Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca²⁺ Release*⁵

Received for publication, February 15, 2012, and in revised form, May 15, 2012 Published, JBC Papers in Press, May 31, 2012, DOI 10.1074/jbc.M112.349191

Zara C. Cook^{‡§}, Michael A. Gray[¶], and Martin J. Cann^{‡§1}

From the $^{+}$ School of Biological and Biomedical Sciences and 8 Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, United Kingdom and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom

Background: Elevated CO₂ is toxic to mammalian cells.

Results: Molecular CO₂ reduces cellular cAMP dependent on intracellular Ca²⁺.

Conclusion: CO₂ can alter cellular physiological processes through IP₃-mediated Ca²⁺ release.

Significance: Altered Ca²⁺ signaling mediated by CO₂ might underpin the detrimental effects of CO₂ on the cell.

Elevated CO₂ is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO2 blunts G protein-activated cAMP signaling. The effect of CO2 is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO2 on cAMP levels required the activity of the IP₃ receptor. Consistent with these findings, CO₂ caused an increase in steady state cytoplasmic Ca²⁺ concentrations not observed in the absence of the IP₃ receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na+/H+ antiporter (NHE3) to demonstrate a functional relevance for CO2-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO₂ abrogated the inhibitory effect of cAMP on NHE3 function via an IP3 receptor-dependent mechanism.

The importance of CO₂ in biology is paramount. CO₂ is integral to all life as the substrate for the CO₂-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco)² in photosynthetic organisms and is a substrate/product for many other metabolic enzymes. The pH-dependent CO₂/bicarbonate equilibrium is fundamental to physiology and is intimately

associated with homeostatic mechanisms, including pH regulation, volume control, and fluid secretion.

All life on Earth has continued to flourish despite being subjected to large fluctuations in the levels of CO₂ in both the atmosphere and aquatic environments (1). Photosynthetic organisms are able to acclimate to large changes in atmospheric CO_2 (2). Fluctuations in CO_2 can also apply stress to unicellular and multicellular organisms over much shorter time scales. Aquatic environments can show both diurnal and long-term seasonal variations in CO2 with consequent effects on photosynthetic organisms (3). Increased respiration during exercise can cause the partial pressure of CO₂ rise from 35–45 mm Hg to over 120 mm Hg. Specific mechanisms exist to detect elevated CO₂ and enable appropriate responses, but CO₂ can also have relatively nonspecific deleterious effects on the cell (4).

CO₂ is proposed to enter cells through aquaporin, Amt, and Rhesus channels (5-7) and have direct effects on protein through carbamate formation, for example on Rubisco and hemoglobin (8). About 20 Protein Data Bank structures have CO₂ as a ligand with a variety of modes of interaction but primarily through interactions with basic side chains (9). CO₂ and HCO₃ also influence a number of cell signaling processes. CO₂ activates fungal pathogenesis through AC, and additional ACs from prokaryotes and mammals also respond directly to CO₂ and HCO₃⁻ (10-12). HCO₃⁻ activates guanylyl cyclase types D and G to enable CO₂ olfaction (13-15). The role of the cGMP pathway in CO2 chemosensing has also been conserved in Caenorhabditis elegans avoidance behavior (16-18). Chemosensing of CO₂ in *Drosophila melanogaster* is mediated through Gr21a and Gr63a, two receptors of the seven-transmembrane domain class (19, 20). In mammals, ATP release is key to chemosensory control of respiration and increased CO₂ permits ATP release from the medulla oblongata through a mechanism that requires connexin 26 (21, 22). CO₂ is also chemosensed by specific taste receptor cells that express carbonic anhydrase type 4 and has evolutionarily conserved inhibitory effects on innate immunity through inhibition of NF-kB signaling (23-26). In acute acid-base disturbance, the proximal tubule cells of the mammalian kidney respond directly to CO₂ to stimulate

^{*} This work was supported by Leverhulme Trust Grant F/00 128/AU, Biotechnology and Biological Sciences Research Council Grant BB/I011994/1, and Wellcome Trust Grant GR083381MA (to M. J. C.).

Author's Choice—Final version full access.

This article contains supplemental Figs. S1–S3.

¹ To whom correspondence should be addressed: School of Biological and Biomedical Sciences, Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK. Tel.: 44-191-3343985; Fax: 44-191-3341201; E-mail: m.j.cann@durham.ac.uk.

² The abbreviations used are: Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; AC, adenylyl cyclase; 2-APB, 2-aminoethoxydiphenyl borate; Fsk, forskolin; Fura 2-AM, Fura-2 pentakis-acetoxymethyl ester; IP₃, inositol 1,4,5-triphosphate; IP₃R, IP₃ receptor; PTH, parathyroid hormone; BCECF-AM, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester; BAPTA-AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; OK, opossum kidney.

CO2 and cAMP Signaling

 $\mathrm{H^{+}}$ secretion through a mechanism involving a tyrosine kinase of the epidermal growth factor receptor family and intracellular $\mathrm{Ca^{2+}}$ (27, 28). It is clear that specific mechanisms exist, through which $\mathrm{CO_{2}}$ can interact with biological systems.

The examples provided are mechanisms by which CO₂ is detected specifically to initiate adaptive physiological responses, but CO₂ can have generally detrimental effects on animal cellular processes. In C. elegans, increased CO2 causes slowed development, reduced fertility, and causes deterioration of body musculature (29). In *Drosophila*, elevated CO₂ causes defects in embryonic development and egg laying and hatching (25). Elevated CO₂ in rats stimulates renal phosphate excretion that is independent of other physiological factors, including pH (30). CO₂ will also impair alveolar fluid reabsorption in alveolar type II epithelial cells by inducing Na⁺,K⁺-ATPase endocytosis (31, 32). CO₂ can also chronically decrease cell proliferation through increasing levels of the miR-183 microRNA (33). Generally speaking, elevated CO₂ is tolerated in humans, although toxic effects on the central nervous system, cardiovascular, renal, metabolic, and respiratory systems are evident. Despite this, some individuals may show a greater sensitivity to the adverse effects of CO₂, for example, in the presence of an increased intracranial pressure. The significance of this is that ventilation strategies in patients that induce hypercapnia, socalled "permissive hypercapnia," improves prognosis in models of acute lung injury, ischemia-reperfusion injury and acute respiratory distress syndrome (34, 35). The protective effect of permissive hypercapnia is explained to a large extent by the anti-inflammatory influence of CO2, but such immune suppression may be detrimental in clinical settings where infection or wounding is present (26, 36). There is a requirement, therefore, to understand the molecular basis of CO₂ interactions with the core processes of the cell to understand how CO₂ can be detrimental to cell function across the animal kingdom and also to inform clinical decisions regarding the use of permissive hypercapnia. In direct contrast to the current paradigm where CO₂ can activate specific physiological processes through accumulation of cyclic nucleotides, we demonstrate that CO₂ blunts cellular activities regulated by cAMP. This effect is independent of pH and requires Ca²⁺ release via the IP₃ receptor. Given the ubiquity of cAMP and Ca²⁺ signaling in mammalian cells, this work suggests a key mechanism by which CO₂ can have a broad spectrum of effects on cell physiology independent of pH.

