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Abstract. For mixing Zd-actions generated by commuting automorphisms of
a compact abelian group, we investigate the directional uniformity of the rate of

periodic point distribution and mixing. When each of these automorphisms has

finite entropy, it is shown that directional mixing and directional convergence
of the uniform measure supported on periodic points to Haar measure occurs

at a uniform rate independent of the direction.

1. Introduction. It is well-known that, under mild hypotheses, sufficiently smooth
functions mix at an exponential rate, and periodic point measures become uniformly
distributed on smooth functions at an exponential rate, for dynamical systems with
hyperbolic behaviour or comparable regularity properties. For example, Bowen [2,
1.26] shows an ‘exponential cluster property’, that Anosov diffeomorphisms pre-
serving a smooth measure mix Lipschitz functions exponentially fast, and Lind [9]
shows similar properties for Hölder functions on quasihyperbolic toral automor-
phisms. On compact groups, smoothness conditions can be phrased in terms of
how well a function can be approximated by a function with finitely supported
Fourier transform (that is, by trigonometric polynomials). Thus for a group auto-
morphism α : X → X of a compact metric abelian group X, and an exhaustive

increasing sequence H1 ⊂ H2 ⊂ · · · of finite subsets of the character group X̂, the
rate of mixing and the rate of uniform distribution of periodic points amount to
the existence of functions φ and ψ, with φ(k)→∞ and ψ(k)→∞ as k →∞, such
that

1. Hk ∩ α̂nHk = {0} for |n| > φ(k) (a rate of mixing), and
2. Hk ∩ (α̂n − 1)Hk = {0} for |n| > ψ(k) (a rate of equidistribution of periodic

points).
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Statement (i) gives a class of functions C(X) with prescribed decay of Fourier coef-
ficients, a rate function φ′ = o(1), and C = C(f, g) for which

f, g ∈ C(X) =⇒
∣∣∣∣∫ f(x)g(αnx)dµ(x)−

∫
fdµ

∫
gdµ

∣∣∣∣ < Cφ′(n), (1)

where µ denotes Haar measure on X. Statement (ii) gives a rate function ψ′ = o(1)
and a constant C = C(f) for which

f ∈ C(X) =⇒
∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣ < Cψ′(n), (2)

where µn denotes Haar measure on the subgroup of points fixed by αn. For a given
group X, the class of test functions on which the mixing and uniform distribution
may be seen depends, via the exhaustive sequence, on the functions φ and ψ. For
explicit calculations of this sort when X = Td is the torus, and C(X) is a class of
Hölder functions, see Lind [9, Sect. 4].

Our interest here is in commuting automorphisms with finite entropy, together
defining an algebraic Zd-action α (an entropy rank one action in the sense of Ein-
siedler and Lind [5]); this means that α is a homomorphism from Zd to the group of
continuous automorphisms of X. We write αn for the automorphism α(n). Exam-
ples include commuting toral automorphisms, Ledrappier’s example [8], the (invert-
ible extension of the) ×2,×3 system, and many others (Schmidt’s monograph [13]
describes many dynamical properties of these systems).

A non-uniform rate of mixing, or a non-uniform rate of convergence of periodic
point measures, for a Zd-action α, corresponds to the statements (1) and (2) re-
spectively for each of the maps αn with n 6= 0. The uniformity of the title amounts
to asking if, having fixed an appropriate exhaustion H1 ⊂ H2 ⊂ · · · of the char-

acter group X̂, there is a uniform way to choose the functions φ and ψ witnessing
a directional uniformity in mixing and in the distribution of periodic points. We
show that the decay functions φ′ and ψ′ can be chosen so that they depend only on
the distance from the origin in Zd, by proving the following theorem.

