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Standard methods for describing the intensity distribution of mechanical and acoustic wave fields
in the high frequency asymptotic limit are often based on flow transport equations. Common
techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and
ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to
interpolate between standard statistical energy analysis and full ray tracing, containing both of these
methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev
basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is
shown that the technique can efficiently deal with multi-component systems overcoming typical
geometrical limitations present in statistical energy analysis. Results are compared with state-of-
the-art hp-adaptive discontinuous Galerkin finite element simulations.

PACS numbers: 43.55.Ka, 43.20.Dk, 43.40.Dx

I. INTRODUCTION

Predicting the wave energy distribution of the vibro-
acoustic response of a complex mechanical system to pe-
riodic excitation is a challenging task, especially in the
mid-to-high frequency regime. Standard numerical tools
such as finite element methods become inefficient, and
ray or thermodynamic approaches are often employed to
model the wave energy flow through the structure. Pop-
ular methods are Statistical Energy Analysis (SEA)1–3,
in which the mean energy flow between subsystems is as-
sumed to be proportional to the energy gradient, and the
ray tracing technique, in which the wave intensity distri-
bution is determined by summing over contributions of a
potentially large number of ray paths4–6.

Ray tracing and SEA both predict mean values of the
energy distribution and omit information about wave ef-
fects such as interference or diffraction. Both methods
are therefore expected to hold in the high frequency (or
small wavelength) limit. SEA is in fact a low resolution
ray tracing method7,8 leading to small numerical models
compared to ray tracing. This efficiency saving comes
at a price, however: SEA has no spatial resolution of
the energy distribution within subsystems and becomes
unreliable whenever long range correlations in the ray
dynamics are present. The recently developed Dynam-
ical Energy Analysis (DEA)7 provides a tool which in-
terpolates between SEA and a full ray tracing analy-
sis and can overcome some of the problems mentioned
above at a relatively small computational overhead. DEA
thus enhances the range of applicability of standard SEA
and gives bounds on the range of applicability of SEA.
Related methods have been discussed previously in the
context of wave chaos9 and structural dynamics10. In
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particular Langley’s Wave Intensity Analysis (WIA)11,12

and Le Bot’s thermodynamical high frequency bound-
ary element method13,14 include details of the underly-
ing ray dynamics. The approach employed here differs
from these methods by considering multiple reflections
in terms of linear operators. Representing these opera-
tors in terms of basis function expansions then leads to
SEA-type equations.

In this work a reformulation of DEA is presented,
which is based on a Chebyshev basis function representa-
tion; this leads to considerable improvements compared
to previous attempts based on an expansion in terms
of a Fourier basis7. Both Chebyshev and Fourier ba-
sis expansions of smooth functions share similar expo-
nential convergence properties15. The main advantages
of using a representation in terms of Chebyshev polyno-
mials include that the requirement for periodic bound-
ary conditions can be dropped, allowing for much more
freedom in the choice of approximation regions. In ad-
dition, a Chebyshev expansion gives rise to more effi-
cient quadrature rules for numerically calculating the
arising integrals when constructing the linear operators
considered in DEA. Using a Chebyshev basis leads to a
natural choice of quadrature, namely Gauss-Chebyshev,
which is optimal for polynomial-type integrands and nat-
urally incorporates the orthogonality weighting term in
the Chebyshev basis function representation. In order
to take full advantage of this feature it is necessary to
formulate the problem in terms of the final position and
momentum of a given ray, and map back to its initial
point. This is in contrast to previous work on DEA by
Ref.7, where the rays were defined by their endpoints.
The strengths of the newly reformulated DEA are evident
in the applications considered, where due to improved ef-
ficiency it has been possible to model multi-component
systems with variable wave-numbers for the first time.
The method is verified numerically by comparing DEA
results with state-of-the-art finite element software for a
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range of parameter values.
The remainder of the paper is structured as follows.

In Section II, the ray tracing approximation is discussed
and related to the Green function using short wavelength
asymptotics. In Section III, the concept of phase-space
operators is introduced and their representation in terms
of boundary basis functions is discussed. In Section IV
the implementation of DEA is detailed along with its
links with SEA. The finite element formulation used for
verification of the results is also briefly discussed. In Sec-
tion V, a variety of coupled two-cavity configurations are
discussed and the results compared against finite element
computations. Finally larger multi-cavity configurations
are considered.

II. WAVE ENERGY FLOW IN TERMS OF THE GREEN
FUNCTION

It is assumed that the system as a whole is charac-
terized by a linear wave equation describing the overall
wave dynamics including damping and radiation in a fi-
nite domain Ω ⊂ Rd, d = 2 or 3. In this work only
stationary problems with continuous, monochromatic en-
ergy sources are considered. We split the system into
NΩ subsystems and consider the scalar wave equation
for acoustic pressure waves in each homogeneous sub-
domain Ωi, with local wave velocity ci, i = 1, ..., NΩ and

Ω =
∪NΩ

i=1 Ωi. Extensions to more complicated systems
with different wave operators in different parts of the sys-
tem can be treated with the same techniques as long as
the underlying wave equations are linear, see the discus-
sion in Ref.7.
The general problem of determining the response of a

system to external forcing with angular frequency ω at a
source point r0 ∈ Ω0 can then be reduced to solving

