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Abstract. Let PU(n, 1) denote the isometry group of the n-dimensional com-

plex hyperbolic space Hn
C . An isometry g is called reversible if g is conjugate

to g−1 in PU(n, 1). If g can be expressed as a product of two involutions,
it is called strongly reversible. We classify reversible and strongly reversible

elements in PU(n, 1). We also investigate reversibility and strong reversibility

in SU(n, 1).

1. Introduction

An element g in a group G is called reversible if there exists h ∈ G such that
g−1 = hgh−1. The terminology ‘real’ has also been used in the literature to refer
to the reversible elements, for example, see [9, 25, 11]. If h is an involution, that is
h−1 = h, then this equation becomes g−1 = hgh or equivalently (hg)2 = hghg = e,
the identity element. In other words, g can be decomposed as the product of two
involutions h and hg. In this case g is called strongly reversible.

Reversible group elements have been studied in several contexts, for example see
[9, 19, 20, 25, 26, 27]. The strongly reversible elements are also studied in several
contexts, for example see [3, 4, 5, 7, 6, 15, 16, 17, 21, 29]. Some of these authors have
used the terminology ‘strongly real’ or ‘bireflectional’ to refer to strongly reversible
elements. From a representation theoretic point of view, the terminology ‘real’ is
motivated by a theorem of Frobenius and Schur (1906) which says that if G is finite,
the number of real-valued complex irreducible characters of G equals the number
of real conjugacy classes of G, cf. [14]. On the other hand from geometric point of
view, the terminology ‘reversible’ is more commonly used, cf. [18, 22, 23, 24]. We
will use the terminology ‘reversible’ and ‘strongly reversible’.

Reversible elements in real hyperbolic geometry have been investigated in many
contexts. Let I(Hn

R) denote the full isometry group of the n-dimensional real hy-
perbolic space and let Io(Hn

R) denote the identity component, which is the group
of orientation preserving isometries of Hn

R. When n = 2 it is well known that every
element of I(H2

R) is strongly reversible (and so also reversible) but that there are
elements of Io(H2

R) = PSL(2,R) that are not reversible. For example z 7−→ z + 1
is not conjugate in PSL(2,R) to its inverse, z 7−→ z − 1. Things are slightly dif-
ferent for n = 3. On page 47 of [10] Fenchel shows that every element of the
group Io(H3

R) = PSL(2,C) is strongly reversible. On page 51 of [10] he also shows
that every element of I(H3

R) is strongly reversible. In higher dimensions, it follows
from [13, Theorem 1.2] that every element of I(Hn

R) is strongly reversible, also see
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[3, 15, 16, 21, 29]. The reversible elements in Io(Hn
R) have been classified in [12, 24],

also see [18]. In [12], the first author obtained a linear-algebraic classification by
identifying the orientation-preserving isometry group with SOo(n, 1). In [24], a
geometric classification of the reversible elements in Io(Hn

R) was obtained using the
ball model of the hyperbolic space.

Let Hn
C denote the n-dimensional complex hyperbolic space. Let I(Hn

C) denote
the full isometry group which consists of holomorphic, as well as anti-holomorphic
isometries. The group of all holomorphic isometries can be identified with the
projective unitary group PU(n, 1) which is an index 2 subgroup of I(Hn

C). Falbel
and Zocca [8] proved that every element in PU(2, 1) can be expressed as a product
of two anti-holomorphic involutions, and so is strongly reversible in I(H2

C). Choi
[2] extended this result to the isometries of Hn

C. It follows from these results that
every holomorphic isometry of Hn

C is reversible in I(Hn
C).

In this paper we restrict ourselves to the group PU(n, 1) and ask for reversible and
strongly reversible elements in PU(n, 1). However, for convenience, we work with
the linear group U(n, 1). We also investigate reversibility and strong reversibility in
SU(n, 1). Earlier, strongly reversible and reversible elements in unitary groups over
a field F have been investigated by Djokovich [3] and Singh-Thakur [25] respectively.
It is desirable to have an explicit and actual classification, not just characterisation,
of the reversible elements in unitary groups over the complex numbers. Such a
classification is not known in general. However, for the groups U(n, 1) and SU(n, 1)
which are of interest to complex hyperbolic geometry, we have a very satisfactory
answer to the classification problem of reversible elements. In this paper we offer a
complete classification of the reversible and strongly reversible elements in U(n, 1),
in SU(n, 1) or in PU(n, 1). Most of our results are linear algebraic in nature. So
people who are not familiar with complex hyperbolic geometry should think of our
results as being about unitary groups with respect to an indefinite Hermitian form.
The main results of the paper are Theorem 4.1, Theorem 4.2 and Theorem 4.5 in
section 4. As a consequence we have the following.

