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ABSTRACT
We present a clustering analysis of luminous red galaxies (LRGs) in Stripe 82 from the
Sloan Digital Sky Survey (SDSS). We study the angular two-point autocorrelation function,
w(θ ), of a selected sample of over 130 000 LRG candidates via colour-cut selections in
izK with the K-band coverage coming from UKIRT (United Kingdom Infrared Telescope)
Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We have used the cross-
correlation technique of Newman to establish the redshift distribution of the LRGs. Cross-
correlating them with SDSS quasi-stellar objects (QSOs), MegaZ-LRGs and DEEP Extragalac-
tic Evolutionary Probe 2 (DEEP2) galaxies, implies an average redshift of the LRGs to be
z ≈ 1 with space density, ng ≈ 3.20 ± 0.16 × 10−4 h3 Mpc−3. For θ ≤ 10 arcmin (correspond-
ing to ≈10 h−1 Mpc), the LRG w(θ ) significantly deviates from a conventional single power
law as noted by previous clustering studies of highly biased and luminous galaxies. A double
power law with a break at rb ≈ 2.4 h−1 Mpc fits the data better, with best-fitting scale length,
r0, 1 = 7.63 ± 0.27 h−1 Mpc and slope γ 1 = 2.01 ± 0.02 at small scales and r0, 2 = 9.92 ±
0.40 h−1 Mpc and γ 2 = 1.64 ± 0.04 at large scales. Due to the flat slope at large scales, we find
that a standard � cold dark matter (�CDM) linear model is accepted only at 2–3σ , with the
best-fitting bias factor, b = 2.74 ± 0.07. We also fitted the halo occupation distribution (HOD)
models to compare our measurements with the predictions of the dark matter clustering. The
effective halo mass of Stripe 82 LRGs is estimated as Meff = 3.3 ± 0.6 × 1013 h−1 M�. But at
large scales, the current HOD models did not help explain the power excess in the clustering
signal.

We then compare the w(θ ) results to the results of Sawangwit et al. from three samples
of photometrically selected LRGs at lower redshifts to measure clustering evolution. We find
that a long-lived model may be a poorer fit than at lower redshifts, although this assumes that
the Stripe 82 LRGs are luminosity-matched to the AA� LRGs. We find stronger evidence for
evolution in the form of the z ≈ 1 LRG correlation function with the above flat two-halo slope
maintaining to s � 50 h−1 Mpc. Applying the cross-correlation test of Ross et al., we find
little evidence that the result is due to systematics. Otherwise, it may represent evidence for
primordial non-Gaussianity in the density perturbations at early times, with f local

NL = 90 ± 30.

Key words: cosmology: observations – galaxies: evolution-high-redshift – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

The statistical study of the clustering properties of massive galaxies
provides important information about their formation and evolution
which represent major questions for cosmology and astrophysics.
The correlation function of galaxies remains a simple yet powerful
tool for implementing such statistical clustering studies (e.g. Peebles
1980).

� E-mail: nikolaos.nikoloudakis@durham.ac.uk

A lot of interest has been concentrated specifically on measuring
the clustering correlation function of luminous red galaxies (LRGs;
Eisenstein et al. 2001; see also e.g. Zehavi et al. 2005b; Blake,
Collister & Lahav 2008; Ross et al. 2008a; Wake et al. 2008;
Sawangwit et al. 2011). LRGs are predominantly red massive early-
type galaxies, intrinsically luminous (≥3L�) (Eisenstein et al. 2003;
Loh & Strauss 2006; Wake et al. 2006) and thought to lie in the most
massive dark matter haloes. They are also strongly biased objects
(Padmanabhan et al. 2007) and this coupled with their bright lumi-
nosity makes their clustering easy to detect out to high redshifts.
For linear bias, the form of the LRG correlation function will trace

C© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at D
urham

 U
niversity L

ibrary on June 2, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Clustering of high-redshift LRGs in Stripe 82 2033

that of the mass but even in this case the rate of correlation function
evolution will depend on the bias model (e.g. Fry 1996), which in
turn depends on the galaxy formation process.

The passive evolution of the LRG LF and slow evolution of
the LRG clustering (Wake et al. 2008; Sawangwit et al. 2011)
seen in Sloan Digital Sky Survey (SDSS), 2dF-SDSS LRG and
Quasar (2SLAQ) and AA� Surveys already present a challenge for
hierarchical models of galaxy formation as predicted for a cold dark
matter (CDM) universe. Since the LRG clustering evolution with
redshift has been controversial, a major goal is to use the angular
correlation function to test if the slow clustering evolution trend
continues out to z ≈ 1.

The uniformity of the LRG spectral energy distributions (SEDs)
with their 4000 Å Ca II H&K break offers the ability to apply a
colour–colour selection algorithm for our candidates. This tech-
nique has been successfully demonstrated primarily by Eisenstein
et al. in SDSS in the analysis of LRG clustering at low redshift and
then in 2SLAQ (Cannon et al. 2006) and AA� (Ross et al. 2008a)
LRG surveys at higher redshifts. For our study, the available deep
optical-IR ugrizJHK imaging data from the SDSS + UKIRT (United
Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS)
LAS/DXS surveys in Stripe 82 will be used. This combination of
NIR and deep optical imaging data, on a moderate sample size of
area ∼200 deg2, results in a sample of ≈130 000 LRG candidates
at redshift z ≈ 1.

The main tool for our clustering analysis will be the two-point
angular correlation function, w(θ ), which has been frequently used
in the past, usually in cases where detailed redshift information was
not known. Hence, selecting Stripe 82 LRGs based on colour–
magnitude criteria corresponds to a rough photometric redshift
(photo-z) estimation based on the 4000 Å break shifting through the
passbands. We shall apply the cross-correlation technique which
was introduced by Newman (2008) to measure the redshift distribu-
tion, n(z), of our photometrically selected samples. One of the main
advantages of w(θ ) is that it only needs the n(z) of the sample and
then through Limber’s formula (Limber 1953) it can be related to
the spatial two-point correlation function (2PCF), ξ (r).

In recent clustering studies, it was noted that the behaviour of
ξ (r), which has previously been successfully described by a single
power law of the form ξ (r) = (r/r0)−γ , significantly deviates from
such a power law at ∼1 h−1 Mpc. The break in the power law can
be interpreted in the framework of a halo model, as arising from the
transition between small scales (one-halo term) to larger than single
halo scales (two-halo term). Currently, our theoretical understand-
ing of how galaxy clustering relates to the underlying dark matter is
provided by the halo occupation distribution (HOD) model (see e.g.
Jing, Mo & Boerner 1998; Ma & Fry 2000; Peacock & Smith 2000;
Seljak 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002)
via dark matter halo bias and halo mass function. Furthermore, the
evolution of HOD can also give an insight into how certain galaxy
populations evolve over cosmic time (White et al. 2007; Seo, Eisen-
stein & Zehavi 2008; Wake et al. 2008; Sawangwit et al. 2011).

The outline of this paper is as follows. In Section 2, we briefly
describe the SDSS and UKIDSS data used in this paper, while in
Section 3 we describe the angular function correlation function es-
timators and their statistical uncertainties. In Section 4, we estimate
the redshift distribution through cross-correlations and then present
the correlation results together with their power-law fits, �CDM
model and a halo model in Section 5. Section 6 is devoted to the
interpretation of the clustering evolution. In Section 7, we explore
potential systematic errors that might affect the large scale clus-
tering signal. We then argue that, if real, an observed large-scale

clustering excess may be due to the scale-dependent bias caused by
primordial non-Gaussianity and compare our results to other pre-
vious works in Section 8. Finally, in Section 9 we summarize and
conclude our findings.

Throughout this paper, we use a flat �-dominated cosmology
with �m = 0.27, H0 = 100 h km s−1 Mpc−1, h = 0.7, σ 8 = 0.8 and
magnitudes are given in the AB system unless otherwise stated.

2 DATA

2.1 LRG sample selection

We perform a K-band selection of high-redshift LRGs in Stripe
82 based on the combined optical and IR imaging data, ugrizJHK,
from SDSS DR7 (Abazajian et al. 2009) and UKIDSS LAS sur-
veys (Lawrence et al. 2007; Warren et al. 2007), respectively. In
previous studies, gri and riz colours have been used to select low-
to medium-redshift LRGs, such as SDSS (Eisenstein et al. 2001),
2SLAQ (Cannon et al. 2006) and AA� (Ross et al. 2008a) LRGs
surveys up to z ≈ 0.7. In this work we aim to study LRGs at z ≈
1, thus we use the izK colour–magnitude limits for our selection in
order to sample the 4000 Å Ca II H&K break of the LRGs’ SED as
it moves across the photometric filters (Fukugita et al. 1996; Smith
et al. 2002) taking advantage of the NIR photometry coverage from
UKIDSS LAS. Coupling the UKIDSS LAS to KVega ≤ 18 with the
SDSS ugriz imaging to iAB < 22.5 in Stripe 82 produces an unri-
valled combination of survey area and depth. Our selection criteria
are as follows.

SDSS Best Imaging

z − K + 0.9(i − z) ≥ 1.8, Pri A ∼ 700 deg−2

z − K + 0.9(i − z) ≥ 2.3, Pri B ∼ 240 deg−2

z − K − 0.9(i − z) ≥ −0.2

−0.5 ≤ i − z ≤ 1.7

z − K ≤ 4.0

17.0 ≤ K ≤ 18

z ≤ 22.0. (1)

The photometric selection of LRGs at z > 1 requires a combina-
tion of optical and NIR photometry as the 4000 Å band straddles the
z band. The selection of high-redshift LRGs is done on the basis of
SDSS iz photometric data and the LAS K-band data (Fig. 1). LRG
evolutionary models of Bruzual & Charlot (2003) are overplotted
for single burst and τ = 1 Gyr galaxy models indicating the izk
plane area where we should apply our selections in order to study
the high-z LRG candidates.

Late-type star contamination is a major problem in selecting a
photometric sample of z ≈ 1 LRGs. Here the z − K colour also
helps to distinguish the M stars colour locus from those of galaxies.
From Fig. 1, we see that most of the M stars lie at the bottom of
the izK colour plane. We identify these M stars by assuming their
typical NIR colour, J − K < 1.3. However, this means that our
selection criteria must involve J-band data and would reduce the
sky coverage due to the data availability. Therefore we choose to
exclude these M stars by applying a cut in izK colour plane with the
condition z − K − 0.9(i − z) ≥ −0.2 in equation (1).