(k2i − Ĥ)G(r, r0;ω) = −δ(r − r0), i = 1, ..., NΩ, (1)

with Ĥ = −∆, G represents the Green function, r ∈ Ωi

is the solution point and δ is the Dirac delta distribu-
tion. Furthermore, ki = ω/ci+ iµi/2 is a complex valued
wavenumber, where the imaginary part represents a sub-
system dependent damping coefficient µi. Throughout
this work we take i =

√
−1 unless used as a subscript, in

which case it is an index over the number of subsystems.
The wave energy density induced by the source is then
given as

ε(r, r0;ω) =
|G(r, r0;ω)|2

ϱic2i
, (2)

where ϱi is the density of the medium in Ωi. The linear
wave operator Ĥ can naturally be associated with the un-
derlying ray dynamics via the Eikonal approximation, see
for example Ref.7. Using small wavelength asymptotics,
the Green function in equation (1) may be written as a
sum over all classical rays from r0 to r for fixed kinetic
energy of the hypothetical ray particle. One obtains16

G(r, r0;ω) =
π

(2πi)(d+1)/2

∑
j:r0→r

Aje
i(kiRj−iνjπ/2), (3)

where Rj is the length of the ray trajectory between r0
and r including possible reflections on boundaries. The
amplitudes Aj may be written as a product of three
terms as in Ref.7 due to damping, mode conversion and
reflection/transmission coefficients, and geometrical fac-
tors. The phase index νj contains contributions from the
reflection/transmission coefficients at interfaces between
subsystems and from caustics along the ray path.

Analogous representations to (3) have been consid-
ered in detail in quantum mechanics16 and are also valid
for general wave equations in elasticity, see Ref.9 for an
overview. In the latter case G becomes matrix valued.
Note that the summation in equation (3) is typically over
infinitely many terms, where the number of contributing
rays increases (in general) exponentially with the length
of the trajectories included. This gives rise to conver-
gence issues, especially in the case of low or no damping9.

The wave energy density (2) can now be expressed as
a double sum over classical trajectories and hence

ε(r, r0;ω) = C
∑

j, j′:r0→r

AjAj′e
iki[Rj−Rj′ ]−i[νj−νj′ ]π/2

= C[ρ(r, r0;ω) + off-diagonal terms],
(4)

with C = π2/(ϱic
2
i (2π)

(d+1)). The dominant contribu-
tions to the double sum arise from terms in which the
phases cancel exactly; one thus splits the calculation into
a diagonal part

ρ(r, r0;ω) =
∑

j:r0→r

|Aj |2 (5)

where j = j′, and an off-diagonal part. The diagonal
contribution gives a smooth background signal and the
off-diagonal terms give rise to fluctuations on the scale
of the wavelength. The phases related to different tra-
jectories are (largely) uncorrelated and the resulting net
contributions to the off-diagonal part are in general small
compared to the smooth part, especially when averaging
over frequency intervals of a few wavenumbers.

It has been shown in Ref.7 that calculating the smooth
diagonal part (5) is equivalent to a ray tracing treatment.
That is, the smooth part of the energy density can be
described in terms of the flow of fictitious non-interacting
particles emerging from the source point r0 uniformly
in all directions and propagating along ray trajectories.
This makes it possible to relate wave energy transport
with classical flow equations and thus thermodynamical
concepts, which are at the heart of an SEA treatment.
In DEA the classical flow is expressed in terms of linear
phase space operators as detailed in the next section.

III. LINEAR PHASE SPACE OPERATORS AND DEA

A. Phase space operators and boundary maps

A brief outline of the derivation of the DEA flow equa-
tions is now given, for details see Ref.7. We adopt a
purely kinetic viewpoint based on the interpretation that
rays are trajectories of particles following Hamiltonian
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dynamics as detailed in Section 2 of Ref.17. Here the
time dependence of a density of ray trajectories (or par-
ticles) ρ̃ is known to satisfy the Liouville equation

∂ρ̃

∂τ
(X, τ) +

∂X

∂τ
· ∇X(ρ̃(X, τ)) = 0, (6)

where X = (r, p) denotes the phase space coordinate
with position r and momentum p. The propagator for
the Liouville equation is the linear phase space operator
Lτ (X,Y ) = δ(X−φτ (Y )), known as a Perron-Frobenius
operator in dynamical systems theory18, and hence we
may write

ρ̃(X, τ) =

∫
P
Lτ (X,Y )ρ̃0(Y )dY. (7)

Here the phase space flow φτ (Y ) gives the position of the
particle after time τ starting at Y = (r′, p′) when τ = 0.
Furthermore, ρ̃0 denotes the initial ray density at time
τ = 0 and the domain of integration is over the whole of
phase space P = Ω× Sd−1

|p| , where Sd−1
|p| denotes a sphere

in Rd of radius |p| and centre r′.
Consider a source localized at a point r0 emitting waves

continuously at a fixed angular frequency ω. Standard
ray tracing techniques estimate the wave energy at a re-
ceiver point r by determining the density of rays starting
at r0 and reaching r after some unspecified time. This
may be written in the form

