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ABSTRACT
The Durham adaptive optics real-time controller is a generic, high-performance real-time
control system for astronomical adaptive optics systems. It has recently had new features
added as well as performance improvements, and here we give details of these, as well as
ways in which optimizations can be made for specific adaptive optics systems and hardware
implementations. We also present new measurements that show how this real-time control
system could be used with any existing adaptive optics system, and also show that when used
with modern hardware, it has high enough performance to be used with most Extremely Large
Telescope adaptive optics systems.

Key words: instrumentation: adaptive optics – instrumentation: high angular resolution –
techniques: image processing.

1 I N T RO D U C T I O N

Adaptive optics (AO; Babcock 1953) is a technique for mitigat-
ing the degrading effects of atmospheric turbulence on the image
quality of ground-based optical and near-infrared (near-IR) tele-
scopes. It is critical to the high angular resolution performance of
the next generation of Extremely Large Telescope (ELT) facilities,
which will have primary mirror diameters of up to 40 m. Without
mitigation, the general spatial resolution of such a telescope would
be subject to the same atmospheric limitations as a 0.5-m diameter
telescope. The proposed ELTs represent a large strategic investment
and their successful operation depends on having a range of high-
performance heterogeneous AO systems. As such, these telescopes
will be the premium ground-based optical and near-IR astronomical
facilities for the next two decades. The ELTs will, however, require
a very significant extrapolation of the AO technologies currently
deployed or under development for existing 4–10 m telescopes. Not
least amongst the required developments of current AO technology
is the area of real-time control. In this paper we describe the de-
velopment and testing of a real-time controller, with the required
scalability.

The Durham adaptive optics real-time controller (DARC;
Basden et al. 2010a) is a real-time control system (RTCS) for AO
that was initially developed to be used with the CANARY on-sky
multi-object AO (MOAO) technology demonstrator (Gendron et al.
2011). As such, it was a significant success, being stable, config-
urable and powerful, and able to meet all the needs for this AO
system. There was also demand for DARC to be used with other in-
struments, and so a further improved version of DARC was released
to the public using an open source GNU General Public License
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(http://www.gnu.org/copyleft/gpl.html). Here, we provide informa-
tion about the DARC platform, including new features, architectural
changes, modularization, performance estimates, algorithm imple-
mentation and generalizations. We have tested the performance of
this system in configurations matching a wide range of proposed
ELT AO systems, and also configured to match proposed high-
order 8-m class telescope AO systems, and a selection of results is
presented here.

To date, each AO system commissioned on a telescope or used in
a laboratory has generally had its own RTCS, leading to much du-
plicated effort. So far as we are aware the only other multi-use high-
performance RTCS for AO is the European Southern Observatory
(ESO) Standard Platform for Advanced Real-Time Applications
(SPARTA; Fedrigo et al. 2006). Like DARC, SPARTA is designed
to support heterogeneous components in high-performance con-
figurations, including computational hardware other than standard
PCs, and is currently being integrated with second generation Very
Large Telescope (VLT) instruments such as Spectro-Polarimetric
High-contrast Exoplanet REsearch (SPHERE; Fusco et al. 2006),
GRound layer Adaptive optics Assisted by Lasers (GRAAL;
Paufique et al. 2010) and Ground Atmospheric Layer Adaptive
Corrector for Spectroscopic Imaging (GALACSI; Stuik et al. 2006),
though it is not used outside ESO. The full SPARTA system cannot
be used with just standard PCs and so expert programming skills are
required, as well as dedicated software maintenance, and so would
be unsuitable and costly for simple laboratory set-ups. A solution
to this is to develop a system that is flexible enough to satisfy most
performance requirements, is able to meet challenging AO system
specifications using standard PC hardware, is simple to set up and
use, and also supports hardware acceleration so that it is power-
ful enough to be used with demanding applications on-sky. DARC
has been designed with these requirements in mind, and here we
seek to demonstrate how it can be suited for most AO systems. A
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common AO RTCS of this kind would be beneficial for the AO
community, leading to a reduction in learning time and increased
system familiarization.

This central processing unit (CPU) based approach to AO real-
time control has not been successful in the past because it has been
deemed that previously available CPUs have not been sufficiently
powerful to meet the demanding performance requirements of on-
sky AO systems (Fedrigo et al. 2006). The advent of multicore
processors, which started to become commonly available from the
mid-2000s, has been a key enabling factor for allowing our ap-
proach to succeed (our development commenced in 2008). It is now
possible to obtain standard PC hardware with enough CPU cores to
not only perform the essential real-time pipeline calculations [from
wavefront sensor (WFS) data to deformable mirror (DM) com-
mands], but also to perform necessary subtasks, such as parameter
control, configuration and sharing of real-time system information
and diagnostic streams. Attempts at using a single-core CPU for all
these tasks have generally failed because context switching between
these tasks has led to unacceptable jitter in the AO system. However,
multicore systems do not suffer so much from this unpredictability.
Previous systems have also not been freely available and have been
closed source, which has greatly hindered uptake particularly for
laboratory bench-based systems. Our approach does not have these
restrictions.

Commercially available offerings, although impressive in many
respects, do not scale well for use with future high-order AO system
designs, and are often restricted to specific hardware, are designed
for laboratory systems and can lack features required for high-order
on-sky AO systems, such as pipelined pixel-stream processing.

There are three main areas of application for DARC: as a labo-
ratory AO RTCS where flexibility and modularity are key, as well
as stability; as a control system for instruments on 8–10 m class
telescopes, where it is being evaluated for use with a number of AO
systems currently under development; finally, as a control system
for ELT instruments, where it is currently a potential candidate for
use with two proposed AO systems.

In Section 2, we give an overview of the new features, including
advanced algorithms, modularization, diagnostic data handling and
tools available with DARC. In Section 3, we discuss how DARC
can be optimized for use with a given AO system, and present some
results demonstrating this optimization. In Section 4, we provide
some examples of how DARC can be used with some existing and
proposed demanding AO systems, and demonstrate the hardware
that would be required for such operation. Finally, in Section 5 we
draw our conclusions.

2 DA R C F E AT U R E S A N D A L G O R I T H M S

There are several important architectural changes that have been
made between the original version of DARC (Basden et al. 2010a)
as used on-sky with CANARY and the current freely available ver-
sion (to be used with future phases of CANARY) and these are
discussed here. The changes include improved and expanded mod-
ularization, changes to diagnostic data handling, improvements to
graphical processing unit (GPU) acceleration, the ability to be used
asynchronously with multirate cameras, a generalization of pixel
handling, advanced spot tracking algorithms, improved command
line tools and the ability to use DARC in a massively parallelized
fashion across multiple nodes in a computing grid. Hardware accel-
eration support has been improved principally through the increased
modularization of DARC, and overall performance has also been
dramatically improved.

DARC has also acquired the ability to allow user parameter
changes on a frame-by-frame basis, allowing more complete control
and dynamic optimization of the AO system. The control interface
has added functionality that includes parameter subscription and
notification, and greater control of diagnostic data, including redi-
rection, partial subscription and averaging.

