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Spin waves and revised crystal structure of honeycomb iridate NayIrO3
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We report inelastic neutron scattering measurements on NaIrOs, a candidate for the Kitaev spin
model on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion
that can be accounted for by including substantial further-neighbor exchanges that stabilize zig-zag
magnetic order. The onset of long-range magnetic order below T = 15.3 K is confirmed via the
observation of oscillations in zero-field muon-spin rotation experiments. Combining single-crystal
diffraction and density functional calculations we propose a revised crystal structure model with
significant departures from the ideal 90° Ir-O-Ir bonds required for dominant Kitaev exchange.

PACS numbers: 75.10.Jm, 78.70.Nx, 75.40.Gb, 61.72.Nn

Transition metal oxides of the 5d group have recently
attracted attention as candidates to exhibit novel elec-
tronic ground states stabilized by the strong spin-orbit
(SO) coupling, including topological band- or Mott-
insulators [1], quantum spin liquids [2], field-induced
topological order [3], topological superconductors |4] and
spin-orbital Mott insulators [5]. The compounds A5IrO3
(A=Li, Na) [6, 7], in which edge-sharing IrOg octahe-
dra form a honeycomb lattice [see Fig. [Ib)], have been
predicted to display novel magnetic states for composite
spin-orbital moments coupled via frustrated exchanges.
The exchange between neighboring Ir moments (called
Si,j, S=1/2) is proposed to be [2]

Hij = —JKSZS; + J1S; - Sj, (1)

where Jg > 0 is an Ising ferromagnetic (FM) term aris-
ing from superexchange via the Ir-O-Ir bond, and J; > 0
is the antiferromagnetic (AFM) Heisenberg exchange via
direct Ir-Ir 5d overlap. Due to the strong spin-orbital
admixture the Kitaev term Jk couples only the compo-
nents in the direction ~, normal to the plane of the Ir-O-Ir
bond [8,19]. Because of the orthogonal geometry, different
spin components along the cubic axes (v = z,y, z) of the
IrOg octahedron are coupled for the three bonds emerg-
ing out of each site in the honeycomb lattice. This leads
to the strongly-frustrated Kitaev-Heisenberg (KH) model
[2], which has conventional Néel order [see Fig. Bh)] for
large J1, a stripy collinear AFM phase [see Fig. Bk)] for
0.4 < a < 0.8, where a = Jx/ (Jx + 2J1) (exact ground
state at @ = 1/2), and a quantum spin liquid with Ma-
jorana fermion excitations [10] at large Jx (a 2 0.8). In
spite of many theoretical studies |2-4, [11H14] very few
experimental results are available for A5IrOs |6, [7, [15].
Evidence of unconventional magnetic order in NasIrOs

came from resonant xray scattering [15] which showed
magnetic Bragg peaks at wavevectors consistent with ei-
ther an in-plane zig-zag or stripy order [see Figs. Bb-c)].

Measurements of the spin excitations are very impor-
tant to determine the overall energy scale and the rele-
vant magnetic interactions, however because Ir is a strong
neutron absorber inelastic neutron scattering (INS) ex-
periments are very challenging. Using an optimized setup
we here report the first observation of dispersive spin
wave excitations of Ir moments via INS. We show that
the dispersion can be quantitatively accounted for by in-
cluding substantial further-neighbor in-plane exchanges,
which in turn stabilize zig-zag order. To inform future ab
initio studies of microscopic models of the interactions
we combine single-crystal xray diffraction with density
functional calculations to determine precisely the oxygen
positions, which are key in mediating the exchange and
controlling the spin-orbital admixture via crystal field ef-
fects. We propose a revised crystal structure with much
more symmetric IrOg octahedra, but with substantial de-
partures from the ideal 90° Ir-O-Ir bonds required for
dominant Kitaev exchange [9], and with frequent struc-
tural stacking faults. This differs from the currently-
adopted model, used by several band-structure calcula-
tions [14, 15], with asymmetrically-distorted IrOg octa-
hedra, with Ir-O bonds differing in length by more than
20%, improbably large in the absence of any Jahn-Teller
interaction, and with the shortest Ir-O bond length be-
low 2 A, highly unlikely for a large ion like Ir**. We show
that the previously proposed structure is unstable with
large unbalanced ionic forces, and when allowed to relax
it converges to a higher-symmetry structure.

As other “213” honeycomb oxides, NaoIrO3 has an al-
ternating stacking of hexagonal layers of edge-sharing
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FIG. 1: (Color online) a) Layer stacking along the monoclinic
c-axis with an in-plane offset along a (dashed box is the C2/m
unit cell). b) Basal layer (z = 0) showing the Ir honeycomb
lattice. ¢) Diagram to illustrate the layer stacking in the ideal
honeycomb lattice. Ideal stacking of layers and stacking faults
are explained in the text. d) Xray diffraction intensity in the
(0, k,1) plane showing rods of diffuse scattering in between
structural Bragg peaks along ¢* with selection rule h+k = 2n
and k = 3m + 1 or 3m + 2 (n,m integers) modelled in e)
by frequent in-plane translational stacking faults of the type
shown by the thick arrows in c).

NaQOg octahedra and similar layers where two-thirds of
Na are replaced by Ir to form a honeycomb lattice with
Na in the center [see Fig.[Ib)]. To determine the precise
structure xray diffraction was performed on a flux-grown
single crystal of NaoIrOj [6, [16]. The diffraction pattern
showed sharp Bragg peaks which could be indexed by a
monoclinic unit cell [see Fig. [[h)] derived from a parent
rhombohedral structure with an ideal repeat every three
layers. The monoclinic distortion leads to an in-plane
shift of successive Ir honeycombs differing by 1.2% from
the ideal value [—ccos 8 compared to a/3, see Fig. [Ih)],
well above our instrumental resolution, which enabled us
to determine that our sample was a single monoclinic
domain. The detailed refinement [16] was performed us-
ing both the published C2/c¢ (No. 15) unit cell with 15
refined atomic positions leading to values somewhat sim-
ilar to Ref. [6], and an alternative, higher-symmetry and
half the unit cell volume, C2/m model (No. 12, shown in
Figs. [Mh-b) (as found for the related LixIrO3 [17]), with
only 7 refined atomic positions listed in Table [l Other
structural motifs reported for “213” honeycomb oxides
[18] including NasPtOgs, LioTeOs, NasThOs were also
tried but did not provide a good fit. We also tested for
Ir/Na site admixture but this did not improve the agree-
ment with data.