ρ(r, r0, ω) =

∫ ∞

0

∫
Sd−1
|p|

∫
P
w(Y, τ)Lτ (X,Y )ρ0(Y, ω)dY dp dτ,

(8)

with initial density ρ0(Y, ω) = δ(r′ − r0)δ(k
2
0 − H(Y )),

where H = |p|2 is the Hamilton function for the wave

operator Ĥ. It can be shown that equation (8) is equiv-
alent to the diagonal approximation (5). A weight func-
tion w is included to incorporate damping and reflec-
tion/transmission coefficients. It is assumed that w is
multiplicative, (w(φτ1(X), τ2)w(X, τ1) = w(X, τ1 + τ2)),
which holds for standard absorbtion mechanism and re-
flection processes.
In order to solve the stationary flow problem (8) a

boundary mapping technique is employed. For the time
being let us consider a problem with a single (sub-)system
Ω = Ω1 with boundary Γ. The boundary mapping pro-
cedure involves first mapping the ray density emanat-
ing continuously from the source onto the boundary Γ.

The resulting boundary layer density ρ
(0)
Γ is equivalent

to a source density on the boundary producing the same
ray field in the interior as the original source field af-
ter one reflection. Secondly, densities on the bound-
ary are mapped back onto the boundary by a boundary
operator B(Xs, Y s;ω) = w(Y s)δ(Xs − ϕω(Y s)), where
Xs = (s, ps) represents the coordinates on the bound-

ary. That is, s parameterizes Γ and ps ∈ Bd−1
|p| denotes

the momentum component tangential to Γ at s where
Bd−1

|p| is an open ball in Rd−1 of radius |p| and centre s.

Likewise, Y s = (s′, p′s) and ϕω is the invertible bound-
ary map. Note that convexity is assumed to ensure ϕω

is well defined; non-convex regions could be handled by

introducing a cut-off function in the shadow zone as in
Ref.14 or by subdividing the regions further.

The stationary density on the boundary induced by

the initial boundary distribution ρ
(0)
Γ (Xs, ω) can then be

obtained using

ρΓ(ω) =
∞∑

n=0

Bn(ω)ρ
(0)
Γ (ω) = (I − B(ω))−1ρ

(0)
Γ (ω), (9)

where Bn contains trajectories undergoing n reflections
at the boundary. The resulting density distribution on
the boundary ρΓ(X

s, ω) can then be mapped back into
the interior region. One obtains the density (8) after
projecting down onto coordinate space.

B. Chebyshev basis representation

The long term dynamics are thus contained in the
operator (I − B)−1 and standard properties of Perron-
Frobenius operators ensure that the sum over n in equa-
tion (9) converges for non-vanishing dissipation. In order
to evaluate (I − B)−1 it is convenient to express the op-
erator B in a suitable set of basis functions defined on
the boundary. In Ref.7 a Fourier basis has been applied,
which is a natural choice of a complete basis for problems
with periodic boundary conditions. However, a number
of difficulties arise with this choice such as slow conver-
gence of quadrature rules for the associated integrals and
the treatment of corners on the boundary.

Here we employ a Chebyshev polynomial basis rep-
resentation with Gauss-Chebyshev quadrature, in which
case the integration is optimal for polynomial-type in-
tegrands. Problems due to singular behavior at cor-
ners are avoided due to integrating over phase space,
rather than over pairs of boundary coordinates. Gauss-
Chebyshev quadrature incorporates the orthogonality
weight functions for the Chebyshev basis automatically
in the quadrature rule. In the case d = 2, then s ∈ [0, L)
and Chebyshev basis may be expressed in the form

T̃n(X
s) =

√
2

|p|L
Tn1

(
2s

L
− 1

)
Tn2

(
ps
|p|

)
, (10)

with n = (n1, n2) non-negative integers and Tn1 the
Chebyshev polynomial of order n1. The Chebyshev basis
approximation Bmn of B may be written:

Bmn =∫
∂P

∫
∂P
Wm(Xs)T̃m(Xs)B(Xs, Y s;ω)T̃n(Y

s)dY sdXs

=

∫
∂P
Wm(ϕω(Y s))T̃m(ϕω(Y s))w(Y s)T̃n(Y

s)dY s,

(11)
where ∂P = [0, L)×(−|p|, |p|) is the boundary coordinate
phase space and

Wm(Xs) =
4γm1

γm2

π2

1√
1− (2s/L)2

1√
1− (ps/|p|)2

,

(12)
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is the weight function for the inner product in which the
Chebyshev basis is orthonormal. Here γ0 = 1/2 and
γn1 = 1 for n1 = 1, 2, .... It is convenient for the Gauss-
Chebyshev quadrature if the argument in the weight
function Wm is the same as the integration variable and
so a change of variables Y s = ψω(Xs) with ψω = (ϕω)−1

is carried out to give

Bmn =∫
∂P
Wm(Xs)T̃m(Xs)w(ψω(Xs))T̃n(ψ

ω(Xs))|J(Xs)|dXs.

(13)
Here the Jacobian term is

|J(Xs)| = |∂ψω(Xs)|

=

∣∣∣∣∣ ∂s′

∂s
∂s′

∂ps
∂p′

s

∂s
∂p′

s

∂ps

∣∣∣∣∣ , (14)

which is equal to one for Hamiltonian flows and takes ac-
count of changes in the wavenumber between subsystems.
In this representation the integration is with respect to
position and momentum at the end of the ray being con-
sidered, and we are mapping back to the initial point
using ψω.