2.1 DARC modularization

Since conception, DARC has always had some degree of modular-
ization; it has been possible to change cameras, DMs and recon-
struction algorithms by dynamically loading and unloading modules
into the real-time pipeline, without restarting DARC. This modu-
larization has been extended to increase the degree of user cus-
tomization that is possible with DARC. Module interfaces that
allow modules to be dynamically loaded and unloaded in DARC
now additionally include image calibration and wavefront slope
computation interfaces, and an asynchronous open-loop DM figure
sensing interface, as well as the pre-existing wavefront reconstruc-
tion interface. A parameter buffer interface has also been added,
allowing customization of high-speed parameter input, facilitating
the adjustment of any parameter on a frame-by-frame basis, thus
allowing advanced use of the system, for example DM modulation
and fast reference slope updating.

The user application programming interface (API) for develop-
ing DARC modules has been rationalized and now most modules
include similar functions, which are called at well-defined points
during the data-processing pipeline. This allows the developer to
easily identify which functions are necessary for them to imple-
ment to achieve optimum AO loop performance, and encourages
the consideration of algorithms that reduce latency and improve
real-time performance.

Although it is possible to implement a large number of functions
in each of these modules, typically they are not all required and so
the developer should implement only the necessary subset for their
particular application.

2.1.1 Module hook points

DARC uses a horizontal processing strategy as described by Basden
et al. (2010a), which splits computational load as evenly as possible
between available threads, thus allowing good CPU load balancing
and high CPU resource utilization, giving low latency performance.
To achieve this, each thread must be responsible for performing
multiple algorithms, including WFS calibration, slope computation
and partial wavefront reconstruction (rather than separate threads
performing calibration, slope computation and reconstruction). To
reconcile this with the modular nature of DARC, there are defined
points at which module functions are called as shown in Fig. 1. A
module developer then fills in the body of the module functions that
they require. DARC will then call these functions at the appropriate
time in a thread-safe way. Fig. 1 shows the DARC threading struc-
ture and the points at which module functions are called. It should
be noted that the ‘Process’ function is called multiple times for
each WFS frame until all the data have been processed (i.e. called
for each subaperture in a Shack–Hartmann system). This approach
has been taken to encourage a module developer to consider how
their algorithm best fits into a low latency architecture, and to pro-
vide a consistent interface between modules. Unimplemented func-
tions (those that are not required for a given algorithm) are simply
ignored.
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Figure 1. A demonstration of the points (in time) at which DARC module
functions, if implemented, are called. Three WFS frames are shown with
time increasing from left to right, with a new module being loaded at the start
(point 1). This assumes that there are four main processing threads (Thread1,
T2, Thread3 and Thread4), and the thread responsible for pre-processing and
post-processing is also shown (‘end of frame thread’). The legend shows the
function names corresponding to the points (in time) at which the functions
are called, for example, (1) is the point at which the module ‘Open’ function
is called, thus initializing the module. The process function (5) is called
repeatedly each frame until the frame has been processed (e.g. once for each
subaperture). Further explanation is given in the main text.

We make a distinction between processing threads (labelled
Thread1, Thread3, etc., in Fig. 1) which do the majority of the
parallelized workload, and the ‘end-of-frame’ thread which is used
to perform sequential workloads such as sending commands to a
DM. Upon initialization of a module, the module ‘Open’ function
is called by a single processing thread. Here, any initialization re-
quired is performed, such as allocating necessary memory, and (for
a camera module) initializing cameras. Parameters (such as a con-
trol matrix or camera exposure time) are passed to the module using
the DARC parameter buffer. To access this buffer, the ‘NewParam’
function is then called (if implemented). After this, the module
is ready to use. One processing thread calls a ‘NewFrameSync’
function, for per-frame initialization. Each processing thread then
calls a ‘StartFrame’ function, for per-thread, per-frame initializa-
tion. The ‘Process’ function is then called multiple times, while
there are still data to be processed (for a Shack–Hartmann system
this is typically once per subaperture, shared between the available
processing threads). Once all such processing has been finished,
each processing thread calls an ‘EndFrame’ function, which would
typically perform gather operations to collate the results (e.g. sum-
ming together partial DM vectors). A single thread is then chosen
to call a ‘FrameFinishedSync’ function to finalize this frame. Af-
ter this function has been called, the ‘end-of-frame’ thread springs
into life, allowing the processing threads to begin processing of the
next frame, starting with the ‘NewFrameSync’ function. The ‘end-
of-frame’ thread calls a ‘FrameFinished’ function for finalization
during which (for a mirror module) commands should be send to
the DM. A ‘Complete’ function is then called for each module,
which can be used for initialization ready for the next frame. The
‘end-of-frame’ thread then calls a ‘NewFrame’ function. The ‘end-
of-frame’ thread is not synchronized with the processing threads,
and so there is no guarantee when the ‘NewFrame’ function is called
relative to the functions called by the processing threads, except that
processing threads will block before calling the ‘Process’ function
until the ‘end-of-frame’ thread has finished.

Whenever the DARC parameter buffer is updated, the ‘New-
Param’ function will be called by a single processing thread just

before the ‘NewFrameSync’ function is called. When the module is
no longer required (e.g. when the user wishes to try a new algorithm
available in another module), a ‘Close’ function is called, to free
resources.

The large number of functions may seem confusing, particularly
since some appear to have similar functionality. Fortunately, most
modules need only implement a small subset of these functions.
The full suite of functions has been made available to give a mod-
ule developer the required flexibility to create a module that is as
efficient as possible, minimizing AO system latency.

Matrix operations are highly suited to this sort of horizontal
processing strategy since they can usually be highly parallelized,
and thus divided between the horizontal processing threads. Wave-
front reconstruction using a standard matrix–vector multiplication
algorithm (with a control matrix) is therefore ideally suited. Itera-
tive wavefront reconstruction algorithms, for example those based
around the conjugate gradient algorithms are less easy to paral-
lelize, since each iteration step depends on the previous step. How-
ever, a horizontal processing strategy does allow the first iteration
to be highly parallelized, which can lead to significant performance
improvements when the number of iterations is small, for exam-
ple when using appropriate pre-conditioners such as those used
in the fractal iterative method (Béchet, Tallon & Thiébaut 2006).
The post-processing (end-of-frame) thread (or threads) can then be
used to compute the remaining iterations. Similarly, any system
that requires multiple step reconstruction, for example a projection
between two vector spaces, such as for true modal control, can be
easily integrated.

2.1.2 DARC camera modules

An example of several simple camera modules is provided with the
DARC source code. These are modules for which camera data are
only available on a frame-by-frame basis (rather than a pixel-by-
pixel basis), and typically would be used in a laboratory rather than
on-sky. In this case, the camera data are transferred to DARC at the
start of each frame (using the ‘NewFrameSync’ function), and other
functions are not implemented (except for ‘Open’ and ‘Close’). For
such cameras, there is no interleaving of camera read-out and pixel
processing, and so a higher latency results.

For camera drivers that have the ability to provide pixel-stream ac-
cess (i.e. the ability to transfer part of a frame to the computer before
the detector read-out has finished), a more advanced camera module
can be implemented, and examples are provided with DARC. Such
modules allow interleaving of camera read-out with processing,
making use of the ‘Process’ function to block until enough pixels
have arrived for a given WFS subaperture, after which calibration
and computation of this subaperture can proceed.

2.1.3 Parameter updating

DARC has the ability to update any parameter on a frame-by-
frame basis. However, since this could mean a large computational
requirement (to compute the parameters from available data), or
a large data bandwidth requirement (e.g. for updating a control
matrix), this update ability is implemented using a DARC module
interface. The users can then create such a module depending on
their specifications to best suit the needs and requirements of their
systems, for example using a proprietary interconnect to send the
parameters. A standard set of DARC functions are provided, which
should be overwritten for this parameter buffer interface to take
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effect. This buffer module is again dynamically loadable, meaning
that this ability can easily be switched on and off.

