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Malostranské nám. 2/25, 118 00, Prague, Czech Republic.
fiala@kam.mff.cuni.cz†
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Abstract. The INDUCED MINOR problem is to test whether a graph G contains
a graph H as an induced minor, i.e., if G can be modified into H by a sequence
of vertex deletions and edge contractions. When H is fixed, i.e., not part of the
input, this problem is denoted H -INDUCED MINOR. We provide polynomial-
time algorithms for this problem in the case that the fixed target graph has a star-
like structure. In particular, we show polynomial-time solvability for all forests
H on at most seven vertices except for one such case.

1 Introduction

Whether or not a graph G contains a graph H depends on the notion of containment we
use; in the literature several natural definitions have been studied such as containing H
as a contraction, dissolution, immersion, (induced) minor, (induced) topological minor,
(induced) subgraph, or (induced) spanning subgraph (cf. [13]). In this paper, we focus
on the containment relation “induced minor”. Before we give a survey of existing work
and present our own results, we first state some basic terminology.

We consider undirected graphs with no loops and no multiple edges. We denote the
vertex set and edge set of a graph G by VG and EG, respectively. If no confusion is
possible, we may omit subscripts. We refer the reader to Diestel [5] for any undefined
graph terminology.

Let e = uv be an edge in a graph G. The edge contraction of e removes u and v
from G, and replaces them by a new vertex adjacent to precisely those vertices to which
u or v were adjacent. Let G and H be two graphs. Then G contains H as a contraction,
induced minor or minor if G can be modified into H by a sequence of edge contrac-
tions, edge contractions and vertex deletions, or edge contractions, edge deletions and
vertex deletions, respectively. The corresponding decision problems are called CON-
TRACTIBILITY, INDUCED MINOR and MINOR, respectively. All three problems are
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NP-complete even for pairs (G,H) where G and H are trees of bounded diameter,
or trees, the vertices of which have degree at most 3 except for at most one vertex, as
shown by Matoušek and Thomas [13]. It is therefore natural to fix the graph H (the
target graph) in an ordered input pair (G,H) and consider only the graph G (the host
graph) to be part of the input. We indicate this by adding “H-” to the names of the
decision problems.

Known results. A celebrated result by Robertson and Seymour [14] states that the prob-
lem H-MINOR can be solved in cubic time for every fixed graph H . The computational
complexity classifications of H-INDUCED MINOR and H-CONTRACTIBILITY are still
open. Many partial results are known, in particular for special graph classes. Below we
briefly survey these.

Fig. 1. The smallest graph H for which H-INDUCED MINOR is NP-complete [6].

Fellows et al. [6] showed that the H-INDUCED MINOR problem is NP-complete
for a specific graph H on 68 vertices displayed in Figure 1. This is still the smallest
known NP-complete case for H-INDUCED MINOR. They also showed that for every
fixed graph H , the H-INDUCED MINOR problem can be solved in polynomial time on
planar graphs. Later this result was extended by van ’t Hof et al. [9] who showed that
for every fixed planar graph H , the H-INDUCED MINOR problem is polynomial-time
solvable on any minor-closed graph class not containing all graphs. Belmonte et al. [1]
showed that for every fixed graph H , the H-INDUCED MINOR problem is polynomial-
time solvable for chordal graphs, whereas for claw-free graphs partial results that only
include polynomial-time solvable cases are known [7].

Brouwer and Veldman [4] gave polynomial-time solvable and NP-complete cases
for the H-CONTRACTIBILITY problem. One of their results is that this problem is al-
ready NP-complete for a graph H on 4 vertices, namely when H is fixed to be the 4-
vertex path or the 4-vertex cycle. This research was later extended by Levin, Paulusma
and Woeginger [11,12] and van ’t Hof et al. [9]. Kamiński, Paulusma and Thilikos [10]
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showed that for every fixed H , the H-CONTRACTIBILITY problem can be solved in
polynomial time on planar graphs. By extending previous results [2,8], Belmonte et
al. [1] showed that for every fixed graph H , the H-CONTRACTIBILITY problem is
polynomial-time solvable for chordal graphs.

Our focus. We consider the H -INDUCED MINOR problem when H is a fixed forest.
Our research is motivated by the following problem that was first posed at the AMS-
IMS-SIAM Joint Summer Research Conference on Graph Minors in 1991.

Can H-INDUCED MINOR be solved in polynomial time for any fixed tree H?

In contrast to the H-CONTRACTIBILITY problem, which is already NP-compete when
H is the 4-vertex path [4], the H-INDUCED MINOR problem is polynomial-time solv-
able when H is a path of arbitrary length. This is because in that case the problem
is equivalent to checking if H appears as an induced subgraph in the host graph G.
However, for other trees, the situation is considerably less clear, and the problem posed
above is still open.

Our results. In Section 3 we show that H-INDUCED MINOR is polynomial-time solv-
able when H is any fixed star that may be subdivided or any fixed double star, one side
of which contains exactly 2 leaves. See Figure 2 for an illustration of these star-like
trees. In addition, we show a number of further consequences, which enable us to settle
the complexity of H-INDUCED MINOR for any forest H on at most 7 vertices except
when H is the 7-vertex tree H∗ obtained by subdividing the centre edge in a double
star, both sides of which contain exactly two leaves (also see Figure 2). In Section 4 we
discuss a number of open problems.

Fig. 2. From left to right: an example of a star, a subdivided star, a double star with 3 vertices on
one side and 2 vertices on the other side, and the graph H∗.

2 Preliminaries

Let G = (V,E) be a graph. We write G[U ] to denote the subgraph of G induced by
U ⊆ V , i.e., the graph on vertex set U and an edge between any two vertices if and
only if there is an edge between them in G. For a vertex u, the graph G− u denotes the

3



graph obtained from G after removing u. We say that U is an independent set if there is
no edge in G between any two vertices of U . Two sets U,U ′ ⊆ V are called adjacent
if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ E. A vertex v is a neighbor
of u if uv ∈ E. We let N(u) denote the set of neighbors. The degree of a vertex u is
its number of neighbors. We let Cn, Kn, and Pn denote the cycle, complete graph, and
path on n vertices, respectively.

A graph G = (V,E) is called k-connected if G[V \U ] is connected for every set
U ⊆ V of at most k−1 vertices. A graph G that is not connected is called disconnected.
A k-vertex cut is a subset S ⊆ V of size k such that G[V \S] is disconnected. The vertex
in a 1-vertex cut of a graph G is called a cut vertex. Each maximal 2-connected subgraph
of a graph G is called a block of G. Note that by their maximality any two blocks of G
have at most one vertex in common, and such a common vertex is a cut vertex of G. A
block that contains at most one cut vertex is called a leaf block. We call a vertex of G
that is not a cut vertex an internal vertex. Observe that every leaf block of G contains
at least one internal vertex.