C. Subsystems

Recall the splitting into subsystems Ωi, i = 1, .., NΩ

introduced earlier. The dynamics in each subsystem are
considered separately so that both variability in the wave
velocity ci and non-convex domains may be handled sim-
ply. Coupling between sub-elements can then be treated
as losses in one subsystem and source terms in another.
Typical subsystem interfaces are surfaces of reflection/
transmission due to sudden changes in material param-
eters or local boundary conditions. We describe the full
dynamics in terms of subsystem boundary operators Bij ;
flow between Ωj and Ωi is only possible if Ωi ∩ Ωj ̸= ∅
and one obtains

Bij(X
s
i , X

s
j ) = wij(X

s
j )δ(X

s
i − ϕωij(X

s
j )), (15)

where ϕωij is the boundary map in subsystem j mapped
onto the boundary of the adjacent subsystem i and Xs

i

are the boundary coordinates of Ωi. The weight wij con-
tains, among other factors, reflection and transmission
coefficients characterizing the coupling at the interface
between Ωj and Ωi.
A basis function representation Bmn

ij of the full oper-
ator B as suggested in equation (11) is now written in

terms of subsystem boundary basis functions T̃ i
n to give

Bmn
ij =

∫
∂Pi

∫
∂Pj

Wm(Xs
i )T̃

i
m(Xs

i )B(Xs
i , X

s
j ;ω)T̃

j
n(X

s
j )dX

s
j dX

s
i .

(16)

Here ∂Pi is simply the boundary coordinate phase space
for Ωi. The equilibrium distribution on the interfaces of
the subsystems is then obtained by solving the system of
equations (9)

(I −B)ρΓ = ρ
(0)
Γ . (17)

Here B is the full operator including all subsystems and
the equation is solved for the unknown energy densities
ρΓ = (ρΓi)i=1,..,NΩ , where ρΓi denotes the (Chebyshev)
coefficients of the density on Γi, the boundary of Ωi.

IV. NUMERICAL IMPLEMENTATION

A. From SEA to DEA

Up to now, the various representations given are all
equivalent and correspond to a description of the wave
dynamics in terms of the ray tracing ansatz (8). Tradi-
tional ray tracing based on sampling ray solutions over
the available phase space is rather inefficient. Conver-
gence tends to be fairly slow, especially if the absorption
is low and an exponentially increasing number of long
paths including multiple reflections need to be taken into
account.

An SEA treatment emerges when approximating the
individual operators Bij in terms of constant functions
only7; using, for example, a Fourier basis this would
correspond to an approximation in terms of the lowest
order basis functions only. In the case of a Chebyshev
basis, the integrand in (16) is not constant due to the
presence of the weight function Wm and an SEA treat-
ment is obtained only after restricting the basis to T̃ i

0 and
omitting the weights W0. Note that when using Gauss-
Chebyshev quadrature an explicit division by W0 is re-
quired since the weight function is automatically included
in the quadrature rule. In the SEA case the matrix Bij

is one-dimensional and gives the mean transmission rate
from subsystem j to subsystem i. It is thus equivalent to
the coupling loss factor used in standard SEA equations2.
The resulting full NΩ-dimensional B matrix yields a set
of SEA equations using the relation (17) after mapping
the boundary densities back into the interior.

An SEA approximation is justified if the ray dynam-
ics within each subsystem are sufficiently chaotic such
that a trajectory entering subsystem j forgets everything
about its past before exiting Ωj ; SEA can thus be viewed
as a Markov approximation of the deterministic dynam-
ics. Thus correlations within the dynamics must decay
rapidly on the time scale it takes for a typical ray to leave
Ωj . This condition will often be fulfilled if the subsystem
boundaries are sufficiently irregular, the subsystems are
dynamically well separated and absorption and dissipa-
tion is small, conditions typically cited in an SEA con-
text. In this case SEA is an extremely efficient method
compared to standard ray tracing. However for sub-
systems with regular features, such as rectangular cav-
ities or corridor-like elements, incoming rays are directly
channeled into outgoing rays, thus rendering the Markov
approximation invalid and introducing memory effects.
Likewise, strong damping may lead to a significant decay
of the signal before reaching the exit channel introducing
geometric (system dependent) effects.

The features that cause an SEA approximation to fail
as described above are incorporated into the model here
by including higher order basis functions and weight func-
tions Wm for each subsystem boundary operator Bij . It
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FIG. 1. (Color online) A polygonal configuration with Γj =
∂Ωj for j = 1, 2 showing further subdivision Γji of the
boundary. The interface is formed by the boundary sections
Γ11 = Γ21 . A separate spatial basis function approximation
is applied for each subdivision.

therefore becomes possible to resolve the fine structure of
the dynamics and their correlation along with effects due
to non-uniform damping over typical scales of the sub-
system. The maximal number of basis functions needed
to reach convergence is expected to be relatively small
thus making the new method more efficient than a full
ray tracing treatment, particularly when damping is low.
Representing the ray dynamics in terms of finite di-

mensional transition matrices corresponds to a refine-
ment of an SEA technique, taking advantage of the effi-
ciency of SEA but including information about the ray
dynamics when necessary. It overcomes some of the limi-
tations of SEA and puts the underlying SEA assumptions
on sound foundations.