This ability to update parameters every frame or in a determinis-
tic fashion (e.g. at a given frame number) is optional, and additional
to the non-real-time parameter update facility that is used to control
DARC as discussed by Basden et al. (2010a), which allows parame-
ters to be changed in a non-deterministic fashion (non-real-time, i.e.
there is no guarantee that a parameter will be changed at a particular
frame number or time).

2.2 Diagnostic data handling

The general concept of diagnostic data handling is described in the
original DARC paper (Basden et al. 2010a). In summary, there is a
separate diagnostic stream for each diagnostic data type (raw pixel
data, calibrated pixel data, wavefront slope measurements, mirror
demands, etc.). It should be noted that diagnostic data handling is
used only to provide data streams to clients, not for the transfer
of data along the real-time pipeline. As such, the diagnostic data
system does not need to be hard-real-time.

Transport of DARC diagnostic data uses Transmission Control
Protocol/Internet Protocol (TCP/IP) sockets by default, which lead
to a reliable, simple and fairly high-performance system that is easy
to understand and set up, with minimal software configuration and
installation. However, because DARC is modular by design, users
are able to replace this system with their own, should they have a
need to, using their own transport system and protocols to distribute
these data to clients. This is well suited to a facility class telescope
environment, where standardized protocols must be followed.

2.2.1 Default diagnostic data implementation

The default DARC diagnostic system seeks to minimize network
bandwidth as much as possible using point-to-point (PTP) connec-
tions. Diagnostic data are sent from the real-time system to a remote
computer, where the data are written into a shared memory circular
buffer. Clients on this computer can then access the data by reading
from the circular buffer, rather than requesting data directly from
the real-time system across the network. Additionally, these data
can then be redistributed to further remote computers, allowing the
data to be read by other clients here, as shown in Fig. 2. Hence,
each diagnostic stream needs to be sent only once (or, depending on
network topology, a small number of times) from the main real-time

Figure 2. A demonstration of the DARC diagnostic data system. Here, raw
pixel, slope and mirror data are being sent from the real-time part of the
system to one local node, which is in turn sending raw pixels and slopes
to other nodes. A further local node is receiving slopes directly from the
real-time part of the system. Clients that process these data are represented
by grey circles.

computer (rather than once per client), and network bandwidth can
be tightly controlled.

In cases where only part of a diagnostic stream is required (e.g.
pixel data from a single camera in a multicamera system, or a
subregion of an image), these data can be extracted by a DARC
client into a new diagnostic stream before being distributed over
the network, reducing bandwidth requirements. Additionally, for
cases where only the sum or average of many frames of data from
a given stream is required, this operation can be performed using
a client provided by DARC before data are transported over the
network, again greatly saving network bandwidth, for example for
image calibration.

It should be noted that the default diagnostic system does not use
broadcasting or multicasting. This is because broadcasting and (in
its simplest form) multicasting are inherently unreliable and thus
would not provide a reliable diagnostic stream, giving no guarantee
that data would reach their destination, which is undesirable for an
AO system. Although reliable multicasting protocols are available,
a decision has been made not to use these by default, because this
would increase the complexity of DARC, and would be unnecessary
for users of simple systems. However, we would like to reiterate that
such diagnostic systems can easily be added and integrated with
DARC by the end user.

On the real-time computer and remote nodes with diagnostic
clients, a region of shared memory (in /dev/shm) is used for each
diagnostic stream, implemented using a self-describing circular
buffer typically hundreds of entries long (though this is config-
urable and in practice will depend on available memory and stream
size). Streams can be individually turned on and off as required
using the DARC control interface (using a graphical, script or com-
mand line client or the API). DARC will write diagnostic data to
the circular buffers of streams that are not switched off, and these
data can then be read by clients or transported. The rate at which
DARC writes these data can be changed (every frame, or every n
frames with a different rate for each diagnostic stream). Clients can
then retrieve as much or as little of these data as they require, by
setting the subsampling level at which they wish to receive.

Since TCP/IP is used, retransmission of data may be necessary
when network hiccups occur (though this is handled by the oper-
ating system). The processes responsible for sending data over the
network to clients will block until an acknowledgment from the
client has been received (this is handled by the operating system),
and therefore at times may block for a longer than average period
while waiting for retransmission. If this happens frequently enough
(e.g. on a congested network), then the head of the circular buffer
(the location at which new diagnostic data are written to the circular
buffer) will catch up with the tail of the buffer (the location at which
data are sent from). To avoid data corruption, the DARC sending
process will jump back to the head of the circular buffer once the
tail of the buffer falls more than 75 per cent of the buffer behind
the head. Therefore, a chunk of frames will be lost. This is unde-
sirable, but should be compared with what would occur with an
unreliable protocol, for example User Datagram Protocol (UDP).
Here, the sending process would not be blocked, and so would keep
up with the head of the circular buffer. However, when a packet fails
to reach its destination, due to congestion or a network hiccup, the
packet would simply be dropped and not retransmitted. Therefore,
there would be a portion of a frame of data missing (corresponding
to the dropped packet), rendering (in most cases) the entire frame
unusable. We should therefore consider two cases: in a highly loaded
network, it is likely that the number of partial (unusable) frames re-
ceived would be greater than the number of frames dropped when
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using a reliable protocol even though the total network through-
put would be greater, because dropped packets would be dispersed
more-or-less randomly affecting a greater number of frames, while
dropped frames would be in chunks. In a less loaded network, UDP
packets would still be occasionally dropped, resulting in unusable
frames, while a reliable protocol would (on average) be able to keep
up with the circular buffer head, dropping behind occasionally, but
not far enough to warrant dropping a chunk of frames to jump back
to the circular buffer head.

2.2.2 Disadvantages

The disadvantage of this simple approach to diagnostic data is that
TCP/IP is unicast and PTP, meaning that if multiple clients on
different computers are interested in the same data then the data are
sent multiple times, a large overhead. However, we take the view that
the simplicity of the default system outweighs the disadvantages,
and that for more advanced systems, a separate telemetry system
should be implemented for which we are unable to anticipate the
requirements.

2.2.3 Diagnostic feedback

We have so far discussed the ability to propagate real-time data to
interested clients. However, it is often the case that these data will be
processed and then injected back into the real-time system on a per-
frame basis, useful not only for testing, but also for calibration tools
such as turbulence profiling or DM shape feedback. This feedback
interface module can be implemented in DARC in several ways. One
option is to use the per-frame parameter update module interface
as discussed previously, provided by the user to suit their require-
ments. Another option is to modify an existing DARC processing
module (dynamically loadable), to accept the expected input, for
example modify a wavefront reconstruction module to accept an
additional input (via InfiniBand or any desired communication pro-
tocol) of actual DM shape, to be used for pseudo-open-loop control
reconstruction.

2.3 User facilities

The DARC package comes with an extensive suite of user tools,
designed to simplify the set-up and configuration of DARC. These
include command-line-based tools, a graphical interface, a config-
urable live display tool and an API. Since the DARC control inter-
face is based upon Common Object Request Broker Architecture
(CORBA; http://www.omg.org/cgi-bin/doc?formal/0010-33.pdf), a
client can be written in any programming language that has a suit-
able CORBA implementation.