TABLE I: Structural parameters extracted from single-crystal
xray data at 300 K. (C2/m space group, a = 5.427(1) A,
b=19.395(1) A, ¢ =5.614(1) A, 8 =109.037(18)°, Z=4). All
sites are fully occupied. U is the isotropic displacement. The
goodness-of-fit was 2.887 (Rin: = 0.1247, R, = 0.0584) [16].

Atom Site z Y z U(A?)

Ir 49 05 0.167(1) 0 0.001(1)
Nal 2a 0 0 0 0.001(6)
Na2 2d 05 0 0.5 0.009(7)
Na3 4h 05 0.340(2) 0.5 0.009(6)
Ol 8 0.748(6) 0.178(2) 0.789(6)  0.001(6)
02 4 0711(7) 0 0.204(7)  0.001(7)

The C2/c structure can be described as a “super-
cell” obtained from the C2/m structure by small dis-
placements of atoms (of order a few % of the unit
cell dimensions) leading to a doubled unit cell volume.
Although C2/m and C2/c gave comparable agreement
with the main Bragg peaks, the larger C2/c¢ unit cell
should be manifested experimentally by the appear-
ance of new “superstructure” peaks at positions such as
(odd,odd,half-integer) in the small unit cell description
(C2/m). These superlattice peaks, however, were not ob-
served in the data |16], ruling out the C2/c model. Fur-
thermore, in structural optimization calculations using
VASP [16, [19] (also confirmed by an all-electron LAPW
code [20]) we find that the C2/c structural model, which
has asymmetrically-distorted IrOg octahedra, is unsta-
ble: (i) the forces on oxygen are very large, exceeding 3
eV/A for the published C2/c cell [6] and (ii) when the
structure is allowed to relax the oxygens move such as
to recover the more symmetric C2/m structure with the
Ir-O distances converging to within 1.1% of the experi-
mentally refined values in Table [l The IrOg octahedra
are much more symmetric in the C2/m model with Ir-O
distances and Ir-O-Ir bond angles ranging from 2.06 to
2.08 A, and 98 to 99.4°, respectively, compared to the
wider ranges 1.99 to 2.43 A, and 91 to 98° proposed
before [6].

In addition to sharp Bragg peaks, visible diffuse “rods”
of scattering were also observed [see Fig. [Id)] and could
be quantitatively understood [compare with calculation
in Fig.[Ik)] in terms of a structural model that allows for
the possibility of faults in the stacking sequence along
the c-axis. The stacking of atomic layers can be eas-
ily visualized with reference to projections in the basal
plane [Fig. [Ik)], where A defines a nominal hexagonal
lattice (made up of three triple-cell sublattices A;-As),
and B and C are also hexagonal lattices with positions in
the center of a triangles of A sites. The atomic stacking
is always in the ABC sequence to minimize the inter-
layer Coulomb energy, i.e. Ir-O-Na-O-Ir-O is A;-B-C-A-
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FIG. 2: (Color online) a) ZF p"SR spectra on a polycrys-
talline sample of NazIrOs above and below Tn. Solid lines
are (top) guide to the eye and (bottom) a fit described in the
text. b,c) Fitted parameters as a function of temperature.

B1-C. Only Ir layers have a sublattice index, indicating
the position of the Na at the honeycomb center, as the
other atomic layers are full hexagonal lattices. However,
if neighboring Ir layers are only weakly interacting (as
they are separated by a hexagonal NaOs layer) then the
second Ir layer could be shifted to another position on
the B-lattice, say Bs [thick arrows in Fig. [Ik)] or Bs,
with only minimal energy cost, as that would not affect
the bonding with the fully hexagonal NaQO, layers below
and above. To quantitatively verify this idea, we per-
formed structural optimization calculations using VASP
[16] in an extended unit cell to include a stacking fault
of the type illustrated in Fig.[Ik) and found that the en-
ergy cost of a stacking fault is extremely small, below 0.1
meV /A2, explaining why such stacking faults are very
likely to occur.

The calculated scattering for such a microscopic model
[16] indeed reproduces well the selection rule for where
diffuse scattering occurs in Fig.[Id-e). In particular there
is no diffuse scattering along (001), as this corresponds to
adding all layers in phase irrespective of their in-plane
translations. Also there is no diffuse scattering along
(0,6n,1) (n integer), as again layers add in phase be-
cause the two allowed in-plane translations have a phase
factor equal to a multiple of 2r. We use the strength of
the diffuse scattering integrated between (020) and (021)
relative to the intensity of the (020) peak (to have similar
absorption factor), obtained experimentally as ~ 0.42, to
estimate the probability for stacking faults p ~ 9%, this
means that on average one fault occurs every 1/p ~ 10
layers. We measured over 30 crystals from a batch and
all showed diffuse scattering, suggesting that this is a
common structural feature.

Magnetic order of the Ir spins was detected by zero-
field (ZF) muon-spin rotation (¢TSR) on a powder sam-
ple of NaglrOs;. Example raw spectra are shown in
Fig.2h). At temperatures below Ty = 15.3 K, we observe
clear oscillations in the time-dependence of the muon po-
larization, characteristic of quasi-static local magnetic

fields at the muon stopping site. Fits to the time-
dependent muon data reveal that two frequencies are
present, indicating the presence of two distinct muon
stopping sites with different local fields. The full spec-
tra was fitted to the form A(t) = Aje~™M?cos(2muyt +
$1) + Ase 22t cos(2muat + ¢o) + Aze ™A + Apg, where
the last two terms account for muons polarized paral-
lel to the local magnetic fields, and muons stopping in
the sample holder (or cryostat tail), respectively. Using
our best-fit parameters we estimate that the muons oc-
cupy the two sites with a probability ratio of about 9:1.
Both local fields set in at a common temperature, but
have a distinctly different temperature dependence [see
Fig. Bb)]. The relative weight of the second frequency
component suggests that it may come from muon sites
implanted near stacking fault planes, as such sites also
occur in a similar proportion. Our value for Ty is consis-
tent with both susceptibility measurements on the same
batch, which indicated a clear anomaly (sharp downturn)
near T as reported previously [6, 7], and the magnetic
Bragg peaks observed in resonant xray scattering [15].

