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1 Introduction

Automorphisms of compact metric groups provide a simple family of dynam-

ical systems with additional structure, rendering them particularly amenable

to detailed analysis. On the other hand, they are rigid in the sense that they

cannot be smoothly perturbed, and for a fixed compact metric group the

group of automorphisms is itself countable and discrete. Thus it is not clear
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which, if any, of their dynamical properties can vary continuously. The most

striking manifestation of this is that it is not known if the set of possible

topological entropies is countable or is the set r0,8s (this question is equiv-

alent to Lehmer’s problem in algebraic number theory; see Lind [13] or the

monograph [7] for the details). The possible exponential growth rates for

the number of closed orbits is easier to decide, and it is shown in [23] that

for any C P r0,8s there is a compact group automorphism T : X Ñ X with

(1.1) 1
n

log FT pnq ÝÑ C

as n Ñ 8, where FT pnq � |tx P X : T nx � xu|. Unfortunately, the systems

constructed to achieve this continuum of different growth rates are non-

ergodic automorphisms of totally disconnected groups, and so cannot be

viewed as natural examples from the point of view of dynamical systems.

It is not clear if a result like (1.1) is possible within the more natural class

of ergodic automorphisms on connected groups, unless C is a logarithmic

Mahler measure (in which case there is a toral automorphism that achieves

this).

Our purpose here is to indicate some of the diversity that is nonetheless

possible for ergodic automorphisms of connected groups, for a measure of

the growth in closed orbits that involves more averaging than does (1.1).

To describe this, let T : X Ñ X be a continuous map on a compact metric

space with topological entropy h � hpT q. A closed orbit τ of length |τ | � n

is a set tx, T pxq, T 2pxq, . . . , T npxq � xu with cardinality n. Following the

analogy between closed orbits and prime numbers advanced by work of

Parry and Pollicott [18] and Sharp [21], asymptotics for the expression

MT pNq �
¸

|τ |¤N

1

ehpT q|τ |

may be viewed as dynamical analogues of Mertens’ theorem. The expres-

sion MT pNq measures in a smoothed way the extent to which the topological

entropy reflects the exponential growth in closed orbits or periodic points.

A simple illustration of how MT reflects this is to note that if

FT pnq � C1ehn �O
�

eh
1n
	

for some h1   h, then

MT pNq � C1

Ņ

n�1

1

n
� C2 �O

�
e�h

2N
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for some h2 ¡ 0 (see [17]).

Writing OT pnq for the number of closed orbits of length n, we have

FT pnq �
¸
d|n
dOT pdq

and hence

(1.2) OT pnq � 1

n

¸
d|n
µ
�
n
d

�
FT pdq

by Möbius inversion.

For continuous maps on compact metric spaces, it is clear that all pos-

sible sequences arise for the count of orbits (see [19]; the same holds in the

setting of C8 diffeomorphisms of the torus by a result of Windsor [25]). For

algebraic dynamical systems the situation is far more constrained, and it

is not clear how much freedom there is in possible orbit-growth rates. Our

purpose here is to exhibit two different continua of growth rates, on two

different speed scales:

• for any κ P p0, 1q there is an automorphism T of a one-dimensional

compact metric group with MT pNq � κ logN ;

• for any δ P p0, 1q and k ¡ 0 there is an automorphism T of a one-

dimensional compact metric group with MT pNq � kplogNqδ.

While this plays no part in the argument, it is worth noting that there is a

complete divorce between the topological entropy and the growth in closed

orbits of these examples – they all have topological entropy log 2.

2 The systems studied

We will study a family of endomorphisms (or automorphisms) of one-dimensional

solenoids, all built as isometric extensions of the circle-doubling map. To

describe these, let P denote the set of rational primes, and associate to

any S � P the ring

RS � tr P Q : |r|p ¤ 1 for all p P PzSu,

where |�|p denotes the normalized p-adic absolute value on Q, so that |p|p �
p�1. Thus, for example, RH � Z, Rt2,3u � Zr1

6
s, and RP � Q. Let T � TS

denote the endomorphism of xRS dual to the map r ÞÑ 2r on RS. This map

may be thought of as an isometric extension of the circle-doubling map, with
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topological entropy hpTSq �
°
pPSYt8u maxtlog |2|p , 0u � log 2 (see [14] for

an explanation of this formula, and for the simplest examples of how the

set S influences the number of periodic orbits). Each element of S destroys

some closed orbits, by lifting them to non-closed orbits in the isometric

extension; see [5] for a detailed explanation in the case S � t2, 3u. This is

reflected in the formula for the count of periodic points in the system,

(2.1) FTSpnq � p2n � 1q
¹
pPS

|2n � 1|p

(see [2] for the general formula being used here), showing that each inverted

prime p in S in the dual group RS removes the p-part of p2n � 1q from the

total count of all points of period n. The effect of each inverted prime in RS

on the count of closed orbits via the relation (1.2) is more involved.

We write |x|S �
±

pPS |x|p for convenience, and since we will be using the

same underlying map throughout, we will replace T � TS by the parame-

ter S defining the system in all of the expressions from Section 1. There are

then three natural cases: the ‘finite’ case with |S|   8 and the ‘co-finite’

case with |PzS|   8, together producing countably many examples, and

the more complex remaining ‘infinite and co-infinite’ case. A special case of

the results in [3] is that for S finite we have

MTSpNq � MSpNq �
¸

|τ |¤N

1

eh|τ |
� kS logN � CS �O

�
N�1

�
,

for some kS P p0, 1s X Q and constant CS. For example, [3, Ex. 1.5] shows

that

kt3,7u � 269

576
.

Here we continue the analysis further, showing the following theorem.

Theorem 1. The set of possible values of the constant kS with

MSpNq � kS logN � CS �O
�
N�1

�
,

as S varies among the finite subsets of P, is dense in r0, 1s.

If S is infinite, then more possibilities arise, but with less control of the

error terms.

Theorem 2. For any k P p0, 1q, there is an infinite co-infinite subset S of P
with

MSpNq � k logN.
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We also give explicit examples of sets S for which the value of k arising

in Theorem 2 is transcendental.

