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The protein folding machinery of the endoplasmic reticulum (ER) ensures

that proteins entering the eukaryotic secretory pathway acquire appropriate

post-translational modifications and reach a stably folded state. An impor-

tant component of this protein folding process is the supply of disulfide

bonds. These are introduced into client proteins by ER resident oxidoreduc-

tases, including ER oxidoreductin 1 (Ero1). Ero1 is usually considered to

function in a linear pathway, by ‘donating’ a disulfide bond to protein dis-

ulfide isomerase (PDI) and receiving electrons that are passed on to the

terminal electron acceptor molecular oxygen. PDI engages with a range of

clients as the direct catalyst of disulfide bond formation, isomerization or

reduction. In this paper, we will consider the interactions of Ero1 with

PDI family proteins and chaperones, highlighting the effect that redox flux

has on Ero1 partnerships. In addition, we will discuss whether higher

order protein complexes play a role in Ero1 function.
1. Oxidative protein folding in the endoplasmic reticulum
Disulfide bonds are formed between two cysteine residues, either within

proteins (intramolecular disulfides) or between proteins (intermolecular disul-

fides) [1]. This is a rare occurrence in the cell cytosol because the reducing

environment favours free thiols (–SH). However, in the bacterial periplasm

[2], the mitochondrial intermembrane space and the eukaryotic endoplasmic

reticulum (ER [3]), the environment is more oxidizing and favours disulfide

bond formation (S–S). In the ER, native disulfide bonds are integrated into pro-

teins early during the folding process [4]. This occurs while the protein is being

threaded through the translocon during, or shortly after, translation. The pro-

cess of ensuring that a protein is properly folded and equipped with the

correct disulfide bond arrangements is carefully coordinated by various protein

disulfide isomerases (PDIs), oxidoreductases, chaperones and other folding

factors [5]. These folding assistants ensure that disulfide bond formation is

coupled to other post-translational modifications, such as the introduction of

N-linked glycans and to quality control processes [6]. The main players

involved in oxidative folding and quality control have been identified, but

how they interact and work together in a coordinated fashion is not fully under-

stood. The ER can be viewed as the control point for a cell’s secretory output

and for the integrity of proteins within the secretory pathway itself. Thus,

understanding how the ER machinery works in different cells and tissues is

essential for us to tackle various biological problems, ranging from diseases

of misfolding to the need for improved production of recombinant proteins.
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Figure 1. The redox state and interactions of Ero1a are cell-type dependent.
(a) Equal amounts of lysates from HT1080 cells (lanes 1 and 4), HeLa cells (lanes
2 and 5) and THP1 cells (lanes 3 and 6) were analysed by non-reducing (lanes
1 – 3) or reducing (lanes 4 – 6) SDS-PAGE and probed for Ero1a expression.
Endogenous disulfide-bonded complexes with PDI (asterisk) and other proteins
(double asterisk) can be detected at steady state. Molecular weight markers of
50, 100 and 150 kDa are shown as dots. (b) A schematic of the disulfide bonds
(black lines) of Ero1p, Ero1a (Ox2) and Ero1b (Ox). In Ero1a Ox2, the C94 –
C131 disulfide precludes formation of a disulfide at the active site C94 – C99
(shown in bold). An analogous regulatory disulfide between C90 and C130 is
found in Ero1b together with a likely additional long-range disulfide between
C100 and C262 (hatched line). Note that the regulatory cysteines differ between
Ero1a/b and Ero1p. The most N-terminal cysteine residues are not shown for
simplicity. Disulfide bond flow from the C-terminal active site cysteines to the
N-terminal active site cysteines (shown in bold) is depicted by a grey arrow.
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2. Protein disulfide isomerase and Ero1
Two of the major contributors to disulfide bond formation in

the ER are PDI and the ER oxidoreductin (or oxidoreductase)

Ero1. There is a solitary Ero1 protein in Saccharomyces cerevisiae
(Ero1p [7,8]) and two (Ero1a and Ero1b [9,10]) in mammals.