All magnitudes and colours are given in SDSS AB system and
are corrected for extinction using the Galactic dust map of Schlegel,
Finkbeiner & Davis (1998). All colours described below refer to
the differences in ‘model’ magnitudes (see Lupton et al. 2001, for
a review on model magnitudes) unless otherwise stated.
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Figure 1. iz versus zK colour–colour plot. Priority A and B correspond to
the ∼700 deg−2 and ∼240 deg−2 LRG samples, respectively. Objects with
J − K < 1.3 which is typical for M stars are plotted as black circles whereas
those with J − K ≥ 1.3 are plotted in green. Evolutionary tracks for single
burst (red line) and τ = 1 Gyr (blue line) are overplotted from z = 0 to 1.6
with symbols indicating z interval of 0.2. The evolutionary track of late-type
galaxies (magenta line) is also shown for comparison.

Applying the above selection criteria (equation 1) on the SDSS
DR7, we have two main LRG samples with a total observed area
(after masking) of ≈200 deg2. The first sample has 130 819 LRG
candidates with a sky surface density of ≈700 deg−2 and the second
one 44 543 with a sky density of ≈240 deg−2. The 240 deg−2 LRG
sample was selected in such a way to check if the redshift distri-
bution implied by cross-correlations is higher than the 700 deg−2

LRG sample.

3 TH E T WO - P O I N T A N G U L A R C O R R E L AT I O N
F U N C T I O N M E A S U R E M E N T S A N D E R RO R S

3.1 w(θ ) estimators

The probability of finding a galaxy within a solid angle δ� on the
celestial plane of the sky at a distance θ from a randomly chosen
object is given by (e.g. Peebles 1980)

δP = n[1 + w(θ )]δ�, (2)

where n is the mean number of objects per unit solid angle. The
angular 2PCF in our case actually calculates the excess probability
of finding a galaxy compared to a uniform random point process.

Different estimators can be used to calculate w(θ ), so to start
with we use the minimum variance estimator from Landy & Szalay
(1993),

wLS(θ ) = 1 +
(

Nrd(Nrd − 1)

N (N − 1)

)
DD(θ )

RR(θ )
− 2

(
Nrd

N

)
DR(θ )

RR(θ )
(3)

where DD(θ ) is the number of LRG–LRG pairs, DR(θ ) and RR(θ )
are the numbers of LRG–random and random–random pairs, respec-
tively, with angular separation θ summed over the entire survey area.
Nrd is the total number of random points, N is the total number of
LRGs and Nrd/N is the normalization factor. For our calculation we
used two LRG samples (as explained in Section 2.1) with different
sky density; thus the density of the random catalogue that we use
is ∼20 times and ∼60 times the number of the real galaxies for the

first and second LRG samples, respectively. Using a high number
density random catalogue helps to ensure the extra shot noise is
reduced as much as possible.

We also compute w(θ ) by using the Hamilton (1993) estimator
which does not depend on any normalization and is given by

wHM (θ ) = DD(θ ) · RR(θ )

DR(θ )2
− 1. (4)

The Landy–Szalay estimator when used with our samples gives
negligibly different results to the Hamilton estimator. Note that
the Landy–Szalay estimator is used throughout this work except in
Section 7.1 where we used both estimators to test for any possible
gradient in number density of our samples.

For the computation of the cross-correlations in Sections 4 and 7
we use the estimator (Guo, Zehavi & Zheng 2011):

wcross(θ ) = DGDS(θ ) − DGRS(θ ) − DSRD(θ ) − RGRS(θ )

RGRS(θ )
(5)

where the subscript G and S stands for the contribution in the pairs
of the quantities that are cross-correlated in each case.

3.2 Error estimators

To determine statistical uncertainties in our methods, we used three
different methods to estimate the errors on our measurements. First,
we calculated the error on w(θ ) by using the Poisson estimate

σPoi = 1 + w(θ )√
DD(θ )

. (6)

Secondly, we used the field-to-field error which is given by

σ 2
FtF(θ ) = 1

N − 1

N∑
i=1

DRi(θ )

DR(θ )
[wi(θ ) − w(θ )]2, (7)

where N is the total number of subfields, wi(θ ) is an angular corre-
lation function estimated from the ith subfield and w(θ ) is measured
using the entire field. For this method we divide our main sample
to 36 subfields of equal size, ∼6 deg2. We also reduce the number
of subfields down to 18 with sizes of ∼12 deg2 as we want to test
how the results could deviate by using different sets of subsamples.
While Stripe 82 has only ∼2.◦5 height, our subfields with their ∼2.◦5
and ∼5◦ widths are a reasonable size for estimating the correlation
function up to scales of 1◦–2◦.

Our final method is jackknife resampling, which is actually a
bootstrap method. This technique has been widely used in clustering
analysis studies with correlation functions (see e.g. Scranton et al.
2002; Zehavi et al. 2005a; Ross et al. 2007; Norberg et al. 2009;
Sawangwit et al. 2011). The jackknife errors are computed using
the deviation of the w(θ ) measured from the combined 35 subfields
out of the 36 subfields (or 17 out of 18 when 18 subfields are
used). The subfields are the same as used for the estimation of the
field-to-field error above. w(θ ) is calculated repeatedly, each time
leaving out a different subfield and hence results in a total 36 (or
18) measurements. The jackknife error is then

σ 2
JK(θ ) =

N∑
i′=1

DRi′ (θ )

DR(θ )
[wi′ (θ ) − w(θ )]2, (8)

where wi′ (θ ) is a measurement using the whole sample except the
ith subfield and DRi′ (θ )/DR(θ ) is approximately 35/36 (or 17/18)
with slight variation depending on the size of resampling field. A
comparison of the error estimators can be seen in Fig. 2. Poisson
errors are found to be much smaller compared to jackknife errors
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Clustering of high-redshift LRGs in Stripe 82 2035

Figure 2. Comparison of the measured error ratios of the Jackknife, field-
to-field and the Poisson errors for the w(θ ) measurements of the 700 deg−2

Stripe 82 LRG sample. Two different resampling sets have been used for the
Jackknife and field-to-field errors: the first one based on 36 subfields and
the second from 18 subfields.

particularly at larger scales. Field-to-field errors give similar results
as jackknife errors, except at θ � 10 arcmin where the FtF errors
underestimate the true error due to missing cross-field pairs. Since
the jackknife errors are better at a scale of the order of 100 arcmin
which are of prime interest here, these are the error estimators that
will be used in this work unless otherwise stated.

When calculated in small survey areas, w(θ ) can be affected be an
‘integral constraint’, ic. Normally w(θ ) has a positive signal at small
scales and if the surveyed area is sufficiently small, this will cause a
negative bias in w(θ ) at largest scales (Groth & Peebles 1977), i.e.
west(θ ) = w(θ ) − ic. The integral constraint can be calculated from
(see e.g. Roche & Eales 1999)

ic =
∑

RR(θ )wmodel(θ )∑
RR(θ )

, (9)

where for the wmodel(θ ) we assume the standard �CDM model in
the linear regime (Section 5.3). No integral constraint is initially
applied to our full sample results as the expected magnitude of ic
is smaller than the w(θ ) amplitudes at scales analysed in this paper.
This position will be reviewed when we move on to discuss models
with excess power at large scales in Section 7.

To provide robust and accurate results from the correlation func-
tions, we are also interested in model fitting to the observed w(θ )
(see in Sections 5.2, 5.3 and 5.4). Hence, for model fitting we will
use the covariance matrix, which is calculated by

Cij = N−1
N

∑N
i,j=1

[
w(θi) − w(θi)

] [
w(θj ) − w(θj )

]
(10)

where the wi(θ i) is the correlation function measurement value
excluding the ith subsample and the factor N − 1 corrects from the
fact that the realizations are not independent (Myers et al. 2007;
Norberg et al. 2009; Ross, Percival & Brunner 2010; Crocce et al.
2011; Sawangwit et al. 2011). The jackknife errors are the square
root of the diagonal elements of the covariance matrix, so we can
now calculate the correlation coefficient, which is defined in terms
of the covariance,

rij = Cij√
Cii · Cjj

(11)

where σ 2
i = Cii (see Fig. 3). We can see that the bins are strongly

correlated at large scales. The covariance matrix is more stable when

Figure 3. The correlation coefficients rij , showing the level of correlation
between each angular separation bin for the 700 deg−2 Stripe 82 LRG sample
as calculated by using 36 subfields.

Figure 4. A fraction of the total ∼200 deg2 observed area in Stripe 82.
LRG candidates (red) and random objects (blue) follow the same angular
selection. Empty sky patches resulting from the lack of K-band coverage in
the combined optical-IR data.

we use 36 Jackknife subfields instead of 18, so we will use only the
covariance matrix for the case of 36 subfields.

3.3 Angular mask and random catalogue

To measure the observed angular correlation function we must com-
pare the actual galaxy distribution with a catalogue of randomly
distributed points. The random catalogue must follow the same ge-
ometry as the real galaxy catalogue, so for this reason we apply
the same angular mask. The mask is constructed from ‘BEST’ DR7
imaging sky coverage.1 Furthermore, regions excluded in the qual-
ity holes defined as ‘BLEEDING’, ‘TRAIL’, ‘BRIGHT_STAR’
and ‘HOLE’. The majority of the holes in the angular mask is from
the lack of K coverage in Stripe 82. The final mask is applied to
both our data and random catalogue (see Fig. 4).

For generating the randomly distributed galaxies/points, we tried
two different ways in order to modulate the surface density of
the random points to follow the number density and the selection
function of the real data. The selection function of the random
catalogue mimics only the angular selection of the real data.

For the first method, we use a uniform density for the random
points across the Stripe 82 area, so the normalization factor, Nrd/N,
would be ∼20 and ∼60 for the 700 deg−2 and the 240 deg−2 LRG

1 http://www.sdss.org/dr7
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samples, respectively. A second random catalogue was created by
dividing Stripe 82 into six smaller subfields (15 × 2.5 deg2 each)
and normalizing the density of random points to the density of
galaxies within each subfield. The difference between the measured
angular correlation function when we use the ‘global’ or the ‘local’
random catalogue is negligible. We will use the ‘global’ random
catalogue for the clustering analysis. A kd-trees code (Moore et al.
2001) has been used to minimize the computation time required in
the pair counting procedure.

4 LR G N(z) VIA C RO SS-CORRELATIONS

Even if the redshift of individual galaxies is not available, the 3D
clustering information can yet be recovered if the sample’s redshift
distribution, n(z), is known. This can be achieved using Limber’s
inversion equation (Limber 1953) which can project the spatial
galaxy correlation function, ξ (r), to the angular correlation function
given the n(z) of the sample:

w(θ ) = 2
∫ ∞

0
dxf (x)2

∫ ∞

0
du ξ

(
r = (

u2 + x2θ2
)1/2

)
, (12)

where f(x) is the galaxy redshift selection function. For our pho-
tometric selected LRG samples, only a very small fraction has a
measured redshift, thus it is vital to estimate the n(z) of the Stripe
82 LRG samples.

