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Abstract. Let X1, X2 be mixing connected algebraic dynamical systems with the
descending chain condition. We show that every equivariant continuous map X1 → X2 is
affine (that is, X2 is topologically rigid) if and only if the system X2 has finite topological
entropy.

1. Introduction
An algebraic Zd -action α on a compact abelian groupX is a homomorphismα : n �→ α(n)
from Zd to the group Aut(X) of continuous automorphisms of X. Compact groups are
assumed to be metrizable throughout and are written multiplicatively; e is used to denote
the identity element of any group. Write X = (X, α) for such an algebraic dynamical
system, and call the system X connected, mixing and so on if X is connected, α is mixing,
and so on.

Any algebraic system X preserves λX , the Haar measure on X. The system X is mixing
if

lim
n→∞ λX(A1 ∩ α(n)(A2)) = λX(A1) · λX(A2)

for all measurable sets A1, A2 ⊂ X.
A map φ : X1 → X2 between algebraic dynamical systems is equivariant if φ◦α1(n) =

α2(n) ◦ φ for all n ∈ Zd , and is affine if there is a continuous group homomorphism
ψ : X1 → X2 and an element y ∈ X2 with φ(x) = ψ(x) · y.

Topological (respectively, measurable) rigidity is a property of the systems X1 and
X2 that forces an equivariant continuous (respectively measurable) map to coincide
everywhere (respectively almost everywhere) with an affine map. We fix X1 throughout to
be a mixing, connected algebraic Zd -action, so will speak loosely of rigidity as a property
of the target system X2.



366 S. Bhattacharya and T. Ward

For d ≥ 1, denote by Rd = Z[u±1
1 , . . . , u±1

d ] the ring of Laurent polynomials with
integral coefficients in d commuting variables u1, . . . , ud . An element f of Rd is written

f (u) =
∑

n∈Zd
fnun

with un = u
n1
1 · · · undd , fn ∈ Z for all n = (n1, . . . , nd) ∈ Zd , and fn = 0 for all but

finitely many n ∈ Zd .
If X = (X, α) is an algebraic Zd -action on a compact abelian group X, then the

countable dual groupM = X̂ is a module over the ring Rd under the operation

f · a =
∑

n∈Zd
fnα̂(n)(a)

for f ∈ Rd and a ∈ M . The module M is called the dual module of X. Conversely,
a countable module M over Rd determines an algebraic Zd -action XM = (XM, αM) by
setting

α̂M(n)(a) = un · a
for every n ∈ Zd and a ∈ M .

An algebraic Zd -action X is Noetherian if the dual module is Noetherian. The following
properties are equivalent:
• XM is Noetherian;
• M is finitely generated over Rd (this is equivalent to M being Noetherian since Rd

is itself Noetherian);
• any descending chain of closed αM -invariant subgroups of XM stabilizes

(the descending chain condition, see [9]).
The topological entropy of the system XM is defined and computed in terms of the

moduleM in [11].
Rigidity properties of algebraic Zd -actions have been studied by several authors.

Measurable equivariant maps between mixing zero-entropy algebraic Zd -actions exhibit
strong regularity properties (see [4, 5, 8, 10]). For a Z-action generated by an
automorphism θ on a connected finite-dimensional compact abelian group, it is known
that the topological centralizer of the action admits non-affine maps if and only if θ is
not ergodic (cf. [1, 2, 16]). Ergodic automorphisms of infinite-dimensional groups may
have non-affine maps in their centralizers (see Example 1.3). In [3] it is shown that for
any expansive connected algebraic Zd -action X, the topological centralizer of α consists of
affine maps (expansiveness is a condition that implies the descending chain condition; for
d = 1 it forces the compact group X to be finite-dimensional).

In this paper we prove the following result, which characterizes a form of topological
rigidity in terms of topological entropy.

THEOREM 1.1. Let X1, X2 be connected mixing Noetherian algebraic Zd -actions.
Then the following properties are equivalent:
(1) every equivariant continuous map X1 → X2 is an affine map;
(2) the system X2 has finite topological entropy.
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For d ≥ 2, this result applies to situations where the underlying group X2 is
infinite-dimensional, so the lifting techniques of [1] and [16] cannot be applied directly.
Write T ⊂ C for the multiplicative unit circle.