Together, PDI and Ero1 proteins harness the oxidizing power

of molecular oxygen to create de novo disulfide bonds in

a newly folding protein [11,12]. The exchange of disulfide

bonds from Ero1 to PDI to client necessitates electron flow in

the reverse direction, from client to PDI to Ero1. Ero1s use the

cofactor flavin adenine dinucleotide (FAD) to reduce molecular

oxygen, generating peroxide in the process [13,14]. PDI is able

to supply, rearrange (isomerize) or reduce disulfide bonds in

a client protein [15]. The ability of PDI to perform these func-

tions depends on its two redox-active a and a0 thioredoxin

domains [16]. The a type domains are separated by two

redox-inactive b domains in an abb0xa0 arrangement [17,18],

where the x linker region contributes to mobility and modulates

client access to PDI [19,20]. The PDI a type domains have

CGHC active sites: their high biochemical reduction potential

(2180 mV) makes PDI thermodynamically suited for donating

disulfide bonds to reduced protein clients [21]. During disulfide

bond formation in mammalian cells, the a domain of PDI is oxi-

dized by its a0 domain [22] after the a0 domain of PDI has been

preferentially oxidized by Ero1a [23,24]. The C94xxxxC99 region

(x¼ any amino acid), on a flexible loop of Ero1a, effects the

transfer of disulfide bonds from Ero1a to the a0 domain of

PDI [25]. In turn, the C94xxxxC99 site of Ero1a receives a disul-

fide bond from the C394xxC397 site, which is in direct

communication with the FAD moiety [26]. A similar mechan-

ism occurs in S. cerevisiae [27]; however, in yeast, Pdi1p is

glycosylated, and in the context of the full-length protein, the

a domain functions better as an isomerase, with the a0

domain being a better oxidase [28].

Although Ero1p is essential for yeast (and Caenorhabditis
elegans) viability, mice deficient in both Ero1a and Ero1b are

viable [29], which stimulated the search for supplementary

pathways of disulfide bond formation in the ER (reviewed in

[30,31]). Alongside Ero1, additional sources of disulfide bond

equivalents to PDI include peroxiredoxin IV [32,33], gluta-

thione peroxidases [34] and vitamin K epoxide reductase [35].

The sulfhydryl oxidase QSOX can oxidize some substrates of

the secretory pathway and extracellular matrix directly [36]

and the selenoprotein Sep15 may also contribute to disulfide

bond reduction/isomerization during glycoprotein quality

control [37]. Low molecular weight thiols, principally

glutathione, also regulate the redox balance of the ER [38,39].
3. The regulatory poise of Ero1a differs
between cell types

Although the general flow of disulfides between Ero1 and PDI

is now understood, many key points remain unknown. In

higher eukaryotes, there are over 20 PDI homologues.

Although some of them lack redox-active a-type domains,

the majority are likely to be directly involved in disulfide

bond formation or regulation [15,40]. In yeast, there is a

hierarchy of interactions between Ero1p and the Pdi1p homol-

ogues [41], but it is not clear how many PDIs require Ero1 for

the provision of disulfide bond equivalents in mammalian

cells. Mammalian disulfide bond formation may also be
regulated differently in diverse tissue types or physiological

settings. To illustrate this, figure 1 shows an experiment

in which the expression of Ero1awas analysed by Western blot-

ting at steady state in three different cell lines, HT1080 (a

fibrosarcoma), HeLa (a cervical carcinoma) and THP1

(a monocytic leukaemia). The proteins in the cell lysates were

separated electrophoretically under non-reducing conditions

(figure 1a, lanes 1–3), which allow disulfide-dependent inter-

actions to be preserved, and reducing conditions, which

instead disrupt disulfide bonds (figure 1a, lanes 4–6). It is

known from previously published experiments that under

non-reducing conditions, monomeric Ero1a can exist as a

reduced form (R) and two partially oxidized forms, Ox1 and

Ox2 [42]. The Ox2 form has a regulatory disulfide bond between

C94 and C131 that inactivates the redox activity of Ero1a [23,43].