EXPERIMENTAL PROCEDURES

Cell Culture—OK cells (gift of Heini Murer, University of Zurich) and HEK-PR1 cells (gift of Colin Taylor, University of Cambridge) were cultured in Dulbecco's modified Eagle's medium (DMEM)/Ham's Nutrient Mixture F12 (1:1 volume), 15 mm HEPES, 14 mm NaHCO $_3$, 10% (v/v) fetal bovine serum (FBS), 1% (v/v) penicillin-streptomycin, 2% (v/v) non-essential amino acids, 1% (v/v) L-glutamine, and 500 μg/ml G418 (HEK-PR1 cells only). UMR-106 cells (gift of James Gallagher, University of Liverpool) were cultured in DMEM, 15 mm HEPES, 14 mm NaHCO $_3$, 10% (v/v) FBS, 1% (v/v) penicillin-streptomycin, 2% (v/v) non-essential amino acids, and 1% (v/v) L-glutamine. DT40KO and DT40-IP $_3$ R1 cells (gift of Colin Taylor) were cultured in RPMI 1640 medium, 15 mm HEPES, 14 mm NaHCO $_3$,

10% (v/v) FBS, 1% (v/v) heat-inactivated chicken serum, 1% (v/v) penicillin-streptomycin, 2 mM glutamine, and 50 μ M 2-mercaptoethanol.

Measurement of Intracellular pH—Cells attached to glass coverslips were loaded with 5 μM (HEK-PR1 cells) or 7.5 μM (OK cells) 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) for 30 min at 37 °C and 5% (v/v) CO_2 . pH_i was measured using a microspectrofluorometric system (excitation, 490/440 nm; emission, 535 nm). pH_i calibration was performed using high K⁺ nigericin solutions (37).

cAMP Accumulation—Cells were starved overnight in 0.2% (w/v) BSA in serum-free medium and labeled for 2 h with 0.75 μ Ci ml⁻¹ [³H]adenine. Cells were washed with phosphatebuffered saline and incubated for 30 min at 37 °C at the desired CO₂ concentration in 990 μl of pre-incubation media (DMEM/ F12 1:1 or DMEM depending on cell type, 15 mm HEPES, 1% (v/v) penicillin-streptomycin, 1 mm 3-isobutyl-1-methylxanthine) pre-gassed with the appropriate CO₂ concentration and with the pH adjusted. Assays were initiated with 10 μ l of agonist. After 10 min at 37 °C, medium was removed, and cells were lysed with 1 ml 5% (w/v) trichloroacetic acid containing 1 mm ATP and 1 mm cAMP (OK, HEK-PR1, UMR-106 cells). cAMP was quantified by twin column chromatography (38). DT40KO and DT40-IP₃R1 cell cAMP was assayed using the Biotrak cAMP enzyme immunoassay (GE Healthcare) according to the manufacturers instructions. Antagonists were added to the preincubation media.

In Vitro Adenylyl Cyclase Assay—Cell monolayers were washed with phosphate-buffered saline and suspended in lysis buffer (10 mm Tris-HCl, pH 7.5, 10 mm MgCl₂, 5 mm CaCl₂) for 20 min. The cell suspension was pelleted, re-suspended in lysis buffer, and incubated for a further 20 min. The cell suspension was pelleted and resuspended in 20 mm Tris-HCl, pH 7.5, 5 mm NaCl, 1 mm DTT, 1 mm 3-isobutyl-1-methylxanthine, 20% (v/v) glycerol, and homogenized through a 21-gauge needle. Adenylyl cyclase assays were performed at 37 °C in a final volume of 100 μ l and contained 100 mm Tris-HCl, 100 mm NaCl, 1 mm DTT, 2 mm MgCl₂, 1 mm 3-isobutyl-1-methylxanthine, 5 units of creatine phosphokinase, 5 μ M creatine phosphate, and 1 mM $[\alpha^{32}P]ATP$ (25 kBq). Reactions were stopped by the addition of 150 μ l of 50 mm Tris-HCl, pH 7.5, 5% (w/v) SDS. A further 650 μ l of H₂O and 100 μ l of 1 mm ATP, 1 mm [2,8-3H]cAMP (150 Bq) were added prior to separation of product $[\alpha^{32}P]cAMP$ by the twin column method (38).

Measurement of NHE3 Activity—NHE3 activity was monitored by measuring pH $_i$ recovery after a NH $_4$ Cl pulse using BCECF-AM. OK cells were grown to 100% confluence on glass coverslips and starved overnight in 0.2% (v/v) BSA in serumfree media. 3-min NH $_4$ Cl pulses (110 mm NaCl, 25 mm glucose, 20 mm NH $_4$ Cl, 20 mm HEPES, 14 mm NaHCO $_3$, 5 mm KCl, 1 mm CaCl $_2$, 1 mm MgSO $_4$, pH 7.4) were followed by at least 5 min of perfusion in the same solution with NaCl replacing NH $_4$ Cl.

 Ca^{2+} Imaging—Cells were loaded with 10 μ M of the Ca²⁺-sensitive fluorescent dye Fura 2-AM in serum-free media for 30 min at 37 °C in 5% (v/v) CO₂ in air. Cells were washed and resuspended in Krebs-Ringer-HEPES solution (130 mM NaCl, 25 mM glucose, 20 mM HEPES, 14 mM NaHCO₃, 5 mM KCl, 1 mM CaCl₂, 1 mM MgSO₄, pH 7.4) for 30 min at 37 °C in 5% (v/v)

CO₂ in air. CaCl₂ was omitted when examining the effect of extracellular Ca²⁺. Cells were transferred to fresh Krebs-Ringer-HEPES pre-gassed with the appropriate CO₂ concentration and the pH adjusted. Fura 2 emission was measured using a spectrofluorometer with simultaneous excitation at 340 and 380 nm and emission at 510 nm.

Statistical Analysis—Error bars represent the S.E. Statistical significance was determined by using Student's t test between indicated groups, unless otherwise indicated, and a 95% confidence interval was taken as p < 0.05.

RESULTS

The study of the effects of molecular CO₂ in vivo are confused by delineating CO₂ effects from those due to the associated acidosis and in differentiating between CO₂ effects on the tissue of interest from those secondary to changes in the endocrine and autonomic nervous systems. As elevated CO2 influences renal processes regulated by cAMP (39), we studied a renal proximal tubule-derived cell line (OK cells (40)) as a model to investigate the impact of CO₂ upon cAMP signaling. A previous study had revealed that elevated (10%) CO₂ had no apparent influence on cAMP accumulation but a drop in cAMP-response element-binding protein phosphorylation suggested that elevated CO₂ might be inhibitory for cAMP signaling (12). Methodology was therefore developed on the basis of this study to investigate the influence of elevated CO₂ on cAMP signaling.

PTH couples to the cAMP generating enzyme AC through its cognate receptor and the G protein subunit, $G\alpha_s$. cAMP accumulation in OK cells was reduced at 10% compared with 5% CO₂ at a PTH concentration (5 nm) of similar magnitude to that used for previous analysis of the influence of CO2 on OK cell physiology (Fig. 1A) (41). Batch to batch variation is known to influence the sensitivity of OK cells to PTH (42), but the response to CO₂ was independent of cell batch or passage number. The reduction in cAMP was independent of extracellular pH, as reduction of the medium pH from 7.5 to 7.0 did not affect the response (Fig. 1B). The EC₅₀ for the response was unchanged as medium pH was dropped from 7.5 to 7.0 and cAMP accumulation actually increased (supplemental Fig. S1). The drop in cAMP in response to elevated CO₂ is therefore not explained by any potential acidification of medium pH on the assay. We measured final assay pH to assess whether changes in pH_e at elevated CO₂ might still influence the observed response through an effect on the potency and efficacy of PTH stimulation of AC. Final assay pH_e in assays performed at a starting pH_e of 7.5 at 5% CO₂ was 7.5 \pm 0.1 (mean \pm S.D.) and at 10% CO₂ was 7.4 \pm 0.1 (mean \pm S.D.). The observed drop in cAMP accumulation, caused by elevated CO2, was therefore not unduly affected by any influence of pHe on signaling. cAMP levels were depressed by elevated CO2 when AC was directly activated by 10 μ M forskolin (FSK), indicating that the effect of CO₂ is independent of the mechanism used to stimulate AC (Fig. 1C). The FSK response was insensitive to a drop in medium pH from 7.5 to 7.0 (supplemental Fig. S2) indicating, together with the relative stability of assay pH at elevated CO2, that the response to CO₂ is not confused by any undue influence on pH_e. To differentiate between effects of molecular CO2 and effects due to intracellular pH (pH_i), we examined the transient intracellular

