heaviside cooling function, equation (24). Black, blue, green, red crosses
are for SPH simulations with dimensionless cooling rates of 
̃ = 0.11, 0.32,
0.53, 0.74, respectively; positions are quoted in units of the initial (pre-
shock) particle spacing �x0, thermal energies in units of the initial thermal
energy u0. Solid line indicates the analytic instantaneous post-shock thermal
energy us/u0 = 2.44. Dashed line indicates mid-point energy between the
initial and final thermal energy 1

2 (us + u0)/u0. When the cooling rate is
low (
 = 0.11, black crosses), the numerical overcooling is small and the
simulation gets close to the right post-shock temperature. Increasing the
cooling rate degrades the accuracy of the numerical result. We use this to
set a maximum cooling rate that the simulation can tolerate, for example by
requiring that the simulated post-shock temperature be larger than half the
correct result (horizontal dashed line).

scale the left-hand side of equation (22). This is equivalent to using
a fixed cooling function but adjusting the interparticle spacing.

We now make a couple of observations. First, we note that we
can calculate the instantaneous post-shock state using the equations
derived in Appendix A1, to find ρs/ρ0 = 2.52 and us/u0 = 2.44.

We note that this ratio is independent of the cooling parameter 
̃.
Increasing 
̃ in the simulations, however, we expect the maximum
post-shock temperature to fall as thermal energy is radiated away
over the numerically broadened shock.4

In Fig. 6 we see the results of these simulations plotted at a time
of t = 141u−1/2

0 �x0. We note that the particle distribution in the
pre-shock region has also diverged from a lattice arrangement (if it
were still a lattice the particles would appear at multiples of �x0)
into something more glass-like. This is to be expected as the SPH
equations of motion favour a large distance to the nearest neighbour
for a given density, which can be achieved with a close-packed or
glass-like arrangement. The position, velocity and Mach number of
the shock at late times are independent of the cooling function, for
fixed u0 (provided the cooling function restores the thermal energy
of the gas to u0) as is shown in Appendix A1.

With a low cooling parameter (
̃ = 0.11, black crosses) we
see that the post-shock thermal energy reaches near the theoretical
value, whilst with a high cooling parameter (
̃ = 0.74, red crosses)
we see that the simulation produces almost no hot gas. We take
the mid-point of the thermal energies as a minimum value the code
should reach to give at least approximately the correct answer.
From Fig. 6 this corresponds to a cooling parameter of 
̃ ≈ 0.4.

4 One might have expected the post-shock thermal energy ratio for a Mach 2
shock to be precisely 2γ (γ − 1) + 1 = 3.22 as in the case without cooling;
however, the immediate post-shock region is still in motion with respect to
the final cold post-shock gas (hence 
̃ = 0 is a special case).

Substituting this maximum value into equation (22) allows us to
evaluate the parameter η as

η = 
̃u
3/2
0

1

c3 M3

(
ρ

ρ0

)2/3

(25)

= 
̃ [γ (γ − 1)]−3/2 M−3

(
ρ

ρ0

)2/3

(26)

≈ 0.08 , (27)

(where we have used the post-shock density ρ = ρs = 2.52ρ0), or,
using equation (22),

|u̇
| 1

c3 M3

(
mSPH

ρ

)1/3

< 0.08 . (28)

This is the value of η we will use throughout the remainder of this
paper.

A similar analysis with FLASH yields an only slightly weaker
criterion,

|u̇
| 1

c3 M3

(
mAMR

ρ

)1/3

< 0.09 , (29)

where mAMR refers to the mass contained in a mesh cell (since the
mass in cells varies we have taken mAMR to be the value in the
cell immediately to the right of the shock, for consistency with the
evaluation of ρ).

It is worth discussing the differences between a grid and an
SPH scheme when the adaptive capabilities are utilized. SPH has a
resolution (smoothing) length which refines in areas of high density
as ρ−1/3. AMR on the other hand can have much more general
refinement criteria, for example allowing higher resolution to be
applied on features which need not be dense (e.g. shocks). As such
AMR has something of an advantage when it comes to shocks,
as almost all refinement schemes will refine over discontinuous
variable to the maximum level, and hence there is no need to impose
the refinement criterion equation (29). Of course it is possible that
a region of space in the simulation is already maximally refined,
yet even so fails to satisfy the criterion equation (29). We can then
interpret this as a test of how well the finite resolution of an AMR
simulation represents the physics in the problem.

Refining a simulation in a given volume V of a two-dimensional
structure (such as a shock) to scale h in SPH requires NSPH ∝ h−3

particles, whilst in AMR one would only need Ncell ∝ h−2 cells (we
note that limitations on the refinement level between cells do not in
general alter this scaling relation).

This can be contrasted with a sheet-like structure in a vacuum
(e.g. a gravitationally collapsed disc of thickness �h), which will
only require NSPH ∝ h−2 particles, the same relation as AMR.5

Note that we have been concentrating on how well the simulations
reproduce shocks in the presence of cooling. In practice we would
also like the code to correctly reproduce the cooling tail, i.e. the
cooling of the gas once it has passed through the shock (the right-
hand side of Fig. 6). Clearly, here we would like to resolve the
cooling length from equation (17), by requiring that �x
 � h in
SPH (or the cell size in mesh codes).

