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Variational determination of approximate bright matter-wave soliton solutions in anisotropic traps
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We consider the ground state of an attractively interacting atomic Bose-Einstein condensate in a prolate,
cylindrically symmetric harmonic trap. If a true quasi-one-dimensional limit is realized, then for sufficiently
weak axial trapping this ground state takes the form of a bright soliton solution of the nonlinear Schrödinger
equation. Using analytic variational and highly accurate numerical solutions of the Gross-Pitaevskii equation,
we systematically and quantitatively assess how solitonlike this ground state is, over a wide range of trap
and interaction strengths. Our analysis reveals that the regime in which the ground state is highly solitonlike
is significantly restricted and occurs only for experimentally challenging trap anisotropies. This result and
our broader identification of regimes in which the ground state is well approximated by our simple analytic
variational solution are relevant to a range of potential experiments involving attractively interacting Bose-Einstein
condensates.
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I. INTRODUCTION

Bright solitons are self-focusing, nondispersive, particlelike
solitary waves occurring in integrable systems [1,2]. They be-
have in a particlelike manner, emerging from mutual collisions
intact except for shifts in their position and relative phase.
Bright soliton solutions of the one-dimensional nonlinear
Schrödinger equation (NLSE) can be described analytically
using the inverse-scattering technique [3,4] and are well
known in the context of focusing nonlinearities in optical
fibers [4,5]. Bright solitary matter waves in an attractively
interacting atomic Bose-Einstein condensate (BEC) represent
an intriguing alternative physical realization [6–8]. In a mean-
field description an atomic BEC obeys the Gross-Pitaevskii
equation (GPE) [9], a three-dimensional NLSE. While in gen-
eral nonintegrable, in a homogeneous, quasi-one-dimensional
(quasi-1D) limit the GPE reduces to the one-dimensional
NLSE, thus supporting bright solitons [10–15].

Outside the quasi-1D limit the GPE continues to support
bright solitary matter waves. These exhibit many solitonlike
characteristics and have been the subject of much experimen-
tal [6–8] and theoretical [16–29] investigation. Both bright
solitons and bright solitary waves are excellent candidates for
use in atom interferometry [30], as their coherence, spatial
localization, and solitonlike dynamics offer a metrological
advantage in, e.g., the study of atom-surface interactions
[7,20]. Toward this end, proposals to phase-coherently split
bright solitons and bright solitary waves using a scattering
potential [27–29] and an internal state interference protocol
[18] and to form soliton molecules [26] have been explored
in the literature. However, while the dynamics and collisions
of bright solitary waves have been explored in detail and
have been shown to be solitonlike in three-dimensional (3D)
parameter regimes [16–18], less attention has been directed
at the question of exactly how solitonlike the ground state
of the system is. In particular, the experimental feasibility
of reaching the quasi-1D limit of an attractively interacting
BEC, and hence obtaining a highly solitonlike ground state,
remains an area lacking a thorough quantitative exploration.
Obtaining such a ground state, in addition to being interesting
in its own right, would be highly advantageous in experiments

seeking to probe quantum effects beyond the mean-field
description [27–29], and possibly to exploit the effects of
macroscopic quantum superposition to enhance metrological
precision [31,32]. Similar concerns regarding adverse residual
3D effects in interferometric protocols prompted a recent
perturbative study of residual 3D effects in highly anisotropic,
repulsively interacting BECs [33].

The potential instability to collapse of attractively interact-
ing BECs [34–44] is the key obstacle to realizing solitonlike
behavior in a BEC. Previous studies of bright solitary-
wave dynamics, using variational and numerical solutions
of partially quasi-1D GPEs [12,13,21,45] (reductions of the
GPE to a 1D equation which retains some 3D character, in
contrast to the full quasi-1D limit) and the 3D GPE [16–18,34],
have shown the collapse instability to be associated with
nonsolitonlike behavior. However, previous studies of bright
solitary-wave ground states have focused on identifying the
critical parameters at which collapse occurs. Approaches
used in these studies include partially quasi-1D methods
[12], variational methods [46] using Gaussian [10,34,47] and
soliton (sech) [34,48] Ansätze, perturbative methods [49], and
numerical solutions to the 3D GPE [34,35,43,44,48]. In the last
case, the collapse threshold parameters have been extensively
mapped out for a range of trap geometries [43,44].

In this paper we use analytic variational and highly accurate
numerical solutions of the stationary GPE to systematically
and quantitatively assess how solitonlike the ground state
of an attractively interacting BEC in a prolate, cylindrically
symmetric harmonic trap is, over a wide regime of trap and
interaction strengths. Beginning with previously considered
variational Ansätze based on Gaussian [10,34,47] and soliton
[34,48] profiles, we obtain analytic variational solutions for
the GPE ground state. Comparison of the soliton-Ansatz
variational solution to highly accurate numerical solutions of
the stationary GPE, which we calculate over an extensive pa-
rameter space, gives a quantitative measure of how solitonlike
the ground state is. In the regime where the axial and radial
trap strengths dominate over the interactions, we show that
the Gaussian-Ansatz variational solution gives an excellent
approximation to the true ground state for all anisotropies;
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in this regime the ground state is not solitonlike. In the
regime in which the interactions dominate over the axial,
but not the radial, trap strength, we demonstrate that the
soliton-Ansatz variational solution does approximate the true,
highly solitonlike ground state. However, we show that the
goodness of the approximation and the extent of this regime,
where it exists at all, are highly restricted by the collapse
instability; even at large anisotropies it occupies a narrow
window adjacent to the regime where interactions begin to
dominate over all trap strengths, leading to non-quasi-1D,
nonsolitonlike solutions and, ultimately, collapse.

Our results have substantial practical value for experiments
using attractively interacting BECs; primarily they define the
challenging experimental regime required to realize a highly
solitonlike ground state, which would be extremely useful to
observe quantum effects beyond the mean-field description,
such as macroscopic superposition of solitons [27–29]. We
note that bright solitary-wave experiments to date have
not reached this regime [6–8]. Secondarily, our quantitative
analysis of a wide parameter space provides a picture of
the ground state in a wide range of possible attractively
interacting BEC experiments. In particular, it indicates the
regimes in which a full numerical solution of the 3D GPE is
well approximated by one of our analytic variational solutions,
which are significantly easier and less time consuming to
determine.