B. Chebyshev DEA

A favourable property of the Chebyshev basis approx-
imation compared with a Fourier basis is the flexibility
it allows in the choice of approximation regions due to
not requiring periodic boundary conditions for conver-
gence. In many cases it will be advantageous to subdivide
the subsystem boundaries and apply a Chebyshev basis
for each subdivision. An example where this subdivision
takes place at the vertices of each subsystem is shown
in Fig. 1. A separate spatial basis expansion is then
applied in a number of sections Γji , i = 1, ..., Nj of the
boundary Γj of a particular subsystem Ωj , j = 1, .., NΩ.
This leads to separate entries in the matrix representa-
tion B for each boundary section Γji and hence a larger
but sparser matrix.
In order to understand why this geometric subdivi-

sion may be beneficial, we first need to consider some
properties of the basis function expansions. The basis
expansion of the boundary operator B results in density

functions ρ
(0)
Γi

and ρΓi in equation (9) being expanded in
terms of the chosen basis functions. The convergence rate
of the basis expansion therefore depends on the prop-
erties of these density functions and in particular their
smoothness15. The basis function approximations are
carried out with respect to both position s and momen-

tum along the boundary ps at the endpoint of the ray,
recall equation (13). A discontinuity in the normal to
Γi for some i = 1, ..., NΩ will, in general, result in a non-
differentiable initial density. It is therefore recommended
to employ separate Chebyshev basis approximations with
respect to s for regions of Γ split by an edge or vertex,
see Fig. 1. It is also recommended to employ a separate
approximation with respect to s where there is a sudden
change in boundary conditions resulting in a non-smooth
initial density, for example, along an interface between
two subsystems. The geometric subdivision is therefore

to enable smoothness of the density functions, ρ
(0)
Γi

and
ρΓi , over the regions of approximation and therefore (ge-
ometric) exponential order convergence in the Chebyshev
basis expansions.

The method described above has been implemented
numerically for a variety of problems with Ω ⊂ R2 and
homogeneous Dirichlet boundary conditions for the total
wave, (that is, including the initial contribution from the
source) on the outer boundary Γ. For simplicity we con-

sider ci = ϱ
−1/2
i for all i = 1, .., NΩ, that is, we set the

adiabatic compressibility to unity. Results are compared
with the numerically exact solutions obtained from state-
of-the-art adaptive FEM software. A brief account of the
FE method is given in the next section.

Let s ∈ [0, Lji) and ps ∈ (−ki, ki) parameterize the
associated phase space where Lji is the length of Γji . In
these local sub-system boundary coordinates the Cheby-
shev basis is given by

T̃ ji
n (s, ps) =

√
2

kiLji

Tn1(s̃)Tn2(p̃s), (18)

where s̃ = (2s/Lji) − 1 and p̃s = ps/ki. The weight
function Wn is given by

Wn(s, ps) =
4γn1γn2

π2

1√
1− s̃2

1√
1− p̃2s

. (19)

The transmission probability at the intersection of two
subsystems is given by19

wt(kout, kin, θin) =
4(kout/kin) cos(θin) cos(θout)

((kout/kin) cos(θin) + cos(θout))2
,

(20)
with θin (θout) the angle between the incoming (outgo-
ing) ray and the inward normal to the boundary and
kin (kout) the wavenumber in the subsystem through
which the incoming (outgoing) ray is traveling. Incom-
ing and outgoing rays are related through Snell’s law
(kin sin(θin) = kout sin(θout)), and hence θout may be cal-
culated from the other three quantities.

Given the end point s ∈ Γji and the incoming mo-
mentum ps, one can obtain the corresponding ray. With
sufficient geometric knowledge of Γi and the boundaries
of its adjoining subsystems, the start point of the ray s′

can be determined as its intersection with one of these
boundaries, say in the subset Γβα for some βα = 1, ..., Nα

and α = 1, ..., NΩ. Once this is known it is straightfor-
ward to obtain the initial momentum p′s. Writing out the
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Jacobian (14) one obtains

Bmn
jiβα

=
kα
ki

∫ kmax
ji

kmin
ji

∫ Lji

0

Wm(s, ps)T̃
ji
m (s, ps)T̃

βα
n (s′, p′s)×

wjiβα(s
′, p′s)ds dps,

(21)
where wjiβα(s

′, p′s) = exp(−µiL)w
Γ
jiβα

(s′, p′s). Here µi is
the damping coefficient in Ωi as before, L is the length
of the trajectory from s′ to s and the reflection/ trans-
mission coefficients are

wΓ
jiβα

(s′, p′s) =

{
δiα if s /∈ Γiα

δiα + (−1)δiαwt(ki, kα, θi) if s ∈ Γiα.

Here, Γiα denotes any subset of Γα forming the intersec-
tion of two subsystems (that is, for i ̸= α, Γiα = Γi∩Γα)
and δiα is the Kronecker delta. Also kmin

ji
= ki sin(θ

min
ji

)
and kmax

ji
= ki sin(θ

max
ji

) are the minimum and max-

imum values of ps, respectively, where θmin
ji

, θmax
ji

∈
(−π/2, π/2) are the angles between the inward normal
to Γji and the rays from s′ to each of the ends of Γji .