The co-finite case is very different in that MSpNq converges as N Ñ
8; other orbit-counting asymptotics better adapted to the polynomially

bounded orbit-growth present in these systems are studied in [4] and [11].

The following result is more surprising, in that a positive proportion of

primes may be omitted from S while still destroying so many orbits that MSpNq
is bounded.

Proposition 3. There is a subset S of P with natural density in p0, 1q such

that

MSpNq � CS �O
�
N�1

�
.

In fact there are such sets S with arbitrarily small non-zero natural

density.

While it seems hopeless to describe fully the range of possible growth

rates for MSpNq as S varies, we are able to exhibit many examples whose

growth lies strictly between that of the examples in Theorem 2 and that of

the examples in Proposition 3.

Theorem 4. For any δ P p0, 1q and any k ¡ 0, there is a subset S of P
such that

MSpNq � k plogNqδ .
We also find a family of examples whose growth lies between that of the

examples in Theorem 4 and of those in Proposition 3.

Theorem 5. For any r P N and any k ¡ 0, there is a subset S of P with

MSpNq � k plog logNqr .
Moreover, it is possible to achieve growth asymptotic to any suitable

function growing slower than log logN . A byproduct of the constructions

for Theorems 1 and 5 gives sets S such that both MSpNq and MPzSpNq
are o plogNq.

The idea behind the proofs of all these result is rather similar. We choose

our set of primes S so that it is easy to isolate a subseries of dominant terms

in MSpNq in such a way that the sum of the remaining terms converges,

usually quickly (controlling this rate governs the error terms). We describe

a general framework for dealing with such sets, and then the sets used to

carry out the constructions are defined by arithmetical criteria relying on

properties of the set of primes p for which 2 has a given multiplicative order

modulo p.



6 S. Baier, S. Jaidee, S. Stevens and T. Ward

Notation

From (2.1), we have MSpNq � MSYt2upNq, for any set S: thus, without loss

of generality, we make the standing assumption that 2 R S. We will use

various global constants C1, C2, . . . , each independent of N and numbered

consecutively. The symbols C and CS denote local constants specific to the

statement being made at the time. For an odd prime p, denote by mp the

multiplicative order of 2 modulo p; for a set T of primes, we write mT �
lcmtmp : p P T u. We will also use Landau’s big-O and little-o notation.

3 Asymptotic estimates

By (1.2) and (2.1) we have

MSpNq �
¸
n¤N

1

n2n

¸
d|n
µ
�
n
d

� ��2d � 1
��� ��2d � 1

��
S

�
¸
n¤N

|2n � 1|S
nlooooooomooooooon

�FSpNq

�RSpNq,

where the last equation defines both FSpNq and RSpNq.
Lemma 6. RSpNq � CS �O

�
2�N{2

�
.

Proof. By definition, RSpNq is the sum of two terms,

RSpNq � �
Ņ

n�1

|2n � 1|S
n2n

�
Ņ

n�1

1

n2n

¸
d|n,d n

µ
�
n
d

� p2d � 1q ��2d � 1
��
S
.

Since
|2n � 1|S
n2n

¤ 1

2n
and

1

n2n

¸
d|n,d n

p2d � 1q ��2d � 1
��
S
¤ 1

2n{2
, both sums

converge (absolutely) so RSpNq converges to some CS. Moreover,

|RSpNq � CS| ¤
8̧

n�N�1

1

2n
�

8̧

n�N�1

1

2n{2
� O

�
2�N{2

�
.

Thus we think of FSpNq as a dominant term, and much of our effort will

be aimed at understanding how FSpNq behaves as a function of S, which

starts with understanding the arithmetic of 2n � 1. The main tool here is

the elementary observation that, for p a prime and n P N,

(3.1) ordp p2n � 1q �
#

ordp p2mp � 1q � ordppnq if mp | n,
0 otherwise,
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where ordppnq denotes the index of the highest power of p dividing n, so

that |n|p � p� ordppnq. In particular, if T is a finite set of primes and n P N,

then

(3.2) |2nmT � 1|T � |2mT � 1|T |n|T .

In the proof of [3, Proposition 5.3], a recipe is given for computing the

coefficient of logN in the asymptotic expansion of FSpNq, when S is fi-

nite. This is based on an inclusion-exclusion argument, splitting up the

sum FSpNq according to the subsets of S. The disadvantage of this approach

is that many subsets of S can lead to an empty sum: in principle, the split-

ting works for infinite S (since FSpNq is anyway a finite sum) but then the

decomposition of the sum falls into an uncountable number of pieces. Here

we take a different approach, splitting up the expressions arising according

to the values mT , for T a finite subset of S, rather than according to the

subsets T . In this setting, several different subsets T may give the same

value for mT .

To this end, we set MS � tmp : p P Su and denote by �MS its closure

under taking least common multiples:

�MS � tlcmpM1q :M1 �MSu � tmT : T � Su.

For n P N, we put

m̄n � maxtm̄ P �MS : m̄ | nu � lcmtmp PMS : mp | nu.

Then, for m̄ P �M, set

Nm̄ � tn P N : m̄n � m̄u

and

Sm̄ � tp P S : mp | m̄u .
Note that the sets Sm̄ are finite, even if S is not. Then, using (3.2), we get

FSpNq �
¸

m̄P�MS

¸
n¤N
nPNm̄

|2n � 1|S
n

�
¸

m̄P�MS

|2m̄ � 1|Sm̄
m̄

¸
n¤N{m̄

mp-nm̄ for pPSzSm̄

|n|Sm̄
n

.(3.3)

The asymptotic behaviour of these inner sums can be computed, at least in

principle, using the results of [3, §5]. However, for a general set of primes S,
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this is cumbersome, so we will specialize to sets which are easier to deal

with. In this, we are motivated by the next lemma, which follows one of

the many paths used to prove Zsigmondy’s theorem (see [6, § 8.3.1] for the

details).

Lemma 7. Fix n P N, and let S � P be a set of primes containing

tp P P : mp � nu.

Then

|2n � 1|S ¤
n

2φpnq�2
.

Recall that a divisor of 2n � 1 is primitive (in the sequence p2n � 1qn¥1)

if it has no common factor with 2m � 1, for any m with 1 ¤ m   n.