Example 1.2. To illustrate Theorem 1.1, consider the Z2-action X where X ⊂ TZ
2

is the
closed subgroup consisting of all x ∈ TZ

2
with

x(m+ 1, n) · x(m, n) · x(m, n+ 1) = 1 for all m,n ∈ Z,

and α is the shift action of Z2 on X. The system X is mixing and has finite entropy.
It follows that every continuous equivariant map from X to itself is an affine map.
In contrast, the measurable centralizer of X contains many non-affine maps, since X is
measurably isomorphic to a Z2 Bernoulli shift (see [13, 17]).

Example 1.3. For the case of a single automorphism, the compact group being finite-
dimensional forces the entropy to be finite. Ergodic automorphisms of infinite-dimensional
groups are not topologically rigid in general.

For example, the shift automorphism of X = TZ defines an ergodic Z-action of
infinite entropy that is not topologically rigid: if f : T → T is any map, then the shift
map commutes with the map φ : X → X defined by (φ(x))k = f (xk). The module
corresponding to this action is a Noetherian R1-module.

On the other hand, an ergodic automorphism of TZ that splits into a direct product of
automorphisms of finite-dimensional tori is topologically rigid. The module corresponding
to this action is not Noetherian. It is not known whether such an action can have finite
topological entropy (see [12]).

The next example shows that Theorem 1.1 does not hold for non-Noetherian actions.

Example 1.4. Let Fd denote the field of fractions of Rd , considered as a Rd -module.
Let X1 denote the algebraic Zd -action corresponding to Fd . Notice that Fd is torsion-
free as an Rd -module, and X1 has infinite entropy. For any n ∈ Zd , multiplication by
un − 1 is an automorphism of Fd . By duality, the map x �→ α1(n)(x)− x is a continuous
automorphism of X1 for any n ∈ Zd . In particular, X1 does not have any non-trivial
periodic orbits. Now let X2 be any mixing connected algebraic Zd -action with a dense set
of periodic orbits (any Noetherian system has this property). Since continuous equivariant
maps take periodic orbits to periodic orbits, it follows that any continuous equivariant map
from X2 to X1 is trivial.

Example 1.4 is similar in spirit to a remark of Comfort (see [7]): there are no non-trivial
homomorphisms T → Q̂ since torsion elements are dense in T but absent in Q̂.

2. Algebraic Zd -actions
In this section basic results and terminology on algebraic Zd -actions are collected. A prime
ideal p ⊂ Rd is associated with the Rd -module M if there exists m ∈ M with p = {f ∈
Rd | f · m = 0}. The set of prime ideals associated with M is denoted Asc(M). If M is
Noetherian, then Asc(M) is finite. The torsion submodule of M is defined by

Tor(M) = {m ∈ M | r ·m = 0 for some non-zero r ∈ Rd}.
A moduleM is said to be a torsion module if Tor(M) = M .
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The following result taken from [14, Theorem 6.5] characterizes mixing in algebraic
terms.

LEMMA 2.1. The algebraic Zd -action XM is mixing if and only if for every p ∈ Asc(M)
and for every non-zero n ∈ Zd , the polynomial un − 1 does not lie in p.

An algebraic Zd -action X2 is an algebraic factor of X1 if there is a surjective continuous
equivariant homomorphism φ : X1 → X2.

The next lemma shows that if the module corresponding to an algebraic Zd -action
is Noetherian, then infinite topological entropy can only be created by the presence of
(a factor of) a full shift with infinite alphabet. This result is easily obtained from [11] or
[14, Proposition 19.4]; a proof is included here to make the paper relatively self-contained
and to show how the algebraic properties of the module M interact with the dynamical
properties of the system XM .

LEMMA 2.2. For a Noetherian system XM the following conditions are equivalent:

(1) XM does not admit a non-trivial closed αM -invariant subgroup H with the property
that the restriction of αM to H is an algebraic factor of the shift action of Zd on
(Tn)Z

d
for some n > 0;

(2) M is a torsion module;
(3) XM has finite topological entropy.

Proof. (1) 
⇒ (2). Suppose that M is not a torsion module and N = M/Tor(M).
Then N is a non-zero torsion-free Rd -module.