The magnetic excitations were probed by powder in-
elastic neutron scattering using the direct-geometry time-
of-flight spectrometer MARI at ISIS with an optimised
setup to minimise absorption |16]. Fig. Bk) shows the
raw neutron scattering intensity as a function of wavevec-
tor (Q = |Q|) and energy transfer deep in the ordered
phase. An inelastic signal with a sinusoidal-like disper-
sive boundary below a maximum near 5 meV is clearly
observed at low Q. A gap, if present is smaller than 2
meV. The magnetic character of the scattering is con-
firmed by the broad, damped-out signal observed in the
paramagnetic phase at 55 K [see Fig. Bf) and g) (con-
trast filled and open symbols)]. Interestingly, the dis-
persion boundary extrapolates at the lowest energies to
a wavevector ¢ much smaller than that expected for
conventional Néel order, Qo) = 1.34 A1, so this
magnetic order can be ruled out; in fact @ is close to
the expected location of the first magnetic Bragg peak
for both zig-zag or stripy order, Qi0y = 0.67 A-1
Figs. Bh) and i) show the calculated scattering from
spin waves of a 2D Heisenberg model with up to 3rd
neighbour exchanges, Ji 23, with zig-zag (J1 = 4.17
meV, Jy/Ji = 0.78, J3/J1 = 0.9) and stripy order
(J1 = 10.89 meV, Jy/J; = 0.26, J3/J; = —0.2), respec-
tively (we neglect the interlayer couplings believed to be
small). The constraints to reproduce the dispersion max-
imum and the measured Curie-Weiss (CW) temperature
(@ = —S(S + 1)(J1 + 2J5 + Jg)/kB ~ —125 K [7]) are
not sufficient to determine all 3 exchanges, so the values
chosen are representative of the level of agreement that
can be obtained [16]. The calculation for the zig-zag
phase [Fig. Bh)] can reproduce well the observed disper-
sion at low-@ (filled symbols), whereas the stripy phase
[Fig. Bi)] cannot account for the strong low-@Q dispersive
signal and predicts stronger scattering at larger-Q’s not
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FIG. 3: (Color online) Diagram of a) Néel, b) zig-zag and c)
stripy order. d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering
at low @ (filled (magenta) symbols in h-j)), which we associate
with a sinusoidal spin wave dispersion; this becomes damped
out in the paramagnetic phase in f). Slanted thick dashed ar-
row shows the scan direction in g). Gray shading marks the
inaccessible region close to the elastic line dominated by inco-
herent elastic scattering. g) Energy scan (solid points 4.6 K,
open symbols 55 K) through the maximum spin-wave energy
seen in e) fitted to a Gaussian peak (solid line), dashed line is
estimated background. h-j) Calculated spherically-averaged
spin-wave intensity [16] for the Ji 2,3 model with h) zig-zag
or i) stripy order, and j) the KH model with stripy order for
parameters given in the text. Solid red line in j) highlights
the low-energy boundary, which coincides with the dispersion
from T to the first softening point.

seen. Calculations for the KH Hamiltonian () are shown
in Fig. Bfj) for a = 0.4 (lower limit for the stripy phase)
and J; = 25.85 meV to reproduce the CW temperature
[21] © = =S(S + 1)(J1 — Jk/3)/kp. The lower bound-

ary of the scattering at low @ (solid line) is predicted to
have a quadratic shape near the first softening point, a ro-
bust feature for any o throughout the stripy phase. This
is in contrast to the data where the dispersion bound-
ary (marked by filled symbols) has a distinctly different,
sinusoidal-like shape with a curvature the opposite way.
In addition, a different distribution of scattering weight
to higher energies is predicted, but not seen in the data.
We conclude that the KH model in the stripy phase has
a qualitatively different spin-wave spectrum compared to
the data. A minimal model that can reproduce the ob-
served low-(Q) dispersion and which predicts distribution
of magnetic scattering in broad overall agreement with
the data up to some intensity modulations is shown in
Fig. Bh) and requires substantial couplings up to 3rd
neighbors, which stabilize zig-zag magnetic order. Re-
cent theory [13] proposed that in addition to couplings
up to 3rd neighbors, a Kitaev term may also exist. We
have compared the data with such a model as well [16]
and estimate that a Kitaev term, if present, is smaller
than an upper bound corresponding to « < 0.40(5).

‘We note that sizeable J3’s are not uncommon in trian-
gular plane metal oxides. The reason is that even though
J1 involves two hoppings and Js four, the two additional
hoppings are strong pdo ones, and the hopping proceeds
through intermediate unoccupied e, states [22]. In case of
NasIrO3 the hopping proceeds through somewhat higher
Na s orbitals, but these are very diffuse, and the corre-
sponding t,,, parameter is sizeable. Near cancellation
of the AFM and FM superexchange interaction for the
nearest-neighbor path further reduces J; compared to Js.

To summarize, by combining single-crystal diffraction
and LDA calculations we proposed a revised crystal
structure for the spin-orbit coupled honeycomb antifer-
romagnet NagIrOs that highlights important departures
from the ideal case where the Kitaev exchange domi-
nates. We observed dispersive spin-wave excitations in
inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model
for the magnetic ground state that could support such a
dispersion relation.

We thank G. Jackeli for providing notes on spin-wave
dispersions for the KH model in the rotated frame,
A. Amato for technical support, N. Shannon, J.T.
Chalker and L. Balents for discussions, and EPSRC for
funding. Work at Rutgers was supported by DOE (DE-
FG02-07TER46382).

a Current address: Department of Physics, Durham Uni-
versity, South Road, Durham, DH1 3LE, UK.

b Current address: Indian Institute of Science Education
and Research Mohali, Sector 81, SAS Nagar, Manauli PO
140306, India.

[1] D. Pesin, L. Balents, Nature Physics 6, 376 (2010).



[2] J. Chaloupka, G. Jackeli and G. Khaliullin, Phys. Rev.
Lett. 105, 027204 (2010).

[3] H. Jiang, Z. Gu, X. Qi, S. Trebst, arXiv:1101.1145/(2011).

[4 Y-Z. You, 1. Kimchi, and A. Vishwanath,
arXiv:1109.4155! (2011).

[5] B.J. Kim, Hosub Jin, S.J. Moon, J.-Y. Kim, B.-G. Park,
C.S. Leem, Jaejun Yu, T.W. Noh, C. Kim, S.-J. Oh,
J.-H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys.
Rev. Lett. 101, 076402 (2008); B.J. Kim, H. Ohsumi,
T. Komesu, S. Sakai, T. Morita, H. Takagi, T. Arima,
Science 323, 1329 (2009).

