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Abstract

We propose the use of bright matter-wave solitons formed from Bose-Einstein condensates with attractive interactions
to probe and study quantum reflection from a solid surface at normal incidence. We demonstrate that the presence of
attractive interatomic interactions leads to a number of advantages for the study of quantum reflection. The absence
of dispersion as the soliton propagates allows precise control of the velocity normal to the surface and for much lower
velocities to be achieved. Numerical modelling shows that the robust, self-trapped nature of bright solitons leads to a
clean reflection from the surface, limiting the disruption of the density profile and permitting accurate measurements
of the reflection probability.
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1. Introduction

Solitons are localized self-focusing wavepackets
that can propagate over long distances without
change in shape, and emerge from collisions unal-
tered. Their existence is a common feature of non-
linear wave equations and consequently they are
observed in many diverse physical systems includ-
ing water waves, plasmas, nonlinear optics and par-
ticle physics [1]. Bose–Einstein condensates (BEC)
in dilute atomic gases are well-described by a non-
linear Schrödinger equation, known as the Gross-
Pitaevskii equation (GPE), where the nonlinearity
results from the atomic interactions (collisions) in
the gas [2]. Such systems can support either dark
solitons [3,4] or bright solitons [5–7], depending
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on whether the atomic interactions are repulsive
or attractive, respectively [8]. Bright matter-wave
solitons manifest themselves as self-trapped con-
densates where the usual wavepacket dispersion
is exactly balanced by the presence of attractive
atomic interactions. Their self-trapped nature of-
fers many potential advantages for applications in
atom optics and interferometry [9].

The term quantum reflection refers to the pro-
cess where a particle reflects from a potential with-
out reaching a classical turning point and is a direct
consequence of the wave nature of the particle. Sig-
nificant reflection occurs when the local wave vector
of the particle k =

√
(k2∞ − 2mV (x)/~2) changes

by more than k over a distance of 1/k, where k∞ is
the wave vector of the particle of mass m far from
the potential V (x). This requires an abrupt varia-
tion in the potential V (x), such as can be found in
the vicinity of a solid surface. The demonstration of
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Fig. 1. Schematic of the proposed experimental configuration
for the study of quantum reflection of bright matter-wave
solitons. The soliton propagates towards the surface in an
optical waveguide formed by a focussed 1064 nm laser beam.
A high power 1030 nm beam intersecting the waveguide at
90◦ permits the independent, real time control of the axial
trapping. An optional repulsive evanescent field can be added
through the total internal reflection of a 532 nm laser beam
in the prism. The inset shows the total potential (red/solid)
experienced by the atoms in the vicinity of the surface as
the sum of the Casimir-Polder potential (purple/dot) and
the evanescent field (blue/dashed).

quantum reflection from solid surfaces is typically
performed at grazing incidence in order to reduce
the wave vector normal to the surface [10,11]. The
advent of ultracold and quantum degenerate atomic
samples with large deBroglie wavelengths opens up
new possibilities to study quantum reflection at nor-
mal incidence with unprecedented control over the
atomic motion. Reflection probabilities as high as
20% have been demonstrated for 23Na condensates
incident on a solid silicon surface [12]. More recently,
the use of patterned silicon surfaces has resulted in
reflection probabilities of 60% [13].

In this paper we propose the use of bright matter-
wave solitons to probe and study quantum reflec-
tion from a solid surface at normal incidence. The
use of solitons is motivated by a number of unique
advantages resulting from the presence of attractive
interactions. The robust, self-trapped and highly lo-
calised nature of bright solitons can result in a clean
reflection from the surface, with very limited disrup-
tion to the density profile as compared to conden-
sates with repulsive interactions [12]. Moreover, pre-
vious numerical studies of quantum reflection from
purely attractive potential wells revealed that in cer-
tain regimes the whole soliton reflects with very little
loss, leading to a significant enhancement of the re-

flection probability as compared to the single parti-
cle case [14]. The presence of attractive interactions
has also been shown to be advantageous in the per-
formance of traps for cold atoms based upon quan-
tum reflection [15]. The absence of dispersion as the
soliton propagates permits the precise control of the
velocity normal to the surface and allows much lower
velocities to be achieved. This combination of ad-
vantages promises more accurate measurements of
the quantum reflection probability and offers a new
method to probe the atom-surface potential.