One method for estimating the redshift distribution of the sample
could be based on the various popular programs that derive pho-
tometric redshifts (photo-z’s). Photo-z estimates are based on the
deep multi-band photometry coverage, and work by tracing some
specific spectral features across the combination of filters which are
then compared with different types of SED templates. Indeed, our
izK selection is a rough photo-z cut as we follow the movement
of the 4000 Å break across the selected bands. In order to use the
angular correlation function and the information that is encoded we
need the n(z) of our sample, hence we follow the technique of New-
man (2008) for reconstructing the LRG redshift distribution from
cross-correlations.

4.1 Redshift distribution reconstruction

We employ Newman’s method, which is about determining the un-
derlying redshift distribution of a sample of objects (LRGs in our
case) through cross-correlation with a sample of known redshift dis-
tribution. By cross-correlating the sample (or samples) with known
redshift and the sample under consideration, if both samples lie at
the same distance, this will give a strong clustering signal. If the
two samples that we are cross-correlating are separated and are at
different z distances, no cross-correlation signal will result. Thus,
through the cross-correlations we can infer our photometrically se-
lected LRG sample z ranges.

Following Newman (2008) the probability distribution function
of the redshift of the Stripe 82 LRG samples, φp(z), is

φp(z) = w(z)
3 − γ

2π

dA(z)2dl/dz

H (γ )rγ
0,spr

3−γ
max

(13)

where w(z) is the integrated cross-correlation function, wsp(θ ,
z), of the LRG photometric samples with the samples of known
spectroscopic redshift (see Section 4.2), H(γ ) = �(1/2)�((γ −
1)/2)/�(γ /2) where �(χ ) is the Gamma function, dA is the co-
moving angular distance and dl is the comoving distance at redshift
z. The comoving distance rmax corresponds to the maximum angle

at given redshift, which must be large enough to avoid non-linear
biasing effects.

To derive φp(z) via equation (13) we must estimate wsp(θ, z) ∼
φp(z) r

γsp
0,sp, since the angular size distance, dA(z), and the comoving

distance, l(z), are given by the assumed cosmology. Thus we now
require only the knowledge of the γ sp and r0, sp parameters as a
function of redshift. Fortunately, under the assumption of linear bi-
asing, the cross-correlation of the two samples under consideration
is the result of the geometric mean of the autocorrelation functions
of the samples, i.e. ξsp = (ξssξpp)

1
2 , hence we can use the infor-

mation provided by autocorrelation measurements for each sample
to break the degeneracy between correlation strength and redshift
distribution.

Newman investigates the effect of systematics such as: differ-
ent cosmologies, bias evolution, errors from the autocorrelation
measurements and field-to-field zero-points variations in the final
redshift probability distribution result. These issues could be more
important in the case of future photometric surveys aimed at placing
constraints on the equation of dark energy.

4.2 Cross-correlation data sets

Newman’s angular cross-correlation technique requires the use of
a data sample with known spectroscopic, or sufficiently accurate
photometric, redshifts. For this reason we use a variety of sam-
ples with confirmed spectroscopic and photometric redshifts for the
cross-correlations with Stripe 82 LRGs. The data samples that we
use are: DEEP2 DR3 galaxies (Davis et al. 2003, 2007), MegaZ-
LRGs (Collister et al. 2007), SDSS DR6 quasi-stellar object (QSOs;
Richards et al. 2009) and SDSS DR7 QSOs (Schneider et al. 2010).
In Fig. 5 we show the normalized redshift distributions of all the
samples and in Table 1 we present the number of objects in each
redshift bin.

By using the above data sets for cross-correlation we satisfy
the principal requirements of Newman’s method, with the most
important being that the sky coverage of the data sets must overlap
the Stripe 82 LRGs. It must be mentioned though that not all the
redshift surveys have the same sky coverage as Stripe 82 LRGs, so
we reconstruct two redshift distributions via the cross-correlations
providing us with the opportunity to check how much the n(z)

Figure 5. Normalized redshift distributions of MegaZ-LRGs, DEEP2
galaxies and SDSS QSOs in Stripe 82 that are used in cross-correlations
with the LRG samples.
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Table 1. Number of objects in each separate redshift bin used for the cross-correlations with
Stripe 82 LRGs.

Sample
DEEP2 MegaZ-LRGs DR6 photometric sample DR7 spectroscopic sample

Redshift

0.4–0.6 – 30 503 436 456
0.6–0.8 3152 – 695 526
0.8–1.0 5512 – 1199 547
1.0–1.2 3620 – 1630 729
1.2–1.4 – – 1312 820
1.4–1.6 – – 2646 854
1.6–1.8 – – 1193 803
1.8–2.0 – – 1990 668

cross-correlation technique is affected by area selection. One n(z) is
reconstructed by using all the data sets, and the other n(z) by using
only SDSS QSOs in the cross-correlations.

4.2.1 SDSS DR6 and DR7 QSOs

QSO surveys are the main samples that we used for our cross-
correlation measurements and they span the redshift range 0.4 ≤
z ≤ 2.0. When we refer to QSO data sets, we separate them into
spectroscopic and photometric samples.

For the spectroscopic QSO sample we use the fifth edition of
the SDSS Quasar Catalogue, which is based on the SDSS DR7
(Schneider et al. 2010). The original data set contains 105 783 spec-
troscopically confirmed QSOs, from which only 5403 in Stripe 82
have been used at 0.4 ≤ z ≤ 2.0 for cross-correlations (Table 1) with
i < 22 (∼28 per cent of QSOs at i > 20).

The photometric QSO sample comes from the photometric imag-
ing data of the SDSS DR6 (Richards et al. 2009). The parent cat-
alogue contains ∼1000 000 QSOs candidates from which we use
11 101 with i < 21.3 in Stripe 82 and in the same redshift range as
the spectroscopic QSOs.

In Fig. 6 we plot the cross-correlations between the Stripe 82
LRGs and the SDSS QSOs. We show only the case for cross-
correlations of the 700 deg−2 Stripe 82 LRG sample with the spec-
troscopic and photometric SDSS QSOs. Cross-correlation with the

240 deg−2 LRG sample does not differ much. Errors shown here
and for the other cross-correlation cases are jackknife errors.

4.2.2 DEEP2 Sample

The next sample of galaxies that we use is DEEP2 DR3 galax-
ies (Davis et al. 2003, 2007). The survey coverage in Stripe 82
is ∼1.7 deg2 with i < 24. Galaxies in DEEP2 are split in three red-
shift bins with 0.2 step in the redshift range 0.6 ≤ z ≤ 1.2. The
redshift distribution of the DEEP2 DR3 sample is shown in Fig. 5,
with 12 284 galaxies in total. In Fig. 7 we show the results of the
cross-correlations of the 700 deg−2 and 240 deg−2 LRG samples
with the DEEP2 galaxies in the three aforementioned redshift bins.

4.2.3 MegaZ-LRG sample

The last sample that we use are LRGs from the MegaZ-LRG photo-
metric catalogue (Collister et al. 2007). MegaZ-LRGs are used only
in the redshift range of 0.4 ≤ z ≤ 0.6 with i < 20. This sample offers
us the ability to check the clustering properties of our high-redshift
LRG candidates with another sample of LRGs. The total number
of MegaZ-LRGs that we use for cross-correlations is 30 503. In
Fig. 8 the cross-correlations between the Stripe 82 LRGs and the
MegaZ-LRGs are shown.

Figure 6. (a) Cross-correlation measurements of the 700 deg−2 Stripe 82 LRG sample with spectroscopic SDSS QSOs. (b) Same as (a) but now photometric
SDSS QSOs are involved in the cross-correlations. Measurement uncertainties are 1σ jackknife errors.
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Figure 7. Cross-correlation measurements of the 240 deg−2 and 700 deg−2 Stripe 82 LRG samples with DEEP2 galaxies in (a) and (b), respectively.
Uncertainties are 1σ jackknife errors.

Figure 8. Cross-correlation measurements of the 700 deg−2 (green dia-
mond) and 240 deg−2 (purple star) Stripe 82 LRGs with MegaZ-LRGs,
along with 1σ jackknife errors.

4.3 Cross-correlation results for n(z)

Having estimated the clustering signal from the cross-correlations
of the above samples, we proceed to the reconstruction of the
redshift distribution of the photometrically selected Stripe 82
LRG candidates. To estimate the probability distribution func-
tion of the redshift, φp(z), for the high-z LRG candidates we use
equation (13). The pair-weighted clustering signal of the cross-
correlations has been integrated up to ≈6 arcmin for each redshift
bin.

In Fig. 9 we can see the two cases of the estimated probability dis-
tribution function of the redshift for the high-z LRG candidates. For
the first case, φp(z) has been estimated by using the spectroscopic
SDSS QSOs whereas in the other case, φp(z) is estimated using only
the photometric SDSS QSOs (DEEP2 galaxies and MegaZ-LRGs
are also always used). For both cases we plot the errors estimated for
each point in the redshift bin from the contributed cross-correlated
sample.

To estimate the redshift distribution, n(z), we use the weighted
mean for the φp(z) in each redshift bin, calculated through

n(z) =

k∑
i=1

(φp(i)/σ 2
i )

k∑
i=1

(1/σ 2
i )

, (14)

where k is the total number of bins at that redshift, φp(i) is the
measured probability distribution function of each cross-correlation
data set in the ith bin and σ i is the error on that measurement.

The spectroscopic QSO φp(z) in Fig. 9(a) compared to the photo-
z case in Fig. 9(b) gives increased probability at z ∼ 1. This may
be explained by the SDSS QSO spectroscopic redshifts being more
precise. For this reason, in our analysis and in fitting models to
our w(θ ) results, we will use only the spectroscopic n(z) for higher
accuracy.

In Fig. 10 we plot the normalized redshift distribution of the
240 deg−2 and 700 deg−2 LRGs samples as calculated from equa-
tions (13) and (14). When we selected the two LRG samples from
the izK colour-plane, we applied a redder selection for the 240 deg−2

sample (see equation 1), aiming for a sample with a slightly higher
redshift peak in the distribution as predicted from the evolutionary
tracks in Fig. 1. This small difference may be seen between the
spectroscopic n(z) of the 700 deg−2 and 240 deg−2 samples where
the bluer cut has an average of z ∼ 1 where for the redder sample
the average is z ∼ 1.1. But since the 700 deg−2 LRG sample has
higher statistical accuracy in the n(z) determination, the majority of
our analysis will be focused in this sample.