The remainder of the paper is structured as follows: After
introducing the most general classical field Hamiltonian and
stationary GPE in Sec. II, we begin by discussing the quasi-1D
limit in Sec. III. In Sec. III A we define the dimensionless
trap frequency γ ; in the quasi-1D limit this is the only free
parameter, and all our results are expressed in terms of this
quantity. Similarly, our variational Ansätze are motivated by
the limiting behaviors of the solution in the quasi-1D case;
in this case we define them as Gaussian and soliton profiles,
parametrized by their axial lengths. In Secs. III B and III C we
find, analytically, the energy-minimizing axial lengths for each
Ansatz as a function of γ . Comparison of the resulting Ansatz
solutions to highly accurate numerical solutions of the sta-
tionary quasi-1D GPE allows us to determine, in the quasi-1D
limit, the regimes of low γ in which highly solitonlike ground
states can be realized (Sec. III D). We then consider the 3D
GPE in Sec. IV. The system then has a second free parameter
in addition to γ ; we choose this to be κ , the (dimensionless)
trap anisotropy, which is defined in Sec. IV A. In Secs. IV B to
IV E we define 3D Gaussian and soliton Ansätze, adapted from
their quasi-1D analogs and each parametrized by an axial and a
radial length, and find the energy-minimizing lengths for each
Ansatz. In general this requires only a very simple numerical
procedure, and in the limit of a waveguidelike trap can be
expressed analytically (Sec. IV F). In Sec. IV G we compare
the Ansatz solutions to highly accurate numerical solutions of
the stationary 3D GPE and in Sec. IV H assess the potential
for realizing truly solitonlike ground states. Finally, Sec. V
comprises the conclusions.

II. SYSTEM OVERVIEW

We consider a BEC of N atoms of mass m and (attractive)
s-wave scattering length as < 0, held within a cylindrically

symmetric, prolate (the radial frequency ωr is greater than
the axial frequency ωx) harmonic trap. The ground state is
described by the stationary Gross-Pitaevskii equation[

− h̄2

2m
∇2 + V (r) − 4πN |as |h̄2

m
|ψ(r)|2 − λ

]
ψ(r) = 0,

(1)

where the trapping potential V (r) = m[ω2
xx

2/2 + ω2
r (y2 +

z2)/2], λ is a real eigenvalue, and the Gross-Pitaevskii wave
function ψ(r) is normalized to 1. This equation is generated
by the classical field Hamiltonian (through the functional
derivative δH [ψ]/δψ∗ = λψ)

H [ψ] =
∫

dr
[

h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2

− 2πN |as |h̄2

m
|ψ(r)|4

]
. (2)

This functional of the classical field ψ describes the total
energy per particle, and the ground-state solution minimizes
the value of this functional.

When dealing with variational Ansätze for the ground-state
solution, we proceed by analytically minimizing an energy
functional in the same form as Eq. (2) for a given Ansatz.
In contrast, highly accurate numerical ground states are more
conveniently obtained by solving a stationary GPE of the same
form as Eq. (1).

III. QUASI-1D LIMIT

A. Reduction to 1D and rescaling

For sufficiently tight radial confinement (ωr � ωx), such
that the atom-atom interactions are nonetheless essentially 3D
[as � (h̄/mωr )1/2], it is conventional [10–15] to assume a
reduction to a quasi-1D stationary GPE[

− h̄2

2m

∂2

∂x2
+ mω2

xx
2

2
− g1DN |ψ(x)|2 − λ

]
ψ(x)= 0. (3)

Typically ψ(r) is taken to be factorized into ψ(x) and the radial
harmonic ground state (mωr/πh̄)1/2 exp(−mωr [y2 + z2]/2h̄),
such that g1D = 2h̄ωr |as |. Alternative factorizations are also
possible, which lead to an effective 1D equation retaining more
3D character than Eq. (3) [12,13,21,45]; similar factorizations
have also been introduced for axially rotating BECs [50] and
for quasi-2D BECs in oblate traps [51]. In the absence of the
axial harmonic confining potential (ωx → 0), there exist exact
bright soliton solutions to Eq. (3) of the general form1

1

2b
1/2
x

sech

(
[x − vt + C]

2bx

)

× eiv(x−vt)m/h̄eimg2
1DN2t/8h̄3

eimv2t/2h̄eiD, (4)

1Equation (4) describes solutions of unit norm. More
general soliton solutions (B/2b1/2

x )sech(B[x − vt + C]/2bx)
eiv(x−vt)m/h̄eiB2mg2

1DN2t/8h̄3
eimv2t/2h̄eiD have norm B (and effective

mass η = B/4), such as arise when considering several solitons
simultaneously.
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where bx ≡ h̄2/mg1DN is a length scale characterizing the
soliton’s spatial extent, v is the soliton velocity, C is an
arbitrary displacement, and D is an arbitrary phase.

This effective 1D Gross-Pitaevskii equation contains two
key length scales: the axial harmonic length ax ≡ (h̄/mωx)1/2

and the soliton length bx . A mathematically convenient way
to express the single free parameter of Eq. (3) is as the square
of the ratio of these two length scales;

γ ≡
(

bx

ax

)2

≡ h̄ωx

4mω2
r |as |2N2

. (5)

This parametrization is achieved by working in “soliton units”;
lengths are expressed in units of bx and energies are expressed
in units of mg2

1DN2/h̄2. This system can be codified as h̄ =
m = g1DN = 1, and yields the dimensionless quasi-1D GPE[

− 1

2

∂2

∂x2
+ γ 2x2

2
− |ψ(x)|2 − λ

]
ψ(x) = 0, (6)

in which γ can be interpreted as a dimensionless trap frequency
[15]. The corresponding classical field Hamiltonian is

H1D[ψ]=
∫

dx

[
1

2

∣∣∣∣ ∂

∂x
ψ(x)

∣∣∣∣
2

+ γ 2x2

2
|ψ(x)|2 − 1

2
|ψ(x)|4

]
.

(7)

The choice of γ for the single free parameter in the 1D
GPE [Eq. (6)] and the classical field Hamiltonian [Eq. (7)]
can be most directly pictured as choosing to hold the inter-
action strength constant while varying the axial trap strength,
parametrized by γ . Experimentally, however, any of ωx , ωr ,
as , and N may be varied in order to vary γ . In the case
γ = 0 the exact ground-state solution is a single, stationary
bright soliton: ψ(x) = sech(x/2)/2. In the following sections
we develop analytic variational solutions ψ(x) for general γ .
Comparison of these solutions to highly accurate numerical
solutions of the quasi-1D GPE then gives a picture of the
behavior of the ground state with γ . Furthermore, these
quasi-1D variational solutions motivate the later 3D variational
solutions and yield several mathematical expressions which
reappear in the more complex 3D calculations.