[6] Y. Singh, P. Gegenwart, Phys. Rev. B 82, 064412 (2010).

[7] Y. Singh, S. Manni, P. Gegenwart, larXiv:1106.0429
(2011).

[8] J. Chaloupka, G. Jackeli and G. Khaliullin, Phys. Rev.
Lett. 105, 027204 (2010).

9] G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[10] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).

[11] A. Shitade, H. Katsura, J. Kunes, X.-L. Qi, S.-C. Zhang,
N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009).

[12] H. Jin, H. Kim, H. Jeong, C.H. Kim, J. Yu,
arXiv:0907.0743] (2000).

[13] I. Kimchi, Y.Z. You, Phys. Rev. B 84, 180407(R) (2011).

[14] S. Bhattacharjee, S-S. Lee and Y.B. Kim,
arXiv:1108.1806v2 (2011).

[15] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J.
Kim, H. Gretarsson, Y. Singh, P. Gegenwart, J. P. Hill,
Phys. Rev. B 83, 220403(R) (2011).

[16] See Supplemental Material at [URL will be inserted by
publisher] for details.

[17] M.J. O’Malley, H. Verweij and P.M. Woodward, J. Solid
State Chem. 181, 1803 (2008).

[18] Von W. Urland, R. Hoppe, Z. Anorg. Allg. Chem. 392, 23
(1972); R.J. Kuban, Cryst. Res. Technol. 18, 85 (1983);
R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem. 556, 97 (1988).

[19] G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993); G.
Kresse, J. Furthmiiller, Phys. Rev. B 54, 11169 (1996).

[20] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J.
Luitz, WIEN2K (T.U. Wien, 2002, Austria).

[21] J. Reuther, R. Thomale and S. Trebst, arXiv:1105.2005
(2011).

[22] LI Mazin, Phys. Rev. B 76, 140406(R) (2007).

Supplemental Material for Spin waves and
revised crystal structure of honeycomb iridate
NaQII‘03

Here we provide additional information on 1) struc-
tural optimization calculations to confirm the unit cell
stability and estimate the energy of stacking faults, 2-
3) the xray diffraction measurements and analysis of the
diffuse scattering, 4) uSR and 5) neutron scattering ex-
periments, and 6-9) derive the spin-wave dispersion re-
lations and dynamical structure factor in neutron scat-
tering for the Heisenberg Ji 2 3, Kitaev-Heisenberg and
Kitaev-Heisenberg-.J>-J3 models for various magnetic or-
ders.
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FIG. S1: (Color online) Radial distribution functions (RDF's)
showing the difference in the local atomic environments for
the previously reported C2/c structure [S4] and the C2/m
structure proposed in this study. In the C2/m case, the RDFs
are plotted for the unit cell extracted from the experiment
(red solid line), the unit cell with atomic positions relaxed in
the DFT (blue dashed line), and the unit cell fully relaxed
in the DFT (green dotted line). Note that a small Gaussian
smearing (¢ = 0.008A) was used in the calculation of the
RDFs.

S1. Structural optimization calculations using
VASP

We used the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [S1] within the gen-
eralized gradient approximation (GGA) and the
projector augmented waves method [S2]. The 2p semi-
core electrons in Na were treated as valence. Numerical
convergence was achieved with a 500 eV energy cutoff
and dense Monkhorst-Pack k-meshes |S3] of 7x7x3 for
the previously reported [S4] C'2/c¢ primitive unit cell and
6x4x6 for the proposed C2/m conventional unit cell in
Table I. We performed three types of calculations for
the two structures: a static run with the experimental
parameters, optimization of the atomic positions only,
and full optimization of the atomic positions and lattice
parameters.  The residual forces and stresses were
typically below 0.002 eV/A and 0.5 kbar, respectively.
We found the magnetic and the spin-orbit interactions to
have a rather small effect on the NasIrOs structure and
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the comparisons below are made for the non-magnetic
case without the spin-orbit coupling.

To illustrate the differences in the local environments
in Fig. [51lwe plotted normalized radial distribution func-
tions (RDFs) for all types of interatomic distances in the
experimental and optimized structures. C2/c exhibits
a considerable dispersion of the Ir-Ir and Ir-O nearest
neighbor distances critical for the magnetic ordering in
the compound. The O-Na and Na-Na separations are
unphysically small and we observed large forces, over 6
eV/A on Na and over 3 eV/A on O, at the beginning
of the optimization run. The RDFs in C'2/m with the
experimental parameters demonstrate much more sym-
metric local environments and a negligible variation of
Ir-Ir lengths within the honeycomb lattice (below 0.3%).
The calculated forces on atoms did not exceed 0.5 eV /A
indicating a good agreement between the experiment and
theory. Optimization of the atomic positions with fixed
C2/m experimental unit cell had little effect on the Ir-Ir
distances because they are defined primarily by the in-
plane lattice constants ¢ and b. When fully optimized,
C2/cand C2/m converged to the same structure with the
C2/m space group and virtually indistinguishable RDFs.
The enthalpy gains were 0.434 and 0.018 eV /atom, re-
spectively (for comparison, the optimization of atomic
positions in C2/m led to a 0.007 eV/atom gain). Note
that the full optimization of C2/m leads to ~ 2% elonga-
tion of the Ir-Ir distances which is a typical bond overesti-
mation observed for the GGA. For this reason we believe
that use of the experimental lattice constants is more ap-
propriate for the modelling of the magnetic interactions.