Thus tp P P : mp � nu is the set of primitive prime divisors of 2n � 1. This

set is finite, since mp ¥ log2 p, but may be large – for example

m233 � m1103 � m2089 � 29.

Schinzel [20] proved that there are infinitely many n for which this set

contains at least 2 elements, but it seems that not much more is known

about it in general.

Proof of Lemma 7. Writing p2n � 1q� for the maximal primitive divisor

of 2n � 1, we certainly have

(3.4) |2n � 1|�1
S ¥ p2n � 1q�.

By factorizing xn � 1 we have

(3.5) 2n � 1 �
¹
d|n

Φdp2q,

where Φd is the dth cyclotomic polynomial. It follows that p2n�1q� is a factor

of Φnp2q. If a prime p divides gcd pΦnp2q,Φdp2qq for some d | n with d   n,

then p | 2d � 1. Then, from (3.1),

ordpp2n � 1q � ordpp2d � 1q � ordppn{dq

and, from (3.5),

ordpp2n � 1q ¥ ordpp2d � 1q � ordppΦnp2qq ¥ ordpp2d � 1q � 1,

so in particular p divides n{d; therefore p divides n and d divides n{p, so p

divides

p2n{p � 1q.
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Moreover

ordpp2n � 1q � ordpp2n{p � 1q � 1

and

ordpp2n � 1q ¥ ordpp2n{p � 1q � ordppΦnp2qq,
so in fact ordppΦnp2qq � 1. Thus gcd

�
Φnp2q,

±
d|n,d n Φdp2q

	
divides

±
p|n p,

which is at most n, and

(3.6) p2n � 1q� ¥ Φnp2q{n.

On the other hand, by Möbius inversion applied to (3.5),

Φnp2q �
¹
d|n
p2d � 1qµpn{dq

so

logpΦnp2qq � φpnq logp2q �
¸
d|n
µpn{dq logp1� 2�dq,

where φpnq is the Euler totient function. Now, using the Taylor expansion

for the logarithm,������
¸
d|n
µpn{dq logp1� 2�dq

������ ¤
¸
d|n

8̧

j�1

2�jd

j
�

8̧

j�1

2�j

j

¸
d|n

2�jpd�1q ¤ 2 log 2,

so Φnp2q ¥ 2φpnq�2 and the result follows by (3.4) and (3.6).

This lemma will be used as follows. Instead of starting with a set S of

primes, we begin with M a subset of N and put

SM � tp P P : mp PMu.

Then ¸
n¤N

|2n � 1|SM

n
�

¸
n¤N
nRM

|2n � 1|SM

nloooooooomoooooooon
�DSM pNq

�
¸
n¤N
nPM

|2n � 1|SM

nloooooooomoooooooon
�QSM pNq

,

and, by Lemma 7,

QSMpNq ¤ C3

¸
n¤N

1

2φpnq
,

which converges since φpnq ¥ ?
n, for n ¥ 6. Moreover, the same observation

shows that

QSMpNq � C4 �O
�

2�
?
N
	
.



10 S. Baier, S. Jaidee, S. Stevens and T. Ward

Thus the asymptotic behaviour is governed by the dominant term DSMpNq.
From Lemma 6, we get

(3.7) MSMpNq �
¸
n¤N
nRM

|2n � 1|SM

n
� C5 �O

�
2�

?
N
	
.

All our examples will take this form.

Remarks 8. (i) We have set up maps S ÞÑMS andM ÞÑ SM between the

power sets of Pzt2u and N, which are order-preserving for inclusion. It is

easy to check that SMS
� S, while SMSM

� SM. Similarly, we haveMSM �
Mzt1, 6u, since all but the first and sixth terms of the Mersenne sequence

have primitive divisors, and MSMS
�MS. In particular, we can apply the

decomposition (3.3) of MSMpNq in tandem with (3.7). When we do so, we

will replace �MSM by the closure �M ofM under least common multiples to

get

(3.8) MSMpNq �
¸
m̄P�M

|2m̄ � 1|Sm̄
m̄

¸
n¤N{m̄, nm̄RM

mp-nm̄ for pPSMzSm̄

|n|Sm̄
n

�C6 �O
�

2�
?
N
	
.

(ii) For a general set S, letMo
S be the set of m PMS for which S contains

all primes p with mp � m, and put So � SMo
S
; this is the largest subset

of S of the form SM. Similarly, put sS � SMS
, the smallest superset of S of

the form SM. The techniques here can be applied to the sets So and sS and,

since

M
sSpNq ¤ MSpNq ¤ MSopNq,

we get some information on the asymptotic behaviour of MSpNq.
The formula (3.8) is particularly simple in the case that M is closed

under multiplication by N: that is, if a P M and b P N, then ab P M. In

this case M is closed under least common multiples and, for n R M, we

have m̄n � 1. Thus the inner sum in (3.8) is empty for m̄ � 1, and we get

(3.9) MSMpNq �
¸
n¤N
nRM

1

n
� C7 �O

�
2�

?
N
	
.

Provided MSMpNq Ñ 8 as N Ñ 8, this implies that

MSMpNq �
¸
n¤N
nRM

1

n
.

Many, though not all, of our examples will be of this form. The task is then

to choose setsM which are closed under multiplication by N, and for which
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we can control the asymptotics of the sum in (3.9). One technique we will

often use for this is partial (or Abel) summation: if we write

πMpxq � |tn ¤ x : n RMu|

and f is a positive differentiable function on the positive reals, then¸
n¤x
nRM

fpnq � πMpxqfpxq �
» x

1

πMptqf 1ptq dt,

with the dominant term generally coming from the integral. In several cases

the asymptotics of πMpxq are already well understood.

4 Finite sets of primes

In order to prove Theorem 1, we need to choose finite sets of primes S for

which we can make good estimates for the coefficient of the leading term

in Mertens’ Theorem. These calculations are simplified by considering only

primes p for which mp is prime.

Let L be a finite set of primes and take M � L, so that

S � SL � tp P P : mp P Lu,

which is a finite set. By [3, Theorem 1.4], we have

MSLpNq � kL logpNq � CL �O
�
N�1

�
,

for some kL P p0, 1s XQ and constant CL. The following lemma gives upper

and lower bounds for kL.