In the subsequent section we will apply the resolution criterion
we derived to estimate in which areas of cosmological simulations
numerical overcooling could be problematic.

5 As such SPH could be viewed as a refinement scheme optimized for
gravitationally collapsed structures.
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4 EFFECTS O F R ESOLUTION O N G ALAXY
F O R M AT I O N

4.1 Galaxy formation simulations

In this section we apply the resolution criterion of equation (28)
to different regions of temperature and density in the GIMIC SPH
simulation of Crain et al. (2009). First we will plot the distribution
of gas in temperature–density space and identify some environments
of interest. We will then discuss the radiative shock resolution in
this parameter space, but also explore mitigating factors which may
allow us to have confidence in simulations even when they fail to
accurately resolve the shocks.

The GIMIC simulations are zoomed resimulations of nearly spher-
ical regions picked from the Millennium Simulation (Springel
et al. 2005), including gas dynamics. Each sphere has a radius
of 18 h−1 Mpc, and the SPH particle mass is mSPH ≈ 106 h−1 M�.
Radiative cooling in the simulation includes line cooling of 11 ele-
ments, Compton cooling with the CMB and thermal bremsstrahlung
in the presence of a uniform but evolving ionizing background, as
described in Wiersma et al. (2009a; see Fig. 7). The background
cosmology, as for the Millennium Simulation, is m = 0.25, 
 =
0.75, b = 0.045, ns = 1, σ 8 = 0.9, H0 = 100 h km s−1 Mpc−1,
h = 0.73. The enrichment of gas by nucleosynthesis in stars is
described in Wiersma et al. (2009b). Photoheating, radiative and
adiabatic cooling, and shocks induced by galactic winds and due to
accretion result in gas occurring over a wide range of densities and
temperatures, illustrated in Fig. 8. Five points A–E in this T–ρ space
correspond to physical states where we want to investigate to what
extent the simulation properly resolves radiative shocks (see also
Table 1). For a general discussion on these diagrams see Wiersma
et al. (2010). The simulation code described here was also used in
the OWLS project (Schaye et al. 2010).

Point A is a typical IGM point outside virialized haloes, at low
density and temperature. Here we see a very well-defined mild
upward slope of temperature with ρ of the post-reionization gas.
This gas is cooling due to adiabatic expansion of the universe and
is being photoheated by the UV background. For a recombination
coefficient ∝T−0.7 this will at late times result in a temperature–

Figure 7. Cooling functions used in the GIMIC simulations at redshift 0.
Upper solid and dot–dashed lines represent astrophysical cooling functions
for a plasma with metallicity [Z/Z�] = 0 and −3 (where square brackets
denote the base-10 logarithm), respectively, in the presence of an ionizing
background (Wiersma et al. 2009a). Lower solid line shows a cooling spike
such as in Section 2, for comparison, on the same logarithmic scale. Dotted
line shows cooling due to oxygen only, again assuming a solar abundance.

Figure 8. Resolution requirements for correctly representing shocks in dif-
ferent regions of a temperature–density diagram. Solid contours are labelled
with the minimum values of the shock speed, v = cM, obtained from
equation (28), that avoids excessive overcooling in the shock precursor, for
simulations using an SPH particle mass of mSPH = 106 M�. The radiative
cooling rate adopted is that of a plasma with solar abundances of elements,
[Z/Z�] = 0, as shown in Fig. 7. The overlaid red shaded region is the
phase density in (T , nH) space of SPH particles in a cosmological feedback
simulation (see text). Bold letters refer to example environments described
in Table 1. Heavy black and grey dashed lines refer to tcool = tdyn and
tcool = 0.1tdyn, respectively. See text for discussion.

Table 1. Astrophysical shock environments identified in Fig. 8.

nH T 
 h vmin

(cm−3) (K) (erg cm3 s−1) (kpc) (km s−1)

A. IGM 10−7 2000 10−24 150 5
B. Hot halo 10−4 2 × 106 10−22 15 100
C. Cold halo 10−2 104 5 × 10−24 3 200
D. ISM (AGN) 100 104 5 × 10−24 0.7 400
E. ISM (SNe) 10−2 106 10−22 3 400

density relation of T ∼ ρ1/1.7 (Hui & Gnedin 1997; Theuns et al.
1998).

Point B corresponds to gas heated in an accretion shock, falling
into a galactic halo, or shocked by a galactic wind. Mechanical
energy has been converted into thermal energy, and the density will
jump by a factor of up to ∼4. When this gas cools, it will form the
warm gas of point C which may condense to fuel star formation in
a central galaxy (White & Rees 1978).