We claim thatN is isomorphic to a submodule of the free moduleRnd of rank n for some
n ≥ 1. Let N0 denote the localization of N at the prime ideal {0}. Since N is Noetherian,
N0 is a finite-dimensional vector space over F = Z(u±1

1 , . . . , u±1
d ), the quotient field

of Rd . Let B = {b1, . . . , bn} be any F -basis of N0. The map m �→ m/1 embeds N as a
submodule of N0. Choose a finite Rd -generating set A of N , and an element p ∈ Rd

with the property that p · a lies in the Rd -submodule generated by B for all a ∈ A.
The submodule generated by {b1/p, . . . , bn/p} contains N , and is a free Rd -module of
rank n. This proves the claim.

The system XN is therefore an algebraic factor of the shift action on (Tn)Z
d
. Since N

is a quotient of M , by duality there exists a closed α-invariant subgroup H ⊂ X such that
the restriction of α to H is conjugate to XN .

(2) 
⇒ (1). Let H ⊂ X be a closed α-invariant subgroup such that the restriction
of α to H is an algebraic factor of the shift action on (Tn)Z

d
for some n > 0. The dual

module of the shift action on (Tn)Z
d

is isomorphic to the direct sum of n copies of Rd ,
which implies that Ĥ is a torsion-free Rd -module. On the other hand, Ĥ is a quotient of
the Rd -module M , which is a torsion module by assumption (2). Hence Ĥ = {0}, so that
H is trivial.

(2) 
⇒ (3). Let {m1, . . . ,mk} generate M as an Rd -module. For j = 1, . . . , k let
Ij ⊂ Rd denote the ideal defined by

Ij = {p ∈ Rd | p ·mj = 0}.
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Since M is a torsion module, each Ij is non-zero. For j = 1, . . . , k let Mj denote the Rd -
module Rd/Ij . Since each Ij is non-zero, XMj has finite entropy by [11, Theorem 3.1].
Let

M ′ = M1 ⊕ · · · ⊕Mk.

Since each XMj has finite entropy, XM ′ also has finite entropy. The map (r1, . . . , rk) �→
r1m1 + · · · + rkmk expressesM as a quotient of M ′. The dual of this map embeds XM as
a sub-action of XM ′ , so in particular XM has finite entropy.
(3) 
⇒ (2). If M is not a torsion module, then it contains Rd as a submodule.

By duality, the shift action of Zd on TZ
d

is therefore an algebraic factor of XM . Since the
former action has infinite entropy, XM has infinite topological entropy. �

3. van Kampen’s theorem
In the proof of Theorem 1.1 the following structure theorem of van Kampen [15] will be
used in place of the lifting of toral maps. This result splits continuous maps into a ‘linear’
part (a character) and a ‘nonlinear’ part in a unique way. It is also used in this connection
by Walters [16].

THEOREM 3.1. Let X be a compact connected abelian group and let f : X → T be a
continuous map with f (e) = 1. Then there exist a character φ ∈ X̂ and a continuous map
S(f ) : X → R such that

S(f )(e) = 0, f (x) = φ(x) · e2πiS(f )(x) for all x ∈ X. (1)

Moreover, φ and S(f ) are uniquely defined by (1).

4. Rigidity of equivariant maps
For any algebraic Zd -action X = (X, α) and for any locally compact abelian group A,
denote by AX the group of all continuous maps

h : X → A, h(e) = e,

equipped with point-wise multiplication. The action α induces the structure of an
Rd -module on AX by defining

p · h(x) =
∑

n∈Zd
p(n) · h ◦ α(n)(x).

A key observation is that X̂ can be regarded as a submodule of TX with this structure.

PROPOSITION 4.1. Let X = (X, α) be a connected Zd -action. Then RX and TX/X̂ are
isomorphic as Rd -modules.

Proof. The correspondence f �→ S(f ) from Theorem 3.1 induces a map S from TX

to RX. If f1, f2 are elements of TX then, by the uniqueness part of Theorem 3.1,
S(f1f2) = S(f1) − S(f2), so that S is a group homomorphism. Similarly, if θ is a
continuous endomorphism of G, then S(f ◦ θ) = S(f ) ◦ θ . Hence, S : TX → RX

is an Rd -module homomorphism. For any f in RX, S(e2πif ) = f , so that the map S
is surjective. Since ker(S) = X̂, the statement follows. �
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If f and g are functions from Zd to C and g has finite support, the convolution
f ∗ g : Zd → C is given by

f ∗ g(i) =
∑
j∈Zd

f (i − j) · g(j).