The structure of the paper is as follows. In sec-
tion 2 we present details of the proposed experimen-
tal scenario and describe a simple method for the
precise control of the soliton velocity normal to the
surface. The remainder of the paper is devoted to a
numerical study of the quantum reflection of bright
matter-wave solitons. In section 3 we present the
theoretical framework for this investigation. In sec-
tion 4 we highlight the signatures of quantum reflec-
tion by considering the reflection of a soliton from
positive and negative step potentials. Finally, in sec-
tion 5 we investigate the quantum reflection from a
purely attractive Casimir-Polder atom-surface po-
tential and show that reflection probabilities in ex-
cess of 50% are feasible from bulk surfaces.

2. Experimental Scenario

2.1. Overview

The proposed experimental scenario for the study
of quantum reflection is depicted in Fig. 1. The
bright matter-wave soliton will be formed in an op-
tical trap [16,17] from an 85Rb condensate [18] with
attractive interactions, initially located ∼ 5mm
from the surface of a highly-polished glass prism.
Full three dimensional confinement of the initial
condensate is provided by two intersecting laser
beams [16]. The first is a focussed 1064 nm beam
that forms a radial waveguide with typical har-
monic trap frequencies of up to ∼ 100Hz radially
and below ∼ 5 Hz axially. The second beam, from
a 50 W 1030 nm laser, is only weakly focussed and
intersects the first at 90◦. This beam provides the
majority of the axial confinement and has no effect
on the radial confinement.

This two-beam configuration is chosen so that the
harmonic confinement along the waveguide can be
altered. In particular, by exploiting the deflection
from an acousto-optic device controlling the second
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beam, the point of intersection of the two beams
can be altered leading to real time control of the
trap centre along the waveguide. This in combina-
tion with the control of the optical power in the
second beam allows all parameters of the axial har-
monic potential to be manipulated and permits the
control of the velocity of the soliton along the waveg-
uide. For example, following the formation of the
soliton at the intersection of the two beams, the axial
trapping beam can then be shifted in position along
the waveguide causing the soliton to be accelerated
towards the surface. Removal of the axial trapping
potential when the soliton passes through the trap
centre leads to a velocity defined by the displace-
ment and strength of the axial trapping potential.
The precise control over the parameters of the axial
trapping beam afforded by standard optical tech-
niques yields precise control over the velocity of the
soliton.

2.2. Soliton Formation

To date, the creation of bright matter-wave soli-
tons [19] has been demonstrated by three groups at
ENS in Paris [5], Rice University [6] and, more re-
cently, JILA [7]. All three experiments use a Fesh-
bach resonance [20] to switch the atomic interactions
from repulsive to attractive, triggering the collapse
instability of the condensate [21–24], out of which
the solitons emerge. The Paris and Rice experiments
both used a resonance in the 7Li |F = 1, mF = 1〉
state at∼ 700 G, and released the condensates into a
quasi-1D optical waveguide in order to demonstrate
the solitonic character of the attractive condensates.
Both the Rice and JILA experiments observed the
creation of multiple solitons or soliton trains[6]. The
Rice experiment inferred repulsive interactions be-
tween adjacent solitons from measurements of their
relative motion along the axis of the waveguide.

Here we consider the use of solitons formed from
85Rb condensates in the vicinity of the∼ 11G broad
Feshbach resonance at ∼ 155G used in the JILA ex-
periment [7]. The experiment at JILA demonstrated
the controlled creation of both single and multi-
ple solitons and revealed interesting soliton dynam-
ics relevant to the present study. In the case where
two solitons were created in the radially symmetric
trap, the solitons were observed to oscillate along
the weaker axial direction repeatedly colliding in the
trap centre. The amplitude of the these oscillations
corresponds to a soliton velocity at the trap centre

of ∼ 0.5mms−1. This velocity associated with the
formation of the solitons for the JILA parameters is
of the correct order of magnitude required for the
observation of appreciable quantum reflection from
a surface [12].

2.3. Atom-Surface Potential and Quantum
Reflection

At distances greater than the atomic scale, the
interaction potential of a neutral atom and a solid
surface takes the form of an attractive power-law po-
tential. For distances, x, shorter than λ/2π, where
λ is the wavelength of the dominant atomic transi-
tion, the potential V (x) = −C3/x3, has the form of
a dipole-dipole interaction between the spontaneous
atomic dipole and its image [25]. At larger distances
the potential becomes V (x) = −C4/x4 due to re-
tardation of the electrostatic interaction; the well–
known Casimir–Polder result [26].