All DEA/ SEA computations are performed on a desk-
top PC with a dual core 2.83 GHz processor using C++
with Diffpack (www.diffpack.com).

C. hp-adaptive discontinuous Galerkin finite element
method

In recent years, discontinuous Galerkin (DG) methods
for elliptic problems20 have become increasingly popular.
The main reason for this interest in DG methods is that
allowing for discontinuities across elements gives extraor-
dinary flexibility in terms of mesh design and choice of
shape functions. Additionally, hp-adaptive DG methods,
which are based on locally refined meshes and variable
approximation orders, achieve tremendous gains in com-
putational efficiency for challenging problems21–24.

In the following, we consider the wave equation

(c2i∆+ω̃2
i )G̃(r, r0;ω) = −δ(r−r0), i = 1, ..., NΩ, (22)

with ω̃i = ω+ iµici/2 and r ∈ Ωi ⊂ R2. The Green func-

tion G̃ is related to G in equation (1) by G = c20G̃, where
c0 is the wave velocity in the subsystem Ω0 containing
the source point r0.

To drive the hp-adaptivity we use an explicit energy
norm a posteriori error estimator inspired by Refs.25,26.
We apply a simple fixed-fraction strategy on the error es-
timator to mark the elements to adapt. For each marked
element, the choice of whether to locally refine it or vary
its approximation order is made by estimating the decay
of the coefficients in an L2-orthogonal polynomial expan-
sion in order to test the local analyticity of the solution
in the interior of the element27. The details of the imple-
mentation of the method can be found in Appendix B.

All finite element simulations have been carried out us-
ing AptoFEM (www.aptofem.com) on a parallel machine.
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FIG. 2. Coupled two-domain systems: configurations A, B
and C, respectively.

V. COMPUTATIONAL RESULTS

A. Coupled two-cavity systems

A variety of two-cavity systems are considered as in
Ref.7 and are shown in Fig. 2. The coordinates of the
vertices and source points of these systems are given in
Appendix A. Configuration A features irregular shaped
well separated pentagonal subsystems and thus SEA is
expected to work well. In configuration B the size of the
interface between the subsystems is increased reducing
their dynamical separation and therefore the applicabil-
ity of SEA. Configuration C includes a rectangular left-
hand subsystem channeling rays out of the subsystem
and introducing long-range correlations in the dynamics.
In addition, the source is further from the intersection of
the two subsystems. SEA is thus not expected to work
well for this configuration. Note that SEA results are in
general insensitive to the position of the source, whereas
actual trajectory calculations may well depend on the
exact position.

Finite basis sets have been employed with n1, n2 =
0, .., N , which gives rise to matrices of size dimB =
(N+1)2(N1+N2), with basis functions of the same order
for position and momentum in both subsystems. Note
that Ni, i = 1, 2 denotes the number of subdivisions of
the boundary of subsystem i as defined in Section IV.B.
Energy distributions have been studied as a function of
the frequency with a hysteretic damping factor η = 0.01,
where µi = kiη/2 for i = 1, 2. Here and in the remainder
of this work the subsystems are numbered 1, ..., NΩ from
left to right.

Fig. 3 shows approximations of the ratios of the total
energy in each subsystem ∥G̃1∥2/∥G̃2∥2 in configuration
A where

∥G̃i∥2 :=

∫
Ωi

|G̃(r, r0;ω)|2dr, i = 1, ..., NΩ. (23)

The left subplot shows the results with c1 = c2 = 1ms−1

and the right with c1 = 0.5ms−1 and c2 = 1ms−1. The
dotted lines represent solutions computed using the FEM
(described in section IV.C) at an equi-spaced range of fre-
quencies within ±5Hz of the frequencies used for the SEA
and DEA computations. Note that the damping is fixed
to the value employed for the central (SEA/DEA) fre-
quency. In the right-hand plot the results only go up to
50Hz due to the high computational cost of the FEM code
for the large wavenumbers in subsystem 1. Fast conver-
gence with increasing basis size is evident in each case. It
is clear that SEA works reasonably well for configuration
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FIG. 3. (Color online) Ratio of total energies R =

∥G̃1∥2/∥G̃2∥2 in configuration A with c1 = c2 = 1 (left) and
c1 = 0.5, c2 = 1 (right). Dotted lines show FEM results
computed within ±5Hz of the DEA results.

A since the SEA prediction is close to that from DEA and
within the range of FEM solution values. In particular
the SEA prediction is good for low damping values (that
is, low frequencies). At closer inspection one notices also
that the divergence from the DEA result is smaller in the
case when c1 ̸= c2, thus demonstrating an increase in the
dynamical separation between subsystems in this case.
Comparing SEA with the N = 6 case between 10Hz and
50Hz, the SEA results differ from DEA by between 8%
and 15% when c1 = c2 = 1ms−1, but only by between
5% and 7% when c1 = 0.5ms−1 and c2 = 1ms−1.
Figure 4 shows approximations of the ratios of the to-

tal energy in each subsystem in configurations B and C
with c1 = c2 = 1ms−1. The dotted lines are as before
and fast convergence with increasing basis size is again
evident, although a slightly higher order was required for
configuration C to capture the exponential decay due to
dissipation along the rectangular cavity. As expected, the
SEA prediction diverges from both the FEM and DEA
predictions in configurations B and C. Comparing SEA
with the N = 6 case for configuration B between 10Hz
and 50Hz (for consistency with the data for configuration
A), the SEA results differ from DEA by between 18% and
29%. For configuration C the deviation is about 30% in
the range 10Hz to 50 Hz, although this grows consider-
ably larger if one includes the data for 60 and 70Hz.