Theorem 1.1. Let (X,α) be a mixing entropy rank one Zd-action by automor-
phisms of a compact abelian group X satisfying the descending chain condition on
closed α-invariant subgroups. Write µ for Haar measure on X and µn for Haar
measure on the subgroup of points fixed by the automorphism αn. Then there is a
class of smooth functions C(X) strictly containing the trigonometric polynomials,
and rate functions φ′ = o(1), ψ′ = o(1), such that, for any f, g ∈ C(X),∣∣∣∣∫ f(x)g(αnx)dµ(x)−

∫
fdµ

∫
gdµ

∣∣∣∣ < C(f, g)φ′(‖n‖),

and ∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ < C(f)ψ′(‖n‖).

In addition to the motivation already given, this question arose as a result of our
paper [12], where it is shown that for a large class of such systems there is a uni-
form lower bound to the exponential rate of growth in the number of periodic points,
and the papers [10] and [11], in which more subtle directionally uniform bounds and
counts for periodic points are found. Because of the diversity of underlying compact
groups, and our main interest in uniformity, we have not delved into the articula-
tion between the growth in the exhaustive sequence (measuring the smoothness
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of the function class) and the permitted growth in the control functions φ and ψ
(measuring the rate of mixing or of equidistribution of periodic points).

Our methods combine the formalism introduced by Kitchens and Schmidt in [7],
Diophantine arguments, and Einsiedler and Lind’s adelic Lyapunov vectors for en-
tropy rank one actions [5].

2. Algebraic Zd-actions. Following Kitchens and Schmidt, we exploit the corre-
spondence between an algebraic Zd-action α by automorphisms of a compact abelian
metric group X and a module over the ring of Laurent polynomials

Rd = Z[u±11 , . . . , u±1d ].

This is achieved by identifying each dual automorphism α̂n with multiplication by
un = un1

1 · · ·u
nd

d , then extending this in a natural way to polynomials. As a result,
attention may be restricted to a fixed Rd-module M with dynamical properties
of α translated into algebraic properties of M . For example, the descending chain
condition on closed α-invariant subgroups of X corresponds to M being Noetherian.
The mixing property for α translates to multiplication by ukn being injective on M
for all k ∈ N and all n 6= 0. These two properties will be assumed throughout. A
full introduction to algebraic Zd-actions and the correspondence just described is
given in Schmidt’s monograph [13].

Some especially useful algebraic machinery is available when α has entropy
rank one (that is, when each element of the action has finite topological entropy).
Since M is assumed to be Noetherian, it has a finite set of associated prime
ideals Ass(M) ⊂ Spec(Rd). Furthermore, since α is mixing and of entropy rank
one, for each p ∈ Ass(M), the module Rd/p has Krull dimension one, written

kdim(Rd/p) = 1

(see [5, Prop. 6.1] and [10, Lem. 2.3]). Therefore, the field of fractions of Rd/p is a
global field that we denote by K(p). Let P(K(p)) denote the set of places of K(p),
| · |v the absolute value corresponding to the place v, and set

S(p) = {v ∈ P(K(p)) | |Rd/p|v is an unbounded subset of R},
which is a finite set because Rd/p is finitely generated. Following Einsiedler and
Lind, associate to p the list of Lyapunov vectors

L(p) = {`v = (log |π(u1)|v, . . . , log |π(ud)|v) | v ∈ S(p)},
where π : Rd → Rd/p denotes the usual quotient map.

In what follows, our approach is to prove an algebraic version of Theorem 1.1 for
a module of the form Rd/p, and then build up to a general Noetherian module M
using standard methods (see [14] for example).

3. Two uniformities. Let M be an Rd-module, and suppose that
(
HM
k

)
k>1

is

an increasing sequence of finite subsets of M with
⋃∞
k=1H

M
k = M (that is, an

exhaustive sequence). Let φM and ψM be functions (to be chosen later) with

φM (k), ψM (k)→∞
as k →∞. We are interested in the following two properties of M .

I: HM
k ∩ unHM

k = {0} for all n ∈ Zd with ‖n‖ > φM (k) (directional uniformity
of mixing),

II: HM
k ∩ (un − 1)HM

k = {0} for all n ∈ Zd with ‖n‖ > ψM (k) (directional
uniformity of distribution of periodic points).
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Theorem 3.1. Let p ⊂ Rd be a prime ideal with kdim(Rd/p) = 1, and suppose
that θ(k)↗∞ as k →∞. If the module M = Rd/p corresponds to a mixing action,
then there exists an exhaustive increasing sequence

(
HM
k

)
k>1

of finite subsets of M ,

and a constant B > 0, such that Property I is satisfied for

φM (k) = B log θ(k).