On the far right, nH > 10−1 cm−3, is a sharp vertical feature in the
distribution of SPH particles. This boundary delineates cold halo
gas from gas which undergoes star formation in the model used in
GIMIC. The denser gas represents a multiphase ISM, for which the
imposed pressure–density relation in GIMIC is p ∝ n4/3

H , known as an
effective equation of state for the ISM. Such a state is intended to
mimic the physical pressure response in dense gas undergoing star
formation (point D); compressing this gas results in significant star
formation with associated feedback (see Schaye & Dalla Vecchia
2008 for motivation and details). The SPH density then represents
a volume average density of star-forming gas, whereas the physical
ISM lies in approximate pressure equilibrium, but with a hot and
cold phase and corresponding variation in densities. In particular
the simulation does not allow this gas to cool radiatively. Finally,
point E represents the domain of Type II SNe that ignite in the
hot (106 K) sparse phase of the ISM, generated by the activity of
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Numerical overcooling in shocks 3715

previous generations of SNe. We note that there is little gas marked
in this phase as the cooling time is short.

Now let us consider this simulation in terms of its ability to resolve
the radiative shocks that occur in these five regions. Equation (28)
suggests that a radiative shock of velocity v will be resolved if it
satisfies

v >

( |u̇
|
0.08

)1/3 (
mSPH

ρ

)1/9

, (30)

i.e. there is a minimum shock velocity which can be resolved.
Shocks below this velocity will tend to artificially radiate away
their energy because there will be cooling through the (artificially
extended) shock region. Shocks above this velocity will heat up the
gas on such a short time-scale in the simulation that the cooling in
the shock region will make little difference to the final result.

In Fig. 8 we plot contours of given v, the minimum shock ve-
locity for which there is no significant overcooling in shocks. At
each temperature and density a cooling rate is evaluated (using the
cooling rate from Wiersma et al. 2009a, shown in Fig. 7, evaluated
at solar metallicity, and in the absence of an ionizing background),
which is combined with a particle mass of mSPH = 106 M�, to de-
rive a minimum shock velocity which can be resolved. Note that
equation (30) is very weakly dependent on particle mass, and thus
changing mass resolution is a very ineffective way of shifting the
contours. These contours represent the minimum velocity shock
which can be resolved at each T , ρ. Any shocks at lower velocities
will appear artificially colder due to resolution effects.

A key point, however, is that even if we fail to resolve the radiative
shock, the cooling of the gas in many cases may be inevitable
anyway. Indeed, there can be situations where other processes are
occurring on much longer time-scales than the cooling, and for
which having an incorrect thermal history of the gas is not a problem
as far as the dynamics of the system is concerned.6 Establishing
a general criterion for these is not trivial; here we will simply
compare to the locally estimated dynamical time tdyn ≡ (Gρ)−1/2

as indicative of the time-scales for other processes. We assume
that the simulation will cool adequately if tdyn 
 tcool even in the
case where radiative shocks are resolved poorly (we define tcool ≡
|u̇
| /u). The heavy dashed black contour in Fig. 8 represents the
line where tdyn = tcool. All points to the left of this represent tdyn <

tcool, so certainly we would wish to completely resolve any shocks
here. We have also included in dashed grey a line where 0.1tdyn =
tcool to demonstrate a somewhat stronger limit. The necessity of
resolving the thermal history to the right of this line is questionable,
because the gas cooling time is so small in any case. Of course
these simulations assume ionization equilibrium and optically thin
gas, so the cooling rates may have been overestimated. In addition
if one were to attempt to track the chemistry of the shocked gas,
for example the formation and destruction of molecular hydrogen,
then having a correct thermal history could still be important (Abel
et al. 1997).

Now let us evaluate the resolution criterion of equation (30) for
the five diverse environments of Table 1. First we take point A for
radiative shocks in the IGM; here we can see that the low density
and cooling rate combine to allow us to resolve all shocks above
5 km s−1, almost certainly much exceeding our requirements.

For point B we have taken a value for gas heated by a virial shock
to 2 × 106 K. The higher density and cooling rate here push up

6 Note that even if dynamics is not affected, there may be other consequences
of numerically underestimating the amount of hot gas, for example when
calculating the spectrum of cooling radiation.

the minimum shock velocity we can resolve to around 100 km s−1,
comparable to the virial shock velocities v200 themselves for haloes
of mass ∼1012 M�:

v200 = [10 GH (z)M200]1/3 , (31)

(Mo, Mao & White 1998), where G is the gravitational constant,
H(z) the Hubble parameter and M200 is the virial mass of the halo.
For z � 1 we can approximate the Hubble parameter as H (z) ≈
H0

1/2
m (1 + z)3/2 to see

v200 ≈ 201 km s−1

(
h

0.73

)1/3 (
m

0.25

)1/6

×
(

1 + z

3

)1/2 (
M200

1012 M�

)1/3

, (32)

T200 = 1

3

μmp

kB
v2

200 (33)

≈ 1.0 × 106 K

(
h

0.73

)2/3 (
m

0.25

)1/3

×
(

1 + z

3

) (
M200

1012 M�

)2/3

, (34)

where m is the matter density in units of the critical density and h =
H0/100 km s−1 Mpc−1. For lower mass haloes the gas actually cools
even faster and the shocks are more difficult to resolve; however,
the cooling may be so short as to save the situation. We explore this
situation further in Section 4.2.