B. Complex built-up systems

In this section the versatility and efficiency of
the Chebyshev approximation with Gauss-Chebyshev
quadrature are demonstrated by considering a complex
built-up system. A configuration of five coupled acous-
tic cavities is considered as shown in Figure 5. The co-
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FIG. 4. (Color online) Ratio of total energies R =

∥G̃1∥2/∥G̃2∥2 in configuration B (left) and configuration C
(right). Dotted lines show FEM results computed within
±5Hz of the DEA results.
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FIG. 5. (Color online) Distribution of log10(|G̃|2) in a five
cavity system.

ordinates of the vertices and source point are given in
Appendix A. The solution in the interior of each cav-
ity is plotted and the source point in the central cav-
ity is clearly evident. The subsystems are each convex
polygonal regions as before, the jagged appearance of the
boundary is a result of the plotted region being formed of
the largest regular grid fitting strictly inside the bound-
ary of each subsystem. The wave velocities are taken to
be c1 = c2 = c4 = c5 = 1ms−1 and c3 = 0.5ms−1. Fig-
ure 5 shows the DEA approximation of the distribution
of log10(|G̃|2) throughout the system with N = 8. The
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logarithm of the solution is taken since a large range of
values are present between the peak of the source and
the extremal subsystems. The plot is for the 10Hz case
with the same frequency and damping correspondence
as in the earlier two-cavity configurations. DEA clearly
gives much more detailed spatial information about the
wave energy distributions than SEA, which assumes a
constant density in each subsystem. In particular here
one can see local variations close to subsystem interfaces
and a drop in the intensity as one moves away from the
source. Note that more energy flows into the far right
subsystem as compared to the far left subsystem due to
there being a direct channel for the energy to travel along
to the right of the source, but not to the left.
Figure 6 shows approximations of ∥G̃i∥2 for i = 1, .., 5

computed using both SEA and DEA up to N = 8.
The three figures represent the total energy (actually

c40 = 1/16 multiplied by this quantity since G̃ rather
than G has been computed) obtained for each subregion
at three different frequencies and thus damping levels; us-
ing the same parameters as before the 10, 20 and 30 Hz
cases are shown from left to right. Note that results are
shown on a logarithmic scale and that the overall ampli-
tude decreases with increasing frequency due to increased
damping. Here a comparison with FEM simulations is
not considered due to the high computational cost associ-
ated with computing high and multi-frequency solutions
over large domains. We can deduce that SEA is working
very well in subsystems 1 to 3 due to the level of agree-
ment with the DEA calculations. Very few trajectories
can move from the source directly into subsystem 1 and
multiple scattering events lead to a local equidistribution,
that is, incoming and outgoing rays in subsystem 2 are
uncorrelated. The situation is different for subsystems 4
and 5 where the influence of the direct channel from the
source to subsystem 5 becomes important. Compared to
the SEA result, the DEA calculations show a noticeable
increase in the values of ∥G̃5∥2 and a slight decrease in

the values of ∥G̃4∥2, that is, more energy reaches subsys-
tem 5 than predicted by a Markov approximation of the
dynamics. The DEA calculations again appear to con-
verge reasonably quickly between N = 6 and N = 8. It is
also evident that SEA works best for the lower damping
values here, which is consistent with our observations for
the two-cavity configurations.

VI. CONCLUSIONS

Dynamical energy analysis has been reformulated in
terms of a Chebyshev basis expansion allowing a greater
degree of flexibility in the design of the method and more
efficient coding. A comparison of the numerical results
with finite element method computations showed that
dynamical energy analysis is robust and retains accuracy
in cases when SEA fails. Examples where the wave ve-
locity varies between subsystems were also considered for
the first time using DEA. An extension to built-up sys-
tems, facilitated by the efficient Chebyshev basis refor-
mulation of DEA, showed that DEA is a flexible, robust
and efficient method for estimating energy density distri-

butions at high frequencies.
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APPENDIX A: GEOMETRIC DATA

For completeness the coordinates of the vertices for the
systems treated numerically in the paper are detailed in
Table A. For consistency with the units quoted in the pa-
per the distances should be considered in metres. In each
configuration the vertices are ordered anticlockwise start-
ing from the vertex with the maximum x-coordinate. For
configurations A and B the source point is (−0.4, 0.5), for
configuration C it is (−1.4, 0.4993) and for the five plate
configuration the source is located at (−0.5, 0.4993).