In the low energy limit (k → 0), the reflection
probability R for a particle incident normally on a
surface tends to unity as R ' 1−2β4k [27,28], where
β4 is the length scale associated with the C4 coef-
ficient, C4 = β2

4~2/2m. The observation of quan-
tum reflection therefore requires a low incident ve-
locity and a weak attractive force to the surface.
Such conditions were first realized using helium or
hydrogen atoms incident on liquid helium surfaces
[29,30], and in measurements of the sticking prob-
ability for hydrogen on bulk liquid helium [31,32].
For solid surfaces, the requirement of a low incident
velocity necessitated working at grazing incidence
[10,11]. More recently, quantum reflection at nor-
mal incidence from a solid surface has been demon-
strated using a 23Na condensate incident on a sili-
con surface at very low velocities [12]. However, in
the low velocity limit (< 2 mms−1) the large spatial
extent of the (repulsive) condensate leads to anoma-
lous reflection, as the front reflects before the tail
producing a standing wave that generates dynami-
cal excitations that disrupt the atom cloud [33,34].
Here we demonstrate that the use of well–localized
matter–wave solitons will eliminate this problem.
This coupled to the precise control of the velocity
of the soliton, stands to take the study of quantum
reflection to a new level.
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2.4. Evanescent Field

The experimental configuration also allows for the
addition of a repulsive (or attractive) evanescent
field in the vicinity of the surface formed by the
total internal reflection of a blue (or red) detuned
laser field within the glass prism. This produces a
potential which decays exponentially with distance
from the surface; the decay length being determined
by the laser wavelength, the refractive index of the
prism and the angle of incidence of the laser beam.
When combined with the atom-surface potential,
the repulsive evanescent field leads to a repulsive
barrier of finite height, in close proximity to the sur-
face (see inset in Fig. 1). Studies of classical reflec-
tion from such a barrier can be used to probe the
atom-surface potential [35]. Here the low incident
velocities of the solitons leads to the peak of the re-
pulsive barrier being located well into the Casimir-
Polder regime, unlike in the earlier experiments with
atoms dropped from a magneto-optical trap [35]. For
example, we estimate that for a soliton incident with
a velocity of 10 mms−1, setting the barrier height to
be equal to the kinetic energy of the soliton leads
to the peak being ∼ 170 nm from the surface. More-
over, the addition of both repulsive and attractive
evanescent fields can be used to engineer a poten-
tial in the vicinity of the surface that significantly
enhances the quantum reflection probability [36].

3. Theoretical framework

In the limit of ultra-cold temperature the mean-
field ‘wavefunction’ of the BEC ψ(r, t) is well-
described by the Gross-Pitaevskii equation [2],

i~
∂ψ

∂t
=

[
− ~

2

2m
∇2 + V (r) + g|ψ|2

]
ψ, (1)

where m is the atomic mass and the the nonlinear
coefficient is given by g = 4π~2as/m where as is
the s-wave scattering length. The external poten-
tial acting on the system is given by V (r). This
typically includes a trapping component to con-
fine the atoms VT (r). For this we will assume a
cylindrically-symmetric harmonic trap of the form
VT (r) = mω2

r(r2 + λ2x2)/2 where ωr is the radial
trap frequency and λ characterises the axial trap
strength. Note that the atomic density distribu-
tion is related to the mean-field wavefunction via
n(r, t) = |ψ(r, t)|2.

Under very tight radial confinement (~ωr >> µ
where µ is the chemical potential), the wavefunc-
tion can be considered “frozen” in the radial di-
rection to the non-interacting harmonic oscillator
ground state. By integrating out this dimension, a
one-dimensional GPE is obtained in terms of the ax-
ial dimension x with an effective interaction coeffi-
cient g1D = g/2πl2r , where lr =

√
~/mωr is the ra-

dial harmonic oscillator length. For V (x) = 0 the 1D
GPE supports exact bright soliton solutions given
by,

ψ(x) =

√
N

2ξ
sech(x/ξ), (2)

where N is the number of atoms in the soliton and
ξ = 2~/(m|g1D|N) characterises the soliton width.

When the potential is weakly-varying in space,
the 1D soliton, to first order, behaves like a classical
particle. Such classical behaviour has recently been
studied for matter-wave bright solitons by Martin et
al. [37], following analogous particle approaches in
nonlinear optics [38]. Quantum reflection, however,
dominates in the opposite regime of large potential
gradients where classical particle analogies are no
longer valid. The quantum reflection of matter-wave
solitons from a purely attractive potential well has
been theoretically studied [14]. In that case a sharp
switching between the transmission and reflection of
the soliton was observed, with bound states of the
well playing a key role in the dynamics.