The proof of Theorem 3.1 is facilitated by the following result, which is adapted
from [12].

Lemma 3.2. If the prime ideal p ⊂ Rd has kdim(Rd/p) = 1, and the module Rd/p
corresponds to a mixing algebraic Zd-action, then the set of Lyapunov vectors L(p)
spans Rd.

Proof. This can be seen using properties of the directional entropy function

h : Rd → R

(see [3] and [6]). The proof of [12, Th. 1.1] shows that h is bounded away from zero
when the action is mixing. If L(p) does not span Rd, then there exists

w ∈ Sd−1 = {z ∈ Rd | ‖z‖ = 1}

such that

h(w) =
∑
v∈V

max{`v ·w, 0} = 0,

giving an immediate contradiction.

Proof of Theorem 3.1. Write n̂ = n/‖n‖ for any non-zero integer vector n. We
claim that there is a constant C > 0 such that given any non-zero vector n ∈ Zd,
there exists w ∈ S(p) such that |`w · n̂| > C. If this were not the case, then
compactness of Sd−1 would give a point z in Sd−1 such that

∑
v∈S(p) |`v · z| = 0

(since w 7→
∑
v∈S(p) |`v ·w| is continuous on Sd−1), meaning that L(p) would lie in

the subspace orthogonal to z, contradicting Lemma 3.2.
Set

HM
k = {a ∈M | θ(k)−1 6 |a|v 6 θ(k) for all v ∈ S(p)} ∪ {0}.

and note that
(
HM
k

)
k>1

is an increasing exhaustive sequence of finite subsets of M

since θ(k)↗∞ as k →∞.
Given n ∈ Zd with ‖n‖ > φM (k), there exists v ∈ S(p) such that |`v · n̂| > C.

Let a ∈ HM
k be non-zero. If `v · n̂ < 0, then

|π(un)a|v = exp(‖n‖`v · n̂)|a|v

< exp

(
−C log θ(k)

C

)
θ(k)1/2

= θ(k)−1/2.

On the other hand, if `v · n̂ > 0, then

|π(un)a|v = exp(‖n‖`v · n̂)|a|v

> exp

(
C log θ(k)

C

)
θ(k)−1/2

= θ(k)1/2.

Hence, una 6∈ HM
k , and the statement of the theorem follows by setting B = 1

C .



DIRECTIONAL UNIFORMITY 5

We now turn our attention to Property II. For a mixing action arising from a
Noetherian module M , an essential consequence of the entropy rank one assumption
is that for each n ∈ Zd, the set of points fixed by αn is finite, and the cardinality
of this set is equal to |M/(un − 1)M | by duality.

Theorem 3.3. Let p ⊂ Rd be a prime ideal with kdim(Rd/p) = 1, and suppose
that θ(k) ↗ ∞ as k → ∞. If the module M = Rd/p corresponds to a mixing
action, then there exists an increasing exhaustive sequence H =

(
HM
k

)
k>1

of finite

subsets of M , and constants σ,A,C1, C2 > 0 such that Property II is satisfied for

ψM (k) = max

{
C1,

σ + 1

C2
log

(
θ(k)

(Aσ/2)1/(σ+1)

)}
.

Proof. Just as in the proof of Theorem 3.1, there is a constant C > 0 such that
given any non-zero n ∈ Zd, there exists w ∈ S(p) such that

|`w · n̂| > C.

Without loss of generality, we may always choose w such that

`w · n̂ > C.

For, given w ∈ S(p) such that `w · n̂ < −C, we can consider
∏
v∈S(p) |π(un)|v as

follows: Since π(un) is a unit in M , the product formula implies that∏
v∈S(p)\{w}

|π(un)|v = |π(un)|−1w .