Lemma 9. Let L be a finite subset of P.

(i) We have kL ¤
¹
`PL

�
1� 1

`
� 1

`p2` � 1q



.

(ii) For ` P PzL, we have
�
1� 1

`

�
kL ¤ kLYt`u.

Proof. For L1 a subset of L, we write mpL1q � ±
`PL1 `. We break up the

Mertens sum as in (3.8), noting that �M � tmpL1q : L1 � Lu:

(4.1) MSLpNq �
¸
L1�L

��2mpL1q � 1
��
SL1

mpL1q
¸

n¤N{mpL1q
`-n for `PLzL1

|n|SL1

n
.
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By [3, Proposition 5.2], we have¸
nPN

|n|SL1

n
� k1L1 logN � C 1

L1 �O
�
N�1

�
,

with k1L1 �±
pPSL1

p
p�1

. Moreover, by [3, Lemma 5.1],

¸
n¤N

`-n for `PLzL1

|n|SL1

n
� k1L1

¹
`PLzL1

�
1�

|`|SL1

`

�
logN � C2

L1 �O
�
N�1

�
.

In particular, the coefficient of the logN term is
±

`PLzL1

�
1� 1

`

�±
pPSL1zL

p
p�1

,

which is at most
±

`PLzL1

�
1� 1

`

�
. Moreover, for ` P L1 and p such that mp �

`, we have ordpp2mpL1q � 1q ¥ ordpp2` � 1q so���2mpL1q � 1
���
SL1

¤
¹
`PL1

1

2` � 1
.

Putting everything back into (4.1), we see that the coefficient kL of the logN

term is bounded above by¸
L1�L

¹
`PL1

1

`p2`�1q
¹
`PLzL1

�
1� 1

`



�
¹
`PL

�
1� 1

`
� 1

`p2`�1q


.

This proves (i), and the proof of (ii) is similar but easier: we have

MSLYt`upNq �
¸

L1�LYt`u

��2mpL1q � 1
��
SL1

mpL1q
¸

n¤N{mpL1q
gcdpn,`mpLqq|mpL1q

|n|SL1

n
,

and, for L1 a subset contained in L, the contribution of the sum correspond-

ing to L1 is

�
1� |`|SL1

`



times the contribution of the sum corresponding

to L1 in (4.1). In particular, the Mertens sum for LYt`u is at least
�
1� 1

`

�
times that for L.

Proof of Theorem 1. Let k P p0, 1q and ε ¡ 0, and choose two primes `0 ¡
1 � k

ε
and `1 ¡ `0 such that

±
`0¤` `1

�
1� 1

l
� 1

lp2l�1q

	
  k; this is possible

since the product over all primes greater than `0 converges to 0.

We choose recursively a subset L of t` P P : `   `1u, using the greedy

algorithm as follows. Let ` P P and suppose we have already defined Lp`q :�
L X t1, . . . , ` � 1u. If k ¤ kLp`q   k � ε then we are done and L � Lp`q;
otherwise ` P L if and only if kLp`qYt`u ¥ k.

The claim is then that, for the subset L given by this algorithm, the lead-

ing coefficient kL satisfies k ¤ kL   k � ε. The first inequality is clear from

the definition, while the second follows from the following two observations:
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(i) There is a prime ` with `0 ¤ `   `1 such that ` R L: if not, by

Lemma 9(i),

kL ¤
¹

`0¤` `1

�
1� 1

`
� 1

`p2` � 1q


  k,

which is absurd.

(ii) With ` as in (i), we have kLp`qYt`u   k, since ` R L; thus, by Lemma 9(ii),

kLp`q ¤
�

`

`� 1



kLp`qYt`u  

�
`0

`0 � 1



k   k � ε.

Remark 10. Let L be an infinite set of primes such that
°
`PL

1
`

diverges

and put S � SL � tp P P : mp P Lu. Then MSpNq ¤ MSL1
pNq, for any finite

subset L1 of L, so MSpNq grows no more quickly than kL1 logN . Since kL1 is

at most
±

`PL1

�
1� 1

`
� 1

`p2`�1q

	
, by Lemma 9(i), there are finite subsets L1

of L with kL1 arbitrarily close to 0, and we deduce that MSpNq � o plogNq.

5 Logarithmic growth for infinite sets of primes

In this section we will prove Theorem 2. Fix ` P P, and let

�M` � tn P N : ` | nu,

so that

S
�M`

� sS` � tp P P : ` | mpu.
By Hasse [9, 10] these sets have a positive Dirichlet density within the set

of primes: for ` ¡ 2 the density is `
`2�1

, and for ` � 2 the density is 17
24

. They

also have natural density by, for example, [24, Theorem 2]. Noting that �M`

is closed under multiplication by N, by (3.9) we have

M
sS`
pNq �

¸
n¤N
`-n

1

n
� C9 �O

�
2�

?
N
	

� �
1� 1

`

�
logN � C8 �O

�
N�1

�
.

Indeed, if L is any finite set of primes, applying the same argument to

�ML � tn P N : ` | n for some ` P Lu,
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and sSL � tp P P : mp P �MLu, we get

M
sSLpNq �

¹
`PL

�
1� 1

`

�
logN � C10 �O

�
N�1

�
.

Since the set
 ±

`PL
�
1� 1

`

�
: L � P finite

(
is dense in r0, 1s, this gives an

easy way of getting a dense set of values for the leading coefficient in

Mertens’ Theorem. Note however that Theorem 1 was more delicate, since

the claim was that a dense set of values can be obtained using only fi-

nite sets S. Similarly, Theorem 2 claims more: every value in p0, 1q can be

obtained as leading coefficient.

Proof of Theorem 2. Now let L � P be any set of primes for which the

product kL :� ±
`PL

�
1� 1

`

�
is non-zero, define �ML and sSL as above, and

apply the argument above to obtain

M
sSLpNq �

¸
n¤N
nR �ML

1

n
.

Applying [22, Theorem I.3.11] we have that |tn ¤ x : n R �MLu| � kLx thus,

by partial summation, we get

M
sSLpNq � kL logN.