Theorem 1.1. Let T be an element in SU(n, 1).
(i) Let T be hyperbolic. Then T is reversible in SU(n, 1) if and only if the

characteristic polynomial of T has real coefficients.
(ii) Let T be elliptic. Then T is reversible in SU(n, 1) if and only if the charac-

teristic polynomial of T has real coefficients and the eigenvalue of negative
or indefinite type of T is 1 or −1.

(iii) Let T = NA be parabolic. Then T is reversible in SU(n, 1) if and only if the
characteristic polynomial of T has real coefficients and the null eigenvalue
of T is 1 or −1 and the minimal polynomial of N is (x− 1)3.

Strong reversibility is very closely related to decomposable subgroups. Will
[28] has investigated when a subgroup of SU(2, 1) generated by two loxodromic
maps can be decomposed as an index two subgroup of a group generated by three
involutions. He says that such a group is R-decomposable if all three involutions are
antiholomorphic, that is they are in I(H2

C) but not in SU(2, 1), and C-decomposable
when all three involutions are in SU(2, 1). Will’s criteria to decide whether a group
is R or C-decomposable involve traces of certain group elements being real. As
a consequence of Theorem 1.1, we relate real traces in SU(2, 1) and SU(3, 1) to
reversibility. The following result should be compared with Theorem 1 of Will [28].
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Corollary 1.2. Let T be an element in SU(k, 1) for k = 2 or 3.
(i) Let T be hyperbolic. Then T is reversible in SU(k, 1) if and only if the trace

of T is real.
(ii) Let T be elliptic. Then T is reversible in SU(n, 1) if and only if the trace of

T is real and the eigenvalue of negative or indefinite type of T is 1 or −1.
(iii) Let T = NA be parabolic. Then T is reversible in SU(n, 1) if and only if

the trace of T is real, the null eigenvalue T is 1 or −1 and the minimal
polynomial of N is (x− 1)3.

2. Preliminaries

All the assertions made in this section are borrowed essentially from [1].
Let V ≈ Cn+1 be a vector space of dimension (n+ 1) over C equipped with the

complex Hermitian form of signature (n, 1),

〈z, w〉 = wtJz = −z0w0 + z1w1 + · · ·+ znwn,

where z and w are the column vectors in V with entries z0, · · · , zn and w0, · · · , wn
respectively and J is the diagonal matrix J = diag(−1, 1, · · · , 1) representing the
Hermitian form. Define

V0 = {z ∈ V | 〈z, z〉 = 0}, V+ = {z ∈ V | 〈z, z〉 > 0}, V− = {z ∈ V | 〈z, z〉 < 0}.
A vector v is called time-like, space-like or light-like according as v is an element
in V−, V+ or V0. Let P(V) be the projective space obtained from V, i.e, P(V) =
V − {0}/ ∼, where u ∼ v if there exists λ in C∗ such that u = vλ, and P(V) is
equipped with the quotient topology. Let π : V−{0} → P(V) denote the projection
map. We define Hn

C = π(V−). The boundary ∂Hn
C in P(V) is π(V0 − {0}). The

unitary group U(n, 1) of the Hermitian space V acts by the holomorphic isometries
of Hn

C. We will not deal with the anti-holomorphic isometries of Hn
C in this paper.

All isometries will be assumed to be holomorphic unless specified otherwise.
A matrix A in GL(n+ 1,C) is unitary with respect to the Hermitian form 〈z, w〉

if 〈Az,Aw〉 = 〈z, w〉 for all z, w ∈ V. Let U(n, 1) denote the group of all matrices
that are unitary with respect to our Hermitian form of signature (n, 1). By letting
z and w vary through a basis of V we can characterise U(n, 1) by

U(n, 1) = {A ∈ GL(n+ 1,C) : ĀtJA = J}
The actual group of the isometries of Hn

C is PU(n, 1) = U(n, 1)/Z(U(n, 1)), where
the centre Z(U(n, 1)) can be identified with the circle group S1 = {λI | |λ| = 1}.
Thus an isometry T of Hn

C lifts to a unitary transformation T̃ in U(n, 1) and the
fixed points of T correspond to eigenvectors of T̃ . For our purpose, it is convenient
to deal with U(n, 1) rather than PU(n, 1). We shall regard U(n, 1) as acting on Hn

C
as well as on V.

A subspace W of V is called space-like, light-like, or indefinite if the Hermit-
ian form restricted to W is positive-definite, degenerate, or non-degenerate but
indefinite respectively. If W is an indefinite subspace of V, then the orthogonal
complement W⊥ is space-like.

Definition 2.1. An eigenvalue λ of T ∈ U(n, 1) is said to be of negative type, of
positive type if every eigenvector in Vλ is in V− or V+ respectively. The eigenvalue
λ is called null if the λ-eigenspace Vλ is light-like. The eigenvalue λ is said to be
of indefinite type if Vλ contains vectors in V− and vectors in V+. Moreover, for λ
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of indefinite type, the restriction of the Hermitian form to Vλ has signature (r, 1),
1 ≤ r ≤ n, where dim Vλ = r + 1.