Write L2(Zd ) for the set of all square-integrable functions Zd → C (with respect to the
counting measure on Zd ).

In addition to van Kampen’s theorem, a simple version of the L2 zero-divisor problem
is needed (see [6] for an overview).

PROPOSITION 4.2. If f ∈ L2(Zd ) has f ∗ g = 0 for some non-zero function g : Zd → C

with finite support, then f is identically zero.

Proof. Since the support of g is finite, there exists n ∈ Zd such that the support of g ∗ δn is
contained in Nd . Replacing g by g∗δn if necessary, we may assume that the support of g is
contained in Nd . Let f̂ , ĝ ∈ L2(Td ) denote the Fourier transforms of f and g respectively.
By the choice of g, ĝ = p|Td for some non-zero polynomial p(z) ∈ C[z1, . . . , zd ].
Define V (p) ⊂ Td by

V (p) = {x ∈ Td | p(x) = 0}.
We claim that λd(V (p)) = 0 for any non-zero p, where λd is the Haar measure on Td .
This may be proved by induction on d . If d = 1, then V (p) ⊂ T is finite since every non-
zero polynomial has only finitely many roots. If d > 1, choose polynomials p0, . . . , pk in
C[z1, . . . , zd−1] such that

p(z1, . . . , zd ) =
k∑
i=0

pi(z1, . . . , zd−1)z
i
d .

Since p is non-zero, pi is non-zero for some i. By the inductive hypothesis,
λd−1(V (pi)) = 0. If (z1, . . . , zd−1) lies in Td−1\V (pi), then the map z �→
p(z1, . . . , zd−1, z) is a non-zero polynomial in C[z]. This implies that for any
(z1, . . . , zd−1) ∈ Td−1\V (pi), the set

{z ∈ T | (z1, . . . , zd−1, z) ∈ V (p)}
is finite. By Fubini’s theorem,

λd(V (p)) =
∫
Td−1

∫
T

IV (p) dλ1 dλd−1 = 0,

where I is the indicator function, which proves the claim. Since ĝ = p|Td and f̂ · ĝ =
f̂ ∗ g = 0, it follows that f̂ = 0 almost everywhere, so that f = 0. �

LEMMA 4.3. If X = (X, α) is a mixing connected algebraic Zd -action, then
Tor(TX) ⊂ X̂.

Proof. Let M denote the set of all square-integrable functions

h : X̂ → C, h(e) = 0.
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Defining
p · h(φ) =

∑
i∈Zd

p(i)h(φ ◦ α(i))

for p ∈ Rd givesM the structure of an Rd -module.
We claim first thatM is torsion-free. Let h be an element of Tor(M); for any non-trivial

χ ∈ X̂ define a function hχ : Zd → C by

hχ (i) = h(χ ◦ α(i)).
Since α is mixing, the map i �→ χ ◦ α(i) is one-to-one. Hence,∑

i∈Zd
|hχ (i)|2 ≤

∑
χ∈X̂

|h(χ)|2 < ∞.

This shows that hχ ∈ L2(Zd) for all χ ∈ X̂. Note that L2(Zd ) itself is an Rd -module
with respect to the multiplication p · h = p ∗ h. Furthermore, the map h �→ hχ is an
Rd -module homomorphism from M to L2(Zd ). Since Tor(L2(Zd)) = {0} by
Proposition 4.2, we conclude that hχ = 0 for all χ , so that h = 0. This proves that
M is torsion-free.