Using these tools allows additional customized packages and
facilities to be built, specific for the AO system in question. An
example of this would be a tip–tilt offload system, which would
capture slope diagnostic data from DARC, and if mean slope mea-
surements became too large would inform the telescope to update
its tracking. Many such systems based around DARC diagnostic
data have been used successfully with CANARY.

2.4 Configurable displays

DARC does not know the nature of the data in the diagnostic streams
that it produces. It is known, for example, that a particular stream
contains DM demand data, and how many DM actuators there are;

Figure 3. Two instances of the DARC live display tool. On the left-hand
side a one-dimensional display of slope measurements is shown, along with
the associated tool bar, configured for this AO system (CANARY) allowing
the user to select which slopes from which WFS to display. On the right-
hand side, a two-dimensional WFS image is displayed, with subaperture
boundaries and current spot locations overlain (as a grid pattern and cross
hairs, respectively), and the display is receiving multiple diagnostic streams
(image and slopes) simultaneously. In this display, the tool bar is hidden
(revealed with a mouse click).

however, DARC knows nothing about the mapping of these ac-
tuators on to physical DMs, how many DMs there are, and what
geometry they have. Therefore, to display these data in a way mean-
ingful to the user, additional information is required.

The DARC live display tool allows user configuration, both man-
ually entered and via configuration files. Additionally, a collection
of configuration files can be used and the live display will present a
selection dialogue box for the user to rapidly switch between con-
figurations, for example to display a phase map of different DMs,
or to switch between a phase map and a WFS image display. Each
configuration can specify which diagnostic streams should be re-
ceived and at what rate, allowing a given configuration to receive
multiple diagnostic streams simultaneously, for example, allowing
a spot centroid position to be overlain on a calibrated pixel display.
Manually entered configuration is useful while an AO system is
being designed and built, and can be used for example to change
a one-dimensional pixel stream into a two-dimensional image for
display.

The live display can be configured with user-selectable buttons,
which can then be used to control this display configuration. For
example, when configured for a WFS pixel display, the user might
be able to turn on and off a vector field of the slope measurements
by toggling a button.

This configurability is aimed at ease of use, as a simple way of
getting a user-friendly AO system up and running. Although not
designed to be used as a facility class display tool, it does have
sufficient flexibility and capability to function as such. Fig. 3 shows
two instances of the display tool being used to display WFS slope
measurements and calibrated pixel data.

2.5 DARC algorithms

Since DARC is primarily based around CPU computation and is
modular, it is easy to implement and test new algorithms. As a
result, there are a large number of algorithms implemented, and
this list is growing as new ideas or requirements arise. Some of
these algorithms are given by Basden et al. (2010a), and we present
additional algorithms here.
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2.5.1 Pixel processing and slope computation

The use of the brightest pixel selection algorithm (Basden, Myers
& Gendron 2011) has been demonstrated successfully on-sky using
DARC. This algorithm involves selecting a user-determined num-
ber of brightest pixels in each subaperture and setting the image
threshold for this subaperture at this level. This helps to reduce
the impact of detector read-out noise, and can lead to a significant
reduction in wavefront error.

The ability of DARC to perform adaptive windowing, or spot
tracking with Shack–Hartmann WFSs, has been mentioned pre-
viously (Basden et al. 2010a). Further functionality has now been
added allowing groups of subapertures to be specified, for which the
adaptive window positions are computed based on the mean slope
measurements for this group, and hence these grouped subapertures
all move together. This allows, for example, tip–tilt tracking on a
per-camera basis when multiple WFSs are combined on to the same
detector.

One danger with adaptive windowing is that in the event of a
spurious signal (e.g. a cosmic ray event) or if the signal gets lost
(e.g. intermittent cloud), then the adaptive windows can move away
from the true spot location. Adaptive window locations will then be
updated based upon noise, and so the windows will move randomly
until they find their Shack–Hartmann spot, or fix on another nearby
spot. To prevent this from happening, it is possible to specify the
maximum amount by which each window is allowed to move from
the nominal spot location. Additionally, adaptive window locations
are computed from the local spot position using an infinite impulse
response (IIR) filter, for which the gain can be specified by the user,
helping to reduce the impact of spurious signals.

In addition to weighted centre of gravity and correlation-based
slope computation, a matched filter algorithm can also be used.
DARC can be used not only with Shack–Hartmann WFSs, but also
with Pyramid WFSs and, in theory, with curvature WFSs (though
this has never been tested), due to the flexible method by which pix-
els are assigned to subapertures (which can be done in an arbitrary
fashion). The modular nature of DARC means that other sensor
types could easily be added, for example Yet Another Wavefront
sensor (YAW; Gendron et al. 2010) and optically binned Shack–
Hartmann sensors (Basden et al. 2007).

2.5.2 Reconstruction and mirror control

In addition to matrix–vector based wavefront reconstruction (allow-
ing for least-squares and minimum mean square error algorithms),
linear quadratic Gaussian (LQG) reconstruction can also be carried
out, allowing for vibration suppression, which can lead to a signif-
icant performance improvement (Correia et al. 2010). An iterative
solver based on preconditioned conjugate gradient is also available,
and can be used with both sparse and dense systems. Using this
reconstruction technique (Gilles, Ellerbroek & Vogel 2003) has the
advantage that a matrix inversion to compute a control matrix is not
required. In addition, an open-loop control formulation is available
which allows DM commands (a) to be computed according to

ai = (1 − g)E · ai−1 + gR · si , (1)

where si are the current wavefront slope measurements, g is a gain
parameter, R is the control matrix and E is a square matrix, which
for an integrator control law would be equal to an identity matrix
scaled by 1/(1 − g).

DARC also contains the ability to perform automatic loop open-
ing in the case of actuator saturation, i.e. to automatically open the

control loop and flatten the DM if a pre-defined number of actuators
reach a pre-defined saturation value. This can be important to avoid
damage while testing new algorithms and control laws.

Some DMs display hysteresis and other non-linear behaviour
that results in the shaped DM not forming quite the shape that was
requested. To help reduce this effect, DARC includes the option to
perform actuator oscillation around the desired DM shape position,
allowing the effect of hysteresis to be greatly reduced. Typically, a
decaying sine wave is used, with the decay leading to the desired
position.

Since DARC has the ability to update parameters on a frame-
by-frame basis, it has the ability to modulate (or apply any time-
varying signal to) some or all of the DM actuator demands, allowing
complex system operations to be performed.

2.5.3 Advanced computation

DARC has the ability to operate multiple WFSs asynchronously, i.e.
at independent frame rates (which are not required to be multiples
of each other). This gives the ability to optimize WFS frame rate
depending on guide star brightness, and so can lead to an improve-
ment of AO system performance. This capability is achieved by
using multiple instances of DARC, one for each WFS, which com-
pute partial DM commands based on the WFS data, and a further
instance of DARC which combines the partial DM commands once
they are ready, using shared memory and mutual exclusion locks
for interprocess communication. The way in which the partial DM
commands are combined is flexible, with the most common option
being to combine these partial commands together as they become
available and then update the DM, meaning that the DM is always
updated with minimal latency.

The ability to operate multiple instances of DARC, combined
with modularity, means that DARC can be used in a distributed
fashion, allowing computational load to be spread over a comput-
ing grid. To achieve this, modules responsible for distributing or
collating data at different points in the computation pipeline are
used, with data being communicated over the most efficient trans-
port mechanism. At present, such modules exist based on standard
Internet sockets, and also using shared memory. This flexibility
allows DARC to be optimized for available hardware. Extremely
demanding system requirements can therefore be met.