A second model of Hn
C is obtained by taking the section of V defined by z0 = 1

and considering π(V−). Thus a point z = (z1, . . . , zn) ∈ Hn
C corresponds to z =

[(1, z1, . . . , zn)] in π(V). The vector (1, z1, . . . , zn) is the standard lift of z ∈ Hn
C to

V−. Further we see that z ∈ Hn
C provided

〈z, z〉 = −1 + |z1|2 + · · ·+ |zn|2 < 0,

i.e. |z1|2 + · · · + |zn|2 < 1. Thus π(V−) can be identified with the unit ball Bn in
Cn given by

Bn = {(z1, · · · , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1}.

This identifies the boundary ∂Hn
C with the complex unit sphere

S2n−1 = {(z1, · · · , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 = 1}.

The Bergman metric of Hn
C is the distance function ρ given by

cosh
(
ρ(z, w)

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉

,

where z, w are the standard lifts of z, w in Hn
C.

In the ball model of the hyperbolic space, by Brouwer’s fixed point theorem it
follows that every isometry T has a fixed point on the closure Hn

C. An isometry T
is called elliptic if it has a fixed point in Hn

C; it is called parabolic if it fixes a single
point and this point lies in ∂Hn

C; it is called hyperbolic (or loxodromic) if it fixes
exactly two points and they both lie on ∂Hn

C. Any non-central element T of U(n, 1)
must be one of the above three types; see [1].

It follows from the conjugacy classification in U(n, 1), see [1, Theorem 3.4.1], that
the elliptic and hyperbolic elements are semisimple, i.e. their minimal polynomial is
a product of linear factors. The parabolic elements are not semisimple. A parabolic
transformation T has the unique Jordan decomposition T = AN , where A is elliptic,
N is unipotent and AN = NA.

Let T be elliptic. From the conjugacy classification it follows that all eigenvalues
of T except for one are of positive type and the remaining eigenvalue is either of
negative type or of indefinite type. Moreover, all eigenvalues will have norm 1.

Suppose T is hyperbolic. Then it has a pair of null eigenvalues reiθ, r−1eiθ,
r > 1, and the eigenspace of each such eigenvalue has dimension one. The other
eigenvalues are of positive type and they all have norm one.

Suppose T is parabolic. If T is unipotent, i.e. all the eigenvalues are 1, then it
has minimal polynomial (x − 1)2, or (x − 1)3. If T is a non-unipotent parabolic,
then it has the Jordan decomposition T = AN as above. In this case T has a
null eigenvalue λ and the minimal polynomial of T contains a factor of the form
(x−λ)2 or (x−λ)3. This implies that V has a T -invariant orthogonal decomposition
V = U ⊕W, where T |W is semisimple, U is indefinite, dim U = k with k = 2 or 3
and T |U has characteristic, as well as minimal polynomial (x− λ)k.
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3. Reversible and strongly reversible elements in U(n) and SU(n)

Let U(n) denote the isometry group of Vo ≈ Cn equipped with the positive-
definite Hermitian form 〈z, w〉o = z1w1 + ....+ znwn. In this section we assume the
well known facts that every eigenvalue of an element of U(n) is a complex number
of unit modulus and that every element of U(n) is diagonalizable.

A polynomial f(x) over C is called self-dual if its set of roots is invariant under
taking reciprocals. That is, if λ ∈ C is a root of f(x) of multiplicity k, then so is
λ−1. Note that when λ = ±1 this statement is vacuous. For a linear transformation
T , let χT (x) denote the characteristic polynomial of T .

Strongly reversible elements in U(n) were considered in the work of Ellers [6],
also see [3, 25].

Proposition 3.1 (Theorem 8 of Ellers [6]). A transformation T in U(n) is strongly
reversible if and only if its characteristic polynomial is self-dual.

Since strongly reversible elements are reversible and having a self-dual charac-
teristic polynomial is necessary for being reversible (see below), we immediately
have:

Corollary 3.2. A transformation T in U(n) is reversible if and only if its charac-
teristic polynomial is self-dual.

In the case of SU(n) things become slightly more delicate.

Proposition 3.3. A transformation T in SU(n) is reversible if and only if its
characteristic polynomial is self-dual. However, for an element T in SU(n) with
self-dual characteristic polynomial the following two conditions are equivalent:

(a) T is reversible but not strongly reversible;
(b) n = 4m+ 2 with m ∈ Z and ±1 is not an eigenvalue of T .

Proof. Suppose T is a reversible or strongly reversible element of SU(n). Then
we can find S ∈ SU(n) so that STS−1 = T−1 (if T is strongly reversible then
S = S−1). Let Vλ denote the eigenspace of T corresponding to the eigenvalue λ.
For each eigenvalue λ of T , it is clear that S bijectively maps the λ-eigenspace Vλ to
the λ−1-eigenspace Vλ−1 . Therefore Vλ and Vλ−1 have the same dimension. This
implies λ and λ−1 are roots of the characteristic polynomial χT (x) with the same
multiplicity. Hence χT (x) is self-dual.