Endogenous Ero1a in HT1080 and HeLa cells was almost

exclusively found in the compact Ox2 form (figure 1a, lanes 1

and 2) and represents an inactive reservoir of the protein. By

contrast, THP1 cells expressed more of the active Ox1 form of

Ero1a (figure 1a, lane 3). The fully reduced form of Ero1a

was not detectable in either cell line at steady state by the

2G4 antibody. These cell lines do have a high secretory
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output, so why should they have a different Ero1a Ox1 : Ox2

balance? One possibility is that Ero1a is involved in a wider

range of biological processes in monocytes and macrophages,

which are professional antigen-presenting cells of the

immune system. In support of this idea, it has been shown

that Ero1a regulates the ER calcium channel IP3R and

hence indirectly controls the release of calcium from the ER

[44], a process that can induce apoptosis [45]. Ero1a localizes

to mitochondrial-associated membranes (MAMs) under oxidiz-

ing conditions, where transfer of calcium can occur [44,46,47]

and calcium sensing studies using fluorescent probes suggest

that calcium levels respond to changes in Ero1a activity [48].

In cultured macrophages, Ero1a can subsequently induce the

activation of the NADPH oxidase complex [49], which gener-

ates superoxide for the destruction of ingested pathogenic

bacteria and mycobacteria. NADPH oxidase 2 function is

important because genetic defects in components of the com-

plex can lead to X-linked chronic granulomatous disease,

which results in life-threatening bacterial infections [50]. It

will be interesting to test whether NADPH oxidase activity

can be controlled by modulating the Ero1a oxidation state,

and to assess the relative contribution of Ero1a to calcium sig-

nalling compared with oxidative protein folding. Thus, it is

becoming apparent that Ero1a function is not strictly limited

to oxidative protein folding, but can contribute to multiple bio-

chemical pathways, including cross-compartmental calcium

fluxes and redox communication.
4. Ero1a engages in multiple disulfide-
dependent interactions

Another possible explanation for cell-specific differences in

Ero1a oxidation state is that Ero1a could be regulated by

different PDI family members, such as ERp44, ERp57 and

ERp72 [51–54], and these proteins may vary in their ability

to reduce Ero1 regulatory disulfide bonds. In support of

this idea, the experiment shown in figure 1a illustrates that

Ero1a can be trapped in inter-molecular, disulfide-dependent

complexes with different partners that vary depending on the

cell type. Whereas Ero1a interacted equally well with a

protein that is likely to be PDI (figure 1a, asterisk) in all

three cell lines, additional inter-molecular Ero1a interactions

can be seen in THP1 cells (figure 1a, lane 3, double asterisk).

These interacting proteins have yet to be formally identified,

but based on published and unpublished data, one is likely to

be the PDI homologue ERp44, which was identified as a

novel protein important for ER retention of Ero1a by the

Sitia group [51]. ERp44 was subsequently shown to be

involved in the quality control of the IgM immunoglobulin

[55], adiponectin [56] and the serotonin receptor SERT [57].

These studies suggest that ERp44 is important for the assem-

bly of proteins into oligomers, and probably acts as a

platform upon which its clients are assembled prior to deliv-

ery to ER exit sites and post-ER compartments such as the

ERGIC [58,59]. ERp44 is also important for the regulation

of IP3R1 [60], which is of particular interest given the link

between Ero1a and IP3R1 in macrophages discussed in the

previous section. ERp44 mutants that bind Ero1a at high affi-

nity inhibit oxygen consumption [25], but further work is

required to determine how ERp44 directly regulates the oxi-

dation state, and hence activity, of Ero1a in different cell

types. However, experiments in transfected HeLa cells have
shown that the interaction between ERp44 and Ero1a is inde-

pendent of a hydrophobic hairpin in Ero1a that is required

for full binding of Ero1a to PDI. PDI and ERp44, therefore,

interact with Ero1a differently, providing scope for fine-

tuning the activity of Ero1a in different cells and tissues [25].
5. Redox-sensitive regulation of Ero1a
Elegant studies with yeast Ero1p [61–63], mammalian Ero1a

[23,24,43,64] and mammalian Ero1b [65] have mapped out

the regulatory disulfide bonds that control the activity of

Ero1 proteins. These regulatory disulfides and their relation-

ship to the redox-active cysteines are outlined in figure 1b.