For point C we consider the warm gas within galactic discs. The
minimum shock velocity which can be resolved close to the star
formation threshold is higher than for point B, because the cooling
rate is higher. However, the cooling time is so much smaller than the
dynamical time in the disc, so that we suspect that gas cooling will
be inevitable in any case. This suggests that, although numerical
overcooling is potentially severe here, it is unlikely to have any
important effects on the evolution of the disc.

At a higher temperature than C we have point E, a fiducial point
for a (Type II) SN blast wave shocking to hot (∼106 K), rarefied
(nH ∼ 10−2 cm−3) ISM (irradiated and inflated by the massive pro-
genitor star). We have a high minimum resolved shock velocity due
to the fast cooling of this gas, making its simulation problematic.
We expect the gas to form a cold, dense shell (Cox 1972), and the
lack of resolution to manifest itself primarily in an alteration of the
onset of this phase. We discuss the implications for SN feedback
further in Section 4.3.

Finally, for point D we have considered the case of an AGN out-
flow shocking into a dense ISM of nH ∼ 1 cm−3. The minimum
resolved velocity is so high here that we can have little confidence
in the simulated shock dynamics (excluding the most basic prop-
erties such as conservation of momentum). The gas is cooling fast
compared to dynamical time-scales, yet we have similar concerns
at point E about the artificial suppression of feedback.

4.2 Virial shocks

We now consider the effects of the resolution requirement equa-
tion (28) on the discussion on cold accretion and virial shocks
around haloes. Here we are following the ideas of spherical collapse
set out in White & Rees (1978). The basic question here is what
is the fate of gas as it accretes on to a halo, and gets shocked as it
converts its mechanical energy into thermal energy. If the cooling

C© 2011 The Authors, MNRAS 415, 3706–3720
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at U
niversity of D

urham
 on N

ovem
ber 24, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3716 P. Creasey et al.

time is short, then this hot phase will be a temporary one; however,
if the cooling time is long, then a hydrostatic hot halo of gas will
form within the halo, the scaling relations for which can be found
in e.g. Mo et al. (1998).

The properties and stability of such spherical shocks have been
studied by e.g. Birnboim & Dekel (2003), depending on mass and
redshift. More massive haloes have hotter shocks with longer cool-
ing times. At a given mass lower redshifts imply lower densities
and hence slower cooling, and hence easier build-up of a hot halo.
It must be recalled, however, that in this situation geometry will
also play a role. If the gas accretion can achieve a configuration
where it will penetrate farther into the halo (e.g. in filaments), it
will shock at higher densities and generally have a shorter cooling
time (the situation is complicated by the fact that the gas continues
to accelerate, and so the shock will generally be hotter).

Here we first consider applying our resolution criteria to the
spherical case. Assuming a spherical halo of mean density

ρ̄200 = 200

(
3H 2

8πG

)
(35)

and virial mass M200, we take the accreting gas to shock to the virial
temperature7 T200 and virial velocity v200 given in equations (31)
and (32), respectively. For the baryon density at the edge of the halo
we use

ρb = 1

3

b

m
ρ200, (36)

where the factor 1/3 is the ratio of edge to mean densities for an
isothermal sphere of profile ρ = ρ0(r/r0)−2. We can then apply
our shock resolution criteria in terms of the maximum mass of SPH
particles that do not suffer from numerical overcooling in the shock,

mSPH,max = η3|u̇−3

(T200)| v9

200 ρb , (37)

where our convergence tests suggest that η ≈ 0.08.
Equation (37) defines curves in a plot of virial mass M200 versus

redshift z, shown in Fig. 9 for a cooling rate appropriate for a plasma
with solar abundance ratios but mean metallicity of [Z/Z�] = −3
(we have chosen the lower metallicity as more representative of
accreting gas that has yet to be enriched by several generations of
star formation). In Fig. 10 we show the case where cooling is partly
suppressed by the presence of a uniform ionizing background (see
Wiersma et al. 2009a for details). Each thin coloured line represents
the limiting particle mass required to prevent numerical overcooling
in the corresponding spherical accretion shock. Clearly the resolu-
tion requirement is punitively strict (smallest mSPH) for small haloes
(M200 ∼ 108−10 M�), especially at high redshifts (z ∼ 9). Intuitively
this can be understood because these masses correspond to virial
temperatures near the peak of the cooling function, and at higher
redshifts the mean baryon density (and thus collisional cooling rate)
grows. In the presence of an ionizing background cooling is sup-
pressed in lower mass haloes that cool mostly through hydrogen
lines. At lower masses the ionizing radiation has a very large effect,
and gas will be photoheated instead of cooling (Okamoto, Gao &
Theuns 2008).

However, even though lack of resolution will lead to overcooling
in some haloes, the cooling time in these haloes may be so short
that the gas would cool quickly anyway. The grey area in the figure
indicates where the dynamical time in the halo is shorter than the

7 The infalling gas has actually twice this energy, so if it shocks into the
rest frame of the halo the temperature will be increased by a factor of 2;
however, we will ignore this for now.