A star is a graph formed by joining each vertex of an independent set to an extra
vertex called the centre vertex. A double star is formed by joining each vertex of an
independent set to one of the two end-vertices of an extra edge called the centre edge.

Let G and H be two graphs. An H-witness structure W is a vertex partition of G
into |VH | (nonempty) sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if and only

if x and y are adjacent in H;

By contracting all bags to single vertices we find that H is a contraction of G if and only
if G has an H-witness structure. We note that G may have more than one H-witness
structure. We call a bag that corresponds to a vertex of degree one in H a leaf bag.

The algorithm in the following lemma is not only useful for contractions but also
for induced minors. The lemma is stated as Corollary 5 in the paper by Levin et al. [11],
the proof of which explains that it follows from applying Robertson and Seymour’s
cubic-time algorithm [14] for finding a fixed graph minor at most O(|V |k2

) times.

Lemma 1 ([14]). Let G = (V,E) be a graph and let Z1, . . . , Zp ⊆ VG be p specified
pairwise disjoint sets such that

∑p
i=1 |Zi| ≤ k for some fixed integer k ≥ p. The

problem of deciding whether G contains Kp as a contraction with Kp-witness bags
W1, . . .Wp such that Zi ⊆Wi for i = 1, . . . , p can be solved in O(|V |k2+3) time.

We observe that a graph G contains a graph H as an induced minor if and only if G
has an induced subgraph G′ that contains H as a contraction. In that case we say that an
H-witness structure of G′ is an H-semi-witness structure of G and call the H-witness
bags of G′ H-semi-witness bags of G, or just bags if no confusion is possible. Just as
for contractions, a bag that corresponds to a vertex of degree one in H is called a leaf
bag.
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3 Induced minors

In order to prove the results in this section we need the following lemma. Let G be
a graph that contains H as an induced minor. Then we say that an H-semi-witness
structure of G is minimum if the union of its bags has minimum size over all H-semi-
witness structures of G.

Lemma 2. If a graph G has a graph H as an induced minor, then every leaf bag in
every minimum H-semi-witness structureW of G contains exactly one vertex.

Proof. In order to obtain a contradiction, suppose thatW is a minimum H-semi-witness
structure of G that has a leaf bag W (x) on more than one vertex. Then we can remove
all vertices from W (x) except a vertex adjacent to a vertex in the neighbor bag of W (x).
This is not possible. ut

We also need the next lemma which shows that every graph that contains K1,3 as an
induced minor has a K1,3-semi-witness structure of bounded size, where bounded size
means that its bags contain in total at most 6 vertices.

Lemma 3. If G contains K1,3 as an induced minor, then G has a K1,3-semi-witness
structure whose bags contain in total at most 6 vertices.

Proof. Denote the centre vertex of K1,3 by b and its leaves by a1, a2, a3. Let G be a
graph that contains K1,3 as an induced minor. LetW be a minimum K1,3-semi-witness
structure for G. By Lemma 2, we may assume that each leaf bag W (ai) consists of
exactly one vertex. Denote these vertices by u1, u2, u3, respectively.

Consider a shortest path P from u1 to u2 in the subgraph of G induced by W (a1)∪
W (b) ∪W (a2). Let Q be a shortest path from u3 to a vertex z ∈ VP in the subgraph
of G induced by W (b) ∪ W (a3). Note that z /∈ {u1, u2, u3}, because by definition
z ∈ VP ∩VQ ⊆W (b). We also observe that P and Q are induced paths in G. Moreover,
the minimality of W combined with the observation that G[VP ∪ VQ] is connected
implies that (VP ∪ VQ) \ {u1, u2, u3} = W (b).

Case 1. Q only consists of u3 and one other vertex.
Let ` be the neighbor of u3 on P that is as close to u1 as possible. Let r be the neighbor
of u3 on P that is as close to u2 as possible. Note that ` = r is possible. By the
minimality ofW , we find that u1 is the left neighbor of ` on P and that u2 is the right
neighbor of r on P . If ` = r, or ` is adjacent to r, then W (b) contains no other vertex
except ` and r. Hence |W (b)| ≤ 2, and consequently,W is a desired K1,3-semi-witness
structure for G.

Now suppose that ` 6= r and that ` is not adjacent to r. Let P ′ = `t1 · · · tqr be
the subpath of P from ` to r; note that q ≥ 1. See Figure 3 for an illustration. If
q ≥ 2, then we find a K1,3-semi-witness structureW ′ for G given by W ′(a1) = {u1},
W ′(a2) = {t1}, W ′(a3) = {r}, and W ′(b) = {`, u3}. This is a contradiction to the
minimality of W . Hence, q = 1. Then W (b) = {`, r, t1}. We conclude that W is a
desired K1,3-semi-witness structure for G.

Case 2. Q consists of u3 and at least two other vertices.
We denote the subpath of Q from u3 to the vertex of Q that is adjacent to a vertex of P
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Fig. 3. An illustration of Case 1 of the proof of Lemma 3. Note that q = 0 is possible, and that
if q ≥ 1, then u3 can be shown to be adjacent to every ti. However, this is not relevant for our
proof, and we did not draw such edges.

as u3s1 · · · sq for some q ≥ 1. Let ` and r be the neighbors of sq on P that are closest to
u1 and u2, respectively; we note that ` = r is possible. See Figure 4 for an illustration.

First suppose that ` = u1. Consider the subpath P ′ of P that goes from the neighbor
of u1 to the left neighbor of r (i.e., which does not pass through r but just stops before).
If P ′ is nonempty, then we can remove all vertices of P ′ in order to obtain a new K1,3-
semi-witness structure for G. This is a contradiction to the minimality of W . Hence,
P ′ is empty. This means that r is the neighbor of u1 on P . The minimality ofW also
implies that r is the neighbor of u2 on P ; note that r = u2 is not possible, because r is
adjacent to u1. Suppose that q ≥ 3. If some si is adjacent to u2, then we can remove r
from W (b) and obtain a new K1,3-semi-witness structure for G. This is a contradiction
to the minimality of W . Hence no si is adjacent to u2. This enables us to use the
following argument. If some si is not adjacent to u1, then we can remove u3 from
W (a3), the vertices s1, . . . , si−1 (if they exist) from W (b) and move si from W (b) to
W (u3). This leads to a new K1,3-semi-witness structure for G, which is a contradiction
to the minimality ofW . Hence, all si are adjacent to u1. However, recall that we assume
that q ≥ 3. Then we obtain a new K1,3-semi-witness structureW ′ for G that is defined
by W ′(a1) = {r}, W ′(a2) = {s2}, W ′(a3) = {u3} and W ′(b) = {s1, sq, u1}. This
is a contradiction to the minimality of W . Hence, q ≤ 2. Recall that q ≥ 1. Then
W (b) = {r, s1} if q = 1 and W (b) = {r, s1, s2} if q = 2. We conclude that W is a
desired K1,3-semi-witness structure for G. Now suppose that r = u2. Then we follow
the same reasoning. Hence, from now on we may assume that ` 6= u1 and r 6= u2.