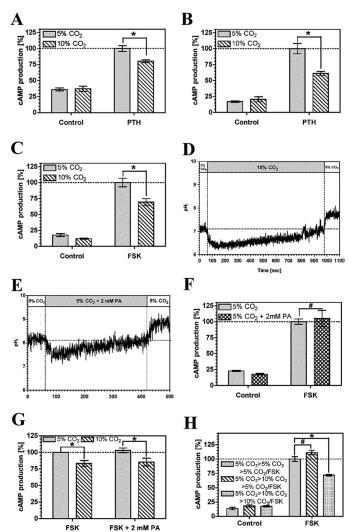


FIGURE 1. Elevated CO₂ reduces cAMP accumulation in OK cells. A, 5 nm PTH stimulated cAMP accumulation at 5% (v/v) CO_2 or 10% (v/v) CO_2 at pH 7.5. $\it B$, 5 nm PTH stimulated cAMP accumulation at 5% (v/v) $\rm CO_2$ or 10% (v/v) $\rm CO_2$ at pH 7.0. C, 10 μ M FSK stimulated cAMP accumulation at 5% (v/v) CO₂ or 10%(v/v) CO₂ at pH 7.0. D, pH_i in OK cells in response to elevated CO₂. E, \overline{p} H_i in OK cells in response to 2 mm propionic acid (PA). F, 10 μm FSK stimulated cAMP accumulation at 5% (v/v) CO₂ with or without 2 mm propionic acid at pH 7.5. G, 10 μ M FSK stimulated cAMP accumulation at 5% (v/v) CO₂ or 10% (v/v) CO₂ with 2 mm propionic acid at pH 7.5. H, OK cells at 5% (v/v) CO₂ were transferred to 5% (v/v) CO_2 or 10% (v/v) CO_2 for 30 min before assay at 5% (v/v) CO_2 or 10% (v/v) CO_2 with 10 μ M FSK (pH 7.5). cAMP accumulation in each graph is normalized to the value in the presence of agonist at 5% (v/v) CO_2 (n > 3; *, p < 0.05; #, not significant).

acidification caused by CO_2 ($\Delta pH_i = -0.72 \pm 0.17$; Fig. 1D). We approximated the extent of intracellular acidification with media containing 2 mm propionic acid ($\Delta pH_i = -0.60 \pm 0.35$; Fig. 1E). Transient intracellular acidification by propionic acid had no influence on cAMP indicating that the effect of CO2 on cAMP is not mediated through pH_i (Fig. 1F). Furthermore, propionic acid did not influence the response of cAMP to CO₂, indicating that propionic acid does not influence the cAMP pathway such that it cannot respond to inhibitory signals (Fig. 1*G*). The effect of CO₂ on cAMP levels was fully reversible. Cells grown at 5% CO₂ and then exposed to 10% CO₂ prior to assay at 5% CO₂ with FSK demonstrated cAMP accumulation indistinguishable from cells maintained and assayed at 5% CO₂ (Fig. 1H). We examined whether the effect of CO₂ on AC activ-

ity was due to protein degradation. The in vitro AC activity of OK cell crude membrane preparations exposed to 5 or 10% CO₂ was similar (the specific activity at 10% $\mathrm{CO_{2}}$ was 115 \pm 8% (S.E., n = 6) that at 5% CO₂), indicating similar protein levels and consistent with the reversibility of the response to CO₂.

To determine whether the CO₂ effect was cell context-specific, we examined the response of HEK 293 cells stably transfected with the human type 1 PTH receptor (HEK-PR1 cells) (43). cAMP accumulation stimulated by 5 nm PTH was reduced at elevated CO₂ independent of extracellular pH (Fig. 2, A and B, supplemental Fig. S1) and any specific pathway used to stimulate AC (10 μM FSK; Fig. 2C and supplemental Fig. S2). 2 mM propionic acid gave a drop in pH_i (Δ pH_i = -0.61 ± 0.32 ; Fig. 2E) greater than that for elevated CO₂ ($\Delta pH_i = -0.21 \pm 0.14$; Fig. 2D) but had no influence on cAMP accumulation (Fig. 2F). Similar to OK cells, propionic acid did not influence the response of cAMP to CO₂ (Fig. 2G). As the experimental process of elevating CO₂ in air causes a small hypoxic effect (from 19.9% to 18.9% O_2 (v/v)) we examined whether a shift from 20% to 18% O2 at constant CO2 influenced cAMP levels as an additional control. The mild hypoxia had no influence on cAMP indicating that the effect is mediated through CO₂ (Fig. 2H). Similar to OK cells, the in vitro AC activity of HEK-PR1 crude membrane preparations exposed to 5 or 10% CO₂ was similar (the specific activity at 10% CO₂ was 99 \pm 5% (S.E., n = 5) that at 5% CO₂) indicating similar protein levels and cells grown at 5% CO₂ and then exposed to 10% CO₂ prior to assay at 5% CO₂ with FSK demonstrated cAMP accumulation indistinguishable from cells maintained and assayed at 5% CO₂ (Fig. 2I). To confirm that the effect of elevated CO₂ on cAMP is a broadly applicable phenomenon we also demonstrated that the PTH-responsive rat osteosarcoma cell line, UMR-106 (44), showed an identical response to CO₂ (supplemental Fig. S3).

The activity of the nine identified mammalian G proteinresponsive AC isoforms can be modulated by a number of other signaling processes, and we investigated whether any of these pathways was responsible for the reduction in cAMP accumulation in response to CO2. We used antagonists whose broad target range enabled us to simultaneously inhibit multiple cAMP interacting signaling pathways (Fig. 3A). The effect of CO₂ on cAMP accumulation in HEK-PR1 cells did not require the activity of cAMP phosphodiesterase (1 mm 3-isobutyl-1methylxanthine), soluble adenylyl cyclase (10 μ M KH7), cAMPdependent protein kinase (PKA) (10 µM H-89), calcium-calmodulin-dependent protein kinase II (100 nm autocamtide II), or protein kinase C (1 µM staurosporine/1 mM Gö 6983). The lack of an effect of CO₂ with the AC inhibitor SQ 22,536 (200 μM) demonstrated the requirement for a G protein-responsive AC (45) as opposed to soluble AC, which is unresponsive to SQ 22,536 (46, 47). Carbonic anhydrase inhibition (100 µM acetazolamide) had no effect, indicating no requirement for conver-