Conversely, suppose χT (x) is self-dual. Let E denote the set of eigenvalues
λ 6= ±1 such that λ−1 is also an eigenvalue with the same multiplicity. Then V has
a T -invariant orthogonal decomposition into eigenspaces

V = V1 ⊕ V−1 ⊕W,

where W = ⊕λ∈E(Vλ⊕Vλ−1) and dim Vλ = dim Vλ−1 . If v ∈ Vλ then T−1v = λ−1v
and so Vλ is the λ−1-eigenspace of T−1. Similarly, Vλ−1 is the λ-eigenspace, of T−1.
Since Vλ and Vλ−1 are non-empty, we can find orthonormal bases {e1, ..., er} and
{f1, ..., fr} of Vλ and Vλ−1 respectively. Let Wλ = Vλ ⊕ Vλ−1 . Define Sλ : Wλ →
Wλ by Sλ(ei) = fi and Sλ(fi) = −ei for each i = 1, . . . , r. Then SλT |Wλ

S−1
λ =

T−1|Wλ
and det(Sλ) = 1. Note, however that (Sλ)2 = −I on Wλ, so Sλ is not an

involution. Define
SW = ⊕λ∈ESλ.
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Let W1 = V1 ⊕ V−1 and define S1 : W1 → W1 to be the identity (it may be that
V1 or V−1 is empty). Let S = S1⊕SW. Then S ∈ SU(n) and STS−1 = T−1. Thus
T is reversible. This proves the first part of the theorem.

For the second part of the proposition, suppose we want T to be strongly re-
versible. Then we must change the above construction to ensure that Sλ is an
involution. In this case, we define S̃λ(ei) = fi and S̃λ(fi) = ei. Then S̃2

λ = I and
det(S̃λ) = (−1)dim(Vλ). Define

S̃W = ⊕λ∈ES̃λ.

Then S̃W is an involution and det(S̃W) = (−1)
1
2 dim(W). If T does not have eigenvalue

1 or −1, that is both V1 and V−1 are empty, then W = V and n is even. We see
that S̃ = S̃W is in SU(n) only when n is a multiple of 4. Suppose n is odd or
n = 4m + 2 with ±1 as an eigenvalue. Then either V1 or V−1 is non-empty.
Choose v in V1 ⊕V−1 = W1 and define S̃1 by S̃1(v) = (−1)

1
2 dim(W)v and S̃1 is the

identity on the orthogonal complement of v in W1. Let S̃ = S̃1 ⊕ S̃W. Then S̃ is
an involution in SU(n) and S̃T S̃−1 = S̃T S̃ = T−1. Thus T is strongly reversible.
Hence it follows that if T is reversible, but not strongly reversible, then we must
have n = 4m+ 2 and ±1 is not an eigenvalue of T .

Conversely, suppose n = 4m + 2 and ±1 is not an eigenvalue of T . Since T
is reversible, we have S ∈ SU(n) with STS−1 = T−1. If possible suppose that
T is strongly reversible. Then, S can be chosen to be an involution. Now, ob-
serve that we can decompose V as a direct sum V = W+ ⊕ W− so that S :
W+ → W− and S : W− → W+. (For example we can take W+ to be the di-
rect sum of the eigenspaces Vλ where =(λ) > 0 and W− to be the direct sum of the
eigenspaces Vλ−1 where =(λ−1) = −=(λ) < 0.) Note that W+ and W− both have
dimension 2m + 1. Let {e1, . . . , e2m+1} be an orthonormal basis for W+. Then
{S(e1), . . . , S(e2m+1)} is an orthonormal basis of W−. Hence, with respect to the
basis {e1, S(e1), . . . , e2m+1, S(e2m+1)}, we can write S as a block diagonal matrix
where each block is a 2×2 off-diagonal matrix with off-diagonal entries 1. It is clear
that each block has determinant −1 and hence S has determinant (−1)2m+1 = −1.
This is a contradiction to the fact that S belongs to SU(n).

This completes the proof. �

4. Reversible and strongly reversible elements in U(n, 1) and SU(n, 1)

4.1. Statement of main theorems. We now turn our attention to U(n, 1) and
SU(n, 1). In this case it is no longer true that eigenvalues have unit modulus
or that transformations are diagonalizable. Suppose T is a reversible element in
U(n, 1) or SU(n, 1). Then there exist S in U(n, 1), or SU(n, 1) respectively, so that
STS−1 = T−1. This implies that if λ is an eigenvalue of T with multiplicity m,
then so is λ−1. Hence χT (x) is self-dual. What is interesting is the converse.