This gives Theorem 2 since tkL : L � Pu � r0, 1s.

6 Sublogarithmic growth

Now we consider sets giving intermediate sublogarithmic growth, proving

Theorem 4. We return to sets close to �ML and sSL of §5 but now for in-

finite sets of primes L such that
±

`PL
�
1� 1

`

� � 0. We will need a result

from analytic number theory that allow sets of primes to be selected with

prescribed properties, whose proof we defer to §10.

Proposition 11. For any δ P p0, 1s, there is a set of primes L such that

(6.1)
¸
`¤x
lPL

log `

`
� δ log x�Op1q

and, for any c ¡ 1, there is a set of primes L1 � L such that¹
pPL1

�
1� 1

p



� c and

¸
pPL1

log p

p
  8.
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Proof of Theorem 4. Let δ P p0, 1s and k ¡ 0, and let L be a set of primes

satisfying (6.1). As before we put �ML � tn P N : ` | n for some ` P Lu and

now we set

�M1
L � tn P N : n P �ML or n is not square-freeu

and sS 1L � tp P P : mp P �M1
Lu. Note that �M1

L is also closed under multipli-

cation by N so that

M
sS1L
pNq �

¸
n¤N
nR �M1

L

1

n
� C11 �O

�
2�

?
N
	

by (3.9). Now we apply [8, Theorem A.5] with, in the notation used there,

the function

gpnq �
#

1
n

if n RM1
L,

0 otherwise.

Note that, by (6.1), the hypotheses [8, (A.15–17)] of that Theorem are

indeed satisfied. We conclude that¸
n¤N
nR �M1

L

1

n
� kLplogNqδ �O

�plogNqδ�1
�
,

where kL ¡ 0 is

kL � 1

Γpδ � 1q
¹
pPP

�
1� 1

p


δ¹
pRL

�
1� 1

p



by [8, (A.24)]. Notice that we can adjust L by any set of primes L1 such

that
°
`PL1

log `
`

converges without affecting the hypothesis (6.1).

Assume now that L is the set of primes L constructed in Proposition 11.

Let L2 � PzL be a set of primes such that k
±

pPL2

�
1� 1

p

	
¥ kL. By

Proposition 11, there is a subset L1 of L such that¹
pPL1

�
1� 1

p



� k

kL

¹
pPL2

�
1� 1

p



.

In particular, putting L0 � pLzL1q Y L2, we have kL0 � k so the set sS 1L0

gives the required asymptotic.

Remark 12. Since the sets �ML and �M1
L coincide on the set of square-free

natural numbers, there is a constant cL such that¸
n¤N
nR �M1

L

1

n
¤

¸
n¤N
nR �ML

1

n
¤ cL

¸
n¤N
nR �ML

1

n
.
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In particular, the Mertens sum M
sSLpNq also grows like plogNqδ. We have

chosen to use �M1
L here rather than �ML since it is for such a set that we were

able to find an off-the-shelf reference [8, Theorem A.5] for the asymptotics.

7 Doubly logarithmic growth

Here we consider sets giving doubly logarithmic growth or slower, in partic-

ular proving Theorem 5. In the case r � 1, the proof is based on taking the

setM of §3 to be the set NzP of composite natural numbers, so that S � SM

is the set of primes p such that mp is composite. Since M is closed under

multiplication by N, applying (3.9) we have

MSpNq �
¸
p¤N
pPP

1

p
� C12 �O

�
2�

?
N
	
.

By Mertens’ original theorem [15], we have

(7.1)
¸
p¤N
pPP

1

p
� log logN � C13 �O

�plogNq�1
�
,

and hence

MSpNq � log logN � C14 �O
�plogNq�1

�
,

which is an improved form (i.e. with error term) of Theorem 5 with k � 1

and r � 1.

Remark 13. The complement of this set S is the set of primes p for

whichmp is prime so MPzSpNq � o plogNq, by Remark 10. Thus both MSpNq
and MPzSpNq are o plogNq.

For the general case of Theorem 5 we will need the following lemma,

which gives asymptotics for the number of integers with exactly r prime

factors (counted with multiplicity), all from a fixed set of primes. For L a

set of primes and n P N we denote by ΩLpnq the number of primes factors

of n in L (counted with multiplicity), and abbreviate Ωpnq � ΩPpnq.

Lemma 14. Let L be a set of primes of natural density δ and r P N. Then

(7.2) | tn ¤ x : ΩLpnq � Ωpnq � ru | � δr
x

log x

plog log xqr�1

pr � 1q! .

Proof. When r � 1, the case L � P is the prime number theorem and the

case of general L follows immediately, since L has density δ. For r ¡ 1, the
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case L � P is a result of Landau [12, XIII §56 (5)], proved by induction

on r. The proof (using the prime number theorem and partial summation –

see [16, §7.4] for a sketch) works equally well for any set L as in the lemma,

and the result follows.

Proof of Theorem 5. Let r P N and k ¡ 0. We pick a natural number m

such that

km :�
¸
d|m

1

d
¡ kpr!q

and a set L of primes with natural density δ � pkpr!q{kmq1{r. Denote

byMr,L,m the set of natural numbers n such that either Ωpn{ gcdpm,nqq ¡ r

or n{ gcdpm,nq has a prime factor outside L.

We put S � SMr,L,m and apply (3.9) to get

(7.3) MSpNq �
¸
n¤N

nRMr,L,m

1

n
�

¸
d|m

1

d

¸
n¤N{d

nRMr,L,1

1

n
.

On the other hand, by (7.2), we have

πMr,L,1pxq � | tn ¤ x : Ωpnq � ΩLpnq ¤ ru | � δr
x

log x

plog log xqr�1

pr � 1q! .

Applying partial summation gives¸
n¤x

nRMr,L,1

1

n
� δr

plog log xqr
r!

,

and substituting this into (7.3) gives the result, because of the choice of δ.