The minimality of W implies that u1 is the left neighbor of ` on P and that u2 is
the right neighbor of r on P . If ` = r, then `, u1, u2, sq form an induced claw with
centre `, and as such a K1,3-semi-witness structure for G. This is a contradiction to the
minimality ofW .

Suppose that ` 6= r. If ` is not adjacent to r, then let t be the neighbor of ` on
P that is not equal to u1. We define a new K1,3-semi-witness structure W ′ for G by
W ′(a1) = {u1}, W ′(a2) = {u2}, W ′(a3) = {t} and W ′(b) = {`, r, sq}. This is a
contradiction to the minimality ofW .

Finally, suppose that ` and r are two distinct vertices that are adjacent. First suppose
that q ≥ 2. Then we consider sq−1. By the definition of Q, we know that sq−1 is not
adjacent to any vertex of P except perhaps u1 or u2. If sq−1 is adjacent to both u1

and u2, then we may remove `, r, sq from W (b) in order to obtain a new K1,3-semi-
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u2u1 l r
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Fig. 4. An illustration of Case 2 of the proof of Lemma 3. Note that q ≥ 1. It is possible that
either u1 = ` or u2 = r. In the proof we show that either ` = r, or ` and r are adjacent. Also,
there may exist edges between some ui with 1 ≤ i ≤ 2 and some sj with 1 ≤ j ≤ q but we did
not draw them. However, by definition, there is no edge between any si with 1 ≤ i ≤ q − 1 and
a vertex from VP \ {u1, u2} = {`, r}.

witness structure for G. This is a contradiction to the minimality ofW . If sq−1 is neither
adjacent to u1 nor to u2, then we may remove u3 from W (u3), the vertices s1, . . . , sq−2
(if they exist) from W (b) and move sq−1 from W (b) to W (u3) in order to obtain a new
K1,3-semi-witness structure for G. This is again a contradiction to the minimality of
W . Hence, we find that sq−1 is either adjacent to u1 or to u2, say sq−1 is adjacent to
u1 and thus non-adjacent to u2. Then we define the K1,3-semi-witness structureW ′ by
W ′(a1) = {`}, W ′(a2) = {u2}, W ′(a3) = {sq−1} and W ′(b) = {r, sq}. This is a
contradiction to the minimality of W . Hence q ≤ 1. Recall that q ≥ 1. We conclude
that q = 1. This means that W (b) = {`, r, s1}, and in that case,W is a desired K1,3-
semi-witness structure for G. This completes the proof of Lemma 3. ut

We note that Lemma 3 only holds for stars with four vertices. A counterexample
for the case K1,4 is as follows: construct a graph G by taking an arbitrary long path
u1u2 · · ·up−1up and adding two new vertices v, w and edges u2v and up−1w; see Fig-
ure 5. Then the only K1,4-semi-witness structure of G uses all vertices of G. We also
note that the bound of 6 on the total number of vertices in a minimum K1,3-semi-
witness structure in Lemma 3 is best possible. In order to see this we consider the graph
G∗ obtained from a path on five vertices u1v1u2v2u3 after adding a new vertex u′2 that
we make adjacent (only) to u2, v1, v2; also see Figure 5. The graph G∗ contains K1,3

as an induced minor, but has only two K1,3-semi-witness structuresW1 andW2, where
W1 is given by leaf bags {ui} for i = 1, 2, 3 and centre bag {u2, v1, v2}, and W2 is
obtained fromW1 by swapping u2 and u′2. BothW1 andW2 use all vertices of G∗, and
hence contain six vertices in total.

We use Lemma 3 to prove Proposition 1. The graph G+H = (VG∪VH , EG∪EH)
is the disjoint union of two vertex-disjoint graphs G and H .

Proposition 1. Let H be a graph and F be the disjoint union of claws and paths. If H-
INDUCED MINOR is polynomial-time solvable, then so is (H + F )-INDUCED MINOR.

Proof. The result follows from Lemma 3 and the observation that a graph G contains a
path as an induced minor if and only if it contains this path as an induced subgraph.
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Fig. 5. The two counterexamples consisting of a graph G (left side) and a graph G∗ (right side).

Consequently, we can guess the bags of an F -semi-witness structure in G, remove
all vertices that are adjacent to at least one vertex of this copy from G and check if
the remaining graph has H as an induced minor. Because the number of guesses is
O(|VG|

3|VF |
2 ) and F is fixed (so |VF | is a constant) the result follows. ut

We note that Proposition 1 shows that F -INDUCED MINOR is polynomial-time
solvable when F is the disjoint union of claws and paths; take as H the empty graph.

The subdivision of an edge uv in a graph replaces uv by two new edges uw and
wv for some new vertex w. A subdivided star is a graph obtained from a star after
performing a sequence of zero or more edge subdivisions.

Proposition 2. The H-INDUCED MINOR problem is solvable in polynomial time for
every fixed subdivided star H .

Proof. First assume that H is a star. If H has p leaves a1, . . . , ap, then we try all at
most np choices for H-semi-witness bags W (a1), . . . ,W (ap), where each W (ai) con-
sist of only one vertex ui. For each choice we check whether {u1, . . . , up} forms an
independent set, and whether the subgraph of G induced by VG \{u1, . . . , up} contains
a connected component that is adjacent to each vertex of {u1, . . . , up}. If one of these
tries succeeds, we choose such a component as the H-semi-witness bag for the centre
vertex of the star and find that H is an induced minor of G. Because the connected com-
ponents can be found in O(m) time, and also all adjacencies can be tested in the same
time, where m is the number of edges of G, the total time complexity of this algorithm
is O(npm). This is polynomial because H is fixed, and consequently, p is a constant.

If H has one or more subdivided edges, we can use similar arguments after observ-
ing that every witness bag in an H-semi-witness structure except the centre bag may be
assumed to have size one. ut

Let H and G be graphs such that G contains H as an induced minor. Let W be
an H-semi-witness structure of G. We call the subset of vertices in a semi-witness bag
W (xi) that are adjacent to vertices in some other semi-witness bag W (xj) an interface,
denoted IW(xi, xj). Observe that IW(xi, xj) ∩ IW(xj , xi) = ∅ for i 6= j, because
IW(xi, xj) ⊆ W (xi) and IW(xj , xi) ⊆ W (xj), and W (xi) ∩W (xj) = ∅ for i 6= j.
We use this notion to simplify the semi-witness structures of graphs with an induced
minor.