For f in RX, let f̂ ∈ M denote the Fourier transform of f . Since f̂ ◦ θ(φ) =
f̂ (φ ◦ θ) for any continuous endomorphism θ of X, the map f �→ f̂ is an Rd -module
homomorphism from RX to M . By the Fourier inversion theorem this map is injective.
Since Tor(M) = {0}, this implies that Tor(RX) = {0}. Proposition 4.1 then shows that
Tor(TX) ⊂ X̂. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that X2 has finite entropy, and let f be an equivariant
continuous map X1 → X2. Define f0 : X1 → X2 by

f0(x) = f (x)− f (e). (2)

Since f is equivariant, so is f0.
Fix an arbitrary character φ ∈ X̂2. By Lemma 2.2, X̂2 is a torsion module, so φ lies in

the torsion submodule of TX2 . Since f0 is equivariant and f0(e) = 1, the map h �→ h ◦ f0

is an Rd -module homomorphism TX2 → TX1 . Hence φ ◦ f0 is an element of the torsion
submodule of TX1 . By Lemma 4.3, φ ◦ f0 lies in X̂1. Since the initial choice of φ was
arbitrary, this shows that φ �→ φ◦f0 is a group homomorphism from X̂2 to X̂1. By duality,
there exists a continuous homomorphism θ : X1 → X2 such that φ ◦ f0 = φ ◦ θ for all
φ ∈ X̂2. Since characters separate points, this implies that f0 = θ . Hence f = f (e)+ f0

is an affine map.
If X2 has infinite entropy, then by Lemma 2.2 there exists a non-trivial closed

α2-invariant subgroup H ⊂ X2 with the property that the restriction of α2 to H is an
algebraic factor of the shift action on (Tn)Z

d
for some n > 0. Let K ⊂ (Tn)Z

d
be a

proper, closed shift-invariant subgroup such that the restriction of α2 to H is algebraically
conjugate to the shift action of Zd on (Tn)Z

d
/K . Since any non-affine equivariant map

from X1 to H gives rise to a non-affine equivariant map X1 → X2, without loss of
generality we may assume that X2 = (Tn)Z

d
/K , and α2 is the shift action.
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For any continuous map q : X1 → Rn define a map

σ(q) : X1 → (Tn)Z
d

by

σ(q)(x)(n) = exp ◦ q ◦ α1(n)(x).

Let π : (Tn)Zd → (Tn)Z
d
/K denote the projection map. For any

q : X1 → Rn,

π ◦ σ(q) is a continuous equivariant map from X1 to X2. We claim that there exists a non-
zero continuous equivariant map from X1 to X2 of the form π ◦ σ(q) for some continuous
map q : X1 → Rn with q(e) = 0.

For any finite set F ⊂ Zd , let 
F denote the projection map


F : (Tn)Zd → (Tn)F .

Since K is a proper closed subgroup of (Tn)Z
d
, there exists a finite set F ⊂ Zd , and a

point x ∈ (Tn)F , such that x does not lie in the image of 
F . Since X1 is mixing, for any
i �= j ∈ Zd , the kernel of α1(i) − α1(j) is a proper closed subgroup of X1. In particular,
there exists y ∈ X1 such that y �= e, and

α1(i)(y) �= α1(j)(y) for any i, j ∈ F.

Choose z ∈ (Rn)F such that exp(z(i)) = x(i) for all i ∈ F . Let

q : X1 → Rn

be any continuous map with q(e) = 0 and q ◦ α1(i)(y) = z(i) for all i ∈ F .
Since π ◦ σ(q)(y) does not lie in K , this proves the claim.

Now let q : X1 → Rn be any continuous map such that q(e) = 0, and π ◦σ(q) : X1 →
X2 is a non-zero map. For any t ∈ [0, 1], define maps qt : X1 → Rn and ht : X1 → X2

by qt(x) = tq(x), ht (x) = π ◦ σ(qt ). For any t ∈ [0, 1], ht is a continuous equivariant
map from X1 to X2, and ht (e) = e. We claim that ht is non-affine for some t ∈ (0, 1].

Suppose this is not the case. Then for each t ∈ [0, 1], ht is a continuous homomorphism
from X1 to X2. Let Y denote the set of all continuous maps from X1 to X2. Choose any
metric ρ on X2 that gives the topology, and define a metric ρ0 on Y by

ρ0(h1, h2) = sup{ρ(h1(x), h2(x)) | x ∈ X1}.

The map t �→ ht is continuous with respect to ρ0 and the set of all continuous
homomorphisms from X1 to X2 forms a discrete subset of Y . Hence t �→ ht is constant,
which contradicts the fact that h0 = 0 and h1 �= 0. This proves that some ht is not an
affine map. Since ht is a continuous equivariant map from X1 to X2 for any t ∈ [0, 1],
Theorem 1.1 follows. �
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