Remark 15. Let θ be any positive, increasing, differentiable function on

the positive reals such that, for large enough x, both θpxq ¤ log log x and

θ1pxq ¤ 1
x log x

. Then there is a set of primes Lθ such that¸
p¤x
pPLθ

1

p
� θpxq

and hence, putting Sθ � tp P P : mp R Lθu and applying (3.9), we have

MSθpNq � θpxq.
The existence of such a set of primes Lθ comes from (7.1) and the follow-

ing lemma, whose proof using the greedy algorithm is straightforward but

technical so is omitted. It seems almost certain that a lemma of this sort

exists in the literature but we have not been able to find it.
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Lemma 16. Suppose f is a positive, increasing, differentiable function

on the positive reals and an are non-negative reals converging to 0 such

that
°
n¤x an � fpxq. We write δpxq � °

n¤x an � fpxq. Suppose we have a

positive, increasing, differentiable function θ on the positive reals such that:

(i) there is an x0 ¡ 0 such that θpxq ¤ fpxq and θ1pxq ¤ f 1pxq for

all x ¡ x0;

(ii) δ � opθq.
Then there is a subset Nθ � N such that¸

n¤x
nPNθ

an � θpxq.

8 Convergence for co-infinite sets of primes

Proof of Proposition 3. Fix a prime ` and set �Mc
` � tn P N : ` - nu, the

complement of the set �M` considered in §5; thus

S � S
�Mc
`
� tp P P : ` - mpu

is a set of primes with positive natural density. Although �Mc
` is not closed

under multiplication by N, it is closed under least common multiples; more-

over, for m P �Mc
`, we have Nm � tm`e : e ¥ 0u, in the notation of §3. Thus,

from (3.8),

(8.1) MSpNq �
¸
mPN
`-m

|2m � 1|Sm
m

¸
1 `e¤N{m

|`|eSm
`e

� C15 �O
�

2�
?
N
	
.

Now ¸
1 `e¤N{m

|`|eSm
`e

¤
¸
e¥1

1

`e
� 1

p`� 1q .

Thus the terms of the (outer) sum in (8.1) converge and, since |2m � 1|Sm �
p2m � 1q�1, the difference between each term and its limit is

|2m � 1|Sm
m

¸
`e¡N{m

|`|eSm
`e

¤ m

2m � 1

¸
e¡ logpN{mq

log `

1

`e
¤ C16

1

2mN
.

Plugging this back into the sum in (8.1), we see that it converges and the

difference between it and its limit is bounded by

C16

N

¸
mPN
`-m

1

2m
� O

�
N�1

�
.



Exotic orbit growth 19

Remark 17. It is straightforward to generalize this proof to the case

where M is the complement of the set �ML considered in §5, for any finite

set of primes L, so that SM is the set of primes p such that mp is not divisi-

ble by any ` P L. By a special case of a very general result of Wiertelak [24,

Theorem 2], when L consists only of odd primes the set SM has natural

density
±

`PL
�
1� `

`2�1

�
. In particular, this density can be arbitrarily close

to 0.

9 Transcendental constants

Our first example of a transcendental constant comes from an elementary

result in analytic number theory. LetM be the set of non-squarefree natural

numbers; then a theorem of Landau gives

πMpxq � |tn ¤ x : n RMu| � 6

π2
x� op?xq

(see for example [12, XLIV §162] or [22, Theorem I.3.10]). Thus, by partial

summation and (3.9), we get

MSMpNq �
6

π2
logN � C17 � o

�
N�1{2� .

For our second example, fix a prime ` and set Mp`q � t`e : e ¥ 0u, so

that S � SMp`q
is the infinite set of primes p for which mp is a power of `.

This is a thin set of primes: that is, it has density zero. As in the previous

section, the setMp`q is closed under least common multiples, but not under

multiplication by N. Applying (3.8), we get

(9.1) MSpNq �
8̧

e�0

1

`e

¸
2¤n¤N

ord`pnq�e

|2n � 1|Se
n

� C18 �O
�

2�
?
N
	
,

where Se is the finite set of primes dividing 2`
e � 1. (This set was denoted

by S`e in (3.8).) Noting that ` R S, we observe that, for any e ¥ 0, n P N
such that ord`pnq � e, and prime p dividing 2`

e � 1, by (3.1) we have

ordp p2n � 1q � ordp
�
2`
e � 1

�� ordppnq.

Since every prime divisor of 2`
e � 1 lies in Se, we deduce that

|2n � 1|Se �
|n|Se

2`e � 1
.
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Thus the sum in (9.1) becomes

(9.2)
8̧

e�0

1

`ep2`e � 1q
¸

2¤n¤N{`e

`-n

|n|Se
n

.

Now, by [3, Proposition 5.2, Lemma 5.1], we have

(9.3)
¸

2¤n¤N
`-n

|n|Se
n

�
�

1� 1

`



ke logN �Oe p1q ,

where ke �
±

pPSe
p
p�1

. Here we need to control the error terms uniformly

in e. For this, we use the following lemma, which we will prove at the end

of the section.

Lemma 18. For S 1 any finite set of primes put k1S1 �
±

pPS1
p
p�1

and

fS1pNq �
¸
n¤N

|n|S1
n

� k1S1 logN.

By [3, Proposition 5.2], there exists AS1 ¡ 4 such that |fS1pNq| ¤ AS1, for

all N ¡ 1.

Now fix S 1, let p P PzS 1 and put S2 � S 1 Y tpu. Then |fS2pNq| ¤ 2AS1,

for all N ¡ 1.

In particular the Oep1q error in (9.3) is O
�
2|Se|

�
, with an implied constant

independent of e, and 2|Se| ¤±
pPSe p ¤ 2`

e � 1. Thus the error in each term

of the outside sum in (9.2) is Op1{`eq and the sum of these errors converges.

Thus (9.1) and (9.2) give

MSpNq � kS logN,

with

kS �
8̧

e�0

p`� 1q
`e�1p2`e � 1q

¹
pPSe

p

p� 1
.

Now the partial sums give infinitely many rational approximations a
b

of kS

with error O
�
b�`

�
; thus, provided ` ¥ 3, we deduce that kS is transcendental

by Roth’s Theorem.

It only remains to prove Lemma 18.