Theorem 4.1. Suppose T is an element of U(n, 1) or SU(n, 1) whose characteristic
polynomial is self-dual.

(i) Let T be elliptic. Then T is reversible if and only if the eigenvalue of
negative or indefinite type of T is 1 or −1.

(ii) Let T be unipotent with minimal polynomial (x − 1)2. Then T is not re-
versible.
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(iii) Let T be unipotent with minimal polynomial (x−1)3. Then T is reversible.
(iv) Let T = NA be non-unipotent parabolic. Then T is reversible if and only

if the null eigenvalue of T is 1 or −1 and the minimal polynomial of N is
(x− 1)3.

(v) Let T be hyperbolic. Then T is reversible.

Note that the statement of part (ii) does not agree with Lemma 3.4.3 of Chen
and Greenberg [1]. In fact there is an error in their proof in the case where F = C.
On line 4 of page 71, they state that if s and s′ are two purely imaginary complex
numbers (that is Re(s) = Re(s′) = 0) then we can find λ ∈ C so that s′ = λsλ =
|λ|2s. This is clearly impossible if s′ = −s.

Again, things become slightly more delicate for strongly reversible elements.

Theorem 4.2. (i) Let T be an element of U(n, 1). Then T is strongly re-
versible if and only if it is reversible.

(ii) Let T be an element of SU(n, 1) whose characteristic polynomial is self-dual.
Then the following conditions are equivalent
(a) T is reversible but not strongly reversible.
(b) T is hyperbolic, n = 4m+ 1 for m ∈ Z and ±1 is not an eigenvalue of

T .

The following lemma is fundamental to the analysis which follows.

Lemma 4.3. Goldman [11, Lemma 6.2.5]. Let T be a transformation in U(n, 1).
If λ is an eigenvalue of T , then λ

−1
is also an eigenvalue with the same multiplicity

as that of λ.

Furthermore, it is not hard to show that if |λ| 6= 1 then λ and λ
−1

are (distinct)
null eigenvalues. Of course, when |λ| = 1 (as in the case of U(n)) we have λ = λ

−1

and so, although true, this lemma does not give us any useful information.
We conclude this section by discussing what happens in PU(n, 1). Suppose that

T is in PU(n, 1). Let T̃ be a lift of T to U(n, 1) and note that eiθT̃ corresponds to
the same element of PU(n, 1) for all θ ∈ [0, 2π).

Lemma 4.4. For every T ∈ PU(n, 1), there exists a unique lift T̂ of T to U(n, 1)
so that, for each fixed point of T in Hn

C ∪ ∂Hn
C, the associated eigenvalue of T̂ is a

positive real number.

This lemma enables us to state the following.

Theorem 4.5. Let T ∈ PU(n, 1). Then T is reversible, or strongly reversible, if
and only if the lift T̂ of T to U(n, 1) given by Lemma 4.4 is reversible, or strongly
reversible respectively.

In particular, T is reversible, or strongly reversible, if and only if the following
conditions hold.

(i) The characteristic polynomial of T̂ is self dual and,
(ii) if T is parabolic, the minimal polynomial of the unipotent part of T̂ is

(x− 1)3.
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4.2. Proof of Theorem 4.1.

Proof. (i) Suppose T is elliptic. Let λ be the eigenvalue of T of negative or indefinite
type. Then V has an orthogonal decomposition into T -invariant subspaces V = Vλ⊕
W, where Vλ is the eigenspace of λ. The space Vλ is indefinite and W is the space-
like orthogonal complement. Clearly, Vλ is the eigenspace of T−1 corresponding
to the eigenvalue of indefinite or negative type λ−1. Now T is conjugate to T−1 if
and only if they have the same eigenvalue of negative or indefinite type and T |W
is conjugate to T−1|W. Now, λ = λ−1 if and only if λ = ±1. Further, T |W is
a transformation in U(n + 1 − m) where m = dim Vλ. Since the characteristic
polynomial of T |W is self-dual, it follows from Lemma 3.1 that T |W is conjugate to
its inverse. This establishes the assertion for the case where T in in U(n, 1).

When T ∈ SU(n, 1) we need to be slightly more careful. Let S|W be such that
S|WT |WS|W−1 = T |W−1. By adjusting S|Vλ as in Proposition 3.3 if necessary, we
may ensure that det(S) = 1. Then S ∈ SU(n, 1) and S conjugates T to T−1. Thus
(i) follows in this case too.

(ii) Let T be unipotent. Then T has a minimal polynomial (x− 1)2 or (x− 1)3.
First, consider the case where the minimal polynomial is (x − 1)2. Using the

Jordan normal form for T , we can find vectors u and v so that

T (u) = u, T (v) = v + u, T−1(u) = u, T−1(v) = v − u.