B. Variational solution: Gaussian Ansatz

We first consider the Gaussian variational Ansatz

ψ(x) =
(

γ

π�2
G

)1/4

e−γ x2/2�2
G , (8)

where the variational parameter �G quantifies the axial length.
In the trap-dominated limit (γ → ∞), the true solution tends
to a Gaussian with �G = 1. Substituting Eq. (8) into Eq. (7)
yields (using identities from Appendix A)

H1D(�G) = γ

4

(
�2

G + 1

�2
G

− 2

(2πγ )1/2�G

)
, (9)

where H1D is now expressed as a function of the axial length
�G. Setting ∂H1D/∂�G = 0 reveals that the variational energy
described by Eq. (9) is minimized when �G is a positive, real
solution to the quartic equation

�4
G + �G

(2πγ )1/2
− 1 = 0. (10)

The positive, real solution to this quartic is (see the solution in
Appendix B)

�G = [χ (γ )]1/2

24/3(πγ )1/6

{[(
2

χ (γ )

)3/2

− 1

]1/2

− 1

}
, (11)

where we have, for notational convenience, defined χ to have
γ dependence such that

χ (γ ) =
[

1 +
(

1 + 1024π2γ 2

27

)1/2]1/3

+
[

1 −
(

1 + 1024π2γ 2

27

)1/2]1/3

. (12)

C. Variational solution: Soliton Ansatz

Secondly, we consider a soliton Ansatz

ψ(x) = 1

2�
1/2
S

sech

(
x

2�S

)
, (13)

where the variational parameter �S again quantifies the axial
length. In the axially untrapped limit (γ → 0), the true solution
tends to a classical bright soliton, as described by the above
Ansatz with �S = 1. The variational energy per particle is given
by (using identities from Appendix A)

H1D(�S) = π2γ 2

6

(
�2

S + 1

4π2γ 2�2
S

− 1

2π2γ 2�S

)
, (14)

which is minimized when

�4
S + �S

4π2γ 2
− 1

4π2γ 2
= 0. (15)

Again, this quartic can be solved analytically (see the solution
in Appendix B) to give the positive, real minimizing value
of �S:

�S = [χ (γ )]1/2

211/6(πγ )2/3

{[(
2

χ (γ )

)3/2

− 1

]1/2

− 1

}
, (16)

with χ defined as in Eq. (12).

D. Analysis and comparison to 1D numerical solutions

The energy-minimizing axial lengths �G and �S, defined by
Eqs. (11) and (16) respectively, are shown as functions of γ

in Fig. 1(a). There is no collapse instability in the quasi-1D
GPE, and solutions are obtained for all (positive, real) γ . As
intended by the chosen forms of the Ansätze, the limiting cases
are �G → 1 as γ → ∞ and �S → 1 as γ → 0. To evaluate the
accuracy of the Ansätze for general γ , we compare each Ansatz
with the numerically determined ground state of the quasi-1D
GPE. The computation of a numerically exact ground state
ψ0(x), and the corresponding ground-state energy E1D, uses a
pseudospectral method in a basis of symmetric Gauss-Hermite
functions; this is a simplified version of the pseudospectral
method used for 3D calculations, which is explained in more
detail in the next section. Several quantities are compared in
Figs. 1(b)–1(d): the variational minimum energies H1D for
each Ansatz and the numerical ground-state energy E1D are
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FIG. 1. (Color online) Comparison of quasi-1D variational and
numerical solutions: (a) Energy-minimizing axial lengths �G (Gaus-
sian Ansatz, squares) and �S (soliton Ansatz, circles) for the quasi-1D
GPE. (b) Minimum variational energy compared with the numerically
calculated ground-state energy E1D (black line) for each Ansatz: for
low γ we show H1D (solid symbols), which tends to −1/24 as γ → 0;
for high γ we show H ′

1D = H1D/γ (hollow symbols), which tends to
1/2 as γ → ∞ (H ′

1D is equal to the energy expressed in the “harmonic
units” h̄ = m = ωx = 1). (c) Relative error in the variational energy,

 = (H1D − E1D)/E1D. (d) Normalized maximum deformation of
the best-fitting Ansatz wave function ψAnsatz with respect to the
numerical ground state ψ0, 
ψ = max(|ψAnsatz − ψ0|)/max(ψ0),
expressed as a percentage. For clarity in (a),(b) [(c)], every 16th
[20th] datum is marked by a symbol.

shown in Fig. 1(b); the relative error between H1D and E1D,
defined as 
 = (H1D − E1D)/|E1D|, is shown for each Ansatz
in Fig. 1(c); and the maximum difference between the most
appropriate Ansatz wave function (that with lowest 
) and the
numerical ground-state wave function, expressed as a percent-
age of the maximum value of the numerically exact ground
state, 
ψ = max(|ψAnsatz − ψ0|)/max(ψ0) [Fig. 1(d)]. All
the shown computed quantities are insensitive to a doubling of
the numerical basis size from 500 to 1000 states.

Both the Gaussian and soliton Ansätze provide an excellent
approximation to the exact solutions over a large range of γ . In
the regimes where the relative error in the energy 
 becomes
significantly lower than 10−9 in particular, the difference

between the Ansatz solutions and numerical solutions becomes
generally indistinguishable from numerical round-off error.
For the Gaussian Ansatz the convergence to this regime is
noticeably slower than for the soliton Ansatz [Fig. 1(c)]. This
effect is a consequence of the parametrization in terms of γ

and the corresponding “soliton units”: increasing γ leads not
only to to higher trap strength, but also to higher peak densities
|ψ(x)|2, and hence a stronger nonlinear effect.

For later comparison to the 3D case, it is useful to define a
benchmark value of the relative error 
 that indicates excellent
agreement between the Ansatz and the numerically exact
solution. Such a definition, however, will vary according to
purpose. As our objectives in this paper relate significantly
to the shape of the ground state, this forms the basis of our
benchmark; a maximum deformation of the wave function
below 0.1% of the peak value [as measured by 
ψ in
Fig. 1(d)] corresponds very closely to 
 < 10−5. Because
the relative error 
 saturates to a background value of ≈10−1

in regimes where the chosen Ansatz is inapplicable, a value
of 
 four orders of magnitude below this background value
thus corresponds to an excellent match in shape between the
Ansatz and the numerically exact solution. With respect to
this benchmark, the Gaussian Ansatz represents an excellent
fit for log10(γ ) > 1.15, while the ground state is highly
solitonlike (the soliton Ansatz represents an excellent fit) for
log10(γ ) < −0.95.