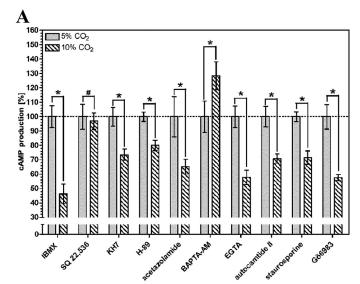
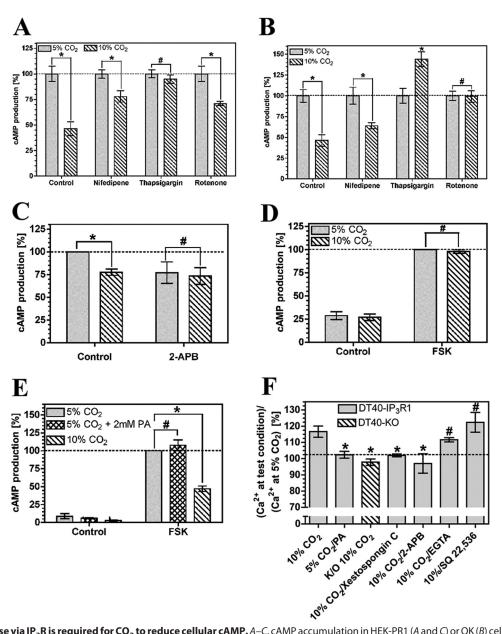
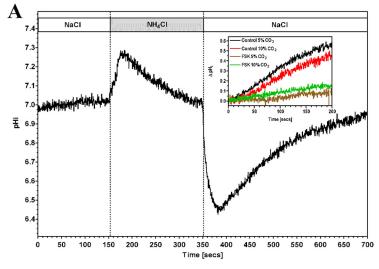
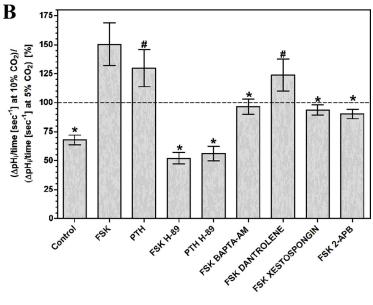


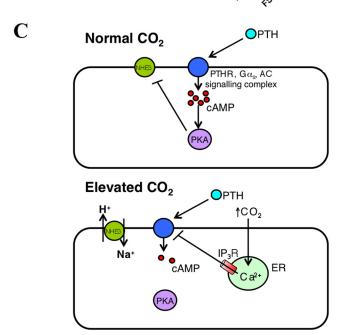
FIGURE 3. Intracellular Ca²⁺ is required for CO₂ to reduce cellular cAMP. cAMP accumulation in HEK-PR1 (A) or OK cells (B) exposed to 5% (v/v) CO₂ or 10% (v/v) CO₂ at pH 7.5 in the presence of 10 μ M FSK and various antagonists. cAMP accumulation for each antagonist is normalized to the value at 5% (v/v) CO_2 (n > 4; *, p < 0.05; #, not significant). *IBMX*, 3-isobutyl-1-methylxanthine.

sion of CO₂ to HCO₃ (14). 1 mM extracellular ethylene glycol tetraacetic acid (EGTA) had no effect on the CO2 response, whereas it was ablated by the acetoxymethyl ester of 1,2-bis(2aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM; 1 mm), indicating a requirement for intracellular but not extracellular Ca²⁺. The influence of BAPTA-AM on the CO₂ response was confirmed in OK cells, demonstrating a likely common mechanism of action (Fig. 3B). We used further inhibitors to investigate the source of the intracellular Ca²⁺. The CO_2 effect was insensitive to 100 μ M nifedipine (L- and T-type voltage-dependent Ca2+ channel blocker) in both OK and HEK-PR1 cells and 5 μM rotenone (a mitochondrial inhibitor) in HEK-PR1 cells (Fig. 4, A and B). Rotenone ablated the response of cAMP to CO2 in OK cells; however, we noted sig-

FIGURE 2. **Elevated CO₂ reduces cAMP accumulation in HEK-PR1 cells.** A, 5 nm PTH stimulated cAMP accumulation at 5% (v/v) CO_2 or 10% (v/v) CO_2 at pH 7.5. B, 5 nm PTH stimulated CAMP accumulation at 5% (v/v) CO₂ or 10% (v/v) CO₂ at pH 7.0. C, 10 μ m FSK stimulated cAMP accumulation at 5% (v/v) CO₂ or 10% (v/v) CO₂ at pH 7.0. D, pH, in HEK-PR1 cells in response to elevated CO₂. E, pH, in HEK-PR1 cells in response to 2 mm propionic acid. F, 10 μm FSK stimulated cAMP accumulation at 5% (v/v) CO₂ with or without 2 mm propionic acid at pH 7.5. G, 10 μ m FSK stimulated cAMP accumulation at 5% (v/v) CO₂ or 10% (v/v) CO₂ with 2 mm propionic acid (PA) at pH 7.5. H, 10 μm FSK stimulated cAMP accumulation at 5% (v/v) $CO_2/20\%$ (v/v) O_2 , 5% (v/v) $CO_2/18\%$ (v/v) O_2 , or 10% (v/v) $CO_2/18\%$ (v/v) O₂ at pH 7.5. I, HEK-PR1 cells at 5% (v/v) CO₂ were transferred to 5% (v/v) CO₂ or 10% (v/v) CO₂ for 30 min before assay at 5% (v/v) CO₂ or 10% (v/v) CO₂ with 10 μ M FSK (pH 7.5). cAMP accumulation in each graph is normalized to the value in the presence of agonist at 5% (v/v) CO₂ (n > 3; * p < 0.05; #, not significant).


FIGURE 4. $\mathbf{Ca^{2+}}$ release via $\mathbf{IP_3R}$ is required for $\mathbf{CO_2}$ to reduce cellular cAMP. A-C, cAMP accumulation in HEK-PR1 (A and C) or OK (B) cells exposed to 5% (v/v) CO_2 or 10% (v/v) CO_2 at pH 7.5 in the presence of 10 μ M FSK and various antagonists. cAMP accumulation for each antagonist is normalized to the value at 5% (v/v) CO_2 (n > 4; *, p < 0.05; #, not significant). D and E, 10 μ M FSK stimulated cAMP accumulation in DT40KO (D), and DT40-IP $_3$ R1 cells (E) exposed to 5% (v/v) CO_2 , 10% (v/v) CO_2 , or 5% (v/v) CO_2 with 2 mM propionic acid (PA) at pH 7.5. cAMP accumulation in each graph is normalized to the value at 5% (v/v) CO_2 (n > 3; *, p < 0.05; #, not significant). E, ratio of cytosolic E0 at a test condition versus 5% (v/v) E1 in DT40-IP $_3$ R1 or DT40-KO cells in the presence of various antagonists (v > 6; *, v < 0.05; #, not significantly v < 0.05


nificant toxicity and cell death in response to rotenone in this cell line, indicating that this might be a nonspecific effect. The cAMP response was ablated by 10 μ M thapsigargin (endoplasmic reticulum Ca²⁺-ATPase inhibitor) in both HEK-PR1 and OK cells (Fig. 4, A and B). This indicated a likely role for CO₂ mediated Ca²⁺ release from a thapsigargin-sensitive store, most likely via the IP₃ receptor and the endoplasmic reticulum. Further evidence for this was obtained in HEK-PR1 cells using the IP₃R inhibitor 100 μ M 2-APB (Fig. 4C). To eliminate the possibility of off target effects with thapsigargin and 2-APB, particularly as significant variability was observed with the latter due to toxicity, we investigated more specific evidence for the involvement of the IP₃ receptor in Ca²⁺ release. We exam-

ined the effect of elevated CO_2 on the DT40KO cell line (48). DT40KO cells are a chicken B lymphocyte-derived cell line genetically ablated for type 1, 2, and 3 IP_3 receptors and are a null background for IP_3 receptor studies. We examined cAMP accumulation in response to elevated CO_2 in DT40KO cells compared with DT40-IP $_3$ R1 cells that have had the rat IP_3 type 1 receptor introduced (49). Elevated CO_2 did not blunt cAMP accumulation in DT40KO cells (Fig. 4D) but did in DT40-IP $_3$ R1 cells (Fig. 4E), proving that the type 1 IP_3 receptor is required for the response to CO_2 . Intracellular acidification through 2 mM propionic acid had no influence on cellular cAMP in DT40-IP $_3$ R1 cells as observed for both OK and HEK-PR1 cells.