From now on, we denote the vertices in a double star as follows: the centre edge is
bc where b is adjacent to a set of degree-one vertices A = {a1, . . . , ap} for some p ≥ 1
and c is adjacent to a set of degree-one vertices B = {d1, . . . , dq} for some q ≥ 1. If
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H is a double star with p = 1 or q = 1, then H is a subdivided star, and we can apply
Proposition 2. Hence, we assume that p ≥ 2 and q ≥ 2. We prove the following result.

Theorem 1. For any fixed double star H with p ≥ 2 and q = 2, the H-INDUCED
MINOR problem can be solved in polynomial time.

Proof. Let G be a graph and H be a double star with p ≥ 2 and q = 2. We apply the
following algorithm called DOUBLE STAR, the correctness of which we prove after-
wards.

We choose p + 2 different vertices u1, . . . , up, u
′
1, u
′
2 that form an independent set

of G. We remove any vertex that is adjacent to both some u-vertex and some u′-vertex.
Afterwards, we contract any edge that has both its end-vertices in the neighborhood
of some u-vertex, or both its end-vertices in the neighborhood of some u′-vertex. We
do this repeatedly until this is no longer possible. We then check if H is an induced
subgraph of the resulting graph G′′. If so, then we return yes. Suppose not. We choose
sets S1, . . . , Sp of at most 4p+1 vertices each and sets T1, T2 of at most p+7 vertices
each; these sets must consist of neighbors of u1, . . . , up, u′1, u

′
2, respectively. Then we

remove u1, . . . , up, u′1, u
′
2 together with all their other neighbors not in any S- or T -

set. We check if S1, . . . , Sp, T1, T2 are all in the same connected component L of the
remaining graph. If so, then we apply the algorithm of Lemma 1 on L with Z1 =
S1 ∪ · · · ∪ Sq and Z2 = T1 ∪ T2, and if we find an H-witness structure, then we
return yes. Otherwise, we adjust our choice of S-sets and T -sets, and if necessary
also our choice of u-vertices and u′-vertices, unless we already considered all possible
choices; in that case we return no. Our algorithm terminates because the number of
different choices it makes during its execution is finite. For clarity, we give its pseudo-
code below.

—————————————————————————————————————-
DOUBLE STAR
Input: A graph G.
Output: yes or no.

1 While there are p+ 2 distinct vertices u1, . . . , up, u
′
1, u
′
2 that form an independent set do

2 Remove any vertex that is adjacent to a u-vertex and u′-vertex.
3 Contract all edges that have both end-vertices in the neighborhood of a u- or u′-vertex.
4 If H is an induced subgraph of the resulting graph, then return yes.
5 For all sets S1 ⊆ N(u1), . . . , Sp ⊆ N(up) of at most 4p+ 1 vertices each and
6 sets T1 ⊆ N(u′1), T2 ⊆ N(u′2) of at most p+ 7 vertices each do
7 Remove u1, . . . , up, u

′
1, u
′
2 together with all their other neighbors not in any S- or T -set.

8 If S1, . . . , Sp, T1, T2 are in the same connected component L, then
9 Apply the algorithm of Lemma 1 on L with Z1 = S1 ∪ . . . ∪ Sp and Z2 = T1 ∪ T2.
10 If the algorithm finds an H-witness structure, then return yes.
11 Return no.
—————————————————————————————————————-
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We now prove that our algorithm is correct, i.e., that it returns yes if and only
if G contains H as an induced minor. First suppose that the algorithm returns yes.
This will only happen when it finds that G′′ contains H as an induced subgraph, or
when it applies Lemma 1 on some sets S1, . . . , Sp, T1, T2 resulting from some choice
of vertices u1, . . . , up, u′1, u

′
2. For the first case, we use the property that the induced

minor relation is transitive. We first deduce that G contains G′′ as an induced minor,
because we only performed edge contractions and vertex deletions to obtain G′′ from
G. We then observe that G′′ contains H as an induced subgraph, and consequently,
G′′ contains H as an induced minor. Hence, G contains H as an induced minor. In the
second case, a K2-witness structure of L has been found. Let WB and WC denote the
two bags of this structure. Because the u-vertices together with the u′-vertices form
an independent set, we can then define an H-semi-witness structure of G by setting
W (ai) = {ui} for i = 1, . . . , p, W (b) = WB , W (c) = WC and W (di) = {u′i} for
i = 1, 2. Hence, G also contains H as an induced minor in this case.

Now suppose that G contains H as an induced minor. Then we can consider a
minimum H-semi-witness structure W of G. By Lemma 2, we find that there exist
p + 2 vertices u1, . . . , up, u′1, u

′
2 in G such that W (a1) = {ui} for i = 1, . . . , p

and W (dj) = {u′j} for j = 1, 2. Because our algorithm considers all possibilities, it
will consider these choices of u-vertices and u′-vertices at some moment (unless it has
already outputted yes before). Hence, from now on, we may assume that our algorithm
is processing this particular choice of u-vertices and u′-vertices.

Any vertex v that is adjacent to both some ui and some u′j is neither in W (b)
nor in W (c); otherwise, in the first case, W (b) would be adjacent to W (u′j), which is
not possible, and in the second case, W (c) would be adjacent to W (ui), which is not
possible either. Hence, our algorithm may without loss of generality remove v from G.
Let G′ denote the resulting graph obtained after removing all such vertices. From the
above, we find thatW is an H-semi-witness structure of G′ as well. The graph G′ will
be processed further, and we prove the following claim.

Claim 1. We may without loss of generality contract all edges vw whenever v, w are
neighbors of the same u-vertex or neighbors of the same u′-vertex; this results in a
graph G′′ that has an H-semi-witness structure with the same leaf bags asW .

We prove Claim 1 as follows. Let v and w be two adjacent neighbors of some ui; the
proof when v and w are neighbors of some u′j goes the same. If v or w both belong to
W (b), then contracting vw results in a graph that still contains H as an induced minor.
Suppose that v and w do not belong to W (b). Then, v and w both do not belong to any
bag of W , as otherwise W (ui) is adjacent to some bag not equal to W (b), which is
not possible. Hence, also in this case, contracting vw results in a graph that still con-
tains H as an induced minor. Finally, suppose that one of v, w, say v, belongs to W (b),
whereas w does not belong to W (b). Then, w does not belong to any bag of W , as
otherwise W (ui) is adjacent to some bag not equal to W (b), which is not possible. We
also observe that w is neither adjacent to u′1 nor to u′2, because the algorithm already
removed all vertices adjacent to both an u-vertex and an u′-vertex in the previous step.
Furthermore, w is adjacent to W (b) due to the edge vw. Hence, the collectionW ′ ob-
tained fromW by adding w to W (b) is an H-semi-witness structure of G′. We conclude
that our algorithm may without loss of generality contract vw. By the same arguments
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it may continue contracting any other edges whose end-vertices are neighbors of the
same u-vertex or the same u′-vertex. The resulting graph G′′ has an H-semi-witness
structure with the same leaf bags asW . This proves Claim 1.