In three-dimensions, the presence of radial con-
finement (ωr > 0) supports a 3D soliton which is
self-trapped in the axial direction [39]. However, in
3D a collapse instability exists when N exceeds a
critical value Nc [21]. To avoid collapse effects, we
will restrict our analysis to N < Nc. Note that the
3D soliton may be prone to collapse during its in-
teractions with the “surface”. For example, the in-
teraction of a soliton with an infinite positive wall is
identical to it colliding with another soliton with a
π-phase difference. Such collisions have been shown
to exhibit regimes of collapse instabilities [40].

We simulate the interaction of a bright soliton
with a surface potential in both 1D and 3D using
the respective GPE. Time-propagation of the GPE
is performed using the Crank-Nicholson technique
[41]. In 1D the initial soliton solution corresponds
to the analytic soliton solution in Eq. (2), while in
3D it is obtained with a numerical convergence tech-
nique whereby the GPE is run in imaginary time
(t → −it) from a trial wavefunction [41]. Note that
when performing 3D simulations we assume cylin-
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drical symmetry such that the relevant coordinate
space is (x, r). The soliton is initially positioned a
large distance ∆x to the left of the surface where
the surface potential is negligible. Since we typically
consider an axially-untrapped geometry (λ = 0), a
velocity kick to the soliton is required to induce the
dynamics. This is performed by applying the trans-
formation ψ(r) → ψ(r) exp(imvx/~), where v is the
required soliton speed. We typically employ veloc-
ities in the range v = 0.1 − 5.0 mms−1. Note that
when harmonic trapping is present in the axial di-
rection, as discussed later, a velocity kick is not nec-
essary as the soliton freely accelerates towards the
interface.

Following the JILA soliton experiments, we will
typically consider a 85Rb soliton with radial trap
frequency ωr = 2π× 17.5 Hz and axial trapping de-
fined by λ = 0.4. Furthermore, the scattering length
is as = −0.6 nm. For such a system, the critical num-
ber is approximately Nc = 2700 [42]. We will there-
fore employ N ≈ 2000.

4. Results 1: Tanh potential

We will first consider a simplified “surface” poten-
tial to study the quantum reflection of bright soli-
tons. We employ a potential step of the form,

V (x) =
V0

2

[
1 + tanh

x

σ

]
. (3)

By tuning the height V0 and width σ of this smooth
potential, we can control the potential gradient ex-
perienced by the incident soliton. Note that this
soliton-step scenario is analogous to the propagation
of optical bright solitons at the interface between
two nonlinear dielectric media of different refractive
indices [38]. When the soliton is small compared to
the lengthscale of the step (ξ << σ), the soliton will
behave similarly to a classical particle. Since we are
interested in studying quantum reflection, we will
consider the opposing regime of sharp tanh poten-
tials where σ ≤ ξ.

It is also interesting to mention analogous studies
of dark matter-wave solitons interacting with step
potentials. These are localized density dips, sup-
ported by repulsive atomic interactions, and which
propagate through an ambient condensate. This va-
riety of soliton shows no evidence of quantum re-
flection when incident on a negative step potential
[43]. Here it is likely that the healing (smoothing)
of the ambient condensate across the step ensures

that the dark soliton experiences a smooth effective
potential, thereby preventing quantum reflection.

4.1. Negative potential V0 < 0

We will first consider the regime V0 < 0, which is
illustrated schematically in Fig. 2(b) (inset). Clas-
sically, an incident particle would always transmit
across such a potential, gaining speed in the process.

We simulate the impact of the soliton upon the
tanh potential using the 1D GPE. Assuming the
JILA parameters (outlined above) and N = 1750,
the soliton has a healing length of ξ = 6.4 µm. The
radial direction (which is assumed but not explic-
itly calculated) is the harmonic oscillator ground
state with characteristic width lr ≈ 2.6 µm. We fix
the height of the potential to be V0 = −10−31J ≈
−10 ~ωr and vary the width σ.

Fig. 2(a) illustrates the dynamics of a soliton in-
cident on a hard negative step potential (σ = 0).
At low speed [case(i)], the soliton reflects elasti-
cally from the potential. Since a classical particle
would transmit across the boundary this is a clear
sign of quantum reflection. In the opposite regime of
high speed [case(iv)], the soliton transmits over the
boundary with negligible perturbation. In between
these limits [cases (ii) and (iii)], we observe a regime
where the soliton splits into a reflected soliton and a
transmitted soliton at the potential. As the speed is
increased, we see a gradual reduction of the reflected
soliton and increase of the transmitted soliton. The
reflected soliton typically has the same speed as the
incident soliton, while the transmitted soliton gains
kinetic energy as it passes down the potential and
so typically has larger speed. We also note the ap-
pearance of density fringes as the soliton interacts
with the step, with the number of fringes increas-
ing with the incident speed. Similar fringes appear
in the collisions of two solitons [40].