IV. BRIGHT SOLITARY-WAVE GROUND STATES IN 3D

A. Rescaling to effective 1D soliton units

We now consider the cylindrically symmetric 3D Gross-
Pitaevskii equation [Eq. (1)]. Compared to the quasi-1D effec-
tive Gross-Pitaevskii equation [Eq. (6)], three-dimensionality
introduces an additional relevant length scale, the radial
harmonic length ar = (h̄/mωr )1/2. We incorporate this into
the dimensionless trap anisotropy κ ≡ ωr/ωx , which forms
an additional free parameter. Expressed in the same “soliton
units” as Eq. (6), Eq. (1) becomes[

− 1

2
∇2 + V (r) − 2π

κγ
|ψ(r)|2 − λ

]
ψ(r) = 0, (17)

with corresponding energy functional

H3D[ψ] =
∫

dr
[

1

2
∇ψ(r) · ∇ψ∗(r)

+V (r)|ψ(r)|2 − π

κγ
|ψ(r)|4

]
, (18)

where V (r) = γ 2[x2 + κ2(y2 + z2)]/2.
In the following sections we obtain variational solutions

for general κ and γ using Ansätze similar to the Gaussian
and soliton Ansätze employed in the previous section, with
an additional variable-width Gaussian radial profile. Contrary
to the case in the quasi-1D limit, a self-consistent energy-
minimizing solution for both the axial and radial length
parameters cannot be expressed entirely analytically. However,
we reduce the numerical work required to the simultaneous
solution of two equations and introduce a straightforward
iterative technique to achieve this. We also consider the case
of a waveguidelike trap (ωx = 0) separately, where an entirely
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analytic variational solution exists (Sec. IV F). Subsequently,
in Sec. IV G, we again compare the Ansatz solutions to
high-accuracy numerics.

B. Variational solution: Gaussian Ansatz

We first consider an Ansatz composed of Gaussian axial
and radial profiles. We phrase this as

ψ(r) = κ1/2γ 3/4kG

π3/4�
1/2
G

e−κγ k2
G(y2+z2)/2e−γ x2/2�2

G . (19)

Here, the first variational parameter �G quantifies the axial
length of the Ansatz in analogy to the quasi-1D case. The
reciprocal of the second variational parameter, k−1

G , quantifies
the radial length of the Ansatz. In the trap-dominated limit
(γ → ∞) both these lengths approach unity ({�G,kG} → 1).
Substitution of this Ansatz into Eq. (18) yields (using identities
from Appendix A)

H3D(�G,kG) = γ

4

(
�2

G + 1

�2
G

− 2k2
G

(2πγ )1/2�G
+ 2κk2

G + 2κ

k2
G

)
.

(20)

Setting the partial derivatives with respect to both �G and kG

equal to zero, we deduce that �G must solve the quartic equation

�4
G + k2

G�G

(2πγ )1/2
− 1 = 0, (21)

and that kG must solve

kG =
(

(2πγ )1/2κ�G

(2πγ )1/2κ�G − 1

)1/4

. (22)

From Eq. (22) it follows that we must have �G >

1/(2πγ )1/2κ to obtain a physically reasonable solution, i.e., a
real, positive value of kG, consistent with our initial Ansatz. For
a given such value of kG, Eq. (21) is solved (see the solution
in Appendix B) by

�G =
[
χ

(
γ k−4

G

)]1/2
k

2/3
G

24/3(πγ )1/6

{[(
2

χ
(
γ k−4

G

)
)3/2

− 1

]1/2

− 1

}
,

(23)

with χ defined as in Eq. (12).

C. Analysis of Gaussian-Ansatz solution

Contrary to the quasi-1D limit, minimization of the vari-
ational energy in 3D requires simultaneous solution of two
equations for the radial length k−1

G and the axial length �G.
These equations are, respectively, Eq. (22) and [rearranged
from Eq. (21)]

kG =
[

(2πγ )1/2

�G

(
1 − �4

G

)]1/2

. (24)

These equations dictate that physical solutions must have

1

(2πγ )1/2κ
< �G < 1, (25)

and hence that γ > 1/2πκ2 must be satisfied in order for
physical solutions to exist.

Where solutions exist, they must be found numerically.
However, a very practical method of numerical solution
follows from the shape of the �G surface defined by Eq. (23),

and shown in Fig. 2(a), which is a decreasing function of
kG for all (real, positive) γ . The method can be considered
graphically, in terms of locating the intersection(s) of Eqs. (22)
and (24). These curves are shown, for various κ , in Figs. 2(b)–
2(d), along with the lower bound from inequality (25). Below
a κ-dependent threshold value of γ the curves fail to intersect,
indicating instability of the BEC to collapse. At the threshold
value [dotted curves in Figs. 2(b)–2(d)] there is exactly one
intersection, and above the threshold value [the other curves
in Figs. 2(b)–2(d)] there are two intersections. In the latter
case the higher-�G intersection, which smoothly deforms to the
limiting case {�G,kG} → 1 as γ → ∞, represents the physical,
minimal-energy variational solution. This solution can be
located using a simple “staircase” method: substitution of a
trial value k̄G, satisfying 1 � k̄G < kG, into Eq. (23) produces
a trial value �̄G satisfying �G < �̄G � 1, and subsequent
substitution of this trial value into Eq. (22) produces an iterated
trial value k̄′

G satisfying k̄G < k̄′
G < kG. Thus, beginning with

k̄G = 1, iteration of this process converges the trial values to
the true kG and �G.

The physical solutions to Eqs. (21) and (22) for different
anisotropies κ are shown on the �G surface, and projected
into the �G-γ plane, in Fig. 2(a). These solutions are also
shown as black crosses in the �G-kG plane in Figs. 2(b)–2(d),
where they form a line connecting the physical-solution
intersections of Eqs. (22) and (24) for the various γ shown.
In Fig. 2(a) the collapse instability is manifest as a rapid rise
in kG—corresponding to a decrease in radial extent—and fall in
�G—corresponding to a decrease in axial extent—just above a
κ-dependent threshold value of γ . There are no self-consistent
solutions for these quantities below this collapse threshold.
For increasing anisotropies κ , this collapse threshold occurs at
lower values of γ . For the highest two values of κ considered
the collapse threshold lies in the regime where �G is already
approaching 0; our analysis of the Gaussian Ansatz in the
quasi-1D limit indicates that the 3D Gaussian Ansatz will
be a poor approximation to the true solution in this regime.
Importantly, for γ above the collapse threshold the projected
curves for each anisotropy agree well with the Gaussian Ansatz
in the quasi-1D GPE, suggesting that the Gaussian Ansatz gives
a good approximation to the true solution here.