Note that the neighborhood of every u-vertex and every u′-vertex in G′′ is an inde-
pendent set by construction of G′′. If G′′ contains H as an induced subgraph, then our
algorithm will detect this before it continues to the next step. In that case, it will re-
turn yes, as desired. From now on, assume that G′′ does not contain H as an induced
subgraph. By Claim 1, we find that G′′ has an H-semi-witness structureW ′′ such that
W ′′(ai) = {ui} for i = 1, . . . , p and W ′′(dj) = {u′j} for j = 1, 2. We say that
W ′′ or any other H-semi-witness structure of G′′ that has leaf bags {u1}, . . . , {up},
{u′1}, {u′2} corresponding to a1, . . . , ap, d1, d2, respectively, is leaf-suitable.

Let W∗ be a leaf-suitable H-semi-witness structure such that |W ∗(b) ∪ W ∗(c)|
is minimum over all leaf-suitable H-witness structures of G′′; note thatW∗ = W ′′ is
possible. Recall that we call a vertex of a graph that is not a cut vertex an internal vertex.
We write B = G′′[W ∗(b)] and prove the following claim.

Claim 2. The number of internal vertices of B is at most p+ 1.

We prove Claim 2 as follows. Every internal vertex v of B has a private neighbor bag
W ∗v ∈ {W ∗(a1), . . . ,W ∗(ap),W ∗(c)}, i.e., a bag adjacent to v but not to any other
vertex of B; otherwise we could remove v from W ∗(b) and obtain a new leaf-suitable
witness structure with fewer vertices in the union of the two centre bags, contradicting
the minimality of |W ∗(b)∪W ∗(c)|. Because |{W ∗(a1), . . . ,W ∗(ap),W ∗(c)}| = p+1,
this means that B contains at most p+ 1 internal vertices. This proves Claim 2.

We use Claim 2 to prove Claim 3, which is crucial for our algorithm.

Claim 3. Every u-vertex has at most 4p+ 1 neighbors in B.

We prove Claim 3 as follows. Suppose that some ui has at least 4p+ 2 neighbors in B.
Let {r1, . . . , rm} be the set of cut vertices in B that are adjacent to u. Then Claim 2
tells us that m ≥ 3p + 1. Consider r1. Because r1 is a cut vertex of B, we find that r1
has two neighbors s and t in B that are not adjacent to each other.

We claim that both s and t have at most p neighbors in {r2, . . . , rm}. In order to see
this, suppose that one of s, t, say s, is adjacent to q ≥ p+1 vertices in {r2, . . . , rm}. We
may assume without loss of generality that s is adjacent to all vertices of {r2, . . . , rq+1}.
Consider a vertex rj for some 1 ≤ j ≤ q + 1. Because s is adjacent to all vertices in
{r1, . . . , rq+1}, every ri with 1 ≤ i ≤ q+1 and i 6= j is in the same connected compo-
nent Cj of B− rj . Because rj is a cut vertex of B, we find that B− rj has a connected
component C ′j 6= Cj . This means that B contains a leaf block, all of its vertices belong
to C ′j . Moreover, for any two distinct vertices ri and rj in {r1, . . . , rq+1}, we find that
C ′i is a subgraph of Cj ; see Figure 6 for an example. As Cj and C ′j are vertex-disjoint,
this means that C ′i and C ′j are vertex-disjoint. Hence the leaf blocks contained in the
graphs C ′1, . . . , C

′
q+1 are mutually vertex-disjoint. This implies that B contains at least

q + 1 ≥ p + 2 distinct leaf blocks. Recall that each leaf block contains at least one
internal vertex of B. Hence, B contains at least p+2 internal vertices. However, this is
not possible due to Claim 2. We conclude that both s and t have at most p neighbors in
{r2, . . . , rm}.
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r 1 r 2 r 3

s

C’1 C’2 C’3

C1

Fig. 6. An example of a graph B. Although m ≥ 3p + 1, for clarity we assume that m = 3
here. Also note that in this example B − r1 and B − r3 each consist of 3 components, whereas
B − r2 consists of two components. Hence, for B − r1 and B − r3 we have two choices for the
components C′1 and C′3, respectively. We only indicated the components C1, C

′
1, C

′
2, C

′
3. Note

that C1 contains C′2 and C′3 as subgraphs.

Because m ≥ 3p + 1, the above implies that there exist 3p + 1 − (2p + 1) = p
vertices in {r2, . . . , rm} that are neither adjacent to s nor to t. Denote this set of vertices
by R′, so |R′| = p. Recall that all neighbors of ui form an independent set. This means
that we can derive the following. First, ui is neither adjacent to s nor to t, because s and
t are adjacent to a neighbor, namely r1, of ui. Second, R′ ∪ {r1} is an independent set.
Third, using that s and t are not adjacent to any vertex of R′, we find that R′ ∪ {s, t}
is an independent set. However, then R′ ∪ {r1, s, t, ui} induce a subgraph of G′′ that
is isomorphic to H , where the vertices in R′ correspond to the p a-vertices, ui to the
b-vertex, r1 to the c-vertex, and s, t to the two d-vertices. This is not possible, because
we assume that in this stage of the algorithm, G′′ does not contain H as an induced
subgraph. Hence, we have proven Claim 3.

In the same way as for the u-vertices, we can show a bound on the number of neighbors
that a u′-vertex has in W ∗(c); note that we assumed that W ∗(b)∪W ∗(c) had minimum
size for exactly this reason. Because we only have two sets W ∗(d1) and W ∗(d2), we
copy the proof of Claim 2 to find that the number of internal vertices of W ∗(c) is at
most 2+ 1 = 3. Then, analogously to Claim 3, we find that every u′-vertex has at most
p+ 7 neighbors in W ∗(c).

For i = 1, . . . , p, let Si denote the set of neighbors of ui in B = G′′[W ∗(b)]. For
j = 1, 2, let Tj denote the set of neighbors of u′j in G′′[W ∗(c)]. Because each Si has
size at most 4p+1 and each Tj has size at most p+7, the algorithm will consider these
sets as a possible choice at some moment (unless it already has returned yes before).
Hence, from now on, we may assume that our algorithm is processing this particular
choice of S-sets and T -sets. Then, in the next step, the algorithm removes all u-vertices
together with all their other neighbors, and both u′-vertices together with all their other
neighbors from G′′. We call the resulting graph G̃.