The C94–C131 regulatory disulfide bond in Ero1a ‘locks

down’ residue C94; this prevents the active site C94–C99 dis-

ulfide from forming and subsequently donating a disulfide to

PDI. The robustness of this intrinsic control system and its very

rapid responsiveness to fluctuations in the redox environment

is highlighted by three previously unpublished experiments

from our laboratories (figures 2–4). HeLa cells transfected

with Ero1a were exposed to various concentrations of the

reducing agent dithiothreitol (DTT) in culture, radiolabelled

and the DTT quenched with excess N-ethylmaleimide (NEM;

figure 2). Analysis of the cell lysates by immunoprecipitation

and non-reducing sodium dodecyl sulfate–polyacrylamide

gel electrophoresis (SDS–PAGE) showed that the inactive oxi-

dized Ox2 form of Ero1a was readily reduced when 1.25 mM

DTT was added to the cell, whereas the partially oxidized

(active) Ox1 form could resist reduction, with up to at least

20 mM DTT. Interestingly, a number of additional Ero1a disul-

fide-dependent complexes were revealed upon addition of

1.25 mM DTT (figure 2a, lane 2). These complexes may rep-

resent oligomers that reside in higher molecular-weight

complexes during oxidizing conditions. The Ero1a associated

proteins may be additional regulatory or accessory proteins

(such as chaperones or PDI family members) that are recruited

to Ox1 or to partially reduced Ero1a during the oxidation

cycle. The bands in the 75–150 kDa region of the gel are

likely to represent specific disulfide-dependent protein inter-

actions with Ero1a because they are reduced by adding DTT

to the sample buffer prior to SDS-PAGE (figure 2b).

As the DTT concentration applied to the living cell

was increased, the intensity of the Ox2 signal declined (figure

2a, lanes 1–2), as did the total Ero1a signal (figure 2b, lanes

1–2). Because the signal of PDI (immunoprecipitated from the

same lysates) remained similar between 0 and 1.25 mM DTT

(figure 2c, lanes 1–2), the loss of signal was Ero1a specific.

The loss of signal could reflect impaired detergent solubility

in Triton X-100 owing to aggregation, loss of protein owing to

degradation by ER quality control mechanisms or loss of anti-

body reactivity after post-translational modification. However,

given the fact that the polyclonal antiserum recognizes a

range of conformations and redox states of Ero1a, we favour

the former explanation. Given the relationship between Ero1a

and calcium signalling described above, it would be intriguing

to determine whether the changes in Ero1a signal intensity

relate to its recruitment to MAMs or to ER detergent-resistant

membranes in a redox-dependent manner.

The DTT-induced change from Ox2 to Ox1 can be

explained structurally by the transition of Ero1a from a com-

pact form with an intact regulatory C94–C131 disulfide (Ox2)

to a more ‘open’ active form (Ox1) in which the regulatory

http://rstb.royalsocietypublishing.org/
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20 mM DTT and post-nuclear lysates subjected to immunoprecipitation using antibody D5. Samples were analysed on (a) non-reducing or (b) reducing 7.5% SDS-
PAGE. The 120 kDa complex is indicated by an asterisk and molecular weight markers of 50, 75, 100 and 150 kDa are shown as dots. Alternatively, aPDI was used to
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disulfide has been broken by DTT (figure 2d ). The Ero1a

C94–C99 disulfide is consequently primed to donate a

disulfide to reduced PDI, which lacks regulatory disulfides.
6. Dithiothreitol-induced structural changes in
Ero1a are reversible