We introduce the reflection probability R =
NL/N , where NL is the number of atoms to the
left of the potential (obtained via numerical inte-
gration) following the interaction. In Fig. 2 (b) we
present the reflection probabilities R as a function
of incident speed v for various widths σ. The results
of the 1D GPE are shown by points. Note that the
considerable timescale of simulations at very low
speeds limited our analysis of this regime.

We have also calculated the corresponding re-
flection probabilities for a non-interacting plane
wave. This is performed numerically by dividing the
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Fig. 2. Dynamics of a bright soliton incident on a negative
potential step (V0 < 0). (a) Density plots showing a soli-
ton incident on a hard (σ = 0) negative step for various
incident speeds (i) v = 0.05, (ii) v = 0.2, (iii) v = 0.6 and
(iv) v = 1mms−1. (b) Soliton reflection probabilities R as
a function of incident speed v according to the 1D GPE
(points) and the corresponding non-interacting plane wave
result (lines). We consider the negative tanh potential of
Eq. (3) with widths of (from top to bottom) σ/ξ = 0, 0.1,
0.25 and 1. The inset presents a schematic of the system.
The step amplitude is fixed throughout to be V0 = −1031J.

smooth potential into many small intervals, each
of which has constant potential across the interval.
The problem is thereby approximated by a series
of sharp finite potential steps, where the reflection
at finite step is given by the standard analytic so-
lution of the Schrödinger equation and the overall
reflection probability is simply the product of these
individual reflection probabilities. These plane wave
predictions, shown by lines in Fig. 2 (b), are almost
identical to the GPE predictions. This contrasts
strongly with the case of repulsive condensates,
where, for v . 2mms−1, interatomic interactions
cause R to fall significantly below the values pre-
dicted for a single atom [12,33]. Over the range of
speeds presented, the kinetic energy of the soliton
is sufficiently large that the interactions typically
have negligible effect. However, small deviations do
appear at low speeds, where we find that the soli-
ton gives slightly enhanced quantum reflection over
the plane wave solution. In the presence of attrac-
tive interactions, the lowest energy configuration of

0 0.5 1 1.5 2 2.5
v (mm s

-1
)

0

0.2

0.4

0.6

0.8

1

R

Fig. 3. Reflection probabilities R for a soliton with speed v
incident on a positive tanh step (Eq. (3)) according to the
1D GPE (points) and non-interacting plane-wave approach
(lines). We consider step widths of σ/ξ = 0 (circles/solid
line), 0.1 (squares/dashed line) and 1 (crosses/dotted line).
The step amplitude is fixed throughout to be V0 = −1031J.

the system is when all of the atoms are confined
to a single condensate, thereby minimising its neg-
ative interaction energy. Conversely, splitting the
wavepacket increases the total interaction energy.
As a result, there exists an energy barrier due to the
interactions which opposes the loss of atoms from
the soliton at the boundary and it is this effect that
leads to the enhancement of the quantum reflection
at low speeds.

The quantum reflection curves have identical
qualitative form, tending towards unity in the limit
of zero speed, and decaying towards zero as the
speed is increased. Maximum quantum reflection
is seen for a sharp step σ = 0, as expected since
the potential gradient experienced by the soliton
is maximal. Accordingly, for larger widths, the
potential gradient is reduced and the reflection
probability decreases.

An important observation is that the reflection
probability is very sensitive to the width of the tanh
potential. For example, at speed v = 0.1 mms−1,
R ≈ 0.8 for σ = 0. For σ = 0.25ξ this drops to R ≈
0.4 and for σ = ξ, the reflection probability is only a
few percent. Such sensitivity looks promising for the
use of matter-wave solitons to probe atom-surface
forces.

4.2. Positive step V0 > 0

We also consider the soliton dynamics when the
potential step is positive. Classically, a particle will
transmit over the barrier when mv2/2 > V0, other-
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wise it reflects. For 85Rb atoms and V0 = 10−31J,
the critical speed between reflection/transmission is
vc ≈ 1.17 mms−1.

Fig. 3 presents the reflection probability for a soli-
ton incident on the positive tanh step. The general
features are that the reflection probability is unity at
low speed and zero at high speed. In between there
is a narrow region of transition which is centered on
the classical critical speed vc. While the GPE results
vary smoothly from unity to zero, the plane wave
predictions drop suddenly from unity at vc and de-
cay smoothly for v > vc. This difference is due to
the fact that the soliton features a smooth range of
velocity (momentum) component, unlike the single-
momentum plane wave. As the step becomes wider,
the transition region becomes narrower as the soli-
ton behaves more classically. Recall that for a very
wide step (σ >> ξ) the soliton would indeed behave
like a classical particle and its reflection curve would
be a sharp step function centered at v = vc.