D. Variational solution: Soliton Ansatz

Second, we consider a soliton Ansatz composed of an axial
sech profile and a radial Gaussian profile. We phrase this as

ψ(r) = γ 1/2κ1/2kS

(2π�S)1/2
e−κγ k2

S(y2+z2)/2sech(x/2�S). (26)

As with the 3D Gaussian Ansatz, the first variational parameter
�G quantifies the axial length of the Ansatz and the reciprocal
of the second variational parameter, k−1

G , quantifies its radial
length. In the quasi-1D limit both lengths consequently
approach unity ({�G,kG} → 1). Substitution of this Ansatz into
Eq. (18) yields (using identities from Appendix A)

H3D(�S,kS) = π2γ 2

6

(
�2

S + 1

4π2γ 2�2
S

− k2
S

2π2γ 2�S
+ 3κk2

S

π2γ
+ 3κ

π2γ k2
S

)
. (27)
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FIG. 2. (Color online) Energy-minimizing variational parameters for the 3D GPE using a Gaussian Ansatz: (a) axial length �G as a function
of the radial length k−1

G and the parameter γ [Eq. (23)]. Lines show the simultaneous solutions of Eqs. (22) and (24) for the axial length �G

and radial length k−1
G , for different anisotropies κ and values of γ . Projections of these solutions on the γ -�G plane are also shown; here the

black line indicates the quasi-1D result [from Fig. 1(a)]. (b)–(d) Illustration of the intersections of Eqs. (22) [lines with vertical asymptote
�G = 1/(2πγ )1/2κ shown with fine dashes] and (24) for various κ: the higher-�G intersection, which corresponds to a physical solution for
the axial length �G and radial length k−1

G , can be found using a “staircase” method starting from kG = 1. The numerical solutions obtained in
this way, and shown by points in (a), are shown by crosses in (b)–(d). The lowest values of γ plotted in (b)–(d) are the lowest for which a
self-consistent Gaussian Ansatz solution is found.

Once again, setting partial derivatives with respect to both �S

and kS equal to zero allows us to deduce that

�4
S + k2

S�S

4π2γ 2
− 1

4π2γ 2
= 0, (28)

and that kS must solve

kS =
(

6κγ �S

6κγ �S − 1

)1/4

. (29)

From Eq. (29) it follows that we must have �S > 1/6κγ

to obtain a physically reasonable solution, i.e., a real, positive
value of kS, consistent with our initial Ansatz. For a given such

value of kS, Eq. (28) is solved (see the solution in Appendix B)
by

�S =
[
χ

(
γ k−4

S

)]1/2
k

2/3
S

211/6(πγ )2/3

{[(
2

χ
(
γ k−4

S

)
)3/2

− 1

]1/2

− 1

}
,

(30)

with χ defined as in Eq. (12).

E. Analysis of soliton-Ansatz solution

As in the case of the Gaussian Ansatz, minimization of the
variational energy in 3D requires the simultaneous solution
of equations for the radial length k−1

S and the axial length �S.
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These equations are, respectively, Eq. (29) and [rearranged
from Eq. (28)]

kS =
[

1

�S

(
1 − 4π2γ 2�4

S

)]1/2

. (31)

These equations dictate that physical solutions must have

1

6κγ
< �S <

1

(2πγ )1/2
(32)

and hence that γ > (π/3)2/2πκ2 must be satisfied in order for
physical solutions to exist. These equations and constraints
can be further simplified by casting them in terms of �′

S =
(2πγ )1/2�S; this yields two equations,

kS =
(

(2πγ )1/2κ�′
S

(2πγ )1/2κ�′
S − π/3

)1/4

(33)

and

kS =
[

(2πγ )1/2

�′
S

(
1 − �′

S
4)]1/2

, (34)

and an inequality,

π/3

(2πγ )1/2κ
< �′

S < 1, (35)

which are extremely similar to those encountered in the case
of the Gaussian Ansatz. The numerical solution of these
equations for the physical solution, which can exist only when
γ > (π/3)2/2πκ2, follows the same procedure as used for the
Gaussian Ansatz.

Variational-energy-minimizing solutions to the soliton-
Ansatz equations for different anisotropies κ are shown in
Fig. 3; these are shown superimposed on the �S surface and
projected into the �S-γ plane in Fig. 3(a), and alongside
Eqs. (28) and (29) and inequality (35) in Figs. 3(b)–3(d). The
collapse instability is even more evident in the soliton Ansatz
than in the Gaussian Ansatz, since it occurs in a region with
a larger background value of �S. Once again, the collapse is
manifest as a rapid rise in kS and drop in �S—corresponding to
both axial and radial contraction of the solution—immediately
prior to a κ-dependent threshold value of γ . Below the
threshold, no self-consistent solutions exist. For increasing
anisotropies κ , this collapse threshold again occurs at lower
values of γ . In contrast to the case of the Gaussian Ansatz,
however, the collapse instability precludes solutions in exactly
the limit where one expects the soliton Ansatz to be accurate
(γ → 0). This property of the collapse instability severely
restricts the possibility of observing highly bright-soliton-like
ground states in 3D. The solution curves in Fig. 3(a) illustrate
that this effect is worst for low trap anisotropies κ , but
is to some extent mitigated for higher κ . However, a full
comparison with numerically exact solutions is necessary to
quantify these effects; we undertake such a comparison in
Sec. IV G.

F. Variational solution: Waveguide configuration

In broad experimental terms, the collapse instability sets
a maximum value for the ratio of interaction strength to trap
strength (equivalent to a minimum value of γ ) which increases
(and hence the minimum value of γ decreases) with the trap

anisotropy κ . In the context of atomic BEC experiments one
would typically think of controlling γ by varying either |as |
or N while holding ωr and ωx constant; in this situation
the collapse instability places a trap-anisotropy-dependent
upper limit on the product |as |N . However, the minimum
value of γ does not increase without limit in the trap
anisotropy κ: In an experiment one can, in principle, remove
all axial trapping to create a waveguidelike configuration;
in this case ωx = 0 and the trap anisotropy κ → ∞, while
the parameter γ → 0. In this limit a reparametrization
is necessary, and only needs to be performed for the
soliton Ansatz, which is clearly more appropriate in this
context.