2.6 Hardware acceleration

The modular nature of DARC makes it ideal for use with acceler-
ation hardware, such as field programmable gate arrays (FPGAs)
and GPUs. Two hardware acceleration modules currently exist for
DARC (and of course more can easily be added). These are an
FPGA-based pixel-processing unit that can perform image calibra-
tion and optionally wavefront slope calculation and is described
elsewhere (Fedrigo et al. 2006), and a GPU-based wavefront recon-
struction module, which we now describe.

2.6.1 GPU wavefront reconstruction

The GPU wavefront reconstruction module can be used with any
Compute Unified Device Architecture (CUDA) compatible GPU. It
performs a matrix–vector multiplication-based wavefront recon-
struction, which (depending on the matrix) includes least squares
and minimum variance reconstruction. As discussed previously,
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DARC uses a horizontal processing strategy processing subaper-
tures as the corresponding pixel data become available. The GPU
reconstruction module also follows this strategy, with partial recon-
structions (using appropriate subsets of the matrix) being performed
before combination to provide the reconstructed wavefront.

The control matrix is stored in GPU memory, and wavefront slope
measurements are uploaded to the GPU every frame. The GPU
kernel that performs the operations has been written specifically
for DARC, providing a 70 per cent performance improvement over
the standard CUDA Basic Linear Algebra Subroutines (cuBLAS)
library which is available from the GPU manufacturer NVIDIA.
This module uses single precision floating point data.

The performance reached by this module is limited by GPU in-
ternal memory bandwidth rather than computation power, since the
matrix has to be read from GPU memory into GPU processors every
frame. We are able to reach about 70 per cent of peak theoretical
performance on a NVIDIA Tesla 2070 GPU card. An alternative
version of this DARC module also exists which stores the control
matrix in a 16-bit integer format, with conversion to single precision
floating point performed each frame before multiplication. This al-
lows a performance improvement of about 80 per cent (reducing
computation time by 45 per cent) with a trade-off of reduced pre-
cision. However, as shown by Basden, Myers & Butterley (2010b),
16-bit precision is certainly sufficient for some ELT scale AO sys-
tems (it may not be sufficient for a high contrast system, though
we have not investigated this). It should be noted that slope mea-
surements for astronomical AO systems are typically accurate to at
most 10–11 bits of precision, limited by photon noise.

3 DA R C O P T I M I Z AT I O N

DARC has been designed to provide low latency control for AO,
operating with a baseline of minimal hardware (a computer), whilst
also providing the ability to use high end hardware, and hardware
acceleration. This has been achieved by careful management of the
workload given to processor threads using a horizontal processing
strategy, and by reducing the need for synchronization, as described
by Basden et al. (2010a). DARC has since been updated to further
reduce this latency, with steps being taken to reduce the number
of thread synchronization points (thus reducing synchronization
delays), and also providing control over where post-processing is
performed. The increased modularization of DARC has led to a
clearer code structure and allowed the thread synchronization points
to be rationalized, providing opportunities for better optimization of
modules, which can be fitted into the DARC structure more easily.

3.1 Site optimization

To optimize DARC for a specific application, there are several steps
that can be taken to allow the best performance (lowest latency)
to be achieved for a given hardware set-up. For all of these steps,
no recompilation is necessary, and many can be performed without
stopping DARC. In this section we will present these optimiza-
tions and discuss why these can make a difference, and how these
should be applied. The large number of optimization points built
into DARC mean that it is well suited to meet the demands of future
instruments.

3.1.1 Number of threads

The main way to optimize DARC performance is to adjust the
number of processing threads used. A higher order AO system

Figure 4. A plot showing how the AO system maximum achievable frame
rate depends on the number of DARC processing threads used. Uncertainties
are shown but generally too small to discern.

will have reduced latency when more processing threads are used;
however, the number of threads should be less than the number
of processing cores available, which will in turn depend on the
processing hardware. The balance between processing power and
memory bandwidth can also affect the optimal number of processing
threads. Fig. 4 shows how the maximum achievable frame rate
is affected by the number of processing threads for a 40 × 40
subaperture single conjugate adaptive optics (SCAO) system, and
it should be noted that a higher frame rate corresponds to lower
latency. The frame rates displayed here were measured using a
computer with two six-core Intel E5645 processors with a clock
speed of 2.4 GHz and hyper-threading enabled, giving a total of 24
processing cores (12 physical). We have restricted threads to run on
a single core (i.e. no thread migration, by setting the thread affinity),
with the first six threads running on the first CPU, the next six the
second CPU, the next six on the first and so on as required (so each
processor core may have multiple threads, but each thread is only
allowed on a single core). It can be seen from this figure that DARC
gives near-linear performance scaling with number of threads up
to the number equal to the number of physical CPU cores (12), at
which point, maximum performance is achieved. This is followed
by a dip at 13 and 14 threads as one core is then having to run two
DARC threads. Performance then increases again up to 24 threads
(except for a dip at 22 threads, which we are unsure about, but which
is repeatable), after which performance levels off (and eventually
falls) as each core has to run an increasing number of threads, and
thread synchronization then begins to take its toll.

This figure shows that hyper-threading is detrimental to per-
formance in this case, and we recommend that the use of hyper-
threading should be investigated by any DARC implementer and
switched off (in the computer BIOS) if it is detrimental. However,
this is not a condition that we would wish to impose because all
situations are different and some users may find it desirable to have
hyper-threading.

It should be noted that there is also the option of using a separate
thread for initialization and post-processing of data, or to have this
work done by one of the main processing threads, and each option
can provide better performance for different situations.

3.1.2 Affinity and priority of threads

By giving processing threads elevated priorities, the Linux kernel
will put more effort into running these threads. However, when
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using DARC, the best performance is not necessarily achieved by
giving all threads high (or maximum) priority. Rather, there can be
an advantage in considering the work that each individual thread is
required to do, and whether particular threads are likely to be on the
critical path at any given point.

As a simple example, consider the case of an AO system com-
prising a high-order WFS and a tip–tilt sensor. In DARC, one thread
would be assigned to the tip–tilt sensor, which has very little work to
do, while a number of threads would be assigned to the high-order
WFS, each of which will have more computational demand. There
will also be a post-processing thread which is used for operations
that are not suitable for multithreaded use, for example sending mir-
ror demands to a DM. In this case, lowest latency will be achieved
by giving highest priority to the high-order WFS processing threads.
The tip–tilt thread should be given a lower priority, and its work
will be completed during computation gaps. The post-processing
thread should be given a higher priority, so that it will complete as
soon as all data are available, reducing latency.

The location of threads can also be specified, restricting a given
thread to run on one, or a subset of CPU cores. This prevents the
kernel from migrating threads to different cores, and also allows
threads to be placed closest to hardware in non-uniform systems
(e.g. where one CPU has direct access to an interface bus), so
improving performance. A fine tuning of latency and jitter can be
achieved in this way.

3.1.3 Subaperture numbers and ordering

Another optimization that can be made, but which is far less obvious,
is to ensure that there are an even number of subapertures defined
for each WFS, and that pairs of subapertures are processed by the
same processing thread (ensured using the subaperture allocation
facility). This ensures that wavefront slopes are aligned on a 16-byte
memory boundary for the partial matrix–vector multiplication dur-
ing the wavefront reconstruction processing, and allows streaming
single instruction, multiple data (SIMD) extension (SSE) operations
(vector operations) to be carried out. It should be noted that if the
system contains an odd number of subapertures, an additional one
can be added that has no impact on the final DM calculations simply
by adding a column of zeros to a control matrix. This optimization
can have a large impact on performance. Where possible, all matrix
and vector operations in DARC are carried out using data aligned to
a 16-byte boundary to make the maximum use of SSE operations.