CO₂ and cAMP Signaling

As the CO₂/cAMP effect is sensitive to intracellular Ca²⁺ chelation and shows a requirement for the IP3 receptor, we investigated whether elevated CO2 altered steady state cytoplasmic [Ca²⁺] in both DT40KO cells and DT40-IP₃R1 cells. Cytoplasmic [Ca²⁺] was elevated at 10% compared with 5% CO₂ in DT40-IP₃R1 but not DT40KO cells (Fig. 4F). Nonspecific intracellular acidification through propionic acid had no influence on cytoplasmic $[\mathrm{Ca}^{2+}].$ Elevated CO_2 therefore mediates Ca²⁺ release from the endoplasmic reticulum via the IP₃ receptor. To provide an independent validation for the role of the IP₃ receptor in the DT40 cell response to CO₂, we treated DT40-IP₃R cells with either 1 mm EGTA, 100 μ m 2-APB, or 500 nm xestospongin C (Fig. 4F). Cytoplasmic [Ca²⁺] was elevated at 10% compared with 5% CO₂ in DT40-IP₃R1 cells in the presence of EGTA, consistent with the absence of an effect of EGTA on CO_2 modulation of cAMP. The Ca^{2+} release in response to CO₂ was ablated by the IP₃ receptor antagonists xestospongin C and 2-APB. This result supports the interpretation that these inhibitors are blocking IP₃ receptor signaling in HEK-PR1 and OK cells (Figs. 4C and 5B). Inclusion of the AC inhibitor SQ 22,536 (200 μ M) had no influence on CO₂-mediated Ca²⁺ release. These data confirm that an increase in cytosolic Ca²⁺ is a prerequisite for the effect of CO₂ on cAMP (Fig. 4, D and E) and that cAMP lies downstream of the increase in cytosolic Ca^{2+} (Fig. 4*F*).

We investigated the functional consequences of $\rm CO_2$ -mediated reductions in intracellular cAMP by assessing a cAMP-dependent physiological process in OK cells. Sodium-proton exchanger isoform 3 (NHE3) is an apical $\rm Na^+$ -H $^+$ antiporter of renal epithelial (and OK) cells with a crucial role in H $^+$, Na $^+$, and fluid homeostasis (50). NHE3 is inhibited by PKA phosphorylation at serine residues 552 and 605 (51), and we examined the effect of elevated $\rm CO_2$ on cAMP-mediated suppression of NHE3 activity. OK cells exposed to NH $_4$ Cl alkalize due to H $^+$ buffering by NH $_3$, but pH regulatory mechanisms returns pH $_i$ to normal (Fig. 5A). On exchange of NH $_4$ Cl for NaCl, pH $_i$ drops as the accumulated intracellular NH $_4^+$ releases H $^+$. The alkalization to restore pH $_i$ is due to NHE3 (52), and we analyzed this phase of the response.

Comparison of control pH $_i$ recoveries at 5 and 10% CO $_2$ demonstrated a cAMP-independent suppression of recovery at elevated CO $_2$ (Fig. 5, A and B; note the ratio of recovery at 10% compared with 5% CO $_2$ < 1). Inhibition of NHE3-mediated pH $_i$ recovery by FSK or PTH was greater in 5% compared with 10% CO $_2$ consistent with the effect of CO $_2$ on cAMP levels (note the ratio of recovery at 10% CO $_2$ compared with 5% CO $_2$ > 1). The effect of CO $_2$ on cAMP inhibition of pH $_i$ recovery was reduced by H-89 and BAPTA-AM, demonstrating a requirement for both PKA and intracellular Ca $^{2+}$. 10 μ M dantrolene (a ryanodine receptor antagonist) had no influence on CO $_2$ suppression of cAMP signaling. The IP $_3$ receptor antagonists xestospongin C (500 nM) and 2-APB (100 μ M) eliminated the effect of CO $_2$ on

cAMP-dependent NHE3 inhibition. CO_2 therefore suppresses the activity of the cAMP signaling pathway through Ca^{2+} release via the IP_3 receptor with functional consequences for cAMP-dependent cellular processes (Fig. 5*C*).

DISCUSSION

In this work, we make two original claims. The first is that molecular CO_2 reduces levels of cellular cAMP when the G-protein responsive cAMP signaling pathway is activated and this has functional consequences for downstream processes. This is in direct contrast to the current paradigm where cyclic nucleotide levels, where they are observed to respond to CO_2 , increase. The second is that molecular CO_2 increases steady state cytoplasmic Ca^{2+} concentrations dependent on the IP_3 receptor. The effect of CO_2 on cAMP is a consequence of this altered Ca^{2+} . These findings significantly advance our understanding of the effects of CO_2 on the cell.

CO₂ toxicity is not straightforward to study due to the effects of the associated acidosis and secondary effects on the endocrine and autonomic nervous systems. We circumvented these problems through the use of cultured cells to demonstrate that elevated CO₂ blunts cellular cAMP production independent of pH. The use of sub-maximally activating concentrations of cAMP stimulating agonists enabled us to detect either activation or down-regulation of the cAMP signaling pathway under any given experimental condition. Submaximal 5 nм PTH gave only a very small increase in cAMP in experiments to examine the influence of pH_e in OK cells (supplemental Fig. S1). As the assay procedure used has minimal effects on pH,, this issue with this batch of cells does not affect the main findings. Cell batches used to examine the influence of CO2 gave robust responses at submaximal 5 nm PTH (Figs. 1 and 5). In addition to a failure of intracellular acidification to modulate cAMP, two further lines of evidence make it unlikely that the effects of CO₂ are mediated by pH_i. First, pH_i is allowed to normalize after CO₂ elevation requiring a hypothesized acid signal to persist long after pH homeostasis. Second, FSK (activating all AC isoforms) and PTH (coupling to AC6 in HEKPR1 cells (53)) give identical responses to CO₂ arguing against a localized acid signal communicating with a distinct signaling enzyme. Extracellular pH is also unlikely to be responsible as medium acidification (as might be proposed to occur mid-assay were buffering insufficient) does not alter the EC50 for PTH and actually gives an increase in cAMP. Medium acidification would therefore cause an underestimation of the decrease in cAMP. An increase in pCO₂ causes a small decrease in pO_2 , but the decrease in pO_2 did not explain the effects of pCO₂ on cAMP. We conclude, therefore, that the effect of hypercapnia is mediated by molecular CO₂ and not pH or any other variable.

The influence of CO₂ on cAMP signaling might be due to a direct interaction with AC or with an alternative signaling pathway, which impacts on cAMP levels. Pharmacological inhibi-

FIGURE 5. **Elevated CO₂ blunts cAMP inhibition of NHE3 in OK cells.** *A*, monitoring of pH_i in OK cells in response to NH₄Cl. The *inset* shows a sample experiment monitoring post-alkalization pH_i recovery analyzed to generate the graph below. *B*, ratio of slope of pH_i recovery at 10% (v/v) CO₂ versus 5% (v/v) CO₂ after shift from NH₄Cl to NaCl in the presence of 10 μ M FSK or 5 nM PTH and various inhibitors (n > 3; *, p < 0.05; #, not significant compared with FSK by one-way analysis of variance with post-hoc Bonferroni test). *C*, model for the impact of CO₂ on PTH signaling at normal and elevated CO₂. *ER*, endoplasmic reticulum.