To estimate the stacking fault energy we simulated
1x1xn (n = 2,...,6) supercells of the C2/m primitive
12-atom unit cell with one Ir-Na layer and the two
adjacent O layers shifted by b/3 along [010]. The
resulting lower-symmetry structures (C2 space group)
had two stacking faults per unit cell and the same
axb/2 = 25.49A2 2 — y base. We optimized only
the atomic positions keeping the experimental unit cell
parameters fixed. The n = 2 structure gained additional
symmetry operations (C2/c space group) upon relax-
ation. The comparison of the faulted structures against
the respective C2/m supercells with the same unit cell
dimensions and the same k-point meshes allowed us to
reduce computational errors. However, the energy dif-
ferences, E, — Eca/m, in our non-magnetic calculations
without the spin-orbit coupling (SOC) proved to be
exceptionally small in magnitude: 0.7, -1.7, -2.0, -2.6,
-1.8 meV/(n x 12 atoms) for n = 2,...,6, respectively.
For the smallest n = 2 structure we were able to
calculate the energy difference with the FM ordering
and the SOC as well and found E,,—2 — Egg/p, to remain
small at 2.9 meV/(24 atoms). Based on these tests, we
expect the stacking fault energy in C2/m to be below
~ 0.1 meV/A2, one to two orders of magnitude smaller
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FIG. S2: (Color online) Xray diffraction intensity in the
(—3,k’,l') plane: a) data, b) calculation for the “idealized”
C2/c structure with atoms at special positions, equivalent to
the C2/m model in Table I, c) calculation for the distorted
C2/c model in [S4] (assuming no Ir/Na site mixing in the hon-
eycomb Iry/3Nay /5 layers). Notice the series of sharp peaks
predicted in c) at (-3,1,even) positions, which however are
not present in the data in a). d) Scan along the (-3,1,!’) line
(arrowed direction in a-c)) comparing data (solid circles) and
calculation for the two models (triangles-C2/c¢ and squares-
C2/m). The calculated diffraction intensities have been mul-
tiplied by an overall scale factor and have been convolved
with a finite width Gaussian in momentum space to mimic
the effects of the instrumental resolution.

than typical stacking fault energies for elemental metals.
For comparison, an ABCBA stacking fault generated
by reflecting C2/m structure (which has the ABCABC
sequence along c¢) about a Na layer was calculated to

have a much higher, measurable energy value of about 8
meV /A2,

S2. Xray diffraction and structural analysis

X-ray diffraction was performed using a Mo-source
Oxford Diffraction Supernova diffractometer on a single
crystal of NaqIrOs of approximate size 220x150x10um?
grown via flux [S4]. 96% out of over 1000 detected peaks
were indexed by a single monoclinic domain. Structural
refinement was performed using both a unit cell with
space group C2/m, with parameters listed in Table I,
as well as a unit cell with twice the volume and space
group C2/c¢, using the SIR-92 and SHELX packages [S3].
The two unit cell parameters are related by a’ = —a,
b = —b, ¢ = a+2c ¢ = /a2 +4c% + daccos B3,
sin 3 = % sin 8, and in terms of the reciprocal lattice

components h' = —h, k' = —k, I’ = h+ 2[, where primed




values refer to the C2/c model. Starting from the larger
unit cell (C2/¢) and slightly displacing the atoms to
some “ideal” positions one recovers the higher-symmetry
structure described by the smaller, C2/m, cell. The
distinction between those two models is entirely due
to such small atomic displacements, the presence of
which is manifested in finite intensity diffraction peaks
at (b, k',1") positions with A’ odd, k¥’ odd and !’ even,
which disappear when atoms are displaced to the “ideal”
positions, when the structure recovers the C2/m sym-
metry. This is illustrated by the calculated diffraction
pattern in the (—3,%’,!") plane where the “extra” peaks
expected in the larger cell model C2/c¢ shown in Fig.
[S2k) are not seen in the data plotted in Fig. [S2h), which
is however fully consistent with the pattern expected for
the higher-symmetry C2/m model shown in Fig. [S2b).
This is also apparent in Fig. [S2H) showing a scan along
the (—3,1,1') line with extra peaks (triangles) predicted
for I’ = 0,2, not seen in the data (filled symbols). For
completeness we note that we applied a shift of the
fractional atomic coordinates in the C2/c unit cell (in
the notation adopted in [S4]) by (-1/4,-3/4,0) before
converting them into fractional atomic coordinates of
the C2/m cell (in the notation used in Table I), due
to the different positions of the origin in the two space
groups.

S3. Microscopic model of stacking faults

The calculated diffraction pattern in Fig. le) was ob-
tained numerically by direct structure-factor calculations
using the DISCUS package [S6]. We considered a “crys-
tal” of 200a x 200b x 4000c unit cells of NagIrOg (C2/m).
To include the effect of stacking faults we assumed that
each Ir layer has a choice with probability 1 — p to keep
in-stacking-sequence with the layer below and p/2 to be
shifted to either of the other two sublattice positions
(translated in-plane by (0,1/3,0) or (1/2,1/6,0)), with
p = 0 for perfect stacking and p = 1/3 for a completely
uncorrelated layer stacking sequence, a model first
introduced to describe the stacking faults in the related
material LiaMnOs [S7].

S4. Muon spin relaxation experiments

Zero field (ZF) pTSR measurements were made at the
Swiss Muon Source (Su™S), Paul Scherrer Institut, CH
using the GPS spectrometer. For the measurement a
250 mg powder sample of NaIrOs, which was used for
inelastic neutron scattering measurement, was packed
inside a silver foil packet (foil thickness 25 pm) and
mounted on a silver sample holder.

Fits of the data to an equation in main text reveal
the evolution of v; and \; with temperature, as shown
in Figs. 2(b-¢). Unusually, the frequencies do not vary
in fixed proportion, although they do tend to zero at the

same temperature. The low-amplitude, higher frequency
component vo drops off far more dramatically than the
large amplitude, lower frequency v;. In order to quantify
this behavior, the frequencies were fitted to the phe-
nomenological function v;(T) = v;(0)[1 — (T/TN)O”']Bi.
A common value of Ty = 15.3(1) K was identified
from fitting to this function. We find that o ~ 2 for
both cases. The parameter 8 can be interpreted as an
order parameter exponent. The other fit parameters are
v1(0) = 5.54(1) MHz, 31 = 0.36(1), v2(0) = 6.20(3) MHz
and By = 0.11(1). We note that A; is an order of magni-
tude larger than Ao, implying either that the distribution
of fields is broader in the majority site or, assuming the
fast fluctuation limit, that the fluctuation rate is smaller.
The lower frequency oscillation, accounting for ~ 90% of
the muon sites in the material, has a [ value suggestive
of the behavior of a three-dimensional (3D) system (for
3D Heisenberg 8 = 0.367 and 3D Ising 8 = 0.326), while
the minority muon site has an exponent value more
similar to that expected for a 2D Ising system (for which
B = 0.125). These seem to suggest that the magnetic
fluctuations have a rather different character at the two
muon sites.

S5. Inelastic neutron scattering experiments

Inelastic neutron scattering measurements were made
using the direct-geometry time-of-flight spectrometer
MARI at ISIS using an incident neutron energy of 18
meV, which covered the full bandwidth of magnetic
excitations with a zone boundary energy near 5 meV.
The instrumental energy resolution was 0.67(1) meV
(FWHM) on the elastic line. The sample was ~ 10 g of
NayIrO3 powder spread out in a very thin layer (< 1 mm
to minimise neutron absorption) inside of an annular
can of outer diameter of 40 mm and height 50 mm.
Counting times for the data in Figs. 3e-f) were 28 and
7 hours, respectively, at an average proton current of
150 Amps.