Further u and v generate a non-degenerate T -invariant subspace W so that the
restriction of 〈·, ·〉 to W has signature (1, 1). As T preserves 〈·, ·〉 we have

〈u, v〉 = 〈Tu, Tv〉 = 〈u, v + u〉 = 〈u, v〉+ 〈u, u〉.

This implies

(4.1) 〈u, u〉 = 0

Since the Hermitian form has signature (1, 1) on W, we must have 〈u, v〉 6= 0.
If S conjugates T to T−1 then S maps the span of u and v to itself. Furthermore,

since S(u) is also a light-like eigenvector with eigenvalue 1, the uniqueness of the
fixed point of T implies that S must send u to a multiple of itself and v to a linear
combination of u and v. Suppose

S(u) = au, S(v) = bu+ cv.

Since S preserves the Hermitian form then

〈u, v〉 = 〈S(u), S(v)〉 = 〈au, bu+ cv〉 = ac〈u, v〉

where we have used (4.1) at the last stage. Hence ac = 1 since 〈u, v〉 6= 0. If we
have STS−1 = T−1 then ST = T−1S. The images of u and v under these maps
are

ST (u) = S(u) = au, ST (v) = S(v + u) = (a+ b)u+ cv,
T−1S(u) = T−1(au) = au, T−1S(v) = T−1(bu+ cv) = (b− c)u+ cv.

Hence (a + b)u + cv = (b − c)u + cv, and so a = −c. Together with ac = 1, this
implies |a|2 = |c|2 = −1, which is clearly impossible.

(iii) Now consider the case where the minimal polynomial is (x− 1)3. Using the
Jordan normal form of T we see that there are vectors u, v and w so that

T (u) = u, T (v) = v + u, T (w) = w + v.
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Let W be the span of u, v and w. As T preserves 〈·, ·〉 we must have

(4.2) 0 = 〈u, u〉 = 〈u, v〉 = 〈v, v〉+ 〈u,w〉 = 〈w, v〉+ 〈v, w〉+ 〈v, v〉.

As the restriction of 〈·, ·〉 to W is non-degenerate, we have 〈v, v〉 6= 0. Define k by

k =
〈v, w〉
2〈v, v〉

.

Note that the last identity in (4.2) implies 2k + 2k = −1 Define S on W by

S(u) = −u, S(v) = v + 2ku, S(w) = −w + 2kv + 2|k|2u.

Then

ST (u) = −u, ST (v) = v+ (2k− 1)u, ST (w) = −w+ (2k+ 1)v+ (2|k|2 + 2k)u.

It is easy to check that S and ST are involutions. Finally, we can check that S and
ST preserve the Hermitian form. For example:

〈S(w), S(v)〉 = 〈−w + 2kv + 2|k|2u, v + 2ku〉
= −〈w, v〉 − 2k〈w, u〉+ 2k〈v, v〉
= −〈w, v〉+ 4k〈v, v〉
= −〈w, v〉+ 2〈w, v〉
= 〈w, v〉.

Finally note that on the space-like orthogonal complement of W, T restricts to the
identity map. Thus T is strongly reversible.

(iv) Suppose T is a non-unipotent parabolic. Let T = AN be the Jordan decom-
position of T , where A is semisimple, N is unipotent and AN = NA. We say that an
eigenvalue µ of T is pure if the corresponding eigenspace {v ∈ V | (T − µI)v = 0}
coincides with the generalised eigenspace {v ∈ V | (T −µI)n+1v = 0} . Otherwise µ
is mixed. Since T is parabolic, the null eigenvalue λ of T must be mixed. However,
for A, λ is the eigenvalue of indefinite type and the generalised eigenspace Vλ of T
will be the usual λ-eigenspace of A.

Also it follows from the Jordan decomposition that T is reversible if and only
if A and N are both reversible, cf. [1, Theorem 3.4.1 (c)]. The result now follows
from (i), (ii) and (iii).

(v) Suppose T is hyperbolic. Let λ be the (null) eigenvalue of T with |λ| > 1.
Then V has a decomposition into T -invariant orthogonal subspaces: V = U ⊕W,
where U is the direct sum of the one dimensional null eigenspaces Vλ and V

λ
−1 and

W is the space-like orthogonal complement to U. The Hermitian form restricted to
U has signature (1, 1), hence T |U can be considered as a transformation in U(1, 1).
Furthermore Vλ is the λ−1-eigenspace of T−1|U and V

λ
−1 is the λ-eigenspace of

T−1|U. Hence, it is easy to see that T |U is reversible in U(1, 1) if and only if λ is
real. Thus the characteristic polynomial of T |U is self-dual with real roots λ and
λ−1 = λ

−1
, and T |U is in SU(1, 1). Since 〈, 〉|W is positive-definite, T |W can be

considered as a transformation in U(n − 1) or SU(n − 1). By Lemma 3.1, T |W is
reversible. Hence the assertion follows. �
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4.3. Proof of Theorem 4.2.