Figure 9. Contours of maximum SPH particle mass mSPH required to pre-
vent numerical overcooling at a virial shock, for gas ([Z/Z�] = −3) ac-
creting on to haloes of different virial masses M200 at a given redshift z.
Coloured lines corresponding to mSPH = 108, 106, 104 and 102 M� limits
are represented by the thin maroon, yellow, cyan and blue lines, respec-
tively. Black lines compare cooling time to the dynamical time of the halo:
tcool = tdyn (heavy solid line), tcool = 2tdyn, tcool = 1

2 tdyn (heavy dashed
lines). The shaded grey region denotes tcool > tdyn. Numerical overcooling
due to lack of resolution in regions where tcool � tdyn will likely affect
the dynamics of the accreting gas; hence, SPH simulations would appear to
need resolutions ∼106 M�.

Figure 10. As for Fig. 9, but this time including a uniform ionizing back-
ground (see text for details). In the gold region (lower left of the figure), the
gas is being heated rather than cooled, so resolution of the shock is of lesser
importance.

cooling time: in this region we expect that numerical overcooling
may prevent the formation of a hot halo. Conversely, in the white
region, cooling is so fast that even if a hot halo were to form, it
would quickly cool. The demarcation line between these scenarios
follows closely the ∼106 M� limiting SPH mass (yellow line).
Simulation runs with that resolution or better will be able to form
hot spherical haloes in situations where we would expect such a
hot halo to form. At lower resolution, simulations may artificially
suppress the formation of a hot halo due to numerical overcooling
in the accretion shock.

Our considerations apply only at the virial radius. However,
nearer the centre of haloes we expect this conclusion to remain
valid, as the cooling time diminishes faster than the dynamical time.
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The very high mass haloes have 2tdyn < tcool (heavy dashed black
line) and we expect these to be in near hydrostatic equilibrium. As
a result of these analyses we conclude that 106 M� is a sensible
upper limit for the gas particle mass in cosmological simulations
intending to capture the evolution of protogalactic haloes, although
lower masses enable more accurate resolution of the thermal history
of gas in lower mass haloes.

4.3 Thermal feedback

Thermal feedback refers to the mechanism whereby injection of
thermal energy into the ISM causes adiabatic expansion of the gas
and subsequent suppression of star formation due to the diminished
density. The simplest model to envisage is perhaps that of a single
SN creating a hot, spherical, rarefied, blast wave. On larger scales,
however, we expect to see analogous effects from star-forming re-
gions and AGN. In this section we intend to consider our results
in terms of thermal feedback in SPH. We will review the basic
physics of thermal feedback and its role in galaxy evolution. We
will then discuss its implementation in SPH and derive some quan-
titative criteria for accurately resolving it. Finally, we will relate our
observations to the feedback experiments in other work.

We begin by considering the problem of simulating an SN blast
wave. Here we are primarily concerned with the situation where
we may artificially radiate away the thermal energy of the blast
wave due to a lack of resolution. This would result in the premature
transition from a thermally driven to a momentum-driven phase.

A concise overview of the evolution of an SN remnants can
be found in Cox (1972). Essentially the blast wave will follow a
Sedov–Taylor self-similar solution (Sedov 1959) until the shock
temperature Ts falls to a value where the radiative cooling exceeds
the cooling via adiabatic expansion. A full calculation is beyond
the scope of the present paper; however, we can get close just by
dimensional considerations:

kBTs = (
E2

0m
3
pn

4
H
6

)1/11
(38)

≈ kB4 × 106 K , (39)

where E0 = 1051 erg is the SNe energy, nH = 1.0 cm−3 and 
 =
10−22 erg cm3 s−1. The value of Cox (1972) is a factor of 2 smaller,
at 2.0 × 106 K.

In a simulation we would like to resolve the transition in the
SN shock from being pressure driven to being momentum driven,
which typically occurs for shock temperatures Ts ∼ 2.0 × 106 K;
numerical overcooling may cause the shock to transition too early,
hence underestimating the feedback effect of the explosion on star
formation in the surroundings. Using the Sedov similarity solution
for a three-dimensional blast wave in a uniform cold medium of
adiabatic index γ = 5/3 and density ρ0 (which we will shortly
take to be the density of the ISM), we can then write the pressure
and temperature just inside the shock wave in terms of the shock
velocity vs, as

ρs = γ + 1

γ − 1
ρ0 (40)

ps = 2

γ + 1
ρ0v

2
s (41)

kBTs = μ̄
ps

ρs
= 2

γ − 1

(γ + 1)2
μ̄v2

s , (42)

where μ̄ is the mean particle mass. Combining this with the resolu-
tion criterion of equation (28) we find that (excluding fairly patho-
logical cooling functions) the cooling will be hardest to resolve at
the lower temperatures, i.e. at Ts = 2.0 × 106 K.