It is important to note that the positive and neg-
ative steps give very different reflection signatures.

5. Results 2: Casimir-Polder potential

We now extend our analysis to a more realistic sce-
nario in which we simulate the quantum reflection of
three-dimensional 85Rb condensates with attractive
interactions from a plane silicon surface [44]. The
condensates approach the surface along the common
(x) axis of circular symmetry. We use two configu-
rations, a self-trapped condensate with only radial
confinement which we call “soliton A” and an at-
tractive condensate propagating in a full harmonic
trap similar to the bright solitary waves observed in
the JILA experiment [7] which we call “soliton B”.

Soliton A has 2000 85Rb atoms and is confined by
radial harmonic trapping only (ωr = 2π × 17.5Hz).
Due to the absence of axial trapping, soliton A is
only stable due to its attractive inter-atomic interac-
tions which balance out the dispersion force. Soliton
A has longitudinal length ∼ 10 µm, radial diameter
∼ 5 µm and an initial peak density n0 ∼ 1019 atoms
m−3 [Fig. 4(a)]. Soliton B has 1500 85Rb atoms in a
three-dimensional harmonic trap (ωx = 2π× 6.8Hz
and λ = 0.4). Soliton B has longitudinal length ∼
5 µm, radial diameter ∼ 3 µm and an initial peak
density n0 ∼ 1.4× 1019 atoms m−3 [Fig. 4(b)].

Initially, the condensate is in its ground state, cen-
tred at x = r = 0 and the silicon surface is posi-
tioned at a distance ∆x away, along the x-axis. At

d

(a) (b) (c)

Fig. 4. Schematic diagram of the reflection processes and
surface potential. (a) and (b) show the initial state for soli-
tons A and B respectively. Blue ovals represent the solitons
at their initial position at x = 0. Dotted curves represent
the longitudinal trapping potentials along the x-axis and the
black rectangles mark the surface position at x = ∆x. The
sinusoidal dashed line in (a) represents the initial phase im-
print. The main features of the Casimir-Polder potential are
shown in (c). The thick solid line shows the real part of the
potential with the dashed line showing the imaginary part.
The thin vertical solid line shows the position of the surface
at x = ∆x and the vertical dotted line shows the position
of the potential cutoff. The cutoff is a distance δ from the
surface, indicated by arrows. The soliton is represented by
the hatched area.

time t = 0 the condensates are suddenly propelled
towards the surface. Due to the different axial ge-
ometries, we employ different initial conditions de-
pending on whether we are dealing soliton A or B,
as shown schematically in Fig. 4. For soliton A, we
numerically apply a velocity kick to the condensate
wavefunction at t = 0 [Fig. 4(a)] as outlined earlier.

For soliton B, we instead employ the harmonic
trap to set the soliton in motion [Fig. 4(b)], similar
to the scheme described in section 2. At t = 0 we
displace the harmonic trap a distance ∆x along the
x-axis, so that the centre of the trap coincides with
the surface plane. Following the trap displacement
each atom in soliton B now has potential energy
V = 1

2m
[
ω2

x(x−∆x)2 + ω2
rr2

]
. The displacement

causes the soliton to accelerate towards the surface,
arriving with a velocity v ≡ vx ≈ ωx∆x. The trap
displacement is typically 5−30 µm, resulting in max-
imum incident speeds of 0.2−1.3 mm s−1. Since the
longitudinal radius of soliton B is∼ 5 µm, we cannot
perform simulations with ∆x < 5 µm without in-
troducing additional complications [45]. We do not
have this problem in the case of soliton A [46].

We now consider the potential due to the Si sur-
face. For a Rb atom at a distance x′ = ∆x− x from
a perfectly conducting Si surface, the interaction
can be described by the Casimir-Polder potential,
VCP (x′), which we model with the single-correction
function VCP (x′) = −C4/(x′3(x′+3λa/2π2)) where
C4 = 9.1 × 10−56 Jm4 and λa = 780 nm is the ef-
fective atomic transition wavelength for rubidium
[12,26,33]. This potential has no classical turning
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Fig. 5. Density slices (dark shading indicates high density)
in x-r plane (axes inset) for 3D 85Rb condensates with only
radial confinement reflecting from a planar Si surface at
incident velocities v = 0.1 mm s−1 (left, panels (a),(b) and
(c)) and v = 0.4 mm s−1 (right, panels (d),(e) and (f)). The
images for the lower velocity case are taken at time t = 0 ms
(a), 152 ms (b) and 300 ms (c). The images for the higher
velocity case are taken at time t = 0 ms (d), 38 ms (e) and 75
ms (f). Small arrows indicate the position of density nodes -
the colour scale in (e) and (f) has been adjusted to highlight
these. Black rectangles show the position of the surface.