Elimination of the axial trap removes one of the two free
parameters of the 3D GPE [Eq. (17)]. The remaining free
parameter is � = γ κ = (ar/2|as |N )2, where ar = (h̄/mωr )1/2

is the radial harmonic oscillator length scale. The soliton
Ansatz may be rewritten in terms of � as

ψ(r) = �1/2kS

(2π�S)1/2
e−�k2

S(y2+z2)/2sech(x/2�S). (36)

Substituting this into Eq. (18) with ωx = 0 yields (using
identities from Appendix A),

H3D(�S,kS) =
(

1

24�2
S

− k2
S

12�S
+ �k2

S

2
+ �

2k2
S

)
, (37)

from which we deduce that the energy-minimizing variational
parameters satisfy

�S = 1

k2
S

(38)

and

kS =
(

6��S

6��S − 1

)1/4

. (39)

Contrary to the more general 3D case, an analytic simultaneous
solution of Eqs. (38) and (39) exists when �S satisfies the
depressed cubic equation

�3
S − �S + 1

6�
= 0. (40)

Using the general solution for a depressed cubic equation from
Appendix B, one finds that the physical root (with real, positive
�S satisfying the limit �S → 1 as � → ∞) is given by

�S =
[

− 1

12�
+ 1

33/2�

(
3

16
− �2

)1/2
]1/3

+
[

− 1

12�
− 1

33/2�

(
3

16
− �2

)1/2
]1/3

. (41)

Consequently, solutions exist only for � > 31/2/4, as shown
in Fig. 4(a).

G. Comparison to 3D numerical solutions

The variational-energy-minimizing axial lengths �G and �S

are shown as functions of γ in Fig. 5(a) for the general 3D
case; for the waveguide limit both axial and radial lengths
�S and k−1

S are shown as functions of � in Fig. 4(a). As in
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FIG. 3. (Color online) Energy-minimizing variational parameters for the 3D GPE using a soliton Ansatz: (a) axial length �S as a function
of the radial length k−1

S and the parameter γ [Eq. (30)]. Lines show the simultaneous solutions of Eqs. (33) and (34) for the axial length �S

and radial length k−1
S , for different anisotropies κ and values of γ . Projections of these solutions on the γ -�S plane are also shown; here the

black line indicates the quasi-1D result [from Fig. 1(a)]. (b)–(d) Illustration of the intersections of Eqs. (33) [lines with vertical asymptote
�S = (π/3)/(2πγ )1/2κ shown with fine dashes] and (34) for various κ: the higher-�S intersection, which corresponds to a physical solution
for the axial length �S and radial length k−1

S , can be found using a staircase method starting from kS = 1. The numerical solutions obtained
in this way, and shown by points in (a), are shown by crosses in (b)–(d). The lowest values of γ plotted in (b)–(d) are the lowest for which a
self-consistent soliton Ansatz solution is found.

the quasi-1D case, we quantitatively evaluate the accuracy
of the Ansatz solutions for general γ (�) by comparing
the variational minimum energy H3D with the numerically
determined ground-state energy E3D. We calculate E3D using a
pseudospectral method in a basis of optimally scaled harmonic
oscillator eigenstates; this is formed from a tensor product
of symmetric Gauss-Hermite functions (axial direction) and
generalized Laguerre functions (radial direction). The Ansatz
with the lowest variational energy is used both to optimize
the scaling of the basis functions and as an initial estimate
for the solution. Expanding the stationary 3D GPE in such
a basis produces a system of nonlinear equations which
are solved iteratively using a modified Newton method. A
similar method was used to solve a similar cylindrically

symmetric, stationary 3D GPE, with repulsive interactions, in
Ref. [52].

As in the quasi-1D case, we compare several quantities
between the Ansatz and numerical solutions. Figure 5(b)
shows the scaled energy H ′

3D = (H3D/γ )/(1 + 1/2κ) in the
general 3D case. This scaling is such that E′

3D—which is
defined analogously to H ′

3D with respect to E3D—tends to 1 as
γ → ∞. Figures 5(c) and 5(d) show the relative error in the
variational minimum energy 
 = (H3D − E3D)/E3D for the
Gaussian and soliton Ansätze, respectively. The same quantity

 is shown for the waveguide limit in Fig. 4(b). All quantities
shown in Figs. 4 and 5 are computed using between 2000
and 12 000 basis states (κ dependent) and are insensitive to a
doubling of the number of basis states.
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FIG. 4. (Color online) Comparison of 3D variational and numer-
ical solutions in a waveguide configuration (ωx = 0): (a) Energy-
minimizing axial length �S and radial length k−1

S for the soliton Ansatz.
Solutions, given by Eq. (41), exist for all � = κγ > 31/2/4. (b)
Relative error in the minimum variational energy of the soliton Ansatz,

 = (H3D − E3D)/E3D, where E3D is the numerically determined
ground-state energy.

In the general 3D case, a close inspection of Figs. 5(b)–5(d)
is necessary to reveal the overall relation between the Ansatz
solutions and the numerically obtained ground state. In the
high-γ limit, Fig. 5(b) shows that both the Gaussian variational
energies (solid symbols) and the ground-state energy E3D

(black dots) approach 1 as γ → ∞, whereas the soliton-Ansatz
energies (hollow symbols) tend to higher energies. This
corresponds to the actual ground state most closely matching
the Gaussian Ansatz in this limit, as one would expect. Indeed,
the relative error in variational energy, 
, for the Gaussian
Ansatz [Fig. 5(c)] continues to drop exponentially with γ for
all anisotropies κ , making it possible to find regimes of γ

where the Gaussian Ansatz gives an excellent approximation
to the true ground state.