Proof. Let T be an element of U(n, 1) or SU(n, 1). If T is strongly reversible then
it is reversible.

Suppose that T is reversible. Note that if T is not semisimple then, since it is
reversible, the null eigenvalue is 1 or −1. Moreover, in the proof of Theorem 4.1
(iii) we have shown that a reversible unipotent map is strongly reversible. Hence if
λ 6= ±1 then the dimension of Vλ is the same as the multiplicity of λ as a root of
χT (x).

Following the proof of Proposition 3.3, let E denote the set of eigenvalues λ 6= ±1
of T and W = ⊕λ∈E(Vλ ⊕ Vλ−1). (Note that if T is unipotent then W is empty.)
Then we can construct S̃W as in the proof of Proposition 3.3 so that S̃WT |WS̃−1

W =
T−1|W and S̃2

W = I. Note that det(SW) = (−1)
1
2dim(W). Let U be the orthogonal

complement of W. Then U contains the eigenspaces of ±1 if these are eigenvalues.
Defining S̃U to be the identity and S̃ = S̃U ⊕ S̃W immediately demonstrates that
T is strongly reversible in U(n, 1). If 1 or −1 is an eigenvalue of T then we can
adjust S̃U as in Proposition 3.3 so that det(S) = 1 and so T is strongly reversible
in SU(n, 1).

If T is unipotent then, by definition, 1 is an eigenvalue of T . If T is elliptic or
non-unipotent parabolic then, since T is reversible, by Theorem 4.1 it has eigenvalue
±1. In each case, we see that T is strongly reversible in SU(n, 1).

Suppose T ∈ SU(n, 1) is hyperbolic and reversible and that ±1 is not an eigen-
value of T . Then necessarily n is odd. Let λ be the eigenvalue with |λ| > 1 and
let U and W be as in the proof of Theorem 4.1(iv). Define S̃U to be an involution
in U(1, 1) that swaps the eigenspaces of λ and λ−1. Note that det(SU) = −1. We
know that T |W can be considered to be in SU(n− 1). If T is strongly reversible in
SU(n, 1) then T |W needs to be strongly reversible by an element SW with determi-
nant −1. By adapting the Proposition 3.3 we see that this is the case if and only if
(−1)

1
2 (n−1) = −1 and so n− 1 = 4m+ 2. Hence T is strongly reversible in SU(n, 1)

when n = 4m+ 3. This proves the result. �

4.4. Proof of Theorem 4.5. We begin by proving Lemma 4.4

Proof. (Lemma 4.4.) Observe that if T is elliptic or parabolic it fixes a connected
subset of Hn

C ∪ ∂Hn
C and this subset corresponds to an eiθ-eigenspace Veiθ for some

lift T̃ . Then T̂ = e−iθT̃ has the property we claimed. If T is hyperbolic then its
fixed points on ∂Hn

C correspond to eigenspaces Vλ and Vµ of some lift T̃ of T . Using
Lemma 4.3 we see that µ = λ

−1
. In other words, λ = reiθ and µ = λ

−1
= r−1eiθ

for some r > 1. Then T̂ = e−iθT̃ has the property we claimed. �

Proof. (Theorem 4.5.) Let T ∈ PU(n, 1) and let T̂ ∈ U(n, 1) be the lift of T coming
from Lemma 4.4.

First suppose that T̂ is reversible. Then we can find Ŝ ∈ U(n, 1) so that ŜT̂ Ŝ−1 =
T̂−1. Applying the canonical projection from U(n, 1) to PU(n, 1) gives S ∈ PU(n, 1)
satisfying STS−1 = T−1 and so T is reversible. Moreover, if T̂ is strongly reversible
then Ŝ has order two. Hence S has order (at most) 2. Therefore T is strongly
reversible.
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Conversely, suppose that T ∈ PU(n, 1) is reversible. Then there exists S ∈
PU(n, 1) so that STS−1 = T−1. Let Ŝ be any lift of S to U(n, 1). Note that
the expression ŜT̂ Ŝ−1 is independent of which lift we choose. If S has order 2
then multiplying Ŝ by a scalar if necessary, we may suppose that Ŝ also has order
2. Since STS−1 = T−1 we see that ŜT̂ Ŝ−1 = kT̂−1 for some k ∈ C. Note that
|k| = 1.

If z ∈ Hn
C ∪ ∂Hn

C is fixed by T then S(z) is fixed by T−1, and so also by T .
By the definition of T̂ , we know that z corresponds to an eigenvector v of T̂ with
eigenvalue λ, which is real and positive. Now consider Ŝv.

T̂−1Ŝv = k−1(ŜT̂ Ŝ−1)Ŝv = k−1ŜT̂ v = λk−1Ŝv.