Applying fiducial values for the ISM of μ̄ ≈ 0.6 mp at Ts =
2.0 × 106 K yields a shock velocity, density and cooling rate of

vs = 380 km s−1 (43)

ρs ≈ 9 × 10−24 g cm−3 (44)

u̇|
 ≈ −180 cm2 s−3 , (45)

and the corresponding radius of the blast wave

rs = 1.15

(
E

ρ0

)1/5

t2/5 (46)

= 1.155/3

(
E

ρ0

)1/3 (
2

5

)2/3

v−2/3
s (47)

≈ 15 pc , (48)

where E ∼ 1051 erg is the thermal energy injected by the explosion.
The corresponding limiting SPH particle mass that avoids numerical
overcooling, evaluated from equation (28), is

mSPH = 70 M�
(

ρs

9 × 10−24 g cm−3

)

×
( vs

380 km s−1

)9
( |u̇
|

180 cm2 s−3

)−3

. (49)

The small values of both the radius and the required minimal
mass resolution imply that most cosmological simulations of galaxy
formation are far from resolving individual SN explosions; however,
detailed simulations of high-z dwarf galaxies do indeed already
reach such extreme resolutions (e.g. Wise & Abel 2008). For a
state-of-the-art mass resolution for a cosmological simulation of
say 105 M�, a star particle really represents very many stars and
hence also many SNe. Simply scaling up E0 to represent the many
SNe that go off does not really help much, as for example the blast
radius only scales ∝E1/3. In reality different SNe will go off in
different places, and once the density of the ISM is decreased due
to one explosion, another explosion in the lower density gas will
have a much larger effect, eventually resulting in a percolating hot
phase.

However, these small scales cannot yet be resolved in current cos-
mological simulations; hence, they fail to follow the transition from
pressure to momentum-driven SN shells. One can try to model the
expected effects by simply heating a small number of neighbouring
SPH particles. In this case our resolution study indicates that the
reheating temperature must be sufficiently high for numerical over-
cooling not to affect the dynamics. We can thus generalize the above
calculation to find the minimum temperature for resolved thermal
feedback for a given SPH particle mass. To perform this calculation
we will need to associate a shock velocity with a single particle,
which we will take to be the Sedov shock velocity for a blast wave
of the same mass as the SPH particle:

vs = 1.155/2

√
π

3γ (γ − 1)

4

5
cs (50)

= 1.1cs . (51)
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Combined with equation (30) we find

ufb � η−2/3

1.12 γ (γ − 1)

(
mSPH

ρ

)2/9

(|u̇
|)2/3 (52)

= 4

(
mSPH

ρ

)2/9

(|u̇
|)2/3 , (53)

the minimum thermal energy required to avoid numerical overcool-
ing.

Dalla, Vecchia & Schaye (2008) argue that for thermal feedback
to be effective it requires that the sound crossing time across an SPH
particle, ts = h/cs, be smaller than the cooling time, τc = u/|u̇
|.
Using ρh3 ∼ mSPH, ts < τc requires that

ufb �
(

mSPH

ρ

)2/9

(|u̇
|)2/3 , (54)

which is identical apart from a numerical factor to equation (53).
Our criterion is stronger as it takes into account that the code will
in practice overestimate the cooling of the gas in shocks; the lower
value simply requires there to be a shock.

In Fig. 11 we explore the parameter space for modelling thermal
feedback in an SPH simulation with 106 M� particles. At each den-
sity, there is a minimum temperature required to drive an adiabatic
blast wave phase. The light grey region is defined by the sound
crossing time argument of equation (54) and the dark grey is from
equation (53). In the white region we expect effective thermal feed-
back; in the dark grey region it will be suppressed by overcooling
in shocks, and finally in the light grey the code will be unable to
produce a shock at all.

It is helpful to introduce some numbers. For gas with hydrogen
number density nH = 1 cm−3, a mSPH = 106 M� particle would need
to be heated to a temperature of Ts ≈ 5×106 K to be in the pressure-
driven phase, according to equation (54). However, our resolution
study suggests that we need a higher temperature of ≈107 K to
prevent excessive overcooling through the shock, implying that at

Figure 11. Minimum reheating temperature T required to avoid numerical
overcooling as a function of hydrogen number density nH, assuming an SPH
resolution of mSPH = 106 M� and solar metallicities. Cooling is so rapid in
the shaded regions that the transition from thermally driven to momentum-
driven expansion phases of SN bubbles is so fast that much of the injected
energy will be lost to radiation. The light grey shaded region corresponds to
equation (54), the dark grey shaded is the more demanding equation (53).
The white region is where the reheating temperature is sufficient to force
thermal feedback despite resolution concerns. Dashed line is an estimate of
the specific energy of SNe from Kay et al. (2002).

this resolution the simulation cannot properly represent the effects
of thermal feedback. Note also from equation (53) that this improves
only very slowly with improved resolution, ∝m2/9

SPH. Relating back
to models of feedback, this is somewhat problematic as the specific
energy of SNe8 is estimated to be only around 2 × 107 K (dashed
line in Fig. 11) which can still be too low for the simulation code to
properly follow the thermal evolution of the explosion.

Clearly, this has important consequences for prescriptions for SN-
driven thermal feedback. In densities above nH = 1 cm−3 the thermal
feedback starts to reduce its effectiveness, even if we ignite all our
SNe in a single time-step, yet this is one of the key environments
where feedback is required.