5 R ESULTS

5.1 Measured w(θ ) and comparisons

In Fig. 11 we compare the observed angular correlation function
of the 700 deg−2 LRG in Stripe 82 with Sawangwit et al. (2011)
results. The w(θ ) measurements are presented with 1σ Jackknife
errors.
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Figure 9. (a) The probability distribution function of the redshift, φp(z), of the 700 deg−2 and 240 deg−2 Stripe 82 LRGs as estimated through cross-correlations
with MegaZ-LRGs, DEEP2 galaxies and spectroscopic SDSS QSOs. (b) Same as in (a) but now using photometric SDSS QSOs instead of spectroscopic in the
cross-correlations. Error bars shown in both cases are 1σ jackknife summed up to 6 arcmin.

Figure 10. Weighted normalized redshift distribution of the Stripe 82 LRGs
candidate samples when we use the spectroscopic SDSS QSOs along with
the DEEP2 and MegaZ-LRG data sets. As expected the 700 deg−2 sample
(solid green line) n(z) peak is lower when compared with the 240 deg−2

sample (dashed blue line).

Figure 11. The angular correlation function, w(θ ), from the 700 deg−2

Stripe 82 LRGs (star), AA� LRGs (square), 2SLAQ LRGs (triangle) and
SDSS LRGs (diamond). At small scales all of the measurements show
similar clustering behaviour, but at large scales the Stripe 82 clustering
slope appears to be flatter than the lower z samples.

The work of Sawangwit et al. involved three LRG data sets at
z ≤ 1:

(i) SDSS LRGs at z ∼ 0.35
(ii) 2SLAQ LRGs z ∼ 0.55
(iii) AA� LRGs z ∼ 0.68.

From Fig. 11 we can see that at small scales, θ � 1 arcmin, the
clustering trend for all the samples is similar but with decreasing
amplitude for increasing redshift. At larger scales, we note that
the w(θ ) of the Stripe 82 LRGs seems to have a flatter slope than
the other samples, departing from the expected behaviour for the
correlation function.

Further comparisons below with the LRG clustering results of
Sawangwit et al. will focus on the slope and amplitude of the w(θ )
results, with an initial view to interpret any changes in terms of
evolution. It is therefore of interest to see how the Stripe 82 sample
matches to the LRG samples used in previous studies in terms of
luminosity and comoving space density.

A pair-weighted galaxy number density is given by (see e.g. Ross,
Brunner & Myers 2008b)

ng =
∫

dz
H (z)n(z)

�obs cl2(z)
× n2(z)

/∫
dzn2(z), (15)

where �obs is the observed area of the sky, l(z) is the comoving
distance to redshift z and c is the speed of light. The observed space
density for the 700 deg−2 Stripe 82 sample is found to be ≈3.20 ±
0.16 × 10−4 h3 Mpc−3. The quoted 1σ error has been estimated from
the difference of the number density as calculated through equation
(15) and by converting Fig. 10 into a plot of number density as a
function of z (by dividing its bin by its corresponding volume).

Within the uncertainties of our n(z), the 700 deg−2 sample appears
to have similar space density to that of the AA� LRG sample (see
Table 2 in Section 5.2). However, in this study we do not yet have
redshift information for individual LRGs, not even for a subset
of the sample. Hence it is more uncertain if our sample has similar
luminosity as the LRG samples used by Sawangwit et al. (2011). We
therefore take the fact that the samples are number density matched
to imply that they are also approximately luminosity matched which
may turn out to be a reasonable assumption (see e.g. Sawangwit et al.
2011). This then should enable us to compare the clustering slopes
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Table 2. Best-fitting parameters for the single and double power-law fits to the angular correlation function.

Sample z̄ ng Single power law Double power law
(h3 Mpc−3) γ r0(h−1 Mpc) χ2

red γ 1, 2 r0, 1, 2(h−1 Mpc) rb(h−1 Mpc) χ2
red

AA� LRGs 0.68 2.7 × 10−4 1.96 ± 0.01 7.56 ± 0.03 42.8 2.14 ± 0.01 5.96 ± 0.03 1.3 3.4
(110 deg−2) 1.81 ± 0.02 7.84 ± 0.04
Stripe 82 LRGs 1.0 3.20 ± 0.16 × 10−4 2.01 ± 0.01 7.54 ± 0.16 5.89 2.01 ± 0.02 7.63 ± 0.27 2.38 3.65
(700 deg−2) 1.64 ± 0.04 9.92 ± 0.40

and amplitudes of the AA� and Stripe 82 and infer any evolution
independently of luminosity dependence.

5.2 w(θ ) and power-law fits

Our first aim here is to fit power laws to the Stripe 82 w(θ ) to
provide a simple parametrization of the results. Our second aim is
to make comparisons of the 3D correlation amplitudes and slopes to
measure evolution. Both aims will require application of Limber’s
formula to relate the 2D and 3D correlation functions.

We begin by noting that the simplest function fitted to correlation
functions is a single power law with amplitude r0 and slope γ . In
previous studies, the spatial correlation function has been frequently
described by a power law of the form

ξ (r) =
(

r

r0

)−γ

. (16)

The angular correlation function as a projection of ξ (r) can be
written as w(θ ) = αθ1−γ , commonly with a slope fixed at γ = 1.8.
The amplitude of the angular correlation function, α, can be related
with the correlation length r0 through Limber’s formula (equation
12) using the equation (Blake et al. 2008):

α = Cγ r
γ
0

∫
dz n(z)2

(
dx

dz

)−1

x(z)1−γ , (17)

where n(z) is the redshift distribution, x(z) is the comoving radial
coordinate at redshift z and the numerical factor Cγ = �( 1

2 )�( γ

2 −
1
2 )/�( γ

2 ).
A deviation from a single power law at ∼1 h−1 Mpc has been

measured in previous studies (Shanks et al. 1983; Blake et al. 2008;
Ross et al. 2008a; Kim et al. 2011; Sawangwit et al. 2011) and can be
explained by the one- and two-halo terms imprinted in the clustering
signal under the assumption of the halo model (see Section 5.4).
To parametrize the clustering characteristics of our sample, we fit a
single power law and a double power law to our measured angular
correlation function. The double power-law form is given as

w1(θ ) =
(

θ

θ0,1

)1−γ1

(θ < θb) (18)

w2(θ ) =
(

θ

θ0,2

)1−γ2

(θ ≥ θb) (19)

with θb to be the break point at ≈1.2 arcmin where the power-law
slope changes from being steeper at small scales (<1.2 arcmin) to
flatter at large scales.

The power laws are fitted in the range 0.1 < θ < 30 arcmin using
the χ2-minimization with the full covariance matrix constructed
from the jackknife resampling (see Section 3.2):

χ2 =
N∑

i,j=1

�w(θi)C
−1
ij �w(θj ), (20)

Figure 12. The best-fitting single power law (diamond) and double power
law (triangle) for the 700 deg−2 LRGs candidates overplotted on the angular
correlation function (square) with the 1σ Jackknife error. Lower panel shows
the fitting residuals.

where N is the number of angular bins, �w(θ i) is the difference
between the measured angular correlation function and the model
for the ith bin, and C−1

ij is the inverse of the covariance matrix.
For the single power law, our best-fitting spatial clustering length

and clustering slope pair from Limber’s formula are measured to
be r0 = 7.54 ± 0.16 h−1 Mpc and γ = 2.01 ± 0.01 with associated
reduced χ2

red = 5.89. The r0 − γ pairs for the double power law are
r0, 1 = 7.63 ± 0.27 h−1 Mpc and γ 1 = 2.01 ± 0.02 at small scales
and r0, 2 = 9.92 ± 0.40 h−1 Mpc and γ 2 = 1.64 ± 0.04 at large scales
with a reduced χ2

red = 3.65. From the intersection of the two power
law for ξ (r), we have calculated the break scale, rb = 2.38 h−1 Mpc.
This is higher than the rb = 1.3 − 2.2 h−1 Mpc estimated from the
SDSS, 2SLAQ and AA� LRG surveys (Sawangwit et al. 2011).

In Fig. 12 we show the data points including the 1σ Jackknife
errors with the best-fitting power laws where the largest scale con-
sidered in the fitting was θ < 30 arcmin, which corresponds to
r � 20 h−1 Mpc at z ∼ 1 for the 700 deg−2 LRG sample. Fig. 12
confirms that the double power law clearly gives a better fit to the
data than the single power law. Note that in the case of the single
power law and the double power law at small scales, our results
give r0 − γ values consistent with outcomes from previous studies.
However, at large scales the Stripe 82 slope (γ 2 = 1.64 ± 0.04) is
significantly flatter than the AA� result (γ 2 = 1.81 ± 0.02).

Fig. 13 shows the double power-law fits for AA� (dashed red
lines) taken from Sawangwit et al. and then evolved (black and green
dot–dashed lines) to the Stripe 82 depth using equation (17) under
the assumptions of comoving and virialized clustering, respectively.
We shall interpret the amplitude scaling in the discussion of evolu-
tion in Section 6.1 later. At this point we again note that the biggest
discrepancy seems to be at large scales where the Stripe 82 slope is
increasingly too flat relative to the AA� result. Fitted parameters
are given in Table 2, where the best-fitting power-law parameters for
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Figure 13. (a) The AA� LRG raw w(θ ) measurements (red square) with
predictions from comoving evolution model (dashed red line), using the best-
fitting double power law r0 − γ values with Limber’s formula as Sawangwit
et al. (2011) calculated. We then evolve the AA� best-fits utilizing the
estimated 700 deg−2 Stripe 82 LRG n(z) under the assumption of comoving
evolution (dash–dotted black line) clustering. The observed Stripe 82 LRG
w(θ ) is shown as well (blue star). (b) Same raw measurements as above, but
now compared to the virialized evolution clustering model. Stripe 82 LRG
w(θ ) measurements are described more accurately with comoving evolution
at small and large scales compared to virialized evolution as it can be seen
from the lower panel where the residuals of the observed Stripe 82 w(θ )
versus the comoving evolution (black star) and virialized evolution (green
star) models are plotted, respectively.

the AA� LRG sample (Sawangwit et al. 2011) are also presented
for comparison.

We note here that Kim et al. (2011) studied the clustering of
extreme red objects (EROs) at 1 < z < 2 in the SA22 field and they
report a similar change of the large-scale slope. Gonzalez-Perez
et al. (2011) tried to fit clustering predictions from semi-analytic
simulations to the Kim et al. ERO w(θ ) but found that the model
underpredicts the clustering at large scales.