S6. Spin-wave dispersions for the Heisenberg
Ji1,2,3 model in the zig-zag and stripy phases

Here we outline the derivation of the linear spin wave
dispersion relations and dynamical structure factors rele-
vant for neutron scattering for various spin Hamiltonians
on the honeycomb lattice. For the Heisenberg model with
up to 3rd neighbour exchanges we extend previous results
on the dispersion relations |S§] to include also the dynam-
ical structure factors. For the Kitaev-Heisenberg model
the spin-wave spectrum (including 1/S quantum correc-
tions) has been studied before in a special “rotated” ref-
erence frame [S9], here we explicitly derive here the dis-
persion relations and dynamical structure factors in the
experimentally-relevant, un-rotated reference frame. For
the Kitaev-Heisenberg-.J,-J3 models both the dispersion



relations and dynamical structure factors have not been
studied before.

We start with the isotropic Heisenberg model on the
honeycomb lattice with exchanges with up to 3rd nearest-
neighbor, so called J; 23 model with Hamiltonian

H= Zjlsi'sj+zj2si'sk+zJ3Si'Sl (Sl)
INN 2NN 3NN

where 1-, 2-, and 3NN indicate summing over all 1st, 2nd
and 3rd nearest-neighbor pairs with couplings J;, Jo and
J3 [paths indicated in Fig. [S3h)], where positive values
correspond to antiferromagnetic exchanges. Depending
on the relative ratio of the couplings there are six dis-
tinct types of mean-field ground states [S8, [S10], which
include the two candidate magnetic orders for NasIrOg,
the zig-zag and stripy AFM orders shown in Figs. [S3h-b)
(labelled IT and IV, respectively, in [S&, [S10]). Both of
those magnetic structures have four magnetic sublattices
(labelled A-D) and can be described by a rectangular
magnetic unit cell (dashed box in Figs. [S3k-b)), which
coincides with the in-plane chemical unit cell a x b of
NaglrOs. Within a single layer the Ir honeycomb lat-
tice in very close to ideal (b/a ~ /3) in spite of the 3D
monoclinic crystal structure, so we treat here the ideal
2D honeycomb lattice with 3-fold symmetry. In this case
the magnetic order can have three spacial domains, one
such domain is shown for both structures in Figs. [S3h-
b), the other two magnetic domains are obtained by +60°
rotation around the direction normal to the plane.

Using a standard Holstein-Primakoff transformation in
the large-S limit the Hamiltonian becomes (to leading
order) a quadratic form of magnon operators

H=> XHX+N(1+1/S)Eyr (S2)

where higher than quadratic terms are neglected. Here
Ejr is the mean-field ground state energy (per spin) and
N is the total number of spin sites. The sum extends over
all wavevectors g in the first magnetic Brillouin zone.

For the zig-zag order in Fig.[S3h) we define the opera-
tor basis as XT = [aj] , d}; , C—q b_q] where a — d label
operators on sublattice A-D, i.e. aL (aq) creates (anmni-
hilates) a plane-wave magnon mode on sublattice A and
so on. The Hamiltonian matrix in eq. (S2)) is

A B C D

H— B*A D C (S3)
¢ D" A B
D C B* A

where

A =5 {—Jl +2Jy +3J3 + 2J5 COS(27Th)}
B =2SJincos(mh)

C =2SJx{cos[n(h+ k)] + cos[m(h — k)] }
D =S {Jin?+ Js [n=* + 21 cos(2mh)] }
n = ekmi/3

Here (h, k) are components of the wavevector q in units
of the reciprocal lattice of the a x b rectangular unit cell
shown in Fig.[S3k). By periodicity the above expressions
are valid for any momentum, not necessarily restricted to
the 1st magnetic Brillouin zone. Diagonalisation of the
Hamiltonian by standard techniques [S11,[S12] to obtain
the normal magnon modes gives two doubly-degenerate
dispersions

(wi)? = A%+ BB* - C* - DD*

sS4
+./4]AB — CD*? — |B*D* — (54)

BD[.

We have explicitly verified for the same model (S1) that
eq. (S4) agrees with earlier results of [S§] [eq. (5.21)].
The spin-wave intensity in neutron scattering is propor-
tional to the dynamical structure factor (expressed as
S7%(Q,w) for spin fluctuations along the z-direction and
similarly for y-direction) and an analytical expression for
this in the case of a Hamiltonian of the form in eq. (S3)
are given explicitly [S12] [eq. (A3)] and for brevity are
not included here.

The spin-wave dispersions in (S4) (and their intensity
dependence) for the zig-zag phase are plotted for repre-
sentative exchange values in Fig.[S3h). As expected, the
acoustic magnon, w™, is gapless with a linear dispersion
at the magnetic Bragg peak at the Y point, is also linear
and gapless at the X point, but has zero intensity because
the structure factor for magnetic Bragg peaks also can-
cels at this position. Furthermore, the dispersions soften
and appear gapless at the M point and others part of
the quartet (+£1/2,+1/2), which are Bragg peaks for the
other two magnetic domains rotated by +60°. This soft-
ening is a general feature of linear spin-wave dispersions
for a multi-domain magnetic ground state |[S12], however
the fact that the gap closes at those points is not pro-
tected by any symmetry, but is an artefact of the linear
spin-wave approximation; by analogy with related spin-
wave models for other multi-domain structures [S13] we
expect the dispersions to become gapped at the softening
points when quantum fluctuations to 1st order in 1/S are
included.