One way to drive feedback at this resolution, whilst still maintain-
ing a globally consistent initial mass function (IMF), is to stochas-
tically inject the energy of SNe due to star formation. Since the
mean thermal energy of a single particle can then be greater than
2 × 107 K, we can remain in the effective region of Fig. 11. To bal-
ance the IMF other star-forming particles will need to receive less
or no SNe energy. The alternative is to increase the resolution, but
again the low exponent of mSPH in equation (53) makes this quite
prohibitive.

The issue is further complicated by the existence of a multiphase
ISM not resolved by the simulation. This is the motivation for many
of the prescriptions for feedback, such as applying a fraction of the
SNe energy as kinetic energy (Navarro & White 1993), disabling the
cooling of thermal bubbles (Gerritsen 1997) or releasing the energy
of many accumulated SNe in one step. A more thorough discussion
on all these methods can be found in Kay et al. (2002). Another
approach is to model the net feedback effects by a subgrid model
(for example an imposed equation of state without cooling as in
Schaye et al. 2010), or to model the hot and cold phases separately
by representing clouds in the cold phase as collisionless particles
(Booth, Theuns & Okamoto 2007).

At lower densities it becomes easier to thermally drive a blast
wave due to the reduced cooling rate, reinforcing the importance of
simulating a multiphase ISM. For their star formation threshold of
nH = 10−1 cm−3, the high-resolution OWLS simulations of Schaye
et al. (2010) can represent thermally driven SNe at the edges of
discs, but not in more central regions. Indeed, at higher densities
the required temperatures rapidly reach extreme values. Booth &
Schaye (2009) note that in their simulations AGN feedback requires
reheating temperatures Ts > 108 K, as at lower temperature the
energy is simply radiated away. We believe that this problem is
not a physical one but one of resolution. At lower temperatures the
density is higher, the cooling faster, and the cooling region behind
the shock cannot be resolved, as is clear from Fig. 11.

4.4 Shocks at the sound speed

As an interesting aside it is worth considering that there will usually
be an upper limit to the resolution required. If we assume that
the weakest shock has a velocity of the order of the sound speed,
cs = [γ (γ −1)u]1/2, then the minimum requirement for the particle
mass for a given problem will be

mSPH = (0.08)3 [γ (γ − 1)]9/2 min
x∈V

{|u̇
|−3u9/2ρ
}

. (55)

8 The specific energy of SNe is the energy released by SNe per unit mass of
star-forming gas (Kay et al. 2002), i.e. if all SNe were to ignite simultane-
ously we would reach this mean temperature.
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Unfortunately, such a limit will usually be very small indeed, at
least for cosmological simulations, because of the low sound speed
of cold, dense gas present in galactic discs. However, if one chooses
to go down this path, then one can examine the following criteria. If
we have a conventional collisional cooling function, then u̇
/ρ is
independent of density, and we can make the additional assumptions
that u̇
 → 0 as u → 0, and for large u

|u̇
|
ρ

∼ u1/2 (56)

(thermal bremsstrahlung), giving

mSPH ∝ min
x∈V

{
ρ−2

}
, (57)

i.e. the smallest particle mass is determined by the highest density
in the problem. This analysis is of course not valid with Compton
cooling via the CMB, or the presence of a UV background, as
neither process is collisional.

5 C O N C L U S I O N S

In this paper we have examined the role of radiative cooling
in shocks. We have found a general analytical solution for one-
dimensional piecewise linear collisional cooling functions and com-
pared it to numerical simulations of the same shock, performed with
an SPH code (GADGET) and an AMR code (FLASH). These codes smear
out the shock over several particles or cells, and such an artificial
‘pre-shock’ results in numerical overcooling which may prevent the
formation of a hot post-shock region. We have estimated a general
resolution criterion to avoid such overcooling, and applied it to the
problems of virial shocks and the production of hot gaseous haloes.
We have found that to avoid numerical overcooling of accretion
shocks on to haloes that should develop a hot corona a particle or
cell mass resolution of 106 M� is required (Fig. 10), which is within
reach of current state-of-the-art simulations.

Similarly, we have applied our estimates to thermal feedback
from AGN or SNe blast waves, in the presence of radiative cooling.
We have seen that the energy required to drive thermal feedback
at a given mass scale, for current numerical results, is an order of
magnitude higher than one would expect just from physical consid-
erations. For cosmological simulations (106 M� gas particles) of an
nH = 1.0 cm−3 ISM we see (Fig. 11) that temperatures in excess of
107 K are required to effectively drive thermal feedback by avoiding
spurious suppression of the feedback by numerical overcooling.