To respond to changes in the redox environment, Ero1a must

switch rapidly between active and inactive states. To assess

how rapidly Ero1a altered its equilibrium when exposed to

a redox shift, we investigated how the protein responded

when oxidizing conditions were restored after a 5 min chal-

lenge with 5 mM DTT (figure 3). Ero1a partitions into R

and active Ox1 during the 5 min pulse, with the Ero1a-PDI

complex maintained under these conditions (figure 3a,

lane 1). From previously published work, the Ero1a–PDI

complex is likely to comprise both mature and radiolabelled

PDI and Ero1a [42]. When DTT was washed out, the normal

oxidation pattern of Ero1a was restored within 10 mins. The

diffuse 120 kDa complex (*) and higher molecular weight
complexes reformed within 3 min (figure 3a, lane 2).

Re-oxidation of Ero1a resulted in rapid recovery of the inac-

tive Ox2 form demonstrating that Ero1a is responsive to

changes in the ER redox state.

Observation of the reducing gel showed an increase in the

total Ero1a signal retrieved when cells were shifted from

reducing to oxidizing conditions (figure 3a, lanes 5 and 6).

Consistent with this experiment, the opposite pattern was

seen when cells were shifted from oxidizing to reducing con-

ditions (figure 2b, lanes 1 and 2). This observation shows that

the decrease in signal in figure 2b cannot be explained by

degradation of Ero1a. Ero1a became more accessible to

NEM when the reducing agent was removed and the

environment was made more oxidizing (compare figure 3a,

lanes 5 and 6 with figure 2b, lanes 1–2), consistent with the

finding that Ero1b FAD-binding site mutants make cysteines

available in a temperature- or stress-dependent manner [66].

This somewhat counterintuitive finding is illustrated schema-

tically in figure 3b. When Ero1a is covalently modified by

NEM, it gains molecular weight and hence runs more

slowly (higher up) in a reducing gel. Ero1a in the Ox2 form

http://rstb.royalsocietypublishing.org/
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also increase Ero1a molecular weight.
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and/or Ero1a in higher molecular weight complexes must

have either (i) more free cysteine residues than partially

reduced Ero1a, (ii) cysteine residues that are less buried

and hence more accessible to NEM, or (iii) cysteine residues

that are subject to alternative post-translational modifications

under oxidizing conditions, such as glutathionylation at an

unpaired cysteine.
7. Ero1a interactions are differentially
sensitive to oxidation cycles within the
endoplasmic reticulum

The experiment in figure 3 shows how the Ero1a intramole-

cular redox switch can counterbalance changes in the ER

redox state within minutes. Having shown that a reducing

ER could alter the monomeric and oligomeric equilibrium

of Ero1a, we investigated how Ero1a would respond when

the ER was made more oxidizing. For this, we used the

cell-permeable oxidant diamide, which can alter the redox
potential of the cell by oxidizing glutathione [67]. Because

diamide can decrease the amount of radiolabelling when

added during the pulse, Ero1a-transfected HeLa cells were

pulsed in the presence of DTT and then chased in the pres-

ence of diamide. These conditions allowed us to follow the

fate of a synchronized Ero1a population and its response to

an oxidative flux. Ero1a and PDI were immunoprecipitated

from transfected HeLa cell lysates as before, prior to analysis

on 7.5 per cent SDS-PAGE.

Figure 4 shows the result from such an experiment. Ero1a

immunoprecipitations from mock-transfected cells were clear

of signal (figure 4a, lane 1). After a pulse without a diamide

chase, Ero1a existed as Ox1 and Ox2, a smeary 120 kDa form

and some higher molecular weight complexes that likely

include Ero1a-ERp44 (double asterisk; figure 4a, lane 2).