By definition, W ∗(b) contains all vertices of every Si, and W ∗(c) contains all ver-
tices of every Tj . Moreover, W ∗(b) and W ∗(c) are adjacent. Hence, the vertices of
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S1 ∪ · · · ∪ Sp ∪ T1 ∪ T2 all belong to the same connected component L of G̃. This
will be detected by our algorithm, when it will check this. Consequently, the next
step of our algorithm will be to apply Lemma 1 on L with Z1 = S1 ∪ · · · ∪ Sp

and Z2 = T1 ∪ T2. Because {W ∗(b),W ∗(c)} is a K2-witness structure of L with
Z1 ⊆ W ∗(b) and Z2 ⊆ W ∗(c), the call on Lemma 1 will be positive, and our algo-
rithm will return yes, as desired.

What remains for us to do is to analyze the running time of our algorithm. Let n
be the number of vertices of G. Then the total number of choices of combinations of
sets of u-vertices, sets of u′-vertices, collections of S-sets, and collections of T -sets is
bounded by np ·n2 ·np(4p+1) ·n2(p+7). This is a polynomial number, because we assume
that p is fixed. For each choice, all operations of the algorithm take polynomial time; in
particular every call on Lemma 1 takes polynomial time as Z1 and Z2 have fixed size,
namely at most p(4p + 1) or at most 2(p + 7), respectively. Hence, the total running
time is polynomial. This completes the proof of Theorem 1. ut

We define a k-subdivided double star as the graph that is obtained from a double
star after performing a subdivision of the edge a1b, . . . , akb, where 1 ≤ k ≤ p. Then
we can show the following result; note that the case p ≥ 1 and q = 1 follows from
Proposition 2.

Theorem 2. For any fixed k-subdivided double star with p ≥ max{k, 2} and q = 2,
the H-INDUCED MINOR problem can be solved in polynomial time.

Proof. Let G be a graph and H be a k-subdivided double star with p ≥ max{k, 2} and
q = 2. We use an algorithm called k-SUBDIVIDED DOUBLE STAR WITH q = 2 that is
very similar to the algorithm in the proof of Theorem 1. In order to do so, we need the
following extra terminology. Let F be a graph that is isomorphic to kP2+(p−k+2)P1.
In F , we specify one vertex of each connected component isomorphic to P2 and call
this vertex the marked vertex. Moreover, we partition the (p − k + 2) isolated vertices
of F into one set of (p − k) vertices called left-unique and one set of 2 vertices called
right-unique. We call F as semi-leaf graph, that has become ordered after we made our
choices of marked vertices, left-unique and right-unique vertices.

We are now ready to describe our algorithm. First, we check if G contains a semi-
leaf graph F . If not, then we return no. Otherwise, we choose a semi-leaf graph F
and order it. In F , let u1, . . . , uk be its marked vertices, v1, . . . , vk be the respective
neighbors of u1, . . . , uk, whereas uk+1, . . . , up are its left-unique vertices and u′1, u

′
2 its

right-unique vertices. Note that VF = {u1, . . . , up, u
′
1, u
′
2, v1, . . . , vk}. We remove all

neighbors of each vi not equal to ui from G should there be any. We remove any vertex
that is adjacent to both some u-vertex and some u′-vertex. Afterwards, we contract any
edge that has both its end-vertices in the neighborhood of some u-vertex, or both its
end-vertices in the neighborhood of some u′-vertex. We do this repeatedly until this is
no longer possible. We then check if H is an induced subgraph of the resulting graph
G′′. If so, then we return yes. Suppose not. We remove v1, . . . , vk. We then choose
sets S1, . . . , Sp of at most p(k + 2) + 2p + 1 vertices each and sets T1, T2 of at most
2(k + 2) + p + 3 vertices each; these sets must consist of neighbors of u1, . . . , up,
u′1, u

′
2, respectively. Then we remove u1, . . . , up, u′1, u

′
2 together with all their other

neighbors. We check if S1, . . . , Sp, T1, T2 are all in the same connected component
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L of the remaining graph. If so, then we apply the algorithm of Lemma 1 on L with
Z1 = S1 ∪ · · · ∪ Sp and Z2 = T1 ∪ T2. If we find an H-witness structure, then we
return yes. Otherwise, we adjust our choice of S-sets and T -sets, and if necessary our
choice of ordering of F or even our choice of F , unless we already have considered all
possible choices; in that case we return no. For clarity, we give the pseudo-code of this
algorithm below.

————————————————————————————————————————–
k-SUBDIVIDED DOUBLE STAR WITH q = 2
Input: A graph G.
Output: yes or no.

1 While there is an ordered semi-leaf graph F with marked vertices u1, . . . , uk, their respective
2 neighbors v1, . . . , vk, left-unique vertices uk+1, . . . , up, and right-unique vertices u′1, u

′
2 do

3 Remove any other vertex that is adjacent to both a u-vertex and a u′-vertex.
4 Contract all edges that have both end-vertices in the neighborhood of a u- or u′-vertex.
5 If H is an induced subgraph of the resulting graph, then return YES.
6 Remove v1, . . . , vk.
7 For all sets S1 ⊆ N(u1), . . . , Sp ⊆ N(up) of at most p(k + 2) + 2p+ 1 vertices each and
8 sets T1 ⊆ N(u′1), T2 ⊆ N(u′2) of at most 2(k + 2) + p+ 3 vertices each do
9 Remove u1, . . . , up, u

′
1, u
′
2 together with all their other neighbors not in any S- or T - set.

10 If S1, . . . , Sp, T1, T2 are in the same connected component L, then
11 Apply the algorithm of Lemma 1 on L with Z1 = S1 ∪ . . . ∪ Sp and Z2 = T1 ∪ T2.
12 If the algorithm finds an H-witness structure, then return YES.
13 Return NO.
————————————————————————————————————————–

The correctness proof and running time analysis of this algorithm uses the same
arguments as the proof of Theorem 1. The only difference lies in the proof of Claim 3,
which changes into:

Claim 3’. Every u-vertex has at most p(k + 2) + 2p+ 1 neighbors in B.