APPENDIX B: IMPLEMENTATION OF THE DG
METHOD

In order to compute an approximation of G̃ in (22),
we partition the domain Ω with shape-regular meshes Th
formed by open triangles {K}K∈Th

. We assume that in
the interior of each element K ∈ Th, the wave velocity
and the damping are constant, such values are denoted in
the interior of K by cK and µK . Further, each element
K can then be affinely mapped onto the generic refer-

ence element K̂. The diameter of an element K ∈ Th is
denoted by hK . Due to our assumptions on the meshes,
these diameters are of bounded variation, that is, there
is a constant b1 ≥ 1 such that

b−1
1 ≤ hK/hK′ ≤ b1, (B1)

whenever K and K ′ share a common edge. We store the
elemental diameters in the mesh size vector h = {hK :
K ∈ Th}. Similarly, we associate with each element K ∈
Th a polynomial degree pK ≥ 1 and define the degree
vector p = {pK : K ∈ Th}. We assume that p is of
bounded variation as well, that is, there is a constant
b2 ≥ 1 such that

b−1
2 ≤ pK/pK′ ≤ b2, (B2)

whenever K and K ′ share a common edge.
For a partition Th of Ω and a degree vector p, we de-

fine the hp-version discontinuous Galerkin finite element
space Vh of complex valued functions by

Vh = { v ∈ L2(Ω) : v|K ∈ PpK
(K), K ∈ Th }. (B3)

Here, PpK
(K) is the space of polynomials on K of total

degree less than or equal to pK .
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FIG. 6. (Color online) A plot of ∥G̃i∥2 for subsystems Ωi, i = 1, .., 5 at three different frequencies.

Next, we define some trace operators that are required
for the DG methods. To this end, we denote by EI(Th)
the set of all interior edges and by EΓ(Th) the set of all
boundary edges of the partition Th. Furthermore, we
define E(Th) = EI(Th) ∪ EΓ(Th). The boundary ∂K of
an element K and the sets ∂K \ Γ and ∂K ∩ Γ will be
identified in a natural way with the corresponding subsets
of E(Th).
Let K+ and K− be two adjacent elements of Th, and

κ ∈ EI(Th) given by κ = ∂K+ ∩ ∂K−. Furthermore,
let v be a complex scalar-valued function, that is smooth
inside each elementK±. By v±, we denote the traces of v
on κ taken from within the interior of K±, respectively.
Then, the weighted average of the diffusive flux c2∇hv
along κ ∈ EI(Th) is given by

{{c2∇hv}} =
c2K−c2K+∇hv

+ + c2K+c2K−∇hv
−

c2K+ + c2K−
.

Similarly, the jump of v across κ ∈ EI(Th) is given by

[[v]] = v+ nK+ + v− nK− ,

where we denote by nK± the unit outward normal vector
of ∂K±, respectively.
On a boundary edge κ ∈ EΓ(Th), we set {{c2∇hv}} =

c2∇hv and [[v]] = vn , with n denoting the unit outward
normal vector on the boundary Γ.
For a mesh Th on Ω and a polynomial degree vector

p, let Vh be the hp-version finite element space defined
in (B3). We consider the (symmetric) weighted interior

penalty discretization28 of (22): find G̃h ∈ Vh such that

Ah(G̃h, v) = Fh(v) , for all v ∈ Vh , (B4)

where

Ah(u, v) :=
∑

K∈Th

∫
K

c2K∇hu · ∇hv − (ω + iµKcK/2)
2uv dr

−
∑

κ∈E(Th)

∫
κ

(
{{c2∇hv}} · [[u]] + {{c2∇hu}} · [[v]]

)
ds

+
∑

κ∈E(Th)

∫
κ

c [[u]] · [[v]] ds,

Fh(v) :=

∫
Ω

δ(r − r0)v dr ,

and ∇h denotes the element wise gradient operator.
Since DG methods allow for discontinuities in the finite
element approximation, the supports of the shape func-
tions never extend to more than one element. A conse-
quence is that the stencil is minimal in the sense that
each element communicates only with its direct neigh-
bors and the communication happens across the edges of
the mesh where the functions in the finite element space
are not continuous. This makes it natural to include the
last two terms in the definition of Ah(·, ·), which con-
trol the average and the flux of discontinuous functions
across the edges. In particular the stability of the method
is guaranteed by the third term, which penalizes the dis-
continuities across the edges. So the second and the third
terms are peculiar to the DG method of choice, in con-
trast to the first term which depends on the PDE under
consideration. Furthermore, the function c ∈ L∞(E(Th))
is the discontinuity stabilization function that is chosen
as follows: we define the functions h ∈ L∞(E(Th)) and
p ∈ L∞(E(Th)) by

h(r) :=

{
min(hK , hK′), r ∈ κ ∈ EI(Th), κ = ∂K ∩ ∂K ′,

hK , r ∈ κ ∈ EΓ(Th), κ ∈ ∂K ∩ Γ,

p(r) :=

{
max(pK , pK′), r ∈ κ ∈ EI(Th), κ = ∂K ∩ ∂K ′,

pK , r ∈ κ ∈ EΓ(Th), κ ∈ ∂K ∩ Γ,

and set

c = γ
c2Kc

2
K′

c2K + c2K′

p2

h
, (B5)

with a parameter γ > 0 that is independent of h, p, cK
and cK′ . The definition of c is equivalent to an hp-version
of the weighted penalty parameter in Ref.28. The defini-
tions of h(r), p(r) and c are designed to work with hp-
adaptivity where adjacent elements of very different sizes
and orders are possible. In order to keep the method sta-
ble under the adaptation process it is necessary to penal-
ize more discontinuities across the smaller edges and also
across higher order elements. This can be seen straight-
away from (B5).
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