Proof of Lemma 18. We have

¸
n¤N

|n|S2
n

�
tlogN{ log pu¸

r�0

1

p2r

¸
n¤N{pr

p-n

|n|S1
n
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and ¸
n¤N
p-n

|n|S1
n

�
�

1� 1

p



k1S1 logN � k1S1 log p

p
� fS1pNq � 1

p
fS1pN{pq.

Putting these together, we get

fS2pNq � k1S1pp� 1q
p

¸
r¡t logN

log p u

1

p2r
logN � k1S1pp� 1q log p

p

t logN
log p u¸
r�0

r

p2r

�k
1
S1 log p

p

t logN
log p u¸
r�0

1

p2r
�

t logN
log p u¸
r�0

1

p2r

�
fS1 pN{prq � 1

p
fS1

�
N{pr�1

�

.

Using 0   k1S1 ¤ 1, p ¥ 3 and N ¥ 2, the first three terms are abso-

lutely bounded by
pk1
S1

pp�1q logN
  1

log 2
,

pk1
S1

pp�1qpp2�1q   3
32

and
pk1
S1

log p

pp2�1q   3 log 3
8

respectively, whose sum is bounded by 2. The final term is bounded in ab-

solute value by p
p�1

AS1   3
2
AS1 and the result follows from the assumption

that AS1 ¡ 4.

Remark 19. In fact [3, Proposition 5.2] says that fS1pNq � C 1
S1 �O pN�1q

so a finer analysis of the errors in (9.3) along the lines of Lemma 18 should

allow one to get an asymptotic expression for MSpNq with an error term.

10 Existence of suitable sets of primes

It remains only to prove Proposition 11.

Proof. Let δ P p0, 1s. We seek first a set of primes L such that¸
`¤x
lPL

log `

`
� δ log x�Op1q.

For rational δ, such a set exists from Dirichlet’s Theorem on primes in

arithmetic progression (see [1, Theorem 7.3]); thus L would be a set of

primes defined by congruence conditions and δ would in fact be the natural

density of L. For arbitrary δ a more delicate construction is needed. Let S

be the set of primes in the union of intervals¤
nPN

�
2n, 2n�δ

�
.

Now the prime number theorem implies that

πPpxq :� |tp ¤ x : p P Pu| � x

log x
� x

plog xq2 � 2
x

plog xq3 �O

�
x

plog xq4
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and applying partial summation gives¸
2n p¤2n�δ

log p

p
� δ log 2�O

�
1

n2



.

Summing over n gives the required asymptotic.

For L1 � L, write ΣpL1q � °
pPL1

log p
p

. Taking logarithms, the statement

now sought is that any a ¡ 0 can be written as

a �
¸
pPL1

log
�

1� 1
p

	
,

ΣpL1q   8.

,.-
The basic idea is to use the greedy algorithm but on a subset of L which is

forced to be sparse enough to ensure the convergence of ΣpL1q.
Let

(10.1)

L1 :� PX
� ¤
X m Y

�
2m, 2m�δ

� Y �
2Y�δ{4, 2Y�δ

� Y 8¤
n�1

�
2Rn , 2Rnrn

��
,

where

Rn :� �
2n{2Y

�
.

Here we assume that X, Y P N and rn P R are parameters satisfying

3 ¤ X   Y

and

1   rn   1� δ

Rn

,

for all n ¥ 1, so that the union on the right-hand side of (10.1) is disjoint

and L1 � L. The construction involves choosing the parameters X, Y and rn

appropriately. More precisely, we show that, provided X is large enough,

there are choices of Y and rn such that the corresponding set L1 has the

required properties.

We first derive asymptotic estimates for the sums¸
2m p¤2m�δ

log

�
1� 1

p



,

¸
2Y  p¤2Y�δ{4

log

�
1� 1

p



,

¸
2Rn p¤2Rnrn

log

�
1� 1

p



.

We have

(10.2)¸
2m p¤2m�δ

log

�
1� 1

p



�

¸
2m p¤2m�δ

�
1

p
�O

�
1

p2




�

¸
2m p¤2m�δ

1

p
�O

�
2�m

�
.
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Using the prime number theorem with error term in the well-known form

(see for example [22, §4.1 Theorem 1])

πpxq �
» x

2

dt

log t
�O

�
x exp

�
�C19

a
log x

		
,

C19 being a suitable positive constant, and partial summation and integra-

tion, we deduce that

¸
2m p¤2m�δ

1

p
� 1

2m�δ
�
�� ¸

2m p¤2m�δ

1

�� » 2m�δ

2m

1

t2
�
� ¸

2m p¤t
1

�
dt

� 1

2m�δ
�
» 2m�δ

2m

dt

log t
�
» 2m�δ

2m

1

t2
�
» t

2m

dy

log y
dt�O

�
exp

��C20m
1{2��

�
» 2m�δ

2m

dt

t log t
�O

�
exp

��C20m
1{2��

� log log 2m�δ � log log 2m �O
�
exp

��C20m
1{2��

� log

�
1� δ

m



�O

�
exp

��C20m
1{2�� ,(10.3)

for a suitable positive constant C20. Combining (10.2) and (10.3), we obtain

(10.4)
¸

2m p¤2m�δ

log

�
1� 1

p



� log

�
1� δ

m



�O

�
exp

��C20m
1{2�� .

Similarly, we derive

(10.5)
¸

2Y  p¤2Y�δ{4

log

�
1� 1

p



� log

�
1� 1

4
� δ
Y



�O

�
exp

��C20Y
1{2��

and

bn :�
¸

2Rn p¤2Rnrn

log

�
1� 1

p



� log rn �O

�
exp

��C20R
1{2
n

��
� log rn �O

�
exp

��C202n{4Y 1{2�� .(10.6)

Now assume that X is large enough so that¸
2m p¤2m�δ

log

�
1� 1

p



  a,

for all m ¡ X. Let Y be the unique natural number satisfying¸
X m¤Y

¸
2m p¤2m�δ

log

�
1� 1

p



  a ¤

¸
X m¤Y�1

¸
2m p¤2m�δ

log

�
1� 1

p



.
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Set

a1 :� a�
�� ¸
X m Y

¸
2m p¤2m�δ

log

�
1� 1

p



�

¸
2Y�δ{4 p¤2Y�δ

log

�
1� 1

p


�.
Using (10.4) and (10.5), we have

1

5
� δ
Y

  log

�
1� 1

4
� δ
Y



�O

�
exp

��C20Y
1{2�� � ¸

2Y  p¤2Y�δ{4

log

�
1� 1

p



  a1 ¤

¸
2Y  p¤2Y�δ{4

log

�
1� 1

p



�

¸
2Y�1 p¤2Y�1�δ

log

�
1� 1

p



� log

�
1� 1

4
� δ
Y



� log

�
1� δ

Y � 1



�O

�
exp

��C20Y
1{2��

  5

4
� δ
Y
�O

�
exp

��C20Y
1{2��   4

3
� log

�
1� δ

Y



,(10.7)

provided Y is sufficiently large (which is the case if X is sufficiently large).