tors offered the best initial route to investigate CO₂ responsive pathways that influence cAMP as the experiment could exploit the broad spectrum of targets antagonised under moderate concentrations. This method identified a role for intracellular Ca²⁺ in the response to CO₂. The Ca²⁺ was most likely derived from an intracellular store as external EGTA did not influence the response. Further support came from the use of inhibitors previously used to study the role of Ca²⁺ in cellular responses to CO₂ (27). Rotenone antagonized the cellular response to CO₂ in OK cells, but this is most likely due to its observed toxicity, particularly as the effect was not reproduced in HEK-PR1 cells. Thapsigargin ablated the cAMP response to CO₂ in both OK and HEK-PR1 cells. The use of 2-APB, which inhibits both the IP₃ receptor and transient receptor potential channels, supported this finding. The lack of a role for extracellular Ca²⁺ eliminated the transient receptor potential channels and supported a role for Ca²⁺ release from the endoplasmic reticulum, in particular via the IP₃ receptor. A role for the IP₃ receptor was proven through the use of a cell line genetically ablated for all three IP3 receptor isoforms. The most likely interpretation of the pharmacological analysis in HEK-PR1 and OK cells is therefore supported unambiguously through genetics in an independent cell line. It is formally possible that the underlying signaling response to CO₂ in HEK-PR1 and OK cells does not involve the IP₃ receptor. This possibility is unlikely, however, as the IP₃ receptor antagonists used in this study were validated by demonstrating that their effect on CO₂-mediated Ca²⁺ release in DT40-IP₃R1 cells was identical to the effect of the genetic ablation. A combination of the subtlety of the effects of CO₂ and the incomplete knockdown of the IP₃ receptor using siRNA (53) makes a genetic validation for the role of the IP₃ receptor in these cells currently unfeasible. Future experiments using knock-outs generated via zinc finger nucleases will permit a genetic approach to be adopted in these cells.

Despite this, a coherent picture does emerge and supports what is known of the toxicity of CO₂. A role for altered Ca²⁺ signaling in the response to CO2 is consistent with generic toxicity as Ca²⁺ signaling is a core physiological process evident in all mammalian cell types and elevated cytosolic Ca2+ is associated with cell toxicity (54). The approximate 20% increase in steady state cytoplasmic Ca2+ and 10-50% drop in cellular cAMP are relatively subtle effects and are consistent with the reasonable tolerance of mammals to elevated CO₂ (55). A role for Ca²⁺ in CO₂ responses has been investigated previously. Vadász and co-workers (32) noted a transient increase in cytoplasmic Ca²⁺ in response to hypercapnia, whereas Bouyer and co-workers (27) identified a rise in intracellular Ca²⁺ proposed as originating from an unconventional source. Our work provides significant clarity in its use of genetics to identify the Ca²⁺ source, but we cannot eliminate the possibility of context-dependent Ca²⁺ sources. It will be instructive in the future to investigate whether the effects of Ca²⁺ on AC are direct (56) or occur through a Ca²⁺-sensitive signaling pathway (57).

A crucial discovery is that elevated CO₂ suppresses a cAMPdependent cellular process. The effect of CO2 on a cAMP-responsive Na+-H+ antiporter is consistent with the observed biochemistry of the influence of CO₂ on cAMP. We propose, therefore, that altered cAMP and/or Ca²⁺ signaling can be investigated further as a key mechanism by which the toxic effects of CO₂ are manifested. For example, there is growing evidence that chronic daytime hypercapnia associated with obstructive sleep disorders predisposes individuals to cardiovascular disease (58). The central role of cAMP and Ca2+ in cardiac and circulatory physiology (57) suggests a key route to understanding this pathophysiology and possibilities for therapeutic intervention.

Ca²⁺ efflux through the IP₃ receptor is modulated both by signaling pathways that regulate phospholipase C and by the local cellular environment (59-61). A major challenge for the future will be to determine how CO₂ causes Ca²⁺ release through the IP3 receptor and its direct cellular target. Identification of such a CO2 target will further inform our understanding of the cell biology of CO₂, in particular other cell processes that are influenced by CO₂ to mediate its toxicity.

Acknowledgment-We thank Phil Townsend for helpful discussion and critical comments on the manuscript.

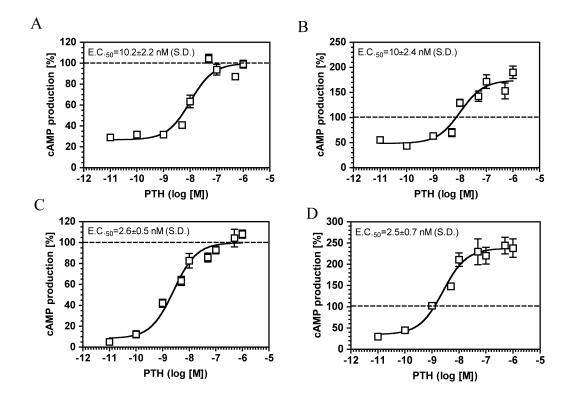
REFERENCES

- 1. Beerling, D. J., Lomax, B. H., Royer, D. L., Upchurch, G. R., Jr., and Kump, L. R. (2002) An atmospheric pCO₂ reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc. Natl. Acad. Sci. U.S.A. 99,
- 2. Kaplan, A., Helman, Y., Tchernov, D., and Reinhold, L. (2001) Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Proc. Natl. Acad. Sci. U.S.A. 98, 4817-4818
- 3. Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., and Jassal, R. S. (2010) Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems: Method and applications. Ecohydrology 3, 68-78
- 4. Sharabi, K., Lecuona, E., Helenius, I. T., Beitel, G. J., Sznajder, J. I., and Gruenbaum, Y. (2009) Sensing, physiological effects, and molecular response to elevated CO2 levels in eukaryotes. J. Cell Mol. Med. 13, 4304 - 4318
- 5. Soupene, E., Inwood, W., and Kustu, S. (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO₂. Proc. Natl. Acad. Sci. U.S.A. 101, 7787-7792
- 6. Musa-Aziz, R., Chen, L. M., Pelletier, M. F., and Boron, W. F. (2009) Relative CO₂/NH₃ selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. U.S.A. 106, 5406-5411
- 7. Nakhoul, N. L., Davis, B. A., Romero, M. F., and Boron, W. F. (1998) Effect of expressing the water channel aquaporin-1 on the CO₂ permeability of Xenopus oocytes. Am. J. Physiol. 274, C543-548
- 8. Lorimer, G. H. (1983) Carbon dioxide and carbamate formation: The makings of a biochemical control system. Trends Biochem. Sci. 8, 65 - 68
- 9. Cundari, T. R., Wilson, A. K., Drummond, M. L., Gonzalez, H. E., Jorgensen, K. R., Payne, S., Braunfeld, J., De Jesus, M., and Johnson, V. M. (2009) CO₂ Formatics: How do proteins bind carbon dioxide? J. Chem. Inf. Model 49, 2111-2115
- 10. Hammer, A., Hodgson, D. R., and Cann, M. J. (2006) Regulation of prokaryotic adenylyl cyclases by CO₂. Biochem. J. 396, 215-218
- 11. Klengel, T., Liang, W. J., Chaloupka, J., Ruoff, C., Schröppel, K., Naglik, J. R., Eckert, S. E., Mogensen, E. G., Haynes, K., Tuite, M. F., Levin, L. R., Buck, J., and Mühlschlegel, F. A. (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15, 2021-2026
- 12. Townsend, P. D., Holliday, P. M., Fenyk, S., Hess, K. C., Gray, M. A., Hodgson, D. R., and Cann, M. J. (2009) Stimulation of mammalian G-protein-responsive adenylyl cyclases by carbon dioxide. J. Biol. Chem. 284,