When the chase was supplemented with increasing concen-

trations of diamide, Ox1 disappeared at the expense of the

more compact Ox2 form (figure 4a, lanes 4–6). When Ero1a

was allowed to recover from the diamide treatment by incu-

bating the cells in normal chase medium, the protein returned

to Ox1 (figure 4a, lane 7). The upper part of the non-reducing

gels (figure 4a,c, lanes 2–7) showed that the diffuse 120 kDa

complex persisted during diamide treatment, but also

became more oxidized and compact. The complex returned

to its original status when diamide was removed (figure 4a,c,

lane 7). The reducing gel shows that in all lanes similar

amounts of Ero1a were recovered when fully reduced in

sample buffer (figure 4b, lanes 1–6). This result demonstrated

that the various oxidized forms of Ero1a were not in a simple

precursor–product relationship, but were in a dynamic equili-

brium with each other that changed according to the redox

status of the cell. Re-establishment of the status quo occurred

within 5 min of removal of the oxidant.

When PDI was immunoprecipitated from the same cell

lysates, it formed the expected approximately 120 kDa com-

plex with Ero1a when visualized under non-reducing

conditions (figure 4c, lane 2). Upon reduction, the Ero1a–

PDI complex was disrupted and monomeric Ero1a was

recovered (figure 4d, lane 2). However, when diamide was

added at 5 mM or more, the dimeric 120 kDa PDI–Ero1a

complex disappeared (figure 4c, lanes 5–6). Observation of

the reducing gels (figure 4d, lanes 5 and 6) revealed that

Ero1a could still be recovered in the PDI immunoprecipitates,

indicating that PDI and Ero1a were interacting in the higher

molecular weight disulfide-bonded complexes under these con-

ditions. The 120 kDa PDI–Ero1a complex rapidly reappeared

when diamide was washed out (figure 4c, lane 7).

The loss of the PDI–Ero1 dimer after 5 mM diamide treat-

ment correlates with the loss of Ox1, consistent with the

finding that Ox1 is the active form of Ero1a [43]. However,

Ero1a complexes persisted after 5 and 10 mM diamide treat-

ment (figure 4a, lanes 4–5, asterisk). This smear may include

Ero1a homodimers or other as yet unidentified proteins

that interact with and perhaps regulate Ero1a. The constant

Ero1a signal in the aPDI immunoprecipitation (figure 4d )

also suggests that PDI and Ero1a may be recruited to larger

complexes when the ER becomes more oxidizing.

Strikingly, Ero1a–PDI dimers and the active Ox1 form

of Ero1a are lost under oxidizing conditions when there is

less need for de novo disulfide bond formation. The PDI–

Ero1a pathway for disulfide bond formation is, therefore,

sensitive to the redox state of the ER and may recruit different

regulators during the redox cycle.

http://rstb.royalsocietypublishing.org/
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Figure 4. The response of Ero1a to an oxidative wave. HeLa cells transfected with pcDNA3.1-Ero1a (a,c and d, lanes 2 – 7; b, lanes 1 – 6) or mock-transfected cells
(a,c and d, lane 1) were metabolically labelled in the presence of 5 mM DTT and then washed and chased for 10 min in the presence of 0, 1.2, 2.5, 5 and 10 mM
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8. Implications for oxidative protein folding
in vivo

Ero1a is an unusual example of a redox-active protein

with conformation-dependent, DTT-resistant domains. Exper-

iments from multiple laboratories, including ours, showed that

Ero1 is redox regulated (reviewed in [68]). This is reflected in

the relative distribution and dynamic response of Ero1a Ox1

(active) and Ox2 (inactive) to ER redox flux. PDI and Ero1a

participate in a buffered feedback loop that maintains disulfide

bond formation at an appropriate level when ER redox

conditions fluctuate. Strongly reducing conditions disrupt

Ero1b–PDI complexes at steady state [66,69], so it will be infor-

mative to directly compare the interactions of glycosylated

Ero1a and Ero1b with PDI. In vivo, cells will not encounter

DTT or diamide, but will be exposed to a range of physiological

redox-active species; so how Ero1a and PDI respond to reactive

oxygen species during hypoxia, nutrient flux and metabolic

stress is an important question for the future.
Reduction of the Ero1 regulatory disulfides, by PDI or other

mechanisms, is necessary for its activation [68]. Similarly, the

redox-dependent Ox1–Ox2 transition from an active to an

inactive form is likely to be important in preventing hyper-

oxidation, which might be detrimental for reactions requiring

PDI-dependent isomerization or reduction of substrates.