5.3 �CDM model fitting in the linear regime

Since the standard �CDM model was found to give a good fit to
the lower redshift LRG samples of Sawangwit et al. (2011), we now
check to see whether the flatter large-scale slope of the Stripe 82
LRG w(θ ) leads to a statistically significant discrepancy with the
�CDM model at z ≈ 1. We generate matter power spectra using the
‘CAMB’ software (Lewis, Challinor & Lasenby 2000), including the
case of non-linear growth of structure correction. For this reason
we use the ‘HALOFIT’ routine (Smith et al. 2003) in ‘CAMB’. Our
models assume a �CDM Universe with �� = 0.73, �m = 0.27,
fbaryon = 0.167, σ 8 = 0.8, h = 0.7 and ns = 0.95. Then we transform
the matter power spectra to obtain the matter correlation function,
ξm(r), using

ξm(r) = 1

2π2

∫ ∞

0
Pm(k)k2 sinkr

kr
dk. (21)

Figure 14. The best-fitting spatially flat �CDM model assuming �m =
0.27 compared to the observed w(θ ) of Stripe 82 700 deg−2 LRGs in the
linear regime. The standard model cannot explain the large-scale power
excess in the angular correlation function of the Stripe 82 LRGs. The shaded
area corresponds to ±1σ jackknife error. Also shown is a spatially flat
�CDM model with the same parameters as before except for a lower value
of �m = 0.2 and an arbitrary normalization. The �m = 0.2 model appears
to give a better fit than the standard �m = 0.27 model.

The relationship between the galaxy clustering and the underlying
dark-matter clustering is given by the bias, bg:

b2
g(r) = ξg(r)

ξm(r)
. (22)

As we are interested in the linear regime, we fit the projected
ξm(r) to the Stripe 82 LRG w(θ ) in the range 4 � θ � 45 arcmin,
corresponding to comoving separations 3 � r � 30 h−1 Mpc. By
fitting the model predictions to the measured w(θ ) it will result
with the best linear bias factor, the only free parameter in this case.
For our fitting, the χ2-minimization with the full covariance matrix
constructed from the jackknife resampling (see Section 3.2) has
been used.

The best-fitting linear bias parameter is estimated to be b =
2.74 ± 0.07 with χ2

red = 5.09. The upper limit of our fitted range
in θ was varied, while the lower limit stayed constant to avoid any
contribution from the non-linear regime. Thus, for the range ∼4–30
arcmin the best-fitting bias is b = 2.8 ± 0.08 with χ2

red = 4.72 and
at ∼ 4–60 arcmin it is b = 2.69 ± 0.07 with χ2

red = 5.18. In Fig. 14
we plot the LRG w(θ ) with the 1σ error and the �CDM model with
the best-fitting bias. For low values of the upper limit of the fitting
range, the measured biases are in approximate agreement with other
results in the literature. But in terms of the flat slope of w(θ ) at large
scales, the standard �CDM linear model is inconsistent with the
data at the 2–3σ level. One of the aims of the next section will be
to see if an HOD model can explain the flat large-scale slope of the
z ≈ 1 Stripe 82 LRGs.

5.4 Halo model analysis

We are going to use the approach of the halo model (see Cooray
& Sheth 2002, for a review) of galaxy clustering to finally fit our
angular correlation function results. Under the halo-model frame-
work we can examine the way the dark matter haloes are populated
by galaxies through the HOD. Various studies have used this model
to fit their results (e.g. Masjedi et al. 2006; White et al. 2007;
Blake et al. 2008; Brown et al. 2008; Ross et al. 2008b; Wake et al.
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2008; Zheng et al. 2009; Gonzalez-Perez et al. 2011; Sawangwit
et al. 2011) as a way to explain the galaxy correlation function and
gain insight into their evolution. Specifically, we shall investigate
whether the HOD model may be able to explain the flatter slope of
the correlation function observed here.

In the halo model, the clustering of galaxies is expressed by the
contribution of number of pairs of galaxies within the same dark
matter halo (one-halo term, ξ1) and to pairs of galaxies in two
separate haloes (two-halo term):

ξ (r) = ξ1h(r) + ξ2h(r). (23)

The one-halo term dominates on small scales, �1 Mpc.
The fundamental ingredient in the HOD formalism of galaxy bias

is the probability distribution P(N|M), for the number of galaxies N
hosted by a dark matter halo as a function of its mass M.

We use the so-called centre–satellite three-parameter HOD model
(e.g. Seo et al. 2008; Wake et al. 2008; Sawangwit et al. 2011)
which distinguishes between the central galaxy and the satellites in
a halo. This separation has been shown in simulations (Kravtsov
et al. 2004) and has been commonly used in semi-analytic galaxy
formation models in the past years (Baugh 2006).

Different HODs are applied for the central and satellite galaxies.
We assume that only haloes which host a central galaxy are able
to host satellite galaxies. The fraction of haloes of mass M with
centrals is modelled as

〈Nc|M〉 = exp

(−Mmin

M

)
. (24)

In such haloes, the number of satellite galaxies follows a Poisson
distribution (Kravtsov et al. 2004) with mean:

〈Ns(M)〉 =
(

M

M1

)α

. (25)

To describe the distribution of the satellite galaxies around the halo
centre we use the NFW profile (Navarro, Frenk & White 1997). So,
the mean number of galaxies residing in a halo of mass M is

〈N |M〉 = 〈Nc|M〉 × (1 + 〈Ns|M〉 (26)

and the predicted galaxy number density from the HOD is then

ng =
∫

dM n(M) 〈N |M〉 (27)

where n(M) is the halo mass function, where in our case we use the
model of Sheth & Lemson (1999).

From the HOD we can derive useful quantities which are the
central fraction:

Fcen =
∫

dM n(M) 〈Nc(M)〉
dM n(M) 〈Nc(M)〉 [1 + 〈Ns(M)〉] , (28)

and the satellite fraction of the galaxy population:

Fsat = 1

ng

∫
dM n(M) 〈Nc(M)〉 〈Ns|M〉 , (29)

as Fsat = 1 − Fcen. We can also determine the effective mass, Meff,
of the HOD:

Meff = 1

ng

∫
dM n(M)M 〈N |M〉 , (30)

and the effective large-scale bias:

bg = 1

ng

∫
dM n(M)b(M) 〈N |M〉 , (31)

where b(M) is the halo bias, for which we use the ellipsoidal collapse
model of Sheth, Mo & Tormen (2001) and the improved parameters
of Tinker et al. (2005).

As the galaxy correlation function is the Fourier transform of the
power spectrum, the one-halo term and the two-halo term of the
clustering functions can be written as

P (k) = P1h(k) + P2h(k). (32)

Moreover, the one-halo term can be distinguished from the con-
tribution of the central–satellite pairs, Pcs(k), and satellite–satellite
pairs, Pss(k) (see e.g. Skibba & Sheth 2009):

Pcs(k) = 1

n2
g

∫
dM n(M)2 〈Nc|M〉 〈Ns|M〉 u 〈k|M〉 , (33)

and

Pss(k) = 1

n2
g

∫
dM n(M) 〈Nc|M〉 〈Ns|M〉2 u 〈k|M〉2 , (34)

where u 〈k | M〉 is the NFW density profile in Fourier space and
we have simplified the number of satellite–satellite pairs 〈Ns(Ns −
1) | M〉 to 〈Ns | M〉2 since the satellites are Poisson-distributed.

The two-halo term is evaluated as

P2h(k, r) = Pm(k) × 1

n′2
g

×
[∫ Mlim(r)

0
dM n(M)b(M, r) 〈N (M)〉u(k, M)

]2

, (35)

where Pm(k) is a non-linear matter power spectrum. We derive the
mass limit, Mlim(r), using the ‘n′

g-matched’ approximation of Tinker
et al. (2005), which accounts the effect of halo exclusion: different
haloes cannot overlap. n′

g is the restricted galaxy number density
(equation B13 of Tinker et al. 2005).

For the scale-dependent halo bias, b(M, r), we use the model
given by Tinker et al. (2005):

b2(M, r) = b2(M)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09 , (36)

where ξm(r) is the non-linear matter correlation function. For the
two-halo term, we need to correct the galaxy pairs from the restricted
galaxy density to the entire galaxy population.

By using Limber’s formula to project the predicted spatial galaxy
correlation function ξ (r) to the angular correlation function w(θ ),
we fit for a variety of the three-parameter halo model (Mmin, M1, α).

The best-fitting model for each of our sample is then determined
from the minimum value of the χ2-statistic using the full covariance
matrix. We use the full covariance matrix over the range 0.25 < θ <

60 arcmin in our fitting. Smaller scales are excluded in the fitting
because any uncertainty in the ξ (r) model can have a strong effect
on w(θ ) due to the projection. To determine the 1σ error on the
fits, the region of parameter space from the best fits with δχ2 ≤ 1
(1σ for 1 degree of freedom) is considered. For blin, Meff, Fsat and
ng which depend on all the three main parameters, the considered
region of the parameter space becomes δχ2 ≤ 3.53.

Fig. 15(a) shows the resulting best-fitting HOD of the mean num-
ber of LRGs per halo along with the central and satellite contribu-
tions. The best-fitting values for Mmin, M1 and α were Mmin = 2.19 ±
0.63 × 1013 h−1 M�, M1 = 21.9 ± 5.6 × 1013 h−1 M� and α =
2.24 ± 0.12, respectively. The associated values for blin, Meff, Fsat

and ng are given in Table 3.
We see that the 〈N | M〉 of the LRGs flatten at unity, as expected

from the assumption satellite galaxies are hosted by haloes with
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Table 3. Best-fitting HOD parameters.

Sample z̄ Mmin M1 α ng Meff Fsat blin χ2
red

(1013 h−1 M�) (1013 h−1 M�) (10−4 h3 Mpc−3) (1013 h−1 M�) (per cent)

AA� 0.68 1.02 ± 0.03 12.6 ± 1.0 1.50 ± 0.03 3.1 ± 0.4 3.0 ± 0.1 9.0 ± 0.09 2.08 ± 0.03 13.6
Stripe 82 (10 arcmin) 1.0 3.09 ± 0.75 30.2 ± 6.7 2.38 ± 0.12 0.5 ± 0.3 4.0 ± 0.6 2.13 ± 1.0 3.01 ± 0.21 2.4
Stripe 82 (30 arcmin) 1.0 2.57 ± 0.31 25.7 ± 3.1 2.28 ± 0.04 0.6 ± 0.2 3.6 ± 0.5 2.62 ± 0.07 2.90 ± 0.15 2.3
Stripe 82 (45 arcmin) 1.0 2.19 ± 0.63 21.9 ± 5.6 2.24 ± 0.12 0.8 ± 0.3 3.3 ± 0.6 3.17 ± 0.10 2.81 ± 0.18 3.1
Stripe 82 (60 arcmin) 1.0 2.19 ± 0.21 21.9 ± 2.1 2.25 ± 0.05 0.8 ± 0.2 3.3 ± 0.3 3.17 ± 0.08 2.81 ± 0.10 3.6

Figure 15. (a) The mean number of LRGs per halo as a function of halo mass at z = 1. The total, central and satellite contributions are shown by the solid,
dashed and dotted lines, respectively. (b) The measured angular correlation function w(θ ) for the 700 deg−2 LRG sample with the best HOD fit (black star).
The 1, 2 and 3σ Jackknife errors are shown in red, blue and green, respectively.

central galaxies. The LRGs as expected populate massive dark mat-
ter haloes with the masses ≈1013–1014 h−1 M�. With the fraction
of LRGs that are satellites being less than 5 per cent, we therefore
find that >95 per cent of LRGs are central galaxies in their dark
matter haloes. The best-fitting linear bias, blin ≈ 2.8, agrees with the
prediction from Sawangwit et al. (2011) in the case of a long-lived
model for the LRGs and indicates that the LRGs are highly biased
tracers of the clustering pattern. The effective mass, Meff ≈ 3 ×
1013 h−1 M�, confirms that LRGs are hosted by the most massive
dark matter haloes. Despite the fact that we use a higher redshift
LRG sample, our best-fitting HOD parameters are statistically not
too dissimilar to those found in previous LRG studies (e.g. see
Table 3).