This claim can be proven as follows. Suppose that some ui has at least p(k+2)+2p+2
neighbors in B. Let R0 = {r1, . . . , r|R0|} be the set of cut vertices in B that are adjacent
to ui. Claim 2 tells us that B has at most p + 1 internal vertices. This means that
|R0| ≥ p(k + 2) + p+ 1. We assume that the vertices in R0 are ordered in such a way
that for h = 2, . . . , |R0|, vertices r1, . . . , rh−1 are in the same connected component of
B − rh. Note that such an ordering of R0 can be obtained as follows. Let B1, . . . , Bs

be the blocks of B, and let z1, . . . , zt be the cut vertices of B. Then we can define the
block tree T of B as the tree that has vertices B1, . . . , Bs, z1, . . . , zt and edges Bizj if
and only if block Bi contains cut vertex zj in the graph B. We choose z1 to be the root
of T and order z1, . . . , zt according to a breadth-first search performed on T that starts
in zj . This yields an ordering zi1 , . . . , zit with zi1 = z1. By definition of a breadth-
first search, at the moment the breadth-first search algorithm visits a vertex zj for some
1 ≤ j ≤ t, it has not yet visited any children of zj . Hence, for h = 2, . . . , t, vertices

14



zi1 , . . . , zih−1
are in the same connected component of B − zih . The restriction of the

ordering zi1 , . . . , zit to the vertices of R0 gives us the desired ordering of r1, . . . , r|R0|.
For a vertex s ∈ B \R0 we define

I(s) = {i | s is adjacent to at least one vertex of {ri} ∪NB(ri)}.

We claim that |I(s)| ≤ p+ 1 for all s ∈ B \R0. This can be seen as follows. Suppose
that |I(s)| = q ≥ p + 2 for some s ∈ B \ R0. We may assume without loss of
generality that I(s) = {1, . . . , q}. Consider a vertex rj for some 1 ≤ j ≤ q. By the
definition of the set I(s), we find that s is adjacent to ri or a neighbor r′i of ri in B
for all 1 ≤ i ≤ q. In the latter case, i.e., if s is adjacent to a neighbor r′i of ri, then
r′i /∈ {r1, . . . , rq}, because the vertices r1, . . . , rq form an independent set. Hence, for
every rj with 1 ≤ j ≤ q, all vertices of {r1, . . . , rq} \ {rj} are in the same connected
component Cj of B − rj . Because rj is a cut vertex of B, we find that B − rj has
a connected component C ′j 6= Cj . This means that B contains a leaf block, all of its
vertices belong to C ′j . Moreover, for any two distinct vertices ri and rj in {r1, . . . , rq},
we find that C ′i is a subgraph of Cj . As Cj and C ′j are vertex-disjoint, this means that
C ′i and C ′j are vertex-disjoint. Hence the leaf blocks contained in the graphs C ′1, . . . , C

′
q

are mutually vertex-disjoint. This implies that B contains at least q ≥ p+2 distinct leaf
blocks. Recall that each leaf block contains at least one internal vertex of B. Hence, B
contains at least p + 2 internal vertices. However, this is not possible due to Claim 2.
We conclude that |I(s)| ≤ p+ 1 for all s ∈ B \R0.

We proceed as follows. We choose ri1 to be the vertex in R0 that has the lowest
index over all vertices in R0; note that ri1 = r1. Because ri1 is a cut vertex of B, we find
that ri1 has two neighbors s1 and s′1 in B that are not adjacent to each other. Moreover,
because R0 is an independent set, and s1, s

′
1 are neighbors of ri1 , we find that s1 and

s′1 are in B \R0. Hence, the sets I(s1) and I(s′1) are defined. Because I(s1) ≤ p+ 1,
I(s′1) ≤ p+1, and |I(s1)∩I(s′1)| ≥ 1, there exists a set R1 ⊆ R0\{ri1} of cardinality

|R1| ≥ |R0| − (2p+ 1) ≥ p(k + 2) + p+ 1− 2p− 1 = pk + p,

such that neither s1 nor s′1 is adjacent to any vertex of {rj} ∪NB(rj) for all rj ∈ R1.
We choose ri2 to be the vertex in R1 that has the lowest index over all vertices in

R1. We let s2 be a neighbor of ri2 that is in a connected component of B−ri2 that does
not contain the vertices s1 and s′1. Such a choice is possible because of the following
two reasons. First, B − ri2 has at least two connected components, because ri2 is a cut
vertex of B. Second, s1 and s′1 belong to the same connected component of B − ri2 ,
because s1 and s′1 are both adjacent to ri1 . Because R0 is independent and s2 is adjacent
to ri2 , we find that s2 ∈ B\R0. Hence, the set I(s2) is defined. Because I(s2) ≤ p+1,
there exists a set R2 ⊆ R1\{r2} of cardinality |R2| ≥ |R1|−(p+1) ≥ pk+p−p−1 =
p(k − 1) + p − 1, such that s2 is not adjacent to any vertex of {rj} ∪ NB(rj) for all
rj ∈ R2.

We proceed in an inductive way. Suppose that for some h ≤ k, we have defined
sets Rh ⊆ Rh−1 \ {rih} ⊆ · · · ⊆ R1 \ {ri2} ⊆ R0 \ {ri1} with respect to 2h + 1
distinct vertices ri1 , . . . , rih , s1, s

′
1, s2, . . . , sh in B that have the following two proper-

ties. First, sg is adjacent to rig for g = 1, . . . , h, whereas s′1 is adjacent to ri1 . Second,
for g = 2, . . . , h, the vertices s′1, s1, . . . , sg−1 are in the same connected component of
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B − rig , whereas sig does not belong to this connected component but to some other
connected component of B − rig . Moreover, |Rg| ≥ p(k − g + 1) + p − g + 1 for
g = 1, . . . , h.

We now choose rih+1
to be the vertex in Rh that has the lowest index over all

vertices in Rh. We let sh+1 be a neighbor of rih+1
that is in a connected component of

B− rih+1
that does not contain s1, s

′
1, s2, . . . , sh. Such a choice is possible, because of

the following arguments. Recall that we choose rig to be the vertex with the smallest
index in Rg−1 for g = 1, . . . , h + 1. Then, because Rh ⊂ · · · ⊂ R0, we obtain
i1 < · · · < ih+1. Hence, due to the way we ordered the vertices in R0, we find that
ri1 , . . . , rih , and consequently, their neighbors s′1, s1, . . . , sh are in the same connected
component of B− rih+1

. Recall that B− rih+1
has at least two connected components,

because rih+1
is a cut vertex of B. We conclude that we can make the choice of sh+1

as described above.
Because R0 is independent and sh+1 is adjacent to rih+1

, we find that sh+1 ∈
B\R0. Because I(sh+1) ≤ p+1, there exists a set Rh+1 ⊆ Rh\{rih+1

} of cardinality
|Rh+1| ≥ p(k − h) + p − h, such that sh+1 is not adjacent to any vertex of {rj} ∪
NB(rj) for all rj ∈ Rh+1. Hence, after k + 1 steps, we have found sets Rk+1 ⊆
Rk \ {rik+1

} ⊆ · · · ⊆ R1 \ {ri2} ⊆ R0 \ {ri1} with respect to 2k + 3 distinct vertices
ri1 , . . . , rik+1

, s1, s
′
1, s2, . . . , sk+1 in B that have the following two properties. First,

sg is adjacent to rig for g = 1, . . . , k + 1, whereas s′1 is adjacent to ri1 . Second, for
g = 2, . . . , k + 1, vertices s′1, s1, . . . , sg−1 are in the same connected component of
B − rig , whereas sig does not belong to this connected component but to some other
connected component of B − rig . The latter property, together with the property that
s1 and s′1 are not adjacent, implies that s′1, s1, . . . , sk+1 form an independent set. By
induction, we also have found that |Rg| ≥ p(k−g+1)+p−g+1 for g = 1, . . . , k+1.