Active Ox1 is decommissioned when required, supported by

our experiments in which Ero1 rapidly and reversibly converts

to Ox2 after diamide treatment (figure 4). The very strong

inherent redox regulatory capacity of Ero1a has been con-

firmed by RNAi knockdown experiments in which the

contributions of Ero1a, peroxiredoxin IV and vitamin K epox-

ide reductase (VKOR) to oxidative refolding of albumin were

compared side by side [70]. Knockdown of Ero1a gave the

most severe delay in recovery of oxidative protein folding,

confirming that the Ero1–PDI pathway is the primary source

of oxidizing equivalents. Whether this holds for all types of

protein clients and all physiological conditions remains to

be established.

http://rstb.royalsocietypublishing.org/
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9. Evidence for an oxidative protein folding
‘machine’ in the endoplasmic reticulum

Experiments presented here and in the literature show that Ero1a

interacts specifically with PDI [42] and ERp44 [51] in disulfide-

bonded complexes, and with itself as a homodimer [69]. Here,

we show that other interactions are possible under mildly

reducing conditions (figure 2). A number of discrete proteins dis-

ulfide-linked to Ero1a appear when the redox balance is altered.

Whether these proteins are components of a larger ER-resident

machine for the control of oxidative protein folding is open to

question. One possibility is that other proteins involved in disul-

fide bond formation and regulation such as peroxiredoxin IV,

glutathione peroxidases and VKOR are brought together with

PDI and Ero1a, perhaps to ER subdomains in a redox-dependent

manner. In support of this idea, we note from many of our Ero1a

immunoprecipitation and blotting experiments that complexes

resolve towards the top of the stacking gel on non-reducing

SDS-PAGE; these complex(es) readily reform when normal con-

ditions are restored after redox flux (e.g. figure 3). Although it is

possible that these complexes contain misfolded Ero1a, the

expression levels of Ero1a in transfection experiments are com-

parable with endogenous levels of Eros in some tissues [29,69]

and after induction of Ero1a by the unfolded protein response

or by hypoxia [71,72]. Disulfide trapping combined with

SDS-PAGE is an excellent tool for identifying potential redox-

active partnerships, but it cannot discriminate between different

higher-order complexes that may exist under native conditions.

Some attempt has been made to probe the nature of Ero1 com-

plexes in vivo using gel filtration. For example, analysis of

Ero1b from the stomach and pancreas, where Ero1b is highly

expressed, shows that the majority of Ero1b elutes with a profile

consistent with that of a complex [69].

Other chaperone networks in the ER have been detected, with

BiP (Grp78) a key protein hub for mediating interactions with

components of the translocation, protein folding and stress sen-

sing machineries (e.g. [73–75]). By associating with different

PDI family members, BiP can be involved in both productive

oxidative protein folding (by associating with PDI) and in reduc-

tive unfolding for protein degradation (by associating with

ERdJ5) [76,77]. BiP may be able to multi-task partly because of

regulation by post-translational modifications: ADP-ribosylation

of BiP has recently been shown to be important for BiP involve-

ment in the unfolded protein response [78]. However, our

understanding of the interplay between different ER chaperones

remains incomplete. As an example, Jansen et al. [79] have pro-

posed an interaction map for ER chaperones that highlights a

hitherto unappreciated role of cyclophilins in the function of

PDI proteins. Cyclophilin B can interact with at least PDI,

ERp72 and P5 and there are additional interactions between

ER-localized FK-binding proteins and ERp57, ERp29 and

ERp19. It is clear that different protein folding complexes exist

in the ER and it will be interesting to see how Ero1 proteins func-

tionally relate to these networks, particularly during times of

physiological stress or high secretory demand.
10. Material and methods
(a) Cell lines
The monocytic cell line THP1 (gift from J. Robinson) was maintained

in Roswell Park Memorial Institute medium, the fibrosarcoma

HT1080 was maintained in Dulbecco’s modified Eagle’s medium
(DMEM) and the human cervical carcinoma cell line HeLa was

maintained in DMEM with non-essential amino acids. The cell

lines were supplemented with 8 per cent fetal calf serum (FCS),

100 units ml21 penicillin, 100 mg ml21 streptomycin and 2 mM

glutamax and maintained at 378C and 5 per cent CO2.