Therefore Ŝv is an eigenvector of T̂−1 with eigenvalue λk−1. That is, Ŝv is an
eigenvector of T̂ with eigenvalue λ−1k. Now Ŝv corresponds to a fixed point of T
in Hn

C ∪∂Hn
C, namely S(z). Therefore, by the construction of T̂ we know that λ−1k

is real and positive. Since λ−1 is real and positive and |k| = 1, we must have k = 1.
Hence ŜT̂ Ŝ−1 = T̂−1. Thus T̂ is reversible.

By construction, if T is elliptic or parabolic, the eigenvalue of T̂ of negative or
indefinite type is 1. Hence, the last part follows by applying Theorem 4.1 to T̂ in
the reversible case and Theorem 4.2(i) in the strongly reversible case. �

5. Proof of Theorem 1.1

When T ∈ SU(n, 1), the following lemma provides a necessary and sufficient
condition for χT (x) to be self-dual.

Lemma 5.1. Let T be in SU(n, 1). Then χT (x), the characteristic polynomial of
T , is self-dual if and only if the coefficients of χT (x) are real. In particular, if
χT (x) is self dual, then the trace of T is real.

Proof. Let λ be an eigenvalue of T . Then λ
−1

is an eigenvalue of T with the
same multiplicity, using Lemma 4.3. Suppose T is self-dual. Then (λ

−1
)−1 = λ is

also an eigenvalue of T . Hence the set of eigenvalues is invariant under complex
conjugation. Since the coefficients of the characteristic polynomial are symmetric
polynomials in the eigenvalues, they must be real. Conversely, if the coefficients of
χT (x) are real then its roots are real or come in complex conjugate pairs. Again
using Lemma 4.3 we see that if λ is an eigenvalue then so is λ−1, and hence χT (x)
is self dual. �

5.1. Proof of Theorem 1.1. Combining Theorem 4.1 with the above lemma,
Theorem 1.1 follows.

As a corollary to Theorem 1.1 we have the following.

Corollary 5.2. Let T be an element in SU(n, 1) such that T is reversible in
SU(n, 1). Then the trace of T is real.

The converse to the above corollary, in general, is false. For example, consider
the hyperbolic element g in SU(4, 1) with eigenvalues

(3 +
√

5)
2

eiπ/5,
(3−

√
5)

2
eiπ/5, −eiπ/5, −eiπ/5, −eiπ/5.
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Then g has trace zero, but two of the other coefficients in the characteristic poly-
nomial of g are not real, and so g is not reversible in U(4, 1). So, for n ≥ 4 the
converse of Corollary 5.2 is not true. However, for n = 2, 3, we have a better
situation.

Lemma 5.3. For k = 2, 3, let T in SU(k, 1) be such that the trace of T is real.
Then the characteristic polynomial of T is self-dual.

Proof. We shall prove the lemma for k = 3. The case k = 2 follows similarly. Our
argument is very similar to Goldman’s argument on page 206 of [11].

Let T be in SU(3, 1). Let λj for j = 1, 2, 3, 4 be the eigenvalues of T and write
τ = tr(T ) = λ1 + λ2 + λ3 + λ4. Since det(T ) = 1, we immediately have

(5.1) λ1λ2λ3λ4 = 1.

Then the characteristic polynomial of T is of the form

χT (x) = x4 − a3x
3 + a2x

2 − a1x+ 1.

Now by the relationship between roots and the coefficients of a polynomial we have

a3 = λ1 + λ2 + λ3 + λ4 = τ,

a1 = λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4

= λ−1
1 + λ−1

2 + λ−1
3 + λ−1

4 ,

where we used (5.1) on the last line. Using Lemma 4.3 we know that for each j,
there exists k such that λ−1

j = λk. Therefore

a1 = λ1 + λ2 + λ3 + λ4 = τ .

Hence we can write the characteristic polynomial of T as

χT (x) = x4 − τx3 + σx2 − τx+ 1.

We claim that σ is real. Now

σ = λ1λ2 + λ3λ4 + λ1λ3 + λ2λ4 + λ1λ4 + λ2λ3

= λ−1
3 λ−1

4 + λ−1
1 λ−1

2 + λ−1
2 λ−1

4 + λ−1
1 λ−1

3 + λ−1
2 λ−1

3 + λ−1
1 λ−1

4 , using (5.1)

= λ1λ2 + λ3λ4 + λ1λ3 + λ2λ4 + λ1λ4 + λ2λ3 (after permuting terms)
= σ

Hence, if τ is real, then χT (x) has real coefficients, and so all solutions are either
real or come in conjugate pairs. Together with Lemma 4.3, this implies that if λ is
a root, then so is λ−1. Hence χT (x) is self-dual. �

5.2. Proof of Corollary 1.2. Combining the above lemma with Theorem 1.1 we
have Corollary 1.2.
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transformations. Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 57-69.

[19] C. P. Leo Jr., Real elements in small cancellation groups. Math. Ann. 208 (1974), 279-293.
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