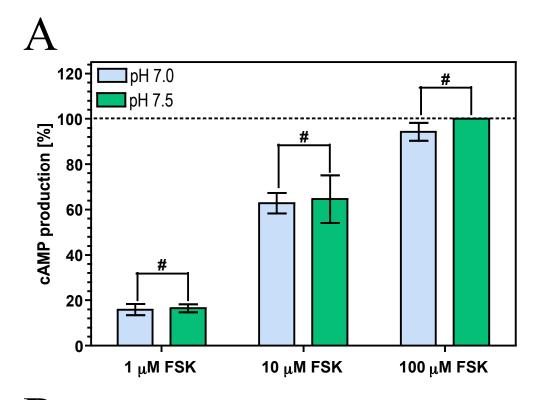
CO₂ and cAMP Signaling

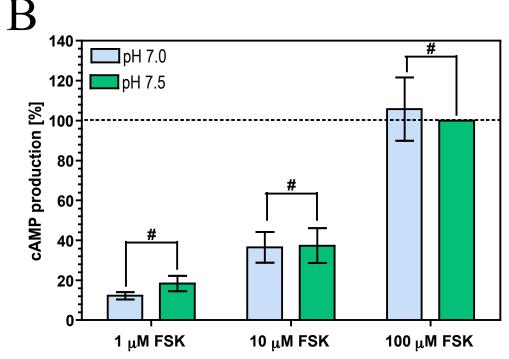
- Chao, Y. C., Cheng, C. J., Hsieh, H. T., Lin, C. C., Chen, C. C., and Yang,
 R. B. (2010) Guanylate cyclase-G, expressed in the Grueneberg ganglion olfactory subsystem, is activated by bicarbonate. *Biochem. J.* 432, 267–273
- 14. Guo, D., Zhang, J. J., and Huang, X. Y. (2009) Stimulation of guanylyl cyclase-D by bicarbonate. *Biochemistry* **48**, 4417–4422
- Sun, L., Wang, H., Hu, J., Han, J., Matsunami, H., and Luo, M. (2009) Guanylyl cyclase-D in the olfactory CO₂ neurons is activated by bicarbonate. *Proc. Natl. Acad. Sci. U.S.A.* 106, 2041–2046
- Bretscher, A. J., Busch, K. E., and de Bono, M. (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in *Caenorhabditis elegans*. Proc. Natl. Acad. Sci. U.S.A. 105, 8044–8049
- Hallem, E. A., Spencer, W. C., McWhirter, R. D., Zeller, G., Henz, S. R., Rätsch, G., Miller, D. M., 3rd, Horvitz, H. R., Sternberg, P. W., and Ringstad, N. (2011) Receptor-type guanylate cyclase is required for carbon dioxide sensation by *Caenorhabditis elegans*. Proc. Natl. Acad. Sci. U.S.A. 108, 254, 259
- Hallem, E. A., and Sternberg, P. W. (2008) Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 105, 8038 – 8043
- Jones, W. D., Cayirlioglu, P., Kadow, I. G., and Vosshall, L. B. (2007) Two chemosensory receptors together mediate carbon dioxide detection in *Drosophila. Nature* 445, 86–90
- Kwon, J. Y., Dahanukar, A., Weiss, L. A., and Carlson, J. R. (2007) The molecular basis of CO₂ reception in *Drosophila. Proc. Natl. Acad. Sci.* U.S.A. 104, 3574–3578
- Gourine, A. V., Llaudet, E., Dale, N., and Spyer, K. M. (2005) ATP is a mediator of chemosensory transduction in the central nervous system. *Nature* 436, 108 – 111
- Huckstepp, R. T., id Bihi, R., Eason, R., Spyer, K. M., Dicke, N., Willecke, K., Marina, N., Gourine, A. V., and Dale, N. (2010) Connexin hemichannel-mediated CO₂-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. *J. Physiol.* 588, 3901–3920
- Chandrashekar, J., Yarmolinsky, D., von Buchholtz, L., Oka, Y., Sly, W., Ryba, N. J., and Zuker, C. S. (2009) The taste of carbonation. *Science* 326, 443–445
- 24. Cummins, E. P., Oliver, K. M., Lenihan, C. R., Fitzpatrick, S. F., Bruning, U., Scholz, C. C., Slattery, C., Leonard, M. O., McLoughlin, P., and Taylor, C. T. (2010) NF- κ B links CO $_2$ sensing to innate immunity and inflammation in mammalian cells. *J. Immunol.* **185**, 4439 4445
- Helenius, I. T., Krupinski, T., Turnbull, D. W., Gruenbaum, Y., Silverman, N., Johnson, E. A., Sporn, P. H., Sznajder, J. I., and Beitel, G. J. (2009) Elevated CO₂ suppresses specific *Drosophila* innate immune responses and resistance to bacterial infection. *Proc. Natl. Acad. Sci. U.S.A.* 106, 18710 –18715
- O'Toole, D., Hassett, P., Contreras, M., Higgins, B. D., McKeown, S. T., McAuley, D. F., O'Brien, T., and Laffey, J. G. (2009) Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-κB-dependent mechanism. *Thorax* 64, 976–982
- Bouyer, P., Zhou, Y., and Boron, W. F. (2003) An increase in intracellular calcium concentration that is induced by basolateral CO₂ in rabbit renal proximal tubule. *Am. J. Physiol. Renal Physiol.* 285, F674 – 687
- 28. Zhou, Y., Bouyer, P., and Boron, W. F. (2006) Role of a tyrosine kinase in the CO_2 -induced stimulation of HCO_3 reabsorption by rabbit S2 proximal tubules. *Am. J. Physiol. Renal Physiol.* **291**, F358 –367
- 29. Sharabi, K., Hurwitz, A., Simon, A. J., Beitel, G. J., Morimoto, R. I., Rechavi, G., Sznajder, J. I., and Gruenbaum, Y. (2009) Elevated CO_2 levels affect development, motility, and fertility and extend life span in *Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A.* **106**, 4024 4029
- Guntupalli, J., Matthews, B., Carlin, B., and Bourke, E. (1987) Effect of acute hypercapnia on PTH-stimulated phosphaturia in dietary Pi-deprived rat. Am. J. Physiol. Renal Physiol. 253, F34 – 40
- Briva, A., Vadász, I., Lecuona, E., Welch, L. C., Chen, J., Dada, L. A., Trejo,
 H. E., Dumasius, V., Azzam, Z. S., Myrianthefs, P. M., Batlle, D., Gruenbaum, Y., and Sznajder, J. I. (2007) High CO₂ levels impair alveolar epithelial function independently of pH. *PLoS ONE* 2, e1238
- 32. Vadász, I., Dada, L. A., Briva, A., Trejo, H. E., Welch, L. C., Chen, J., Tóth, P. T., Lecuona, E., Witters, L. A., Schumacker, P. T., Chandel, N. S., Seeger,