(b) Antibodies and cDNA
The polyclonal anti-PDI serum has been described previously [42].

The polyclonal antiserum D5 was raised against non-reduced,

reduced and denatured forms of an amylose resin-purified,

mannose binding protein–Ero1a fusion protein (New England

Biolabs) expressed in Escherichia coli [79]. The monoclonal anti-

body 2G4 was raised against recombinant full-length Ero1a [59].

The construction and sequencing of the Ero1a cDNA behind the

T7 promoter in pcDNA3.1 has been previously described [9].

(c) Transfections
HeLa cells cultured in 6 cm dishes were transiently transfec-

ted with 2 mg pcDNA3.1-Ero1a mixed with 10 ml lipofectin

(Invitrogen) according to the manufacturer’s instructions.

(d) Detection of endogenous Ero1a
HeLa, HT1080 and THP1 cells were lysed in 600 ml of lysis buffer

(20 mM MES, 30 mM Tris, 100 mM NaCl, pH 7.4), with 1 per cent

Triton X-100, 10 mg ml each of chymostatin, leupeptin, antipain

and pepstatin supplemented with 20 mM NEM as an alkylating

agent. Post-nuclear supernatants were prepared by centrifugation at

16 100g for 10 min at 48C and equal amounts of protein (Bradford

assay) were loaded onto SDS-PAGE in Laemmli sample buffer

with or without 50 mM DTT as a reducing agent. Proteins were

transferred to polyvinylidene difluoride membranes for 2 h and

immunodetection was performed using 2G4 Mab tissue culture

supernatant as the primary antibody, and 1 : 3000 GAMPO (Dako)

as the secondary antibody. Proteins were visualized by enhanced

chemiluminescence (GE Healthcare) and exposure to film (Kodak).

(e) Metabolic labelling and pulse-chase analysis
Sub-confluent HeLa cells in 6 cm dishes were starved with MEM

lacking cysteine and methionine (Invitrogen) for 30 min, pulse-

labelled for the times stated with 10 mCi [35S]-labelling mix per

dish and subsequently chased when necessary with complete

medium supplemented with 5 per cent FCS, 10 mM HEPES pH

7.4, 5 mM methionine, 5 mM cysteine and 1 mM cycloheximide.

At given time intervals, the chase was stopped by flooding the

cells with ice-cold HBSS (Invitrogen) supplemented with 20 mM

NEM to trap folding intermediates. In some experiments, freshly pre-

pared DTT or diamide (Sigma) solutions were added to the pulse or

chase medium, as stated. The cells were lysed in 600 ml of lysis buffer

(20 mM MES, 30 mM Tris, 100 mM NaCl, pH 7.4), containing 1 per

cent Triton X-100, 10 mg ml21 each of chymostatin, leupeptin, anti-

pain and pepstatin A, 1 mM PMSF, and 20 mM NEM and the

nuclei removed by centrifugation for 10 min at 48C and 16 000 g.

Immunoprecipitations were performed at 48C for either 2 h or

overnight using antibodies immobilized on 30 ml of a 10 per cent

suspension of protein A sepharose beads. Collected complexes

were washed twice at room temperature in wash buffer (300 mM

NaCl, 0.05% Triton X-100 and 0.05% SDS, 10 mM Tris-HCl, pH

8.6) prior to uptake in sample buffer. After a 3 min incubation at

958C, half the samples were reduced with 50 mM DTT, and the

proteins were analysed by 7.5 per cent SDS-PAGE.
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