Hence, for some v ∈ S(p) \ {w} it follows that

|π(un)|v > |π(un)|−1/σw ,

where σ = |S(p)| − 1. Therefore,

exp(‖n‖`v · n̂) > exp(−‖n‖`w · n̂/σ).

Hence `v · n̂ > C/σ, and we simply need to replace C by C/σ.
As before, set

HM
k = {a ∈M | θ(k)−1 6 |a|v 6 θ(k) for all v ∈ S(p)} ∪ {0},

which defines an increasing exhaustive sequence since θ(k)↗∞ as k →∞.
Fix ε > 0 and let n ∈ Zd satisfy ‖n‖ > ψM (k), where in the definition of ψM we

make the choices σ = |S(p)| − 1, C2 = C − ε, and the constants A and C1 are to be
specified later. Let a ∈ HM

k be non-zero and suppose that (un − 1)a ∈ HM
k . This

implies that |π(un − 1)a|w < θ(k), so

|a|w <
θ(k)

|π(un)− 1|w
<

2θ(k)

|π(un)|w
. (3)

By the product formula
∏
v∈P(K(p)) |a|v = 1, so∏

v∈S(p)\{w}

|a|v = |a|−1w
∏

v∈P(K(p))\S(p)

|a|−1v > |a|−1w ,

as |a|v 6 1 for all v ∈ P(K(p)) \ S(p). Thus at least one v ∈ S(p) \ {w} satisfies

|a|v > |a|−1/σw >

(
|π(un)|w

2θ(k)

)1/σ

, (4)

by (3).
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If v is archimedean, then by Baker’s Theorem [1], there exist constants A,B > 0
such that

|π(un)− 1|v >
A

max16i6d{ni}B
.

If v is non-archimedean, a similar bound holds by Yu’s Theorem [15]. In both the
archimedean and non-archimedean cases, given the ideal p, the constants arising
can (in principle) be computed explicitly. Combining these bounds with (4) gives

|π(un − 1)a|v = |π(un − 1)|v|a|v >
A|π(un)|1/σw

max16i6d{ni}B(2θ(k))1/σ

=
A exp(‖n‖`w · n̂/σ)

max16i6d{ni}B(2θ(k))1/σ

>
A exp(‖n‖C/σ)

max16i6d{ni}B(2θ(k))1/σ

>
A

(2θ(k))1/σ
exp

(
(C − ε)‖n‖

σ

)
, (5)

provided that ‖n‖ is large enough to ensure that

max
16i6d

{ni}B 6 exp(‖n‖ε/σ).

We may ensure this by a suitable choice of C1 = C1(ε) in the definition of ψM (k),
since ‖n‖ > ψM (k). Furthermore, since ‖n‖ > ψM (k), the right-hand side of (5) is
strictly greater than

A

(2θ(k))1/σ

(
θ(k)

(Aσ/2)1/(σ+1)

)1+1/σ

= θ(k),

so (un−1)a 6∈ HM
k , disagreeing with our contrary assumption which therefore must

have been false.

Theorems 3.1 and 3.3 describe (in an opaque form) uniformity in rate of mixing
and in the distribution of periodic points respectively for cyclic systems – those
corresponding to cyclic Rd-modules. As usual, we need arguments from commuta-
tive algebra to build up to a more general picture. The next lemma allows the two
properties to be inherited by a suitable extension of one action by another.

Lemma 3.4. Let L,M be Rd-modules with L ⊂ M , and suppose that both L
and M/L are mixing.

1. If Property I holds for L and for M/L, then there is an appropriate increasing
exhaustive sequence

(
HM
k

)
k>1

and function

φM (k) = max{φL(k), φM/L(k)},

such that it also holds for M .
2. If Property II holds for L and for M/L, then there is an appropriate increasing

exhaustive sequence
(
HM
k

)
k>1

and function

ψM (k) = max{ψL(k), ψM/L(k)},

such that it also holds for M .
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Proof. For each k ∈ N, let

HM
k =

⋃
x∈K∩π−1(H

M/L
k )

x+HL
k ,

where π : M → M/L is the natural quotient map of Rd-modules, and K is
a set of coset representatives containing 0. By construction, each Hk

M is finite
and

⋃∞
k=1H

M
k = M .