3.1.4 Pixel read-out and handling

A low latency AO system will usually use a WFS camera for which
pixels can be made available for processing as they are read out of
the camera, rather than on a frame-by-frame basis, or at least made
available in chunks smaller than a frame. This allows processing to
begin before the full frame is available, and since camera read-out is
generally slow, this can give a significant latency reduction, and can
mean that minimal operations are required once the last pixel arrives.
With DARC, optimizations can be made by optimizing the ‘chunk’
size, i.e. the number of pixels that are made available for processing
together. A smaller chunk size will require a larger number of
interrupts to be raised, and also a larger number of data requests
[typically direct memory access (DMA)]. Conversely, a larger chunk
size will mean that there is a greater delay between pixels leaving the
camera and becoming available for processing. There is therefore

a trade-off to be made, which will depend on camera type, data
acquisition type and processor performance among other things.

Related to this is an optimization that allows DARC to process
subapertures in groups. There is a parameter that is used by DARC
to specify the number of pixels that must have arrived before a
given subaperture can be processed. If this value is rounded up
to the nearest multiple of chunk size then there will be multiple
subapertures waiting for the same number of pixels to have arrived,
and hence these can be processed together, reducing the number of
function calls required, and hence the latency. The processing of
particular subapertures can be assigned to particular threads to help
facilitate this optimization.

3.1.5 Linux kernel impact

The Linux kernel version with which DARC is run can also have an
impact on latency. We do not have a definitive answer to which is
the best kernel to use, because this depends somewhat on the system
hardware, and also AO system order. We also find that when using
a real-time kernel (with the RT-preempt patch), latency (as well as
jitter) is slightly reduced. Therefore, if DARC is struggling to reach
the desired latency for a given system, investigating different kernels
may prove fruitful. This can also impact diagnostic bandwidth too.

3.1.6 Grid utilization

More ambitious latency reduction can be achieved by spreading
the DARC computational load across a grid computing cluster. For
some AO systems, the division of work will fall naturally. For
example, systems with more than one WFS could place each WFS
on a separate grid node, before combining the results in a further
node that sends commands to a DM. For other AO systems, the
division of labour may not be so obvious, for example an extreme
adaptive optics (XAO) system with only a single WFS. In cases
such as this, separation would be on a per subaperture basis with
responsibility for processing different subapertures being placed on
different grid nodes. However, to achieve optimal performance in
this case it must be possible to split WFS camera pixels between
nodes using for example a cable splitter, rather than reading the
WFS into one node and then distributing pixels from there, which
would introduce additional latency.

The effectiveness of using DARC in a grid computing environ-
ment depends to some extent on the communication link between
grid nodes. Real-time data must be passed between these nodes,
and so we recommend that dedicated links be used, which will not
be used for other communications, such as diagnostic data. These
links should also be deterministic to reduce system jitter. Addition-
ally, the higher the performance of these links, the lower the overall
latency will be. A DARC implementer will need to implement their
own DARC modules according to the communication protocol and
hardware that they use, as the standard DARC package contains
only a TCP/IP implementation that is not ideal for low jitter re-
quirements. It will also be necessary for the implementer to ensure
that a lower latency is achieved when using a grid of computers than
can be achieved on a single computer.

4 DA R C I M P L E M E N TAT I O N S

Optimizing DARC for a particular AO system requires some
thought. Using hardware available at Durham, consisting of a dual
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Table 1. Details of some existing and proposed AO systems with demanding
computational requirements for the real-time system. The high degree of
correction makes these systems cutting-edge in the science they can deliver.

System Wavefront Deformable Frame Telescope
sensor mirror rate size

VLT planet-finder 40 × 40 41 × 41 2 kHz 8 m
Palm-3000 62 × 62 3300 2 kHz 5 m
ELT-EAGLE 11 of 84 × 84 20 of 85 × 85 250 Hz ∼40 m

six-core processor server (Intel E5645 processors with a clock speed
of 2.4 GHz) with three NVIDIA Tesla 2070 GPU acceleration cards,
we have implemented the real-time control component of several
cutting edge existing and proposed AO systems, as given in Table 1.
In doing this, we have sought to minimize the latency that can be
achieved using DARC for these systems. In the following sections
we discuss these implementations, the achievable performance and
the implications that this has.

4.1 DARC as a RTC for system resembling a VLT
planet-finder

A planet-finder class instrument is currently under development
for one of the VLTs in Chile. The AO system for this instrument,
SPHERE (Fusco et al. 2006), is based on a 40 × 40 subaperture
Shack–Hartmann extreme AO system. Real-time control will be
provided by an ESO standard SPARTA system, comprised of a
Xilinx Virtex II-Pro FPGA for pixel processing (WFS calibration
and slope calculation), and a digital signal processor (DSP)-based
system for wavefront reconstruction and mirror control, comprised
of four modules of eight Bittware Tigershark TS201 DSPs.

This AO system is required to operate at a frame rate of at least
1.2 kHz, and a goal of 2 kHz, with a total latency (including detector
read-out and mirror drive) of less than 1 ms (Fusco et al. 2006).

We have implemented an equivalent AO RTCS using DARC,
based on the aforementioned server PC, but without using the GPU
acceleration cards. It should be noted that we do not have an ap-
propriate camera or DM to model this system, and so the imple-
mentation here does not include these system aspects; however, it
does include all other aspects of a RTCS, including interleaved pro-
cessing and read-out and thread synchronization. We are able to
operate this system at a maximum frame rate of over 3 kHz, using
12 CPU threads, corresponding to a total mean frame processing
time of about 323 µs, as shown in Fig. 4. In a real system (with a
real camera), WFS read-out would be interleaved with processing,
and so the latency, defined in this paper as the time taken from the
last pixel received to the last DM actuator set, would be signifi-
cantly less than this, because most processing would occur while
waiting for pixels to be read out of a camera and sent to the RTCS.
Therefore, the latency measured from the last pixel acquired to the
last command out of the box is expected to be well below 100 µs,
well within the required specification. Here, we find that processing
subapertures in blocks of about 40 at a time gives the best perfor-
mance. When interpreting these results, it should be noted that in a
standard configuration as used here, DARC does not allow pipelin-
ing of frames: computation of one frame must complete before the
next frame begins, and so the maximum frame rate achievable is
the inverse of the frame computation time.

DARC performance for this configuration was assessed by us-
ing the Linux real-time clock to measure frame computation time.

Figure 5. A histogram of frame computation times for a 40 × 40 subaperture
AO system measured with 107 samples. Insets show a logarithmic histogram
(showing outliers more clearly), and also a linear histogram of outliers only.
This clearly shows that jitter is well constrained.

A real-time Linux kernel (2.6.31-10.rt, available from Ubuntu
archives) was used. The frame computation time was measured
to be 323 ± 11 µs, averaged over 10 million consecutive frames,
a histogram of which is shown in Fig. 5. The system jitter of
11 µs rms was measured (the standard deviation of frame compu-
tation time). The maximum frame time measured over this period
was 508 µs, though this (as can be seen from the standard deviation)
was an extremely rare event. In fact, only 501 frames (out of 107)
took longer than 400 µs to compute, only 106 frames took longer
than 425 µs and only two frames took longer than 500 µs. The mean
frame computation time here corresponds to a frame rate of greater
than 3 kHz.