point and exerts a strong attractive force on the
85Rb atoms within a distance of∼2 µm from the sur-
face. Since VCP → −∞ as x → ∆x we set V (x) =
VCP (δ)− i(x−∆x + δ)Vim for x > (∆x− δ), where
Vim = 1.6×10−26 Jm−1, and δ = 0.15 µm is a small
offset from the surface [33]. The imaginary part of
the potential models adsorption of Rb atoms by the
Si surface. Quantum reflection occurs within a range
of distances from the Si surface [11] but no closer
than 0.4 µm for the parameters we consider. Choos-
ing δ = 0.15 µm ensures that V (x) incorporates the
reflecting region, while avoiding regions where the
Casimir-Polder potential varies too rapidly with x
to allow accurate discretization of the wave function.
A schematic diagram showing the main features of
the model surface potential is shown in Fig. 4(c).

We now consider the dynamics of the reflection
process under the combined potential V = VCP +
VT . Fig. 5 shows density slices of soliton A before,
during and after quantum reflection from the Si sur-
face at two different velocities. The left panels ((a),
(b) and (c)) show the reflection process for an inci-
dent velocity v = 0.1 mm s−1 and the right panels
((d), (e) and (f)) show the reflection process for an
incident velocity v = 0.4 mm s−1.

First we analyse the lower velocity case. Fig. 5(a)
shows the equilibrium density profile of soliton A at
the start of the simulation and its position relative
to the surface. We see that the condensate has a
“cigar” shaped profile. Fig. 5(b) shows soliton A 152
ms into the simulation. The soliton is just starting

to move away from the surface having reflected. The
soliton has been slightly compressed but we see no
major density modulations because the de Broglie
wavelength is longer than the soliton’s longitudinal
diameter. Fig. 5(c) shows soliton A after 300 ms.
The condensate is now considerably more elongated.
This is because the soliton has lost many atoms (∼
50%) and hence its axial size, which scales like 1/N ,
grows considerably. The reflection process may also
excite shape excitations in the outgoing soliton. If
such excitations are sufficiently large, kinetic effects
may overcome the attractive interactions and lead
to the formation of a dispersive wavepacket, as pre-
dicted by a variational approach [39]. Note that a
change in the scattering length following the reflec-
tion could be used to preserve the solitonic nature of
the condensate. The small modulations observed in
the density are propagating sound waves. Note that
the condensate’s density profile has no major nodes
or topological excitations following reflection. This
is in stark contrast with the low velocity quantum
reflection of condensates with repulsive interactions
[33] where lobes and vortices were seen to form. For
the condensates considered here, the attractive in-
teractions resist the formation of such features be-
cause low density regions have higher mean-field en-
ergies. In this case, the condensate has a low kinetic
energy (∼ 7 × 10−34J) compared with the interac-
tion energy (∼ 6 × 10−33J) so interaction effects
dominate the condensate’s behaviour.

We now analyse the higher velocity case for soli-
ton A. The soliton starts as before [Fig. 5(d)]. At
38 ms the soliton is just starting to move away from
the surface [Fig. 5(e)]. A density node has formed
in the cloud (indicated by small arrows) because
the de Broglie wavelength, ∼ 10 µm, is similar to
the longitudinal diameter of the condensate and
the condensate’s kinetic energy is sufficient to over-
come the interactions’ resistance to sharp features.
Interestingly, the node is very well defined when
compared with the non-interacting and repulsive
interaction cases [33]. It extends all the way to zero
density and leaves a comparatively large volume
where we do not expect to find many atoms. This is
due to the mean field attractive interactions which
naturally pull atoms away from energetically un-
favourable lower density areas. Fig. 5(f) shows the
condensate’s density after reflection at t = 75 ms.
Again we observe an elongation of the cloud because
the condensate has lost atoms, and hence its ability
to self-trap. As in the low velocity case, the calcu-
lations reveal no vortices or topological excitations
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but do show modulations due to propagating sound
waves. The density node, formed during reflection,
is still present in the density profile (indicated by
small arrows). Although the interactions initially
resist such features, once there is enough kinetic
energy to form them, this configuration is stable.