In Fig. 15(b) we show the best-fitting model for w(θ ), compared
to the data. The first thing we notice is that while at small scales
the best-fitting HOD are in good agreement with the w(θ ) measure-
ments, at large scales the model fits only at 2–3σ . The flatter slope
at large scales is responsible for that and we still are not able to say
if this can be explained by evolution in the linear regime or any kind
of systematic effect. In Section 7 we will check systematic errors
that could affect our results.

Moreover, due to the fact that the high value of the best fit reduced
χ2 = 3.1, we also try to fit the HOD models at different scales by
using four different maximum θ bins of the covariance matrix in
our fits, which we present in Table 3. The fits at large scales did
not improve and above 45 arcmin there was not any change in the
best-fitting HOD measurements.

Considering the two-halo term in the HOD model, one can see
that the bias in this regime is mostly scale-independent and the cor-
rection factor is in fact having the opposite effect on the slope. The

scale-independent bias is simply the average of the halo bias, b(M),
weighted by the halo mass function and the mean number of galaxies
hosted by the corresponding halo. One way to boost the large-scale
amplitude is to increase Mmin and therefore increase the mass range
of the halo where most galaxies occupy and hence linear bias and
amplitude of the two-halo term. However, to compensate for the
increased numbers of satellite galaxies (and consequently small-
scale clustering amplitude) one must also increase M1, the mass
at which a halo hosts one satellite galaxy on average. Moreover,
in order to produce the overall flatter slope one needs to increase
M1/Mmin. However, this would still overpredict the clustering am-
plitude in the intermediate scales, r ∼ 5–10 h−1 Mpc. Note that our
best-fitting HOD gives M1/Mmin ≈ 10, consistent with previous re-
sults for lower redshift LRGs of Sawangwit et al. (2011) and Wake
et al. (2008). However, as noted earlier including w(θ ) bins at larger
and larger scales does not change the best-fitting parameters which
means that M1/Mmin also remains unchanged due to the reason dis-
cussed above. We therefore conclude that the HOD prescription
in the framework of standard �CDM cannot explain the observed
large-scale slope in w(θ ) of the z ≈ 1 LRG sample.

6 C L U S T E R I N G E VO L U T I O N

6.1 Intermediate scales

First, we compare the clustering of the z ≈ 1 Stripe 82 LRG sample
to the lower redshift z ≈ 0.68 AA� LRG sample. We recall that
these LRG samples have approximately the same space density and
so should be approximately comparable. We follow Sawangwit et al.
(2011) and by using our best-fitting r0 and γ we make comparison
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Figure 16. The LRG ξ20 measurements as a function of redshift and lu-
minosity from Sawangwit et al. (2011). Lowest redshift data are early-type
galaxies from 2dFGRS (Norberg et al. 2002). Stars represent the brighter
samples (SDSS, 2SLAQ� and AA��-LRG), where the lower luminosity
samples, triangles, have been lowered by 0.2 for clarity. The 700 deg−2

Stripe 82 LRGs ξ20 measurement is at z = 1 (square).

with their data and models via the integrated correlation function in
a 20 h−1 Mpc sphere, ξ 20.

AA� LRG results are described better with the long-lived model
of Fry (1996). Fry’s model assumes no merging in the clustering
evolution of the galaxies while they move within the gravitational
potential, hence the comoving number density is kept constant. The
bias evolution in such a model is given by

b(z) = 1 + b(0) − 1

D(z)
, (37)

where D(z) is the linear growth factor.
However, the flat slope beyond 1 h−1 Mpc causes a highly signif-

icant, ≈50 per cent, rise in ξ 20 above the AA� ξ 20 as we can see
in Fig. 16 [see also Figs 13(a) and (b)]. If we assume that the two
samples are matched then we would conclude that all of the models
discussed by Sawangwit et al. (2011) were rejected.

One possibility is that the 700 deg−2 LRG sample is closer to
the SDSS and AA�� LRG space density of 1.1 × 10−4 h−3 Mpc−3

because the LRG ξ 20 fits the extrapolated models better there. If
so, then this would imply that the Stripe 82 LRG n(z) width was
underestimated in the cross-correlation procedure and this would
then increase the deprojected amplitude of ξ (r), suggesting that this
explanation may not work. Similarly a larger correction for stellar
contamination would also produce a higher Stripe 82 clustering
amplitude. We do not believe that looking further into the evolution
of the bias (Papageorgiou et al. 2012) and DMH is warranted until
we understand the flat slope of the Stripe 82 w(θ ) at large scales.

6.2 Small scales

At smaller scales (r < 1 h−1 Mpc), the situation is less complicated
by the flat large-scale slope. Here Sawangwit et al. found that a
virialized model gave a better fit to the slightly faster evolution
needed to fit the small-scale correlation function amplitudes than
a comoving model. But in the present case, the scaling between
the AA� and Stripe 82 LRGs in Figs 13(a) and (b) shows that
here the comoving model is preferred at small scales over the faster
virialized evolution. This fits with the more general picture of the
Stripe 82 LRGs presenting a higher amplitude than expected all
the way down to the smallest scales. Unfortunately, the remaining

uncertainty in the Stripe 82 LRG luminosity class is still too large
to make definitive conclusions on this evolution possible.

6.2.1 HOD evolution

Given the uncertainty in ξ 20 caused by the flat w(θ ) slope on
intermediate–large scales, we will extend further the studies at small
scales, using the HOD model to interpret the small-scale clustering
signal of the LRGs. Based on the HOD fit at z ≈ 1, we again follow
Sawangwit et al. (2011) (and references therein) and test long-lived
and merging models by comparing the predictions of these models
to the SDSS HOD fit from Sawangwit et al. These authors and also
Wake et al. (2008) found that long-lived models were more strongly
rejected at small scales (r < 1 h−1 Mpc) than at intermediate–large
scales.

Again we follow the approach of Wake et al. (2008)) and Sawang-
wit et al. (2011) who assumed a form for the conditional halo mass
function (Sheth & Tormen 2002) and a sub-Poisson distribution for
the number of central galaxies in low-redshift haloes of mass M
such that

〈Nc(M)〉 = 1 −
[

1 − C(M)

Nmax

]Nmax

, (38)

where Nmax = int(M/Mmin),

C(M) =
∫ M

0
dm N (m,M) 〈Nc(m)〉 (39)

and N(m, M) is the expression of Sheth & Tormen (2002) for the
conditional halo mass which generalize those of Lacey & Cole
(1993). The mean number of satellite galaxies in the low-redshift
haloes is then given by

〈Nc(M)〉 〈Ns(M)〉 = S(M) + fno-merge [C(M) − 〈Nc(M)〉] , (40)

where

S(M) =
∫ M

0
dm N (m,M) 〈Nc(m)〉 〈Ns(m)〉 (41)

and the main parameter is fno-merge which is the fraction of un-
merged low-z satellite galaxies which were high-z central galaxies.

This model is called ‘central–central mergers’ in Wake et al.
(2008). More massive high-z central galaxies are more likely to
merge with one another or the new central galaxy rather than
satellite-satellite mergers.

Setting fno-merge = 1 means that there is no merging of initial
central galaxies in subsequently merged haloes, so it is similar to
the passive/long-lived model. fno-merge equal to 0 means that all the
central galaxies in haloes at high redshift merge to form new central
and/or satellite galaxies in the low-redshift haloes. In the analysis
below, we use the best-fitting HOD model values as estimated for
scales up to 45 arcmin (see Table 3).

The fno-merge = 1 case is shown as the w(θ ) passive model in
Fig. 17 and is clearly rejected by the data at θ � 10 arcmin (see
lower panel). Best-fitting HOD predictions of the satellite fraction
in the case of the passively evolved LRGs from zearlier = 1 to zlater =
0.35 is Fsat = 18.6 ± 2.5 per cent whereas Sawangwit et al. measured
Fsat = 18 ± 1 per cent for a brighter selection of LRGs at zearlier =
0.68. We see that both these results, for the long-lived model, are
significantly higher compared to the best-fitting SDSS HOD, Fsat =
8.1 ± 1.8 per cent. The difference in the number of the satellite
galaxies is explained as the predicted clustering amplitude at small
scales (one-halo term) for the passive model is higher compared to
the SDSS HOD fit as is clearly shown in Fig. 17. Higher clustering
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Figure 17. The predicted SDSS LRG w(θ )s at zlater = 0.35 for the case of
passively (fno-merge = 1) evolving the best-fitting HOD of Stripe 82 LRGs
sample from zearlier = 1 and the case where central galaxies’ merging is
allowed from zearlier = 1 (fno-merge = 0.21), in green dot–dashed line and
blue long-dashed line, respectively. The bottom panel shows the ratios of
the evolved w(θ )s to the SDSS best fit; the shaded regions signify the 1σ

uncertainties.

signal at small scales indicates the presence of too many satellite
galaxies in the low-redshift haloes.

The w(θ ) merger model is described by fno-merge = 0.21 as pre-
sented in Fig. 17 and clearly fits the data well. For this model the
satellite fraction at z = 0.35 is estimated to be Fsat = 7.29 ± 4.5 per
cent and is in good agreement with Sawangwit et al. Moreover, the
best-fitting HOD model values for the evolved zearlier = 1 LRGs to
zlater = 0.35 for bias and galaxy number density are b = 2.24 ± 0.24
and ng = 0.67 ± 0.41 10−4 h3 Mpc−3, respectively. When the Stripe
82 best-fitting HOD model is compared to the SDSS best-fitting
model, with b = 2.08 ± 0.05 and ng = 1.3 ± 0.4 10−4 h3 Mpc−3, the
number of galaxies at z = 0.35 has decreased by almost 50 per cent
due to central–central merging. The evolved linear bias and galaxy
number density are consistent with the z = 0.35 best-fitting HOD
of Sawangwit et al. at 1–1.5σ level.