Equivalent measurements made with a stock Linux kernel
(2.6.32) did not give significantly worse performance, with the
mean frame computation time increasing slightly to 343 ± 13 µs
and no increase in the processing time tail.

The introduction of a camera and a DM to this system would
increase the frame computation time due to the necessity to transfer
pixel data and DM demand data; however, our experience shows
that we would not expect a significant increase in computation time,
and maximum frame rates greater than 2 kHz would still be easily
achievable.

It is interesting to note that more recent stock Ubuntu kernels
(2.6.35 and 2.6.38) give far worse performance, almost doubling
the frame computation time. At this point we have not investigated
further, though intend to do so. This could be due to parameters
used during kernel compilation, or due to actual changes in the
kernel source, though other available bench marks do not suggest
that this is a likely problem. However, it is worth bearing in mind
that the performance of a software-based AO control system may
be dependent on the operating system kernel used.

Typically, a design for an AO RTCS is made before actual
hardware and software is available, and so predictability of per-
formance of a CPU-based real-time controller is not usually well
defined.

However, by using pre-existing real-time control software such
as DARC, performance predictability can be improved, as it allows
hardware to be purchased earlier in the development cycle of a
RTCS, for immediate use. This removes much of the uncertainty of
CPU-based controllers much earlier in the design and prototyping
phases of AO system development.
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4.2 DARC as a RTC for a system resembling the Palm-3000
AO system

The Palm-3000 AO system on the 5-m Hale telescope is the highest
order AO system yet commissioned (Truong et al. 2008), and has
the highest computational demands. At highest order correction, it
uses a 62 × 62 Shack–Hartmann WFS and a DM with about 3300
active elements, and is specified to have a maximum frame rate of
2 kHz. For real-time control, this system uses eight PCs and 16
GPUs, far more hardware than we have available at our disposal.
However, by using DARC on our existing (previously mentioned)
hardware, we have been able to meet this specification, though
again, as we do not have suitable cameras and DMs, our measure-
ments do not include these.

In order to implement this system, we use the three Tesla GPUs
for wavefront reconstruction, spreading the matrix–vector multipli-
cation equally between them. The matrix in each GPU has dimen-
sions equal to Nact × Nslopes/3, with Nact being the number of DM
actuators and Nslopes being the number of slopes (twice the number
of active subapertures). In order to interleave camera read-out with
pixel processing, we split these multiplications into four blocks,
i.e. perform a partial matrix–vector multiplication once a quarter, a
half, three quarters and all the slope measurements for each GPU
have been computed, thus performing a total of 12 matrix–vector
multiplications per frame. It is interesting to note that the actual
Palm-3000 RTCS splits processing into two blocks per GPU, i.e.
processing occurs halfway through pixel arrival and after all pixels
have arrived. Our implementation performs pixel calibration and
slope calculation in CPU, dividing the work equally between 12
processor cores using 12 processing threads.

By configuring DARC in this way, we are able to achieve a
frame rate of 2 kHz and a corresponding frame processing time of
500 µs. The addition of a real camera and DM would increase this
processing time meaning that the official specifications would not
be met. However by adding a fourth GPU, performance could be
increased.

It should be noted that our GPUs are of a higher specification,
with memory bandwidth (the bottleneck) being 65 per cent higher
than that used by Palm-3000, which will account for some of the
difference. We also perform calibration and slope computation in
CPU, while the Palm-3000 system performs this in GPU, and the
Palm-3000 system will include some overhead for contingency (i.e.
the maximum frame rate is likely to be greater than 2 kHz should the
WFS allow it). Because all our calculations are performed within
one computing node, we do not suffer from increased latency due to
computer–computer communication, which the Palm-3000 system
will include. These differences help to explain how DARC is able
to perform the same task using significantly less hardware and a
simpler design.

This demonstrates that DARC is suitable for use with high-order
AO correction, despite being primarily CPU based, i.e. CPU-based
RTCSs are sufficiently powerful for current AO systems.

4.3 DARC as a RTC for a system resembling E-ELT EAGLE

A multi-object spectrograph for the European ELT (E-ELT) is cur-
rently in the design phase. This instrument, EAGLE (Cuby et al.
2008), will have a multi-object AO system (Rousset et al. 2010),
with independent wavefront correction along multiple lines of sight,
in directions not necessarily aligned with WFSs, as shown in Fig. 6.
A current design for EAGLE consists of 11 WFSs (of which six
use laser guide stars), and up to 20 correction arms. Each WFS has

Figure 6. A demonstration of multi-object AO. The large circle represents
the telescope field of view, and six laser guide stars and associated WFSs
are arranged in a ring near the edge of this. Five natural guide star WFSs
are then placed on appropriate stars, and multiple science targets, each with
a DM, can then be picked out.

84 × 84 subapertures, and each correction arm contains an 85 × 85
actuator DM, updated at a desired rate of 250 Hz.

The real-time control requirement for this system is demanding,
though each correction arm is decoupled, and hence can be treated
as a separate AO system. Therefore, each of these systems will have
11 84 × 84 WFSs, and one 85 × 85 actuator DM, leading to a
total of about 125 000 slope measurements and 5800 active actua-
tors. A control matrix for this system would have a size of nearly 3
GB (assuming that elements are stored as a 32-bit floating point).
Generally, for a system of this size, processing power is not the
limiting factor. Rather, it is the memory bandwidth required to load
this control matrix from memory into the processing units for each
frame (be they CPUs, GPUs, FPGAs, etc.), which in this case is
equal to about 725 GB s−1 (matrix size multiplied by frame rate).
The three-GPU system that we have in Durham has a peak theoreti-
cal bandwidth of 444 GB s−1, and our matrix–vector multiplication
core is able to reach about 70 per cent of this. Theoretical or even
measured matrix multiplication rates are however not a good bench-
mark for a RTCS. This is because the RTCS will perform additional
operations, which will affect cache or resource usage, and further-
more, the multiplication will be broken up into blocks allowing
reconstruction to be interspersed with pixel read-out. DARC is an
ideal tool for such benchmarking, as it is both a full RTCS, but also
flexible enough to investigate parameters for optimal performance.

By using the three Tesla GPUs that we have available, we are able
to process one WFS on each GPU at a frame rate of about 300 Hz,
with wavefront reconstruction for one correction arm (i.e. 3/11th
of a single channel). We find that the frame rate falls slightly with
the number of WFSs processed (and hence the number of GPUs
used) as shown in Fig. 7. If we consider how a system containing
eight GPUs might behave (the maximum number of GPUs that can
be placed in a single PC), then an extrapolation to eight WFSs and
GPUs (which we realize is rather dubious from the available data,
but will suffice for the argument being made here) might bring the
frame rate down to about 280 Hz. For a single channel of EAGLE,
reconstruction from 11 WFSs is required, which if divided between
eight GPUs would reduce the frame rate to about 200 Hz. If we
were to change the GPUs used from Tesla 2070 cards to more
powerful (yet cheaper) GeForce 580 cards (increasing the GPU
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Figure 7. A plot showing how frame rate is affected by the number of WFSs
processed for an EAGLE-like system, assuming a GPU dedicated to each
WFS all on the same computer. An exponential trend line has been fitted to
the data.

internal memory bandwidth from 148 to 192 GB s−1), the frame
rate could be increased to 260 Hz.