There is a possibility that reflection processes can
trigger a collapse in attractive condensates if the
spatial compression at the surface causes the peak
density to rise above a certain value [39]. Although
the peak density in these calculations does increase
by a factor of up to 1.5, we see that this never trig-
gers collapse for the parameters considered here. By
analogy to collisions of solitons with π phase differ-
ences we would expect collapse instabilities to oc-
cur for intermediate speeds and for solitons that are
themselves closer to collapse [40].

Fig. 6 shows how the reflection probabilities, R,
of soliton A (dotted line, square points) and soliton
B (dashed line, circular points) vary with incident
velocity v. Both curves show the qualitative trend
expected for a non-interacting wave packet i.e. R de-
creases with increasing v. The different propagation
methods have little influence on the reflection prob-
ability and the two curves approximately overlap.
As noted before, the phase imprint method makes
it straightforward to use lower velocities, hence we
can reach 0.1 mm s−1 without introducing any com-
plications associated with the initial state touching
the surface. For this low velocity we predict R =
0.48. This is comparable with the highest reflection
probabilities observed in experiments and simula-
tions with sodium atoms in spite of the fact that the
rubidium atom is almost four times heavier and no
nanofabrication technique has been used to enhance
the reflectivity of the surface [33,13]. This is primar-
ily because lower velocities can be readily attained
using attractive BECs due to their small spatial ex-
tent and ability to self-trap.

We now make a simple comparison between quan-
tum reflection of condensates with attractive inter-
actions and condensates with repulsive interactions.
The inset of Fig. 6 shows R plotted against v for
simulations of a 23Na BEC, which is taken to be one-
dimensional in the x-direction. The trap frequency is
ωx = 2π×3.3Hz and the wavefunction is normalised
such that n0 = 2.2 × 1018 atoms m−3 as in recent
experiments [12]. Repulsive condensates do not self-
trap, hence we use the trap displacement method to
propel the BEC along the x-axis towards the sur-
face. We model the reflection process using the 1D
Gross-Pitaevskii equation with the Casimir-Polder

0.4
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0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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1.5
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Fig. 6. Reflection probabilities, R, plotted against incident
velocity, v, for 3D 85Rb condensates reflecting from a planar
Si surface. The dotted curve with square points is for 85Rb
BEC A which only has radial confinement and the dashed
curve with circular points is for the 85Rb BEC B with in a
3D harmonic trap. The inset shows R(v) for a 23Na BEC
with repulsive interactions (see text for details).

potential assuming as = +2.9 nm and λa = 590 nm.
We immediately see that unlike the attractive

case, reflection probabilities do not continue to rise
as v → 0, but rather saturate at a maximum value,
∼ 0.45. This occurs because, at low v, the conden-
sate spends a long time in contact with the surface
where the curvature of the wavefunction is high.
Combined with the repulsive nature of the interac-
tions, this creates a quantum pressure which drives
atoms onto the surface. This problem is particularly
acute for the repulsive condensates we consider here
because the trap displacements required to attain
low v are lower than the longitudinal radius of the
condensate which therefore starts in contact with
the surface and remains in contact throughout the
simulation. An attractive condensate in the form of
a soliton, on the other hand, prefers to avoid contact
with the surface. It is, in fact, impossible to create an
attractive condensate ground state with significant
initial surface contact because the wavefunction
finds sharp features energetically unfavourable and
subsequently moves away from the surface to avoid
creating high levels of quantum pressure. Attractive
condensates have a further advantage in that they
also move away from absorbing potentials - it is
possible to reflect an attractive condensate from a
purely absorbing imaginary potential which has no
variation of its real part. This is because the absorb-
ing region of the potential draws atoms out of the
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condensate, thereby raising its energy and causing
the condensate to move away from this region.

6. Conclusions

In conclusion we have presented details of a pro-
posal to use bright matter-wave solitons to probe
and study quantum reflection from a solid surface at
normal incidence. We have demonstrated that con-
densates with attractive interactions have a number
of advantages in terms of quantum reflection. The
absence of dispersion as the soliton propagates al-
lows for precise control of the velocity normal to the
surface and for much lower velocities to be achieved.
Our numerical results show that the robust, self-
trapped nature of bright solitons leads to a clean re-
flection from the surface, limiting the disruption of
the density profile. This permits accurate measure-
ments of the reflection probability which can eas-
ily exceed 50% and offers a new method to probe
the atom-surface potential. Such sensitive measure-
ments in close proximity to a massive object may, in
the future, present a new method to test the short
range corrections to gravity due to exotic forces be-
yond the Standard model [47].
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