Note that the agreement at large scales in Fig. 17 is somewhat
artificial given the underestimation of w(θ ) by the HOD model in
Fig. 15(b) which remains unexplained in the HOD formalism. But at
these smaller scales the result that the merging model fits better than
the long-lived or indeed the virialized clustering model of Fig. 13(b)
may be more robust, given the reasonable fit of the HOD model at
small scales (θ < 3 arcmin) in Fig. 15(b).

7 TESTS FOR SYSTEMATIC ERRORS

In this section we will present an extended series of checks for sys-
tematic errors that might have affected our clustering analysis, with
the major issue being the flatter slope at large scales as estimated in
Sections 5.2, 5.3 and 5.4. Tests for possible systematics that will be
discussed here are as follows:

(i) data gradient artefacts,
(ii) w(θ ) estimators bias,
(iii) survey completeness,
(iv) observational parameters, such as star density, galactic ex-

tinction, seeing, etc.

Figure 18. w(θ )s from Landy–Szalay, Hamilton and standard estimator of
the 700 deg−2 LRG sample. For comparison, the averaged w(θ )s from the
six subfields (see text for more detail) are overplotted as measured from each
estimator. Landy & Szalay and Hamilton estimators give similar results for
the average subfields and the full sample measurements, respectively. The
standard estimator is more biased at larger scales.

7.1 Data gradients and w(θ ) estimator bias

A false clustering signal at large scales can arise from artificial
gradients in the data, as the correlation function is very sensitive to
such factors. In attempting to explain the behaviour of the observed
w(θ ) at large scales, first we divide the LRG sample area in six
equal subfields in RA. Then the angular correlation function of each
subfield has been calculated using the Landy & Szalay, Hamilton
and the Peebles estimator – the standard estimator. Furthermore, we
average the w(θ ) results of the six subfields as measured by each
estimator and compare them with 700 deg−2 LRG w(θ ) full sample
results (see Fig. 18).

From these comparisons, it is clear that when we use the Landy
& Szalay and Hamilton estimators, we do not find any significant
difference in the amplitude of the measured w(θ ) between the aver-
aged subfields’ or between the full samples’ measurements. When
the averaged w(θ ) measurements are compared with those from
the full sample, only a very slightly smaller clustering signal in
the averaged w(θ )s is seen, barely visible in Fig. 18. Furthermore,
this is only the amount expected from the integral constraint (see
Section 3.2) on w(θ ), if the above Landy & Szalay estimate is as-
sumed to apply in a single sub-field area. The standard estimator is
known to be subject to larger statistical errors at large scales and
here the signal is actually stronger when compared with the other
two estimators.

Moreover, in Fig. 19 we display the results of the w(θ ) measure-
ments from the six subfields individually against the full sample
measurements as estimated with the Landy & Szalay estimator in
all cases. Even now we cannot see any major trend through the
subfields’ correlation function measurements, except possibly for
the 150 ≤ RA ≤ 300 subfield which has a steeper slope at larger
scales.

7.2 Magnitude incompleteness

Another issue that we want to address is how the clustering signal
can be affected by magnitude incompleteness. The izK colour se-
lection used for the LRGs is applied up to the faintest limits of the
SDSS-UKIDSS LAS surveys (see Section 2.1). To account for this,
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Figure 19. w(θ ) results of the six equal-sized subfields (15 × 2.5 deg2

each) across Stripe 82, the total area as estimated by using the Landy–
Szalay estimator and the averaged clustering signal from the six subfields.
In the bottom panel are displayed the ratios of the w(θ ) of each subfield
compared to the total area.

Table 4. K-limited sub-samples used
for auto-correlations in Fig. 20.

K LRGs 700 deg−2

17.0–17.2 4894
17.2–17.4 11 096
17.4–17.6 22 490
17.6–17.8 38 659
17.8–18.0 53 680

Figure 20. Auto-correlation functions from Landy–Szalay estimator for
the 700 deg−2 LRG K-limited sub-samples from Table 4. Total sample is
overplotted for comparison.

first we divide the 700 deg−2 LRG sample in 5 K magnitude bins in
the range 17 < K < 18. The number of LRGs in each magnitude
bin is shown in Table 4.

Measurements of the angular correlation function from each K
bin are shown in Fig. 20, where measurement uncertainties are
not shown as we are mostly interested in the shape of the w(θ ) in
the linear regime. The clustering signal from the K-magnitude bins
compared to the full sample does not show any significant difference
at large scales and follows the full sample w(θ ) shape. At smaller
scales we see that the clustering from the brighter samples is higher
than for the fainter samples, as expected.

The final tests of the magnitude incompleteness check are via the
use of brighter colours in the zK selection. We therefore selected on
the basis of brighter magnitudes down to z ≤ 21.2 and K ≤ 17.2
in various combinations and re-measured the angular correlation
function. Even with these bright cuts, we did not see any change in
the excess at large scales.

7.3 Observational parameters

The final test to identify a potential observational systematic effect
follows the approach described by Ross et al. (2011), referring pri-
marily to the area effectively masked by stars with magnitudes sim-
ilar to the galaxies in the field. We cross-correlated the 700 deg−2

LRG sample with the Stripe 82 star catalogue from Ivezić et al.
(2007) in four magnitude bins, i < 19.5, 20, 20.5, 21. From the
measured autocorrelation function of stars and the cross-correlation
function of stars with LRGs we computed the effect of stellar mask-
ing on the LRG correlation function using their equations (28) and
(29). We show these results in Fig. 21(a).

The cross-correlation results show a very small anticorrelation
between LRGs and stars for the i = 19.5 and 20.5 bins. A possible
explanation for this anticorrelation might be related to the fact that
we see an increase in the star number density between 330 ≤ RA ≤
340◦ (see Fig. 21 b). Next, we calculate the expected w(θ ), as
defined in equation (29) of Ross et al. (2011). In all cases, there was
little difference in the expected and observed w(θ ) of the 700 deg−2

LRG sample. We conclude that the effect of stellar masking is
essentially negligible, less than 1 per cent of the clustering signal at
θ ≈ 90 arcmin.

There are other sources of possible systematics as well as star
masking. Ross et al. (2011) also checked observational parameters
such as galactic extinction, sky background, seeing and airmass
using the cross-correlation technique. The Stripe 82 LRG sample is
K-limited. Hence, we explore if the above observed parameters from
the UKIDSS LAS K band could be sources of systematic errors at
large scales. Fig. 22 displays the number density of Stripe 82 LRGs
and how it is related with each potential observational systematic
(stars are from Ivezić et al. 2007). From Fig. 22 we see a sharp
decrease in the number of LRGs with high galactic extinction and
poor seeing. The airmass fluctuations are also large compared to the
error bars. The majority of the LRGs lie within the first few bins of
galactic extinction, seeing and airmass in Fig. 22, but the LRGs in
the rest of the bins with higher values could introduce systematics
in the clustering signal.

Ho et al. (2012) present a method to identify which combination
of the observed parameters could have the biggest effect on the
clustering measurements. The authors in this work expressed the
linear relationship between the potential observational systematic
and its effect on the observed overdensity of galaxies, through the
ε factor. In Fig. 23(a) we show the εi parameters for each of the
observational parameters. The Ross et al. (2011) cross-correlation
correction technique requires that ε be constant, so we use the best-
fitting constant value of ε as calculated with the lowest chi-square
fits from field-to-field errors. We find that the biggest correction in
the angular correlation function is for the combined seeing, airmass
and galactic extinction observational parameters (see equation 29
of Ross et al.). Also, a slightly smaller correction has been found
for stars, sky background and galactic extinction. In Fig. 23(b) we
show the original uncorrected w(θ ) for the Stripe 82 LRGs, the
w(θ ) after applying the combined correction for the seeing, airmass
and galactic extinction. In the same figure, for comparison we plot
the best-fitting �CDM model as displayed in Fig. 14. So far, this
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Figure 21. (a) The observed w(θ ) of Stripe 82 LRGs (blue dashed line), Stripe 82 star catalogue of Ivezić et al. (2007) autocorrelation (green line) for i ≤
21, cross-correlations of the aforementioned LRGs stars (black dash–dotted line) and the resulted corrected observed autocorrelation function following Ross
et al. (2011). We see that there is no difference between the observed LRGs and the corrected w(θ )s, respectively. (b) The number density of the stars up to i =
21 from Ivezić et al. (2007) catalogue (blue diamonds) and the 700 deg−2 LRG sample (red triangles) across the Stripe 82. There is a strong gradient in the star
distribution towards one end of the Stripe 82 at 330 � RA � 340◦ or −2 � RA � −1 h in the abscissa notation. But when we excluded this area from the
star–LRG cross-correlation, there was no change in the large-scale w(θ ) signal.

Figure 22. The projected number density of Stripe 82 LRGs as a function of the potential observable systematics: stellar density (nstar), Galactic extinction
(Ak) in the K band, the K-band seeing (seeK), K-band background median sky flux in counts per pixel and the airmass (air). The errors are the standard deviation
of the measurements within each bin.

correction in our w(θ ) results is the most important. But still as we
can see from Fig. 23(b), at the range 20–80 arcmin, the amplitude
of the angular correlation function does not show the expected
behaviour of the standard model. We have checked for the most
common sources of systematics in the literature. Our data could
still be affected by hidden artefacts, a case that future studies might
be able to identify, but for the moment we will take the corrected
result in Fig. 23(b) as our best estimate. Note that the HOD fits of
Section 5.4 were only done up to θ ≤ 60 arcmin where there is little
change in the form of our w(θ ) result.

8 T E S T FO R N O N - G AU S S I A N I T Y

One possible explanation for the flat slope seen at large scales
is scale-dependent bias, although this is usually discussed more
in the context of small-scale clustering. However, scale-dependent
bias at large scales has previously been invoked to explain the
discrepancy between the APM w(θ ) results and �m = 1 CDM
models (Bower et al. 1993); in this case the scale dependence was
caused by ‘cooperative galaxy formation’.

Another possibility is that the LRG power spectrum may be
closer to the primordial power spectrum at higher redshifts. But we
have seen that the Stripe 82 clustering results are not in line with
the standard �CDM model. These correlation function results are

better fitted by a model with �m = 0.2 rather than �m = 0.27 (see
Fig. 14), useful at least as an illustration of the size of the LRG
clustering excess.