Since EAGLE channels are essentially independent, we could
then replicate this system using a single computer and eight GPUs
for each channel (and one more to control the E-ELT deformable M4
mirror with 85 × 85 actuators), giving a full real-time solution for
EAGLE. In fact, this situation is even simpler, since we only need to
perform wavefront slope measurement once per frame, rather than
once per channel per frame, and so a front end (possibly FPGA
based for minimal latency, e.g. the SPARTA wavefront processing
unit) could be used to compute wavefront slopes, which would
greatly reduce the CPU processing power required for each channel
(though GPU processing requirement would remain unchanged).

It should be noted that in the case of wavefront reconstruction
only (assuming slope calculation is carried out elsewhere), our sys-
tem in Durham is able to achieve a frame rate of 400 Hz, independent
of whether we process slopes from one, two or three WFSs using a
GPU for each. We are therefore confident that such a system would
allow us to implement the entire EAGLE RTCS using currently
available hardware and software. Given the performance improve-
ments promised in both multicore CPUs and in GPUs over the next
few years, a CPU- and GPU-based solution for EAGLE is even
more feasible.

4.4 Future real-time control requirements

In addition to the consideration of real-time control for EAGLE
given in Section 4.3, we should also consider other future real-time
requirements, whether DARC will be able to meet these, and what
the AO community will require.

The most demanding currently proposed instrument (in terms of
computational requirement) is probably Exo-Planet Imaging Cam-
era and Spectrograph (EPICS; Kasper et al. 2007) for the E-ELT.
This XAO system consists of a WFS with 200 × 200 subaper-
tures and a frame rate of 2 kHz. Using DARC with currently avail-
able GPUs (NVIDIA GeForce 580 with a memory bandwidth of
192 GB s−1), performing matrix–vector multiplication-based wave-
front reconstruction would require a system with at least 150 GPUs.
Although this is a similar number to that required by EAGLE, for
EPICS the results from each GPU must be combined with results

from all other GPUs, and to the authors, this does not seem to be
a practical solution when a frame rate of 2 kHz is required (for
EAGLE, only computations from sets of eight GPUs need to be
combined since the MOAO arms can be treated independently). On
this scale, other reconstruction algorithms do not seem appropriate:
conjugate gradient algorithms cannot be massively parallelized to
this degree, and, as far as we are aware, algorithms such as CURE

(Rosensteiner 2011) do not yet provide the correction accuracy re-
quired. Therefore, we must conclude that DARC is not suitable
for this application. However, given that this instrument is at least
10 years away, more powerful hardware and more suitable algo-
rithms are likely to become available.

To our knowledge, other proposed instruments generally have
lower computational and memory bandwidth requirements than
EAGLE, which we have shown that DARC would be capable of
controlling. Therefore, we are confident that DARC provides a
real-time control solution for most proposed AO systems, and this
demonstrates the suitability of CPU-based RTCSs for AO. It should
be noted that it is only within the last few years, with the advent
of multicore CPUs and more recently GPU acceleration, that such
systems have become feasible, giving the advantages of both greater
processing power and additional CPUs to handle non-real-time pro-
cesses (such as operating system services and diagnostic systems),
thus keeping jitter to a minimum.

4.5 Wavefront sensor camera and deformable
mirror specifications

The timing measurements for DARC provided here are optimistic
since we do not include a physical WFS camera or DM. However, by
considering the latency and frame-rate requirements for the systems
for which we have investigated the performance of DARC, we can
derive the specifications required for these hardware components
that will allow the system to perform as desired.

A frame computation time of 323 µs was measured for DARC
operating in a VLT planet-finder configuration. The total latency
for this system (including camera read-out) must be below 1 ms.
However, when camera read-out time and DM settling time are
taken into account, this corresponds to an acceptable RTCS latency
(from the last pixel received to the last DM command leaving) of
about 100 µs (E. Fedrigo, private communication). To achieve this
latency, we can therefore specify that the camera pixel stream must
be accessible in blocks that are equal to or less than quarter of an
image in size (the time to process each block will then be about
80 µs, meaning that it will take this long to finish computation once
the last block arrives at the computer, resulting in a 80 µs RTCS
latency.

The DARC configuration for a system resembling Palm-3000
provides a processing time of 500 µs using three GPUs. Once a
real WFS camera and DM are added, this processing time would
increase meaning that the 2 kHz frame rate could no longer be met.
Therefore, a fourth GPU is required to be added to the system,
which would result in a processing time of less than 400 µs. This
therefore provides a 100-µs overhead to allow for the process of
sending commands to the DM and obtaining pixel data from a frame
grabber card, which should be more than ample (typically this will
just be a command to initiate a DMA), thus putting a performance
requirement on the hardware. The maximum camera frame rate
is 2019 Hz, corresponding to a read-out time of 495 µs. This is
greater than the processing time, meaning that we are therefore able
to interleave processing with read-out, with enough time to finish
block processing between each block of pixels arriving. The RTCS
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latency (the last pixel received to the last DM command sent) will
therefore be determined by the pixel block size. If we read the
camera in four blocks (giving a 100 µs processing time per block)
then after the last pixel arrives, we will have a 100 µs processing
time plus the 100-µs overhead that we have allowed for data transfer,
a total of 200-µs RTCS latency. For this system, we therefore require
that the camera pixels can be accessed in four blocks, and that the
time overhead for transferring pixels into memory and commanding
the DM is less than 100 µs.

Our configuration of DARC for an EAGLE-like instrument gives
a processing time of 3.8 ms. To achieve the desired frame rate of
250 Hz, the total processing time must remain below 4 ms. We
therefore have 200 µs in which to process the last block of pixels
(processing of other blocks will be interleaved with pixel read-out
and thus will not contribute to the RTCS latency), and to send
commands to the DM. If we divide the pixel data for each camera
into 42 blocks (which corresponds to two rows of subapertures per
block), then the processing time for each block is 90 µs, thus leaving
110 µs spare. We have therefore placed requirements on the DM and
WFS camera for this system: we require a camera that will allow us
to access the pixel stream in blocks of size 1/42 of a frame. We also
require the time to receive this block of pixel data into computer
memory, and to send DM demands from computer memory to be
less than 100 µs. This equates to a data bandwidth of about 4 Gbits
s−1, which is achievable with a single PCI-Express (generation 2)
lane. This requirement can easily be met given that camera interface
cards typically use multiple lanes, and a DM interface card could
also use multiple lanes.

5 C O N C L U S I O N

We have presented details of the Durham AO RTCS, including re-
cent improvements. We have described some of the more advanced
features and algorithms available with DARC and given details
about the improved modularity and flexibility of the system (in-
cluding the ability to load and unload modules while in operation).
We have also discussed ways in which DARC can be optimized for
specific AO systems.

We have discussed how DARC can be used for almost all cur-
rently proposed future AO systems, and given performance esti-
mates for some of these. We are well aware that without a physical
camera and DM, the results that we have presented here do not
represent the whole system, and so we have used these perfor-
mance estimates to derive the WFS camera and DM requirements
that are required to ensure that an AO system can meet its design
performance. The architecture of DARC, allowing interleaving of
processing and camera read-out, means that AO system latency can
be kept low, and so we are confident that DARC presents a real-time
control solution that is well suited to ELT scale systems.

By making use of GPU technology, we have been able to provide
a RTCS suited for all but the most ambitious of proposed ELT
instruments, and have demonstrated that software and CPU-based
RTCSs have now come of age.
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