- W., and Sznajder, J. I. (2008) AMP-activated protein kinase regulates CO₂-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. *J. Clin. Invest.* **118**, 752–762
- Vohwinkel, C. U., Lecuona, E., Sun, H., Sommer, N., Vadász, I., Chandel, N. S., and Sznajder, J. I. (2011) Elevated CO₂ levels cause mitochondrial dysfunction and impair cell proliferation. *J. Biol. Chem.* 286, 37067–37076
- 34. Laffey, J. G., and Kavanagh, B. P. (1999) Carbon dioxide and the critically ill–too little of a good thing? *Lancet* **354**, 1283–1286
- 35. Taylor, C. T., and Cummins, E. P. (2011) Regulation of gene expression by carbon dioxide. *J. Physiol.* **589**, 797–803
- Nichol, A. D., O'Cronin, D. F., Howell, K., Naughton, F., O'Brien, S., Boylan, J., O'Connor, C., O'Toole, D., Laffey, J. G., and McLoughlin, P. (2009)
 Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis. *Crit. Care Med.* 37, 2953–2961
- Hegyi, P., Rakonczay, Z., Jr., Gray, M. A., and Argent, B. E. (2004) Measurement of intracellular pH in pancreatic duct cells: A new method for calibrating the fluorescence data. *Pancreas* 28, 427–434
- 38. Salomon, Y., Londos, C., and Rodbell, M. (1974) A highly sensitive adenylate cyclase assay. *Anal. Biochem.* **58**, 541–548
- 39. Guntupalli, J., and Bourke, E. (1985) Evidence that the phosphaturic effect of acute hypercapnia (HC) is not due to the low systemic pH of HC. *Kidney Int.* 27, 116
- Koyama, H., Goodpasture, C., Miller, M. M., Teplitz, R. L., and Riggs, A. D.
 (1978) Establishment and characterization of a cell line from the American opossum (*Didelphys virginiana*). *In Vitro* 14, 239 –246
- Jehle, A. W., Hilfiker, H., Pfister, M. F., Biber, J., Lederer, E., Krapf, R., and Murer, H. (1999) Type II Na-Pi cotransport is regulated transcriptionally by ambient bicarbonate/carbon dioxide tension in OK cells. *Am. J. Physiol.* 276, F46 – 53
- 42. Cole, J. A., Forte, L. R., Krause, W. J., and Thorne, P. K. (1989) Clonal sublines that are morphologically and functionally distinct from parental OK cells. *Am. J. Physiol.* **256**, F672–679
- 43. Short, A. D., and Taylor, C. W. (2000) Parathyroid hormone controls the size of the intracellular Ca²⁺ stores available to receptors linked to inositol trisphosphate formation. *J. Biol. Chem.* **275**, 1807–1813
- Martin, T. J., Ingleton, P. M., Underwood, J. C., Michelangeli, V. P., Hunt, N. H., and Melick, R. A. (1976) Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. *Nature* 260, 436 – 438
- Hurley, J. H. (1999) Structure, mechanism, and regulation of mammalian adenylyl cyclase. J. Biol. Chem. 274, 7599 – 7602
- Spehr, M., Schwane, K., Riffell, J. A., Barbour, J., Zimmer, R. K., Neuhaus, E. M., and Hatt, H. (2004) Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. *J. Biol. Chem.* 279, 40194 – 40203
- Leclerc, P., and Kopf, G. S. (1999) Evidence for the role of heterotrimeric guanine nucleotide-binding regulatory proteins in the regulation of the mouse sperm adenylyl cyclase by the egg's zona pellucida. *J Androl* 20, 126–134
- 48. Sugawara, H., Kurosaki, M., Takata, M., and Kurosaki, T. (1997) Genetic evidence for involvement of type 1, type 2, and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. *EMBO J.* **16,** 3078–3088
- 49. Laude, A. J., Tovey, S. C., Dedos, S. G., Potter, B. V., Lummis, S. C., and Taylor, C. W. (2005) Rapid functional assays of recombinant IP $_3$ receptors. Cell Calcium 38, 45–51
- Alexander, R. T., and Grinstein, S. (2009) Tethering, recycling, and activation of the epithelial sodium-proton exchanger, NHE3. *J. Exp. Biol.* 212, 1630–1637
- Zhao, H., Wiederkehr, M. R., Fan, L., Collazo, R. L., Crowder, L. A., and Moe, O. W. (1999) Acute inhibition of Na/H exchanger NHE-3 by cAMP. Role of protein kinase a and NHE-3 phosphoserines 552 and 605. *J. Biol. Chem.* 274, 3978 – 3987
- Weinman, E. J., Steplock, D., Wade, J. B., and Shenolikar, S. (2001) Ezrin binding domain-deficient NHERF attenuates cAMP-mediated inhibition of Na⁺/H⁺ exchange in OK cells. *Am. J. Physiol. Renal Physiol.* 281, E374—380
- 53. Tovey, S. C., Dedos, S. G., Taylor, E. J., Church, J. E., and Taylor, C. W.

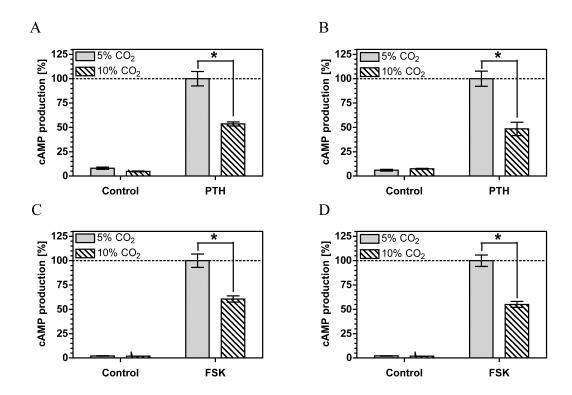


- (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP₃ receptors mediates direct sensitization of IP₃ receptors by cAMP. J. Cell Biol. **183,** 297-311
- 54. Johnson, M. E., Gores, G. J., Uhl, C. B., and Sill, J. C. (1994) Cytosolic free calcium and cell death during metabolic inhibition in a neuronal cell line. J. Neurosci. 14, 4040 - 4049
- 55. Adrogué, H. E., and Adrogué, H. J. (2001) Acid-base physiology. Respir. Care 46, 328-341
- 56. Mou, T. C., Masada, N., Cooper, D. M., and Sprang, S. R. (2009) Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry 48, 3387-3397
- 57. Willoughby, D., and Cooper, D. M. (2007) Organization and Ca²⁺ regulation of adenylyl cyclases in cAMP microdomains. Physiol. Rev. 87,


- 965-1010
- 58. Gopalakrishnan, P., and Tak, T. (2011) Obstructive sleep apnea and cardiovascular disease. Cardiol. Rev. 19, 279-290
- 59. Rossi, A. M., Tovey, S. C., Rahman, T., Prole, D. L., and Taylor, C. W. (2011) Biochim. Biophys. Acta [Epub ahead of print]
- 60. Li, G., Mongillo, M., Chin, K. T., Harding, H., Ron, D., Marks, A. R., and Tabas, I. (2009) Role of ERO1- α -mediated stimulation of inositol 1,4,5triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783-792
- 61. Higo, T., Hattori, M., Nakamura, T., Natsume, T., Michikawa, T., and Mikoshiba, K. (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120, 85-98



Supplementary Figure 1. Extracellular pH does not influence the potency of the PTH receptor-AC signalling complex for PTH. cAMP accumulation in OK (A, B) or HEK-PR1 cells (C, D) at pH 7.5 (A, C) or pH 7.0 (B, D) at varying PTH. cAMP accumulation in each cell line is normalized to the value for the best fit for maximum cAMP accumulation at pH 7.5 (n > 4).



Supplementary Figure 2. Extracellular pH does not influence the efficacy or potency of the forskolin mediated cAMP response. cAMP accumulation in OK (n = 4, # not significant) (A) or HEK-PR1 cells (n = 3, # not significant) (B) at pH 7.0 or 7.5 at varying forskolin (FSK). cAMP accumulation in each cell line is normalized to the response to 100 μ M forskolin at pH 7.5.

Supplementary Figure 3. Elevated CO_2 reduces cAMP accumulation in UMR-106 cells. cAMP accumulation in UMR-106 cells exposed to 5% (v/v) CO_2 or 10% (v/v) CO_2 at pH 7.5 (A, C) and pH 7.0 (B, D) in the presence of 5 nM PTH (A, B) or 10 μ M FSK (C, D). cAMP accumulation in each graph is normalized to the value in the presence of agonist at 5% (v/v) CO_2 (n > 4, * p < 0.05).