Now write

r1 � exppa1{2q
and then define

rn � exp

�
a1 � pb1 � � � � � bn�1q

2



for all n ¥ 2, where bj is defined as in (10.6).

We wish to show by induction that, if X (and hence Y ) is chosen large

enough, then the following three properties hold for every n ¥ 1:

(10.8) 1   rn   1� δ

Rn

,

(10.9) a1
�
1� 1

2n
� fpnq�   b1 � � � � � bn   a1

�
1� 1

2n
� fpnq�

and

(10.10)
¸

2Rn p¤2Rnrn

log p
p
! 2�n{2,

where

fpnq �
ņ

j�1

100�2j{42j�n.

Notice that

(10.11) fpnq   2�pn�2q
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for all n ¥ 1, since
8̧

j�1

100�2j{42j   1
4
.

Thus (10.7), (10.8), (10.9) and (10.10) together give the result.

If Y is large enough then, using (10.7), we have

1   r1 � exppa1{2q  
�

1� δ

Y


2{3
  1� 7

10
� δ
Y
  1� δ

r21{2Y s � 1� δ

R1

,

and hence the bounds (10.8) hold for n � 1. Turning to (10.9), notice that,

since r1 � exppa1{2q, we have

b1 � a1

2
�O

�
exp

��C2021{4Y 1{2��
by (10.6), so (10.9) holds for n � 1 if Y is large enough. Moreover, (10.10)

holds trivially for n � 1.

We assume now that X has been chosen large enough such that (10.7)

holds, (10.9) holds for n � 1, and

(10.12) a1 exp
�
C20Y

1{2� ¡ 1

5
� δ
Y
� exp

�
C20Y

1{2� ¡ 100 if Y ¡ X.

In particular, the base step of the induction holds. Now assume that (10.8), (10.9)

and (10.10) hold for some n � k � 1, with k ¥ 2. By (10.9) for n � k � 1,

we have

(10.13) a1
�

1
2k
� fpk�1q

2

	
  log rk   a1

�
1
2k
� fpk�1q

2

	
.

Using (10.7), (10.11) and (10.13), we deduce that

1   rk   exp

�
5

4
� a

1

2k



 
�

1� δ

Y


p5{3q�2�k
  1�7

4
� 1

2k
� δ
Y
  1� δ

r2k{2Y s � 1� δ

Rk

,

and hence (10.8) holds for n � k. Using (10.6), (10.11), (10.13) and the

definition of Rk, we have¸
2Rk p¤2Rkrk

log p

p
! log 2Rkrk

¸
2Rk   p¤2Rkrk

1

p

! Rk

¸
2Rk p¤2Rkrk

log

�
1� 1

p



! 2�k{2.

It follows that (10.10) holds for n � k. Moreover, by (10.6) and the definition

of rk, we have

b1 � � � � � bk � a1 � b1 � � � � � bk�1

2
�O

�
exp

��C202k{4Y 1{2�� ,
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and so

(10.14)
a1 � b1 � � � � � bk�1

2
�a1�100�2k{4   b1�� � ��bk   a1 � b1 � � � � � bk�1

2
�a1�100�2k{4 ,

using (10.12). From (10.9) for n � k � 1 and (10.14), we deduce that

a1
�

1� 1
2k
� fpk�1q

2
� 100�2k{4

	
  b1�� � ��bk   a1

�
1� 1

2k
� fpk�1q

2
� 100�2k{4

	
.

This is equivalent to (10.9) for n � k, since

fpkq � fpk�1q
2

� 100�2k{4 ,

completing the induction.

Acknowledgements

S.S. and T.W. particularly thank Tim Browning for his endless patience

in answering our questions in analytic number theory, and for putting us

in touch with S.B.; S.B. was supported by an ERC grant 258713; S.S. was

supported by EPSRC grant EP/H00534X/1.

References

[1] T. M. Apostol. Introduction to analytic number theory. Springer-

Verlag, New York, 1976. Undergraduate Texts in Mathematics.

[2] V. Chothi, G. Everest, and T. Ward. S-integer dynamical systems:

periodic points. J. Reine Angew. Math., 489:99–132, 1997.

[3] G. Everest, R. Miles, S. Stevens, and T. Ward. Orbit-counting in non-

hyperbolic dynamical systems. J. Reine Angew. Math., 608:155–182,

2007.

[4] G. Everest, R. Miles, S. Stevens, and T. Ward. Dirichlet series for finite

combinatorial rank dynamics. Trans. Amer. Math. Soc., 362(1):199–

227, 2010.

[5] G. Everest, V. Stangoe, and T. Ward. Orbit counting with an iso-

metric direction. In Algebraic and topological dynamics, volume 385

of Contemp. Math., pages 293–302. Amer. Math. Soc., Providence, RI,

2005.



Exotic orbit growth 27

[6] G. Everest and T. Ward. An introduction to number theory, volume

232 of Graduate Texts in Mathematics. Springer-Verlag London Ltd.,

London, 2005.

[7] G. R. Everest and T. Ward. Heights of polynomials and entropy in

algebraic dynamics. Springer-Verlag London Ltd., London, 1999.

[8] J. Friedlander and H. Iwaniec. Opera de cribro, volume 57 of American

Mathematical Society Colloquium Publications. American Mathemati-

cal Society, Providence, RI, 2010.
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