(i) Suppose that Property I is violated for some n with ‖n‖ > φM (k). Then there

exist w, x ∈ K ∩ π−1(H
M/L
k ) and g, h ∈ HL

k such that

un(x+ h) = w + g 6= 0. (6)

In particular, unπ(x) = π(w), which means that π(w) = 0 since Property I holds
for M/L by hypothesis. Therefore, w = 0 by our choice of K, and π(x) = 0 as
multiplication by un is an automorphism of M/L. It follows that x = 0 by our
choice of K and so (6) implies that unh = g meaning that g = 0, as Property I
holds for L. So, w + g = 0, contradicting (6).
(ii) Suppose that Property II is violated for some n with ‖n‖ > ψM (k). Then there

exist x ∈ K, w ∈ K ∩ π−1(H
M/L
k ), g ∈ HL

k and h ∈ L such that

(un − 1)(x+ h) = w + g 6= 0. (7)

Thus (un − 1)π(x) = π(w), which means that π(w) = 0 since Property II holds
for M/L. This forces π(x) = 0 as multiplication by (un − 1) is injective on M/L
(since M/L corresponds to a mixing system). Therefore x = 0 by our choice of K,
and so (7) implies that (un − 1)h = g meaning g = 0, as Property II holds for L.
So w + g = 0, contradicting (7).

The next lemma shows that both properties are inherited when passing to factors
of systems (factors of algebraic Zd-actions correspond to submodules under duality).

Lemma 3.5. Let L,M be Rd-modules with L ⊂M and suppose that M is mixing.

1. If M has Property I, then there is an appropriate increasing sequence
(
HL
k

)
k>1

and function φL(k) = φM (k) such that it also holds for L.
2. If M has Property II, then there is an appropriate increasing exhaustive se-

quence
(
HL
k

)
k>1

and function ψL(k) = ψM (k) such that it also holds for L.

Proof. For each k ∈ N let HL
k = HM

k ∩ L. Then
⋃∞
k=1H

L
k = L and each HL

k is
finite.
(i) For n ∈ Zd with ‖n‖ > φL(k),

HL
k ∩ unHL

k = HM
k ∩ L ∩ un(HM

k ∩ L)

= HM
k ∩ L ∩ unHM

k ∩ unL,

since multiplication by un is injective. Furthermore, the right-hand side is {0}, as
Property I holds for M .
(ii) Similarly, for n ∈ Zd with ‖n‖ > ψL(k),

HL
k ∩ (un − 1)HL

k = HM
k ∩ L ∩ (un − 1)(HM

k ∩ L)

= HM
k ∩ L ∩ (un − 1)HM

k ∩ (un − 1)L,

as multiplication by un−1 is injective by the mixing assumption. Furthermore, the
right-hand side is {0}, as Property II holds for M .
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We are now ready to pass the two uniformity properties up from cyclic modules
to Noetherian modules.

Theorem 3.6. Let M be a Noetherian Rd-module corresponding to a mixing alge-
braic Zd-action of entropy rank one, and suppose θ(k)↗∞ as k →∞. Then there
is an increasing exhaustive sequence

(
HM
k

)
k>1

of finite subsets of M , and there are

constants B,C > 0, such that Property I is satisfied for

φM (k) = B log θ(k),

and Property II is satisfied for

ψM (k) = C log θ(k).