Although all of these issues can be rectified by increasing the res-
olution, the minimum thermal energy of injected feedback required
to avoid artificial cooling scales weakly with decreasing particle
mass, ∝m2/9

SPH (see equation 53). Consequentially, a potentially fer-
tile region of study may be that of cooling switches, i.e. a criterion
for disabling cooling through a shock. Such a switch would allow a
simulation to resolve temperatures much closer to the physical tem-
peratures of radiative shocks without requiring extreme resolutions.
Unfortunately, it is not a straightforward problem to have a criterion
that will consistently suppress cooling in the presence of shocks,
yet does not affect cooling in regions where there are no shocks.
Since we can never hope to completely remove resolution effects,
it seems sensible to have a more limited aim, perhaps to capture
the temperatures of shocks up to some maximum cooling rate. As
such one might wish to suppress cooling, when the cooling time is
greater than some fraction of the shock heating time. We intend to
explore this avenue in a further paper.

Further work could include the effects of shock-induced non-
collisional ionizational equilibrium (non-CIE) or non-thermalized

gas. Since the resolution can make such a significant modification
to the thermal history of a gas, we expect that a criterion due to
non-CIE may be quite strict.
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A P P E N D I X A : R A D I AT I V E SH O C K S W I T H
P I E C E W I S E L I N E A R C O O L I N G FU N C T I O N S

A1 Similarity solution for a one-dimensional radiatively
cooling shock

We start with an ideal gas with adiabatic index γ ,

p = (γ − 1)ρu , (A1)

and a collisional radiative cooling function,

du|
 = −ρf (u) dt . (A2)

These combine to give an evolution of

du = (γ − 1)
u

ρ
dρ − ρf (u) dt . (A3)

Stationary solutions of a post-shock cooling region satisfy inte-
grals of the mass and momentum equations, i.e.

ρ(v − us) = ρ0(v0 − us) (A4)

p + ρ(v − us)
2 = p0 + ρ0(v0 − us)

2 , (A5)

where us is the shock velocity and ρ0, p0 and v0 denote the density,
pressure and velocity at some arbitrary downstream point. Thus, the
density, velocity and thermal energy can be written in terms of a
similarity variable λ:

ρ/ρ0 = λ (A6)

v − us

v0 − us
= λ−1 (A7)

u/u0 = (a + 1)λ−1 − aλ−2 , (A8)

with

a = ρ0(v0 − us)2

p0
. (A9)

Now we assume we have a piecewise linear cooling function,
i.e. we can solve each segment separately with the linear cooling
function

f (u) = A(u − uc) , (A10)

where A is some constant and uc denotes the ‘cold’ thermal energy
where cooling vanishes. This gives an ordinary differential equation
for x of the form

dx

dλ
= v0 − us

Aρ0

[
γ (a + 1)λ−4 − (γ + 1)aλ−5

(a + 1)λ−1 − aλ−2 − uc/u0

]
, (A11)

which can be solved generally; however, in the case of uc = u0 we
have the particularly simple case:

x − x0 = vc − us

Aρc

[
γ − a

a − 1
log(λ−1 − 1)

+ 1 − aγ

(a − 1)a2
log(1 − aλ−1)

−a + 1

a
λ−1 − γ + 1

2
λ−2

]

λ ∈
[

a

a + 1

γ + 1

γ
, 1

]
,

the left-hand limit for λ coming from entropy considerations. An
example cooling shock of this form can be seen in Fig. 1.

A2 Colliding gas

Assume two homogeneous flows collide from the left and right, with
properties ρ0, p0, ±v0. With no cooling, a hot, static region is created
in the centre, with properties pc and ρc. The mass, momentum and
energy equations are

(v0 − us)ρ0 = −ρcus (A12)

(v0 − us)
2ρ0 + p0 = ρcu

2
s + pc (A13)

p0

ρ0
+ 1

2
(γ − 1)v2

0 = pc

ρc
, (A14)

where us is the velocity of the left moving shock in the rest frame.
Eliminating pc, ρc gives

u2
s + 1

2
(γ − 3)usv0 = p0

ρ0
+ 1

2
(γ − 1)v2

0 , (A15)

so

us = −1

4
(γ − 3)v0 − 1

4

√
v2

0(γ + 1)2 + 16
p0

ρ0
. (A16)

Assume now that there is cooling and that the gas in the centre
cools to the temperature of the pre-shock gas (where cooling is
assumed to vanish). In this case the mass, momentum and energy
equations are

(v0 − us)ρ0 = −ρcus (A17)

(v0 − us)
2ρ0 + p0 = ρcu

2
s + pc (A18)

p0/ρ0 = pc/ρc , (A19)

where these equations are only dependent on the cooling function
via the thermal state at which cooling vanishes, p0/ρ0. Eliminating
pc, ρc gives

u2
s ρ0 − usv0ρ0 − p0 = 0 . (A20)

The solution for the shock velocity us = v0/2−√
(v0/2)2 + p0/ρ0

pc, ρc can be found by substitution.
The conditions immediately to the right of the shock (vs, ρs, ps)

can be found from the usual Rankine–Hugoniot relations,

(v0 − us)ρ0 = (vs − us)ρs (A21)

(v0 − us)
2ρ0 + p0 = (vs − us)

2ρs + ps (A22)

1

2
(v0 − us)

2 + γ

γ − 1

p0

ρ0
= 1

2
(vs − us)

2 + γ

γ − 1

ps

ρs
. (A23)
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