Because |Rk+1| ≥ p − k, there exist vertices rik+2
, . . . , rip+1

in Rk+1. Let G∗ de-
note the subgraph of G induced by the vertices u1, ri1 , . . . , rip+1

, s1, s
′
1, s2, . . . , sk+1.

We now show that G∗ is isomorphic to H . We let s2, . . . , sk+1, rik+2
, . . . , rip+1

corre-
spond to the p a-vertices of H , ri2 , . . . , rik+1

to the vertices of H obtained by subdi-
viding the edges aib for i = 1, . . . , k, u1 to the b-vertex of H , ri1 to the c-vertex of H ,
and s1, s

′
1 to the two d-vertices of H . The edges ri1s

′
1 and rihsh for h = 1, . . . , k + 1,

together with the edges rihu1 for h = 1, . . . , p+ 1 ensure that G∗ contains a spanning
subgraph isomorphic to H . Because {ri1 , . . . , rip+1

} and {s′1, s1, . . . , sk+1} are inde-
pendent sets, and s′1 is not adjacent to any rih with 2 ≤ h ≤ k+1, and no sg is adjacent
to any rih with h 6= g, this spanning subgraph of G∗ is induced. Hence, G∗ is isomor-
phic to H . However, in this stage of the algorithm we assume that G does not contain
H as an induced subgraph. Hence, by this contradiction, we have proven Claim 3’.

Adapting the proof of Claim 3’ with respect to the vertices u′1 and u′2, we find that
u′1 and u′2 each have at most 2(k + 2) + p + 3 neighbors in B. We also note that the
number of different ordered semi-leaf graphs of G is bounded by nk+p+2, which is a
polynomial number, because k ≤ p, and p is assumed to be fixed. As all other arguments
are the same as in the proof of Theorem 1, the theorem follows. ut

Recall that H∗ denote the graph obtained by subdividing the centre edge in a double
star with p = q = 2 (see Figure 2). Our last result is a consequence of Propositions 1
and 2 and Theorems 1 and 2.

16



Corollary 1. For any fixed forest H 6= H∗ on at most 7 vertices, H-INDUCED MINOR
can be solved in polynomial time.

Proof. Let H be a forest on at most 7 vertices that is not isomorphic to H∗. First
suppose that H is a tree. Note that in our definition a path is a subdivided star. If H is a
subdivided star, then we apply Proposition 2. Now suppose that H is not a subdivided
star. Then H contain at least two vertices b and c of degree at least 3. Because H 6= H∗,
this means that H is a double star with 2 ≤ p ≤ 3 and q = 2, or H is a 1-subdivided
double star with p = q = 2. In the first case we can apply Theorem 1. In the second case
we can apply Theorem 2. Now suppose that H has at least two connected components.
Then all but at most one of its connected components are paths. Hence we may apply
Proposition 1. This completes our proof of Corollary 1. ut

4 Future work

The following problem is open.

1. What is the computational complexity of H-INDUCED MINOR, when H is a double
star with p = 3 and q = 3?

With respect to Problem 1, we note that the proof of Theorem 1 does not generalize in
the sense that an induced copy of a double star with p = 3 and q = 3 seems hard to
force in order to bound the number of vertices in the interfaces.

By Corollary 1 we have a polynomial-time algorithm for H-INDUCED MINOR if
H is a forest on at most 7 vertices except when H is the graph H∗, which is the graph
obtained by subdividing the centre edge in a double star with p = q = 2.

2. What is the computational complexity of H∗-INDUCED MINOR?

Also with respect to Problem 2, we note that our current techniques (bounding the size
of some semi-witness bags or interfaces, or excluding the target as an induced subgraph)
are not sufficient. The reason is that these techniques in combination with some brute
force guessing of bags or interfaces do not forbid any non-adjacencies between bags,
and an “induced” version of Lemma 1 does not exist due to NP-completeness of the
corresponding decision problem [3]. In the case of H∗ the two bags that correspond to
the end-vertices of the centre edge that has been subdivided may no longer be adjacent.

We observe that Proposition 1 does not easily translate to cycles F . Because a graph
contains the k-vertex cycle denoted Ck as an induced minor if and and only if it con-
tains an induced cycle on at least k vertices, the Ck-INDUCED MINOR problem is
polynomial-time solvable for any fixed k ≥ 3. However, the following case is a no-
toriously open case, which also shows that a similar result as Corollary 1 for general
target graphs H on at most 6 vertices is still far away. Let 2C3 denote the disjoint union
of two 3-vertex cycles.

3. What is the computational complexity of 2C3-INDUCED MINOR?
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We observe that 2C3-CONTRACTIBILITY is polynomial-time solvable. This can
be seen as follows. A graph G contains 2C3 as a contraction if and only G consists
of two connected components, each of which contains C3 as a contraction. The lat-
ter can be tested in polynomial time by verifying if the two connected components
are not trees. So far, there are no cases known for which H-CONTRACTIBILITY is
polynomial-time solvable but H-INDUCED MINOR is NP-complete. On the other hand
there are many cases for which H-INDUCED MINOR is polynomial-time solvable and
H-CONTRACTIBILITY is NP-complete. Recall for instance that Pk-INDUCED MI-
NOR is polynomial-time solvable for any fixed k ≥ 1, whereas Brouwer and Veld-
man [4] showed that Pk-CONTRACTIBILITY is NP-complete for any fixed k ≥ 4.
The case H = 2C3 illustrates that when the target graph becomes disconnected there
might exist cases for which H-INDUCED MINOR is computationally harder than H-
CONTRACTIBILITY. This brings us to the last open problem.

4. Does there exist a graph H for which H-CONTRACTIBILITY is polynomial-time
solvable and H-INDUCED MINOR is NP-complete?
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