A spherical average of the spin-wave spectrum (includ-
ing various prefactors listed in eq. (S3) below) is shown
in Fig. 3h). The dominant contribution to the low-Q dis-
persive edge of the strong signal near the first softening
point (Q=0.67 A‘l) is due to acoustic magnons on the
w), branch emerging out of the Y point and dispersing in
the Y— T direction [see Fig.[S3h)] and also magnons on
the w,j branch emerging out of the M-point and dispers-
ing in the M— I" direction. To reproduce the observed
low-@ dispersion in the powder data we have imposed the
constraint that the zone-boundary energy of the lowest
branch on the I'-Y line reproduces the observed maxi-
mum of the low-@ dispersion, i.e. w™ (O, %) = 5 meV.
This constraint together with the condition that the ex-
changes reproduce the observed Curie-Weiss constant
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FIG. S3: (Color online) a) Zig-zag and b) stripy order. Dashed rectangular box of size a x b shows the magnetic unit cell
containing four sublattices A-D. In a) solid, dashed and dot-dashed lines show paths for J1, J2 and Js. b) Bond labels z, y, z refer
to the components of the spins at the two bond ends coupled by the Kitaev term. Inset show projection of the (cubic) &, ¢ and
2 axes onto the honeycomb plane. c¢) 2D reciprocal space showing magnetic Bragg peak positions for various magnetic orders.
d-j) Spin-wave dispersions along symmetry directions in reciprocal space (arrowed path in c)) for the KH, J1,2,3 and KH-J>-J3
Hamiltonians for exchange values and magnetic orders listed in the legends. Wavevectors @ are expressed in reciprocal lattice
units of the rectangular magnetic unit cell. Colour is the dynamical structure factor (convolved with a Gaussian in energy for
visualization, full width at half maximum = 0.15J1), isotropic for the Heisenberg model in g-h) (S (Q,w) = S¥Y(Q,w)) and
different for the two polarizations z,y for the KH model in d-f). i-j) Dynamical structure factor for the KH-J-J3 model with
the zig-zag structure in a), where the ordered moments are along a general direction z’ in the zy plane and y' is a direction in
this plane normal to z’.

0 = =SS+ 1)(J1 +2J2 4+ J3)/kg = —125 K cannot
determine all three exchange values Ji, Jo and Js, but
allow for a one-dimensional family of solutions located
on a curve in the parameter space (Jz/J1,J3/J1) (the
dotted line in region IT in Fig. [S4]). All sets of exchange
values part of this family are broadly consistent with the
data. The level of agreement that can be obtained is il-

lustrated in Fig. 3h) for one representative solution (red
star in Fig.[S4]), chosen as it comes closest to reproducing
also the intensity distribution at the lowest Q.

We now turn to the alternative magnetic structure, the
stripy order shown in Fig.[S3b). If the spin-wave operator
basis is defined as X! = [ag , bg , C—q » d_q] , then the
Hamiltonian reduces to the same form as in eqs. (S2S3)),
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FIG. S4: (Color online) Classical phase diagram of the Heisen-
berg Ji,2,3 model on the honeycomb lattice, eq. (SIl), showing
the regions of stability for zig-zag (II) and stripy order (IV).
Phase I is collinear 2-sublattice Néel order, IIT and V are in-
commensurate spiral phases, and solid lines are phase bound-
aries [S10]. The dotted line inside region II indicates possible
solutions for a minimal model to describe the spin dynamics
in NagIrOs obtained by imposing the constraints described in
the text (the red star is a representative solution for which
the full spectrum is shown in Fig. [S3h)).

with magnon dispersions given by eq. (84)), but where the
expressions for the A — D parameters are

A =S {J1+2Jy—3J3+ 2Jycos(2mh)}
B =S {Jin72+ Js [n* + 2n~2 cos(2mh)|}
C =2SJy{cos[m(h+ k)] + cos[m(h — k)] }
D =2SJin~tcos(rwh)

n = ekmi/3

The resulting spin-wave dispersions and intensities for
representative exchange values are plotted in Fig. [S3k).
In contrast to the zig-zag phase, for the stripy phase the
acoustic magnon, w™, is gapless, with a linear dispersion
and finite intensity at both the X and Y points, as
both are magnetic Bragg peaks with non-zero structure
factor (X four times stronger intensity than Y). Again,
due to the three domain structure there is softening
of the dispersion with an artificial gapless point at M,
which is expected to become gapped when quantum
fluctuations beyond the linear spin-wave approximation
are included, as discussed earlier. A spherical averaging
of the spin-wave spectrum in Fig. [S3k) is shown in Fig.
3i), here the strongest signal at low energies is due
to scattering from acoustic magnons near the X-point
(Q = 1.16 A1) with weaker scattering from magnons
near Y (Q = 0.67 A~') and intensity decreasing rapidly
for magnons with smaller momentum.
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S7. Spin-wave dispersions for the Kitaev-
Heisenberg model in the stripy phase

For the nearest-neighbor Kitaev-Heisenberg (KH)
model in eg. (1) the stripy phase in Fig. [S3b) is the
stable ground state for 0.4 < a < 0.8, where a =
Jx/ (Jx +2J1) |S9]. This ground state is exact at o =
0.5, when upon rotation of the coordinate system at
certain sites the Hamiltonian (1) converts to that of a
Heisenberg ferromagnet in a rotated basis [S9].

For each of the three bonds coming out of a honey-
comb lattice site the Kitaev term Jk couples different
spin components x,y, z expressed in terms of an orthog-
onal (cubic) reference frame. This is oriented with the
cubic [111] axis normal to the honeycomb plane and the
projections of the &, y and Z axes in the plane making
120° as shown in Fig. [S3b) inset. Each bond is labelled
with the type of the spin component for the moments at
the two bond ends coupled by the Kitaev term, i.e. the
z-bond AB stands for exchange —JkxS5%S% and a-bond
AD stands for —Jx.S% S and so on.

Due to the anisotropic nature of the Kitaev ex-
change more coupling terms between magnon opera-
tors on the 4 different magnetic A - D sublattices are
generated as compared to the Heisenberg J; 2 3 model.
Thus, one needs to use the full 8-term operator ba-
sis X = [aj] , bj] , c:f] , d}; , G_q, b_q, C_q, d_q}, for
which the Hamiltonian expressed in magnon operators to
leading order still has the quadratic form (S2]) with the
matrix H given by

A BO CO0 0O0 D

B*AC*0 0 0 DO

0 CA BO DO 0

y_Ll|c o B aD 00 0 (s5)

2/0 00 DA BO C

0 0 D0 B* A C* 0

0O DO 00 CA B

(D0 0 0 C*0 B* A|

where

A =801+ Jk)

B :SJ177_2

C = —SJkisin(mwh)n

D = S(2J; — Jk)cos(mh)n

n — ehkmi/3

Diagonalization to get the normal magnon modes [S11]
gives four dispersion relations

wio(q) = A* = DD* +|B - C?

+/4A2B — C|2 — |D*(B — C) — D(B* — C*)|2

w3 4(q) = A* — DD* +|C + Bf?