Proof. Write Ass(M) = {p1, . . . , pr} and note that

kdim(Rd/pi) = 1

for each 1 6 i 6 r by the mixing and entropy rank one assumptions. By [13,
Cor. 6.3] or [14, Sect. 4], M embeds in a module of the form M ′ =

⊕r
i=1M(i),

where each Rd-module M(i) for 1 6 i 6 r, has a prime filtration of the form

{0} = N
(i)
0 ⊂ N (i)

1 ⊂ · · · ⊂ N (i)
s(i) = M(i), (8)

with N
(i)
j /N

(i)
j−1
∼= Rd/pi for all 1 6 j 6 s(i). Each of these modules is mixing

by [13, Th. 6.5].
We first consider Property I. For each module M(i), by Theorem 3.1, Lemma 3.4,

and induction on the prime filtration (8), we may find an increasing exhaustive

sequence
(
H
M(i)
k

)
k>1

of finite subsets of M(i) such that Property I is satisfied for

φM(i)(k) = Bi log θ(k),

where Bi > 0 is the constant appearing in Theorem 3.1 (which follows from the
proof of Lemma 3.4). For each k ∈ N, set

HM ′

k =

r⊕
i=1

H
M(i)
k

and
φM ′(k) = B log θ(k),

where B = max16i6r{Bi}. Therefore, Property I holds for M ′ and the required
result follows by applying Lemma 3.5.

Property II is obtained in an analogous way, noting that ψM (k) can be replaced
by ψM (k) = C log θ(k) for a suitably large choice of C in Theorem 3.3.

4. Remarks. (1) Theorem 3.6 gives Theorem 1.1 simply by translation: the class
of functions C(X) is defined by choosing a rate of decay for the size of coefficients
in the Fourier expansion outside HM

k so rapid that the sum over M \ Hk is o(1)
in k, choosing θ, and then computing φ′M and ψ′M .

(2) Throughout, the function θ can be chosen arbitrarily. We have left it in
the statements to facilitate more explicit estimates for specific classes of compact
groups.

(3) It seems possible that the uniformity in mixing seen here could be present in
higher entropy ranks. We initially attempted to prove this using adelic amoebas [4]
in place of Lyapunov vectors. For a mixing action of higher entropy rank, an
unpublished argument due to Einsiedler enables one to see that the adelic amoeba
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spans Rd, just as the set of Lyapunov vectors does for an entropy rank one action.
However, finding a suitable exhaustive sequence in the dual module based on this
appears to be rather problematic. Notably, however, one only needs to consider an
action corresponding to a cyclic module as the method of passing up to Noetherian
modules used here (Lemmas 3.4 and 3.5) works for all entropy ranks.

REFERENCES

[1] A. Baker. Linear forms in the logarithms of algebraic numbers. IV. Mathematika, 15:204–216,

1968.

[2] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture
Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin, 1975.

[3] M. Boyle and D. Lind. Expansive subdynamics. Trans. Amer. Math. Soc., 349(1):55–102,

1997.
[4] M. Einsiedler, M. Kapranov, and D. Lind. Non-Archimedean amoebas and tropical varieties.

J. Reine Angew. Math., 601:139–157, 2006.
[5] M. Einsiedler and D. Lind. Algebraic Zd-actions of entropy rank one. Trans. Amer. Math.

Soc., 356(5):1799–1831, 2004.

[6] M. Einsiedler, D. Lind, R. Miles, and T. Ward. Expansive subdynamics for algebraic Zd-
actions. Ergodic Theory Dynam. Systems, 21(6):1695–1729, 2001.

[7] Bruce Kitchens and K. Schmidt. Automorphisms of compact groups. Ergodic Theory Dynam.

Systems, 9(4):691–735, 1989.
[8] F. Ledrappier. Un champ markovien peut être d’entropie nulle et mélangeant. C. R. Acad.

Sci. Paris Sér. A-B, 287(7):A561–A563, 1978.

[9] D. A. Lind. Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory
Dynamical Systems, 2(1):49–68, 1982.

[10] R. Miles. Zeta functions for elements of entropy rank-one actions. Ergodic Theory Dynam.

Systems, 27(2):567–582, 2007.
[11] R. Miles and T. Ward. Periodic point data detects subdynamics in entropy rank one. Ergodic

Theory Dynam. Systems, 26(6):1913–1930, 2006.

[12] R. Miles and T. Ward. Uniform periodic point growth in entropy rank one. Proc. Amer. Math.
Soc., 136(1):359–365, 2008.

[13] K. Schmidt. Dynamical systems of algebraic origin, volume 128 of Progress in Mathematics.
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