The third possibility is that the z ≈ 1 LRG power spectrum
may be better explained by scale-dependent bias at large scales
due to primordial non-Gaussianity in the density fluctuations. The
primordial non-Gaussianity of the local type is parametrized by
f local

NL (see Bartolo et al. 2004, for a review) and is expected to
contribute a 1/k2 term to the power spectrum and evolves as ≈1 +
z (see equation 42). It is therefore best seen at large scales and
high redshifts. Fig. 1 of Xia et al. (2010) shows the potential effect
of non-Gaussianity on the biased clustering of radio sources with
a similar redshift to the LRGs discussed here. It can be seen that
the non-Gaussianity causes a strong positive tail to the correlation
function for θ > a few degrees.

Xia et al. (2010), following Blake & Wall (2002), found that
the NRAO VLA Sky Survey (NVSS) angular correlation function
showed a strong positive tail suggesting that f local

NL = 62 ± 27. Xia
et al. (2011) also inspected the angular correlation function of the
DR6 1 × 106 QSO sample and found similar results to the radio
sources with again an extended correlation function being seen
implying similar values of fNL (hereafter we shall use just fNL to
denote f local

NL ) as for the radio sources. This led to only slightly
weaker constraints than for the radio sources in terms of the value
of fNL.
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Figure 23. (a) Upper: similar to Ross et al. (2011) we plot ε, the linear
factor between the potential observational systematic and its effect on the
observed overdensity of galaxies for stars (purple diamond), galactic extinc-
tion (blue diamond), seeing (red squares), sky background (green diamond)
and airmass (orange triangle). The solid lines are the best-fitting constant
value of ε for each systematic. (b) Lower: the w(θ ) measurement of the
Stripe 82 LRGs without any cross-correlation correction (black star) and
w(θ ) corrected for seeing, airmass and galactic extinction combined (red
diamond). The best-fitting �CDM model to the uncorrected measurement
is plotted (blue line).

Sawangwit et al. (2011) measured the combined angular correla-
tion function of LRGs at z ≈ 0.35, 0.55, 0.68 and found that although
the results were in agreement with �CDM at scales <100 h−1 Mpc,
at larger scales there was a possible excess, although this could still
be due to systematics.

We then proceeded to follow Xia et al. and fit fNL models. We use
their relation between the non-Gaussian and Gaussian biases (bNG

and bG)

bNG(z) − bG(z) � 2(bG(z) − 1)fNLδec(z) αM(k). (42)

Here δec(z) is the critical density for ellipsoidal collapse and αM(k) ∝
1 /k2 contains the scale and halo mass dependence (see Xia et al.
for more details).

We first applied this relation to the case of the NVSS radio sources
at z ≈ 0.7. We found that adding the 1/k2 term to the standard
cosmology P(k) caused it to diverge and so we had to apply a large-
scale cut-off, so that for k < k0 then P(k) = 0. This is clearly a

Figure 24. (a) Upper: the combined correlation function of Sawangwit et al.
(2011) for the z = 0.35, z = 0.55 and z = 0.68 LRG samples, compared
to a standard �CDM model (fNL = 0) and models with increasing degrees
of primordial non-Gaussianity (fNL = 62, 80). (b) Lower: the Stripe 82
z ≈ 1 LRG correlation function compared to a standard �CDM model
(fnl = 0) and models with increasing degrees of primordial non-Gaussianity
(fnl = 62, 80, 100).

source of uncertainty in fitting for fNL. Nevertheless, we found that
for k0 = 10−6, we could reproduce the results of Xia et al. (2010).

We then applied the same technique and cut-off to the com-
bined AA� LRG and the Stripe 82 LRG w(θ )s (after applying the
combined correction for seeing, airmass and galactic extinction as
estimated in Section 7.3). We first took the value of bG = 2.08 from
the halo model fits of Sawangwit et al. (2011) and fitted for fNL.
The result is shown in Fig. 24(a). We find that for AA� LRGs, the
results for fNL are reasonably compatible with those from the NVSS
catalogue with values of fNL = 60–80 giving a better fit to the data
in the range 1.5 < θ < 6.◦5.

The prediction from non-Gaussianity is that the large-scale slope
will further flatten with redshift. We therefore compared the Stripe
82 LRGs to models with the same fNL values and find no incon-
sistency (see Fig. 24b). Clearly the errors at the largest scales are
more significant for the Stripe 82 data than for the AA� LRGs or
the NVSS radio sources. However, the predicted flattening of the
Stripe 82 correlation function at θ ≈ 1◦ makes the non-Gaussian
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Figure 25. The minimum χ2 is 5.5 over 11 d.o.f and the best-fitting pa-
rameters are fNL = 90 ± 30 (1σ ) and Mmin = 1.26 ± 0.22 × 1013 h−1 M�.
The best-fitting Mmin here is lower than the full HOD fit assuming fNL = 0
at 2.2 × 1013 h−1 M�.

models more consistent with the data in this smaller angular range
than the fNL = 0 model. At larger scales the errors are larger and the
data are therefore more in agreement with the standard model.

Fig. 25 shows the effect of jointly fitting fNL on the minimum halo
mass, Mmin, in the HOD model. The best-fitting model now gives
Mmin = (1.26 ± 0.22) × 1013h−1 M� and fNL = 90 ± 30, lower
than the Mmin = 2.2 × 1013 h−1 M� value when fnl = 0 is assumed
in the full HOD fit.

We should say that rather than detections of non-Gaussianity, the
present AA� and Stripe 82 LRG results should be more regarded
as upper limits on non-Gaussianity. Large-scale angular correlation
function results are still susceptible to large-scale gradients and even
though there is no direct evidence for these in the AA� or Stripe
82 samples, there is still the possibility that these exist in the data.
On the other hand, the classic test for the reality of a correlation
function feature is that it scales correctly with depth and at least the
SDSS and Stripe 82 LRG correlation functions in Figs 24(a) and
(b) look like as they do so. It will be interesting to see if as QSO
surveys (Sawangwit et al. 2012) and z ≈ 3 LBG surveys (Bielby et al.
2012) grow, whether the correlation functions at higher redshift also
show an increased slope flattening as predicted for the non-Gaussian
models.

The other uncertainty that has arisen is in the non-Gaussian model
itself where we have found that there is a rather strong dependence
on a small-scale cut-off, k0. Other authors have made some reference
to this problem but only implicitly. It will be interesting to see if
more accurate models for non-Gaussianity can numerically predict
this cut-off from first principles.

9 SU M M A RY A N D C O N C L U S I O N S

We have measured w(θ ) for ≈130 000 colour-selected galaxies in
Stripe 82 exploiting SDSS DR7 i + z bands and UKIDSS LAS K
photometry. We used the cross-correlation technique of Newman
(2008) to establish that the average redshift of the LRGs is z ≈
1. This sample therefore probes higher redshifts than the previous
SDSS LRG samples of Sawangwit et al. (2011). We have established
that a sample with sky density ≈700 deg−2 has a comparable space

density to the z ≈ 0.68 AA� LRG sample of Sawangwit et al.
(2011). However, this is only an approximate correspondence which
makes evolutionary comparisons between the redshifts more tricky.
What is clear is that the z ≈ 1 LRGs generally have a relatively high
clustering amplitude. Compared to the AA� LRG w(θ ) scaled to the
depth of the Stripe 82 LRGs, the Stripe 82 w(θ ) is higher at all scales,
even those below <1 h−1 Mpc. Thus at intermediate scales, the z ≈
1 LRGs are not only more clustered than predicted by the long-lived
evolutionary model, they are also more clustered than the comoving
model. At small separations (�1 h−1 Mpc) the correlation function
amplitude is again somewhat higher than the AA� results scaled
by the previously preferred stable clustering model. The Stripe 82
w(θ ) also shows a very flat slope at large scales which means that
the �CDM linear model has become a poorer fit than at lower
redshift.

Partly to look for an explanation for the flat large-scale slope,
we then fitted an HOD model to the Stripe 82 w(θ ). The best-
fitting parameters were Mmin = 2.19 ± 0.63 × 1013 h−1 M�,
M1 = 21.9 ± 5.6 × 1013 h−1 M�, blin = 2.81 ± 0.18, Meff =
3.3 ± 0.6 × 1013 h−1 M�, Fsat = 3.17 ± 0.08 per cent and
ng = 0.8 ± 0.3 × 10−4 h3 Mpc−3. The high amplitude of the cor-
relation function clearly pushes the halo masses up and the space
densities down. The lowest chi-square fits were found when large
scales were excluded but the reduced chi-squares were still in the
range 2.3–3.6. This is actually an improvement over the lower red-
shift samples but this is certainly due to the larger errors on the
Stripe 82 data. We conclude that it is not possible to find an expla-
nation for the flat slope in the Stripe 82 w(θ ) on the basis of the
HOD model.

We also then studied the evolution of the HOD between z = 1 and
z = 0.35. Similarly to that of Sawangwit et al. (2011), we concluded
that a pure passive model with a low merger rate might produce too
steep a w(θ ) slope at small scales (<1 h−1 Mpc). In this case, we
have already noted that the small-scale amplitude may also be too
high for a passive model with stable clustering.

We have looked for an explanation of the flat slope in terms of
systematics by cross-correlating the Stripe 82 LRG sample with
stellar density, airmass, seeing, sky background and galactic ex-
tinction and used the method of Ross et al. (2011) to correct
our w(θ ). Even the combined correction for seeing, airmass and
galactic extinction only produced a small change in w(θ ) at large
scales.

We conclude that the high amplitude and flat slope of the Stripe
82 LRGs w(θ ) may have significant contributions from the uncer-
tainty in the comparison between AA� and Stripe 82 LRG lumi-
nosities. However, this leaves a similar contribution from a new
and unknown source. We have discussed large-scale, primordial,
non-Gaussianity as one possibility for the source of this large-scale
excess. We have suggested that the evidence from the AA� sam-
ple itself for an excess at even larger scales may fit in with the
behaviour expected from non-Gaussianity over this redshift range.
In this case we returned to the fitting of halo masses including
the non-Gaussian component and found that the best fit Mmin de-
creased from 2.2 × 1013 M� to 1.3 × 1013 M�. More importantly,
if the Stripe 82 large-scale w(θ ) excess proves reliable and not
due to systematics, then we have made a significant detection of
non-Gaussianity in the z ≈ 1 LRG distribution with an estimated
local non-Gaussianity parameter estimate of f local

NL = 90 ± 30. This
represents a 3σ detection at a level comparable to the present up-
per limit from Wilkinson Microwave Anisotropy Probe cosmic mi-
crowave background measurements of f local

NL = 32 ± 21 (Komatsu
2010).
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