+./442|B + C|?2 — |D*(B + C) — D(B* + C*)|2.( |
S6




The dispersion curves are plotted for « = 0.4 in Fig.
[S3H) and « = 0.5 in Figs.[S3|(e-f), where the colour repre-
sents the dynamical structure factor, plotted separately
for the spin fluctuations along = and y-axes, the presence
of Kitaev bond directional exchanges make those the dy-
namical structure factor non-equivalent. The structure
factors were obtained from the eigenvectors of the Hamil-
tonian matrix H in eq. (SH), using a numerical implemen-
tation of a general algorithm to diagonalize a quadratic
form of boson operators proposed in [S14]. Changing the
relative strength of the Kitaev term, for example o = 0.4
compared to 0.5, does not change the spectrum qualita-
tively only introduces a weak dispersion in the gapped
w1 2 modes, compare Figs. [S3l-e).

The dispersions show many distinct features compared
to the case when the same stripy ground state was stabi-
lized instead by isotropic Heisenberg exchanges shown in
Fig. [S3k). Notably there is no longer a gapless mode at
the T point and at the Bragg peak positions (X and Y).
The lowest mode softens at the M point as in previous
cases due to the 3-domain structure of the stripy ground
state. The dispersion is gapless at this point in the linear
spin-wave approximation and a gap is predicted to open
up when quantum fluctuations to 1st order in 1/S are
included for any general «, except for the exactly solv-
able point @ = 0.5 where due to an exact cancellation
the spectrum is gapless [S9].

A spherical average of the spin-wave spectrum in Fig.
[S31) (including both the S** and S¥¥ dynamical struc-
ture factors) is shown in Fig. 3j), the lower boundary
of the scattering at low-@Q) (emphasized by the red solid
line) is due to scattering off magnons on the wy I'-M
dispersion branch near the M point.

S8. Spin-wave dispersions for the Kitaev-
Heisenberg-J>-J3 model in the zig-zag phase

Here we explore the effects of adding a small Kitaev
interaction Jk to the Jj 2 3 Hamiltonian when the ground
state order is the zig-zag phase (this has recently been
shown to be stable for a range of Jx values [S15]). We
obtain the spin-wave Hamiltonian matrix in this case by

combing eqs. (S3) and (S3)) as

A BO CO0O DE F
B*AC*0 D0 F*E
0O CA BE FO0 D
h_1l|C 0 B AF EDs0 (s7)
2|0 DE FA BO C
D*0 F* E B* A C* 0
E FO DO CA B
| F* ED*0 C*0 B* A |
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where

A =S {-J1+2J+ 3J3 + 2Jycos(2wh) + Jk}

B = (~1/2)SJkn

C =S {2Jicos(mh) — (1/2)Jx(}n

D =S {Jin72+ Js [n* + 2n~ 2 cos(2rh)] — Jxn~?/2}
E =2SJy{cos[m(h+ k)] + cos[m(h — k)] }

F o= (1/2)SJC

¢

n

— ehﬁi
— ekmi/3

Diagonalization leads to four dispersion branches

wig(q) =A*—E*+[B-CP?—|D—-FJ?
+\/4[A(B-C) + E(D— F)P? — 0

wi (g =A*—E*+|B+CP?—|D+F?
i\/4|A(B +C)—E(D+ F)]? -6

(S8)

where 6 = |(B — C)(D* — F*) — (B* — C*)(D — F)|.
The dispersions are plotted in Figs. [S3i-j) for a=0.4
(Jx/J1 = 4/3), Jo/J1 =0.23 and J3/J; =0.51. To
discuss the key features of the spectrum it is helpful to
visualize the degeneracies associated with the magnetic
order. The magnetic structure is the zig-zag pattern
shown in Fig. [S3h) but where the spin direction can be
either along the & direction to satisfy the Kitaev term on
the z-type AD bond, or along the g direction to satisfy
the Kitaev exchange on the y-type BC bond. At the
classical level any in-between direction, i.e. in the xy
plane, also has the same energy, so one expects a gapless
mode associated with rotations in this “easy” plane.
Indeed Fig. [83f) shows that the dispersion is gapless at
the Y point and with strong intensity for fluctuations
in this easy-plane (along the 1}’ normal to the ordered
direction labelled z’ ), and gapped for fluctuations along
2 out of the easy plane, see Fig. [S3l). Furthermore,
due to the honeycomb lattice geometry the magnetic
structure is degenerate with another two domains
rotated by +60° around the axis normal to the plane,
so the spectrum is gapless at the Bragg peak positions
of those other two domains, at points equivalent to M.
The Hamiltonian however does not poses any continuous
rotational symmetry in the presence of the Kitaev term,
so one might expect that small gaps would open at
both Y and M points when quantum fluctuations are
included so the spectrum would be fully gapped. For
completeness we quote the Curie-Weiss temperature
for this model Ocw = —S(S+1)(J1+2J2+J3—JK/3)/1€B.

S9. Spherically-averaged neutron scattering
intensity

The one-magnon neutron scattering intensity including
the magnetic form factor and neutron polarization factor



is proportional to

(@) l(l - L) s+ (1 - %%) syy(Q,m]

(S9)
where we used for f(Q) the Ir** spherical magnetic form
factor |[S16] and assumed the g-factor equal to 2. Here
Q. (Qy) are the components of the wavevector transfer Q
along the z-axis (y-axis), where z is the ordered spin di-
rection. The precise direction of the ordered moments
(2-axis) with respect to the crystallographic axes has
only a small effect on the powder-averaged spectrum via
small intensity modulations through the polarization fac-

2
tors (1 — QQZ,;,‘J),
specific moment direction for the comparison with data.
For the Jy 2,3 model in Figs. 3(h-i) the moments were as-
sumed to be aligned along the crystallographic a-axis (as
suggested by resonant xray data |S17]) and for the KH
model [Fig. 3j)] the moment is assumed to be along the
cubic 2-axis closest to the a-axis (tilted out-of-plane by
35.26° from the —a axis, see Fig. [S3b) inset). Eq. (S9)
was numerically averaged over a spherical distribution of
orientations for the wavevector transfer @ and convolved
with the instrumental resolution to obtain the plots in
Figs. 3h-j), directly comparable with the raw neutron
scattering data in Fig. 3e). For the KH-J5-J3 model the
intensity is also given by eq. (S9)) but with the axis labels
(2,y,z) replaced by (y', z, '), where the z’-axis defines
the ordered moment direction (located in the original xy
plane) and y’ and z are orthogonal directions to it.

however for concreteness, we included a
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