In the opposite, low-γ limit, collapse occurs at a κ-
dependent value of γ ; this corresponds to the points in
Figs. 5(a)–5(d) where solution curves abruptly cease. Prior
to collapse (at higher values of γ ) the relation between the
Gaussian Ansatz, the soliton Ansatz, and the actual ground
state is highly dependent on the trap anisotropy κ [Fig. 5(b)]. In
the case of a spherically symmetric trap, where the anisotropy
κ = 1, the soliton-Ansatz variational energy is never closer to
the true ground-state energy E3D than the Gaussian-Ansatz
variational energy. A regime of solitonlike ground states
consequently cannot exist at this low anisotropy; as the soliton
Ansatz is intrinsically asymmetric, this is to be expected. For
higher anisotropies, the soliton-Ansatz energy is closer to E3D

than the Gaussian-Ansatz energy in a small regime prior to
collapse. Exactly how solitonlike the ground state is in this
regime can be quantitatively assessed using the relative error

. This is shown for the soliton Ansatz in Fig. 5(d). For each κ

the “background” value of 
 in the limit γ → ∞ is different;
this effect is due to the decreasing size of the axial part of
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FIG. 5. (Color online) Comparison of 3D variational and numer-
ical solutions: (a) Energy-minimizing axial lengths �G (Gaussian
Ansatz, solid symbols) and �S (soliton Ansatz, hollow symbols).
(b) Scaled variational energies H ′

3D = κH3D/γ (κ + 1/2) [a similarly
scaled ground-state energy E′

3D = κE3D/γ (κ + 1/2) tends to 1 in the
limit γ → ∞ for all anisotropies κ] compared with the numerically
calculated ground-state energies E3D (black dots). (c),(d) Normalized
relative error in the variational energy 
 = (H3D − E3D)/E3D for the
Gaussian (c) and soliton (d) Ansätze. For clarity every fourth datum
is marked by a symbol in (a)–(d).

the energy with respect to the radial part for increasing γ .
In the opposite, low-γ , limit 
 increases sharply close to
the collapse point as the ground-state wave function rapidly
contracts. The maximum extent to which 
 decreases from
its high-γ limit before this increase, due to collapse-related
contraction at low γ , quantifies how solitonlike the ground
state becomes in this regime. Even for the highest anisotropy
shown, κ = 256, the regime of γ over which 
 drops below
its background value is rather narrow, and the actual drop in 


is only one order of magnitude. Compared to the benchmark
of Sec. III D, this indicates that the true ground state remains
considerably deformed with respect to the soliton Ansatz. The
minimum error in the soliton-Ansatz energy does, however,
improve with increasing anisotropy κ . Excellent agreement
can be achieved in the waveguide limit (κ → ∞): Fig. 4 shows
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that excellent agreement, with respect to the benchmark figure
of Sec. III D, can be obtained for � > 103/2.

H. Discussion

A physical interpretation of the above results follows from
considering two conditions that must be satisfied in order
to realize a solitonlike ground state: (1) the radial profile
should be “frozen” to a Gaussian, thus realizing a quasi-1D
limit; and (2) interactions should dominate over the axial
trapping. On first inspection these conditions seem mutually
compatible and satisfiable simply by increasing the radial trap
frequency ωr with other parameters held constant. However,
condition (1) can be satisfied only if the maximum density
remains low enough to avoid any deformation of the radial
profile due to the collapse instability. Increasing ωr leads to
exactly such deformation, and ultimately to collapse, as it
has the secondary effect of strongly increasing the density.
This strong increase in density with ωr is particular to the
case of attractive interactions. Increasing ωr in a repulsively
interacting BEC likewise acts to increase the density, but
this increase is counteracted by the interactions; these act to
reduce the density and cause the BEC to expand axially. In the
attractively interacting case the response of the interactions is
the opposite: increasing ωr leads to axial contraction of the
BEC. Consequently condition (1) is far harder to satisfy for an
attractively interacting BEC than for a repulsively interacting
one. Responding to this problem simply by reducing the
interaction strength (either through |as | or N ) leads to violation
of condition (2). The nature of the problem is made particularly
clear by considering the waveguide limit: here condition (2)
is automatically satisfied (ωx = 0). This makes it possible
to achieve a highly solitonlike ground state by satisfying
condition (1) alone. However, such a ground state is achieved
by lowering the product ω

1/2
r |as |N , and thus by progressing

toward the limit of extreme diluteness.
This physical behavior of the system presents considerable

challenges for experiments aiming to realize a highly soliton-
like ground state. In essence, the most desirable configuration
is to have extremely high anisotropies κ while keeping
ωr as low as possible. Realization of such a configuration
through extremely low, or zero, axial trap frequencies ωx

is problematic: such frequencies are hard to set precisely
experimentally as they require a very smooth potential to be
generated, potentially over a considerable length. Furthermore,
in the case ωx = 0 the mean-field approximation ceases to
be valid for an attractively interacting BEC; the true wave
function should be translationally invariant in this case, but
the mean-field solution breaks this symmetry [53]. Even for
very low but nonzero ωx the mean-field approximation can
lose validity due to the extreme diluteness of the BEC, and
the energy gap from the ground state to states with excited
axial modes can become low enough to cause significant
population of the excited states at experimentally feasible
temperatures.

It is informative to consider the parameters used in
bright solitary-wave experiments to date [6–8]. None of
these aimed to realize highly solitonlike ground states in the
sense considered here. However, they nonetheless indicate
regimes which have proved to be experimentally accessible

and offer a guide to future possibilities. All have operated
outside the regime of highly solitonlike ground states; direct
comparison of the experiments of Refs. [7,8] with our results
reveals that κ is too small in these experiments (κ ≈ 11 and
κ ≈ 3 respectively) to achieve a highly solitonlike ground
state. The experiment of Ref. [6] featured an expulsive axial
potential, which does not yield a value of κ suitable for
direct comparison with our results. However, it is possible
to assume the waveguide limit ωx = 0 in each experiment
and compare the values of � with our results: in each case
� � 1, outside the regime of highly solitonlike ground states.
Thus, experiments with weaker traps and lower densities than
previously realized with attractive condensates appear to be
necessary in order to achieve a highly solitonlike ground
state.

V. CONCLUSIONS

In this paper we considered attractively interacting atomic
BECs in cylindrically symmetric, prolate harmonic traps,
and introduced variational Ansätze, based on Gaussian and
bright-soliton profiles, for the GPE ground state. We com-
pared analytic variational solutions based on these Ansätze
with highly accurate numerical solutions of the GPE over
an extensive parameter space, and hence determined how
solitonlike the ground state is. Initially assuming the quasi-1D
limit to be valid, we showed that the true solution to the
GPE is (not) solitonlike when interactions do (not) dominate
over the trap strength. In 3D, this picture is complicated
by the collapse instability; in the regime where all trap
strengths dominate over the interactions a Gaussian variational
Ansatz gives an excellent approximation to the true, and
non-soliton-like, ground state. In contrast to the quasi-1D
limit, however, we have shown that the regime in which the
ground state is truly solitonlike (well approximated by a soliton
variational Ansatz) is either nonexistent, or highly restricted,
depending on the trap anisotropy. For low anisotropies, as
one raises the strength of the interactions such that they
approach and exceed the strength of the axial trap, the true
ground state ceases to be well described by a Gaussian
variational Ansatz, but does not become well described by
a soliton variational Ansatz before the interaction strength
also exceeds the radial trapping strength, leading to collapse.
Only by raising the anisotropy significantly can one open a
parameter window in which the true ground state becomes
solitonlike before the interaction strength is sufficient to cause
collapse.

Our results describe the nature of the ground state over a
wide parameter regime and offer a straightforward, accurate
approximation to the full 3D GPE solution in many cases.
Our results are particularly relevant for experiments using
attractively interacting condensates as they identify the po-
tentially challenging parameter regime required to observe a
truly solitonlike ground state, which would be an advantageous
regime for experiments seeking to explore and exploit beyond-
mean-field effects such as a macroscopic superposition of
bright solitons. Given that previous studies have shown that
the dynamics and collisions of bright solitary waves can be
solitonlike over a much wider parameter regime than our
approach reveals the ground state to be, extension of the
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variational approach used here to dynamical situations is an
interesting direction for future work.
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APPENDIX A: USEFUL INTEGRALS

Considering a Gaussian Ansatz to be proportional to
e−k2x2

, for completeness we reprise the following sequence
of well-known integral identities, all of which are necessary to
determine the corresponding variational energy functional:∫ ∞

−∞
dx e−2k2x2 =

√
π/2

k
⇒

∫ ∞

−∞
dx e−4k2x2 =

√
π

2k
,

(A1)∫ ∞

−∞
dx x2e−2k2x2 = − 1

4k

∂

∂k

∫ ∞

−∞
dx e−2k2x2 =

√
π/2

4k3
,

(A2)∫ ∞

−∞
dx

(
∂

∂x
e−k2x2

)2

= 4k4
∫ ∞

−∞
dx x2e−k2x2 = k

√
π/2.

(A3)

Comparable integral identities exist when considering an
Ansatz proportional to sech(kx). Thus:∫ ∞

−∞
dx sech2(kx) =

[
tanh(kx)

k

]∞

−∞
= 2

k
, (A4)

∫ ∞

−∞
dx sech4(kx) =

[ {sech2(kx) + 2}tanh(kx)

3k

]∞

−∞
= 4

3k
,

(A5)∫ ∞

−∞
dx

[
∂

∂x
sech(kx)

]2

= k2
∫ ∞

−∞
dx tanh2(kx)sech2(x)

= k

3
[tanh(kx)]∞−∞ = 2k

3
, (A6)

all of which are necessary to determine the energy of a standard
bright soliton solution to the nonlinear Schrödinger equation.
However, we also require a contribution arising from the
existence of an external harmonic confining potential. Hence,
we determine∫ ∞

−∞
dx x2sech2(kx) = 2

∫ ∞

0
dx x2sech2(kx)

= 2

k3
[Li2(−e−2kx) + kx{kxtanh(kx)

− kx − 2 ln(1 + e−2kx)}]∞0
= 2

k3
[Li2(0) − Li2(−1)]

= 2

k3
η(2) = π2

6k3
, (A7)

where Liy(x) ≡ ∑∞
n=1 xn/ny is a polylogarithm, and

−Liy(−1) = η(y) the Dirichlet η function, with η(2) = π2/12.

APPENDIX B: SOLUTION TO THE QUARTIC EQUATIONS

We require a general solution to a quartic in � of the form

�4 + b� − c = 0, (B1)

where b and c are positive real constants, and � must also take
positive real values to be physically meaningful. This can be
rephrased as the product of two quadratics in �:

[
�2 + α� + 1

2

(
α2 − b

α

)][
�2 − α� + 1

2

(
α2 + b

α

)]
= 0,

(B2)

so long as (b2/α2 − α4)/4 = c. Hence, α, which remains to
be determined, must solve α6 + 4cα2 − b2.

Defining ξ = α2, the problem of determining α reduces to
finding values of ξ to solve the depressed cubic equation

ξ 3 + 4cξ − b2 = 0. (B3)

Defining

A = 3

√
b2

2
+

√
b4

4
+ 64c3

27
, B = 3

√
b2

2
−

√
b4

4
+ 64c3

27
,

(B4)

the three roots of Eq. (B3) are given by

ξ1 = A + B, (B5)

ξ2 = −(A + B)/2 + i
√

3(A − B)/2, (B6)

ξ3 = −(A + B)/2 − i
√

3(A − B)/2. (B7)

Any one of these will solve Eq. (B3), however we choose ξ1;
as b and c are assumed positive real, ξ1 is also conveniently
guaranteed positive real.

Substituting in α = √
ξ1, we can apply the quadratic

formula to both the factors (enclosed in square brackets) on
the left-hand side of Eq. (B2). This reveals the four roots to be

�1 = −√
ξ1 +

√
−ξ1 + 2b/

√
ξ1

2
, (B8)

�2 = −√
ξ1 −

√
−ξ1 + 2b/

√
ξ1

2
, (B9)

�3 =
√

ξ1 +
√

−ξ1 − 2b/
√

ξ1

2
, (B10)

�4 =
√

ξ1 −
√

−ξ1 − 2b/
√

ξ1

2
. (B11)

Recalling that b and ξ1 are positive real, �3 and �4 are clearly
complex, and therefore not of interest to us. Noting that

ξ 3
1 = A3 + B3 + 3AB(A + B) = b2 − 4cξ1, (B12)

we can see that A3 + B3 ≡ b2 > ξ 3
1 ; hence 4b2 > ξ 3

1 and thus
2b/

√
ξ1 > ξ1. Roots �1 and �2 are therefore real, but �2 is

guaranteed negative. However, from Eq. (B12) it also follows
that

b > ξ1

√
ξ1 ⇒ 2b/

√
ξ1 > 2ξ1 ⇒ 2b/

√
ξ1 − ξ1 > ξ1

⇒
√

−ξ1 + 2b/
√

ξ1 >
√

ξ1. (B13)
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Hence �1 is guaranteed positive real and is the only solution
of interest.

Thus, the single positive real root of Eq. (B1) is

� = χ1/2b1/3

27/6

{[(
2

χ

)3/2

− 1

]1/2

− 1

}
, (B14)

with

χ =
{

1 +
[

1 + (c/3)3

(b/4)4

]1/2}1/3

+
{

1 −
[

1 + (c/3)3

(b/4)4

]1/2}1/3

,

(B15)

and where values of all fractional powers are taken to be real,
and positive when a positive root exists.
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