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Abstract. Let Xy, X be mixing connected algebraic dynamical systems with the
descending chain condition. We show that every equivariant continuous map X; — Xj is
affine (that is, Xy is topologically rigid) if and only if the system X3 has finite topological
entropy.

1. Introduction
An algebraic 74 -action o on a compact abelian group X is a homomorphisme : n — «(n)
from Z? to the group Aut(X) of continuous automorphisms of X. Compact groups are
assumed to be metrizable throughout and are written multiplicatively; e is used to denote
the identity element of any group. Write X = (X, «) for such an algebraic dynamical
system, and call the system X connected, mixing and so on if X is connected, « is mixing,
and so on.

Any algebraic system X preserves Ay, the Haar measure on X. The system X is mixing
if

Jim Ay (Ap Nam)(A2)) = Ax (A1) - Ax(A2)

for all measurable sets Ay, A C X.

A map ¢ : X; — X, between algebraic dynamical systems is equivariant if poo;(n) =
az(n) o ¢ for all n € Z4, and is affine if there is a continuous group homomorphism
Y : X1 — X7 and an element y € X5 with ¢(x) = ¥ (x) - y.

Topological (respectively, measurable) rigidity is a property of the systems X; and
X, that forces an equivariant continuous (respectively measurable) map to coincide
everywhere (respectively almost everywhere) with an affine map. We fix X; throughout to
be a mixing, connected algebraic Z¢-action, so will speak loosely of rigidity as a property
of the target system Xj.
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For d > 1, denote by R; = Z[ufl, el u}tl] the ring of Laurent polynomials with
integral coefficients in d commuting variables ui, ..., uy. Anelement f of Ry is written
f) = Z fnun

neZd
with u = ' U, fo € Zforallm = (n1,...,ng) € Z% and f, = 0 for all but

finitely many n € Z¢.
If X = (X, «) is an algebraic Z?-action on a compact abelian group X, then the
countable dual group M = X is a module over the ring R; under the operation

fra=)" fmdm(a)

neZd

for f € R; and a € M. The module M is called the dual module of X. Conversely,
a countable module M over R; determines an algebraic 74 -action Xy = (X1, am) by
setting

aym)(a) =u"-a

foreveryn € Z% anda € M.

An algebraic Z?-action X is Noetherian if the dual module is Noetherian. The following

properties are equivalent:

° Xy is Noetherian;

° M is finitely generated over Ry (this is equivalent to M being Noetherian since Ry
is itself Noetherian);

) any descending chain of closed ops-invariant subgroups of Xjs stabilizes
(the descending chain condition, see [9]).

The topological entropy of the system X, is defined and computed in terms of the
module M in [11].

Rigidity properties of algebraic Z¢-actions have been studied by several authors.
Measurable equivariant maps between mixing zero-entropy algebraic Z¢-actions exhibit
strong regularity properties (see [4, 5, 8, 10]). For a Z-action generated by an
automorphism 6 on a connected finite-dimensional compact abelian group, it is known
that the topological centralizer of the action admits non-affine maps if and only if 6 is
not ergodic (cf. [1, 2, 16]). Ergodic automorphisms of infinite-dimensional groups may
have non-affine maps in their centralizers (see Example 1.3). In [3] it is shown that for
any expansive connected algebraic Z¢-action X, the topological centralizer of & consists of
affine maps (expansiveness is a condition that implies the descending chain condition; for
d = 1 it forces the compact group X to be finite-dimensional).

In this paper we prove the following result, which characterizes a form of topological
rigidity in terms of topological entropy.

THEOREM 1.1. Let X;, Xy be connected mixing Noetherian algebraic 74 -actions.
Then the following properties are equivalent:

(1)  every equivariant continuous map X; — X; is an affine map;

(2)  the system Xy has finite topological entropy.
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For d > 2, this result applies to situations where the underlying group X, is
infinite-dimensional, so the lifting techniques of [1] and [16] cannot be applied directly.
Write T C C for the multiplicative unit circle.

Example 1.2. To illustrate Theorem 1.1, consider the 7Z2-action X where X C ']I‘Z2 is the
closed subgroup consisting of all x € TZ* with

x(m+1,n)-x(m,n)-x(m,n+1)=1 forallm,n € Z,

and o is the shift action of Z? on X. The system X is mixing and has finite entropy.
It follows that every continuous equivariant map from X to itself is an affine map.
In contrast, the measurable centralizer of X contains many non-affine maps, since X is
measurably isomorphic to a 72 Bernoulli shift (see [13, 17]).

Example 1.3. For the case of a single automorphism, the compact group being finite-
dimensional forces the entropy to be finite. Ergodic automorphisms of infinite-dimensional
groups are not topologically rigid in general.

For example, the shift automorphism of X = TZ defines an ergodic Z-action of
infinite entropy that is not topologically rigid: if f : T — T is any map, then the shift
map commutes with the map ¢ : X — X defined by (¢(x))x = f(xx). The module
corresponding to this action is a Noetherian Rj-module.

On the other hand, an ergodic automorphism of TZ that splits into a direct product of
automorphisms of finite-dimensional tori is topologically rigid. The module corresponding
to this action is not Noetherian. It is not known whether such an action can have finite
topological entropy (see [12]).

The next example shows that Theorem 1.1 does not hold for non-Noetherian actions.

Example 1.4. Let F; denote the field of fractions of Ry, considered as a Rz-module.
Let X; denote the algebraic Z¢-action corresponding to F;. Notice that F; is torsion-
free as an Rg-module, and X; has infinite entropy. For any n € Z¢, multiplication by
u" — 1 is an automorphism of F;. By duality, the map x > «1(n)(x) — x is a continuous
automorphism of X for any n € Z¢. In particular, X; does not have any non-trivial
periodic orbits. Now let X, be any mixing connected algebraic Z¢-action with a dense set
of periodic orbits (any Noetherian system has this property). Since continuous equivariant
maps take periodic orbits to periodic orbits, it follows that any continuous equivariant map
from X to X; is trivial.

Example 1.4 is similar in spirit to a remark of Comfort (see [7]): there are no non-trivial
homomorphisms T — @ since torsion elements are dense in T but absent in Q.

2. Algebraic Z%-actions

In this section basic results and terminology on algebraic Z?-actions are collected. A prime
ideal p C Ry is associated with the Rz-module M if there exists m € M withp = {f €
Ry | f-m = 0}. The set of prime ideals associated with M is denoted Asc(M). If M is
Noetherian, then Asc(M) is finite. The torsion submodule of M is defined by

Tor(M) = {m € M | r - m = 0 for some non-zeror € Ry}.

A module M is said to be a forsion module if Tor(M) = M.
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The following result taken from [14, Theorem 6.5] characterizes mixing in algebraic
terms.

LEMMA 2.1. The algebraic 7Z.%-action Xy is mixing if and only if for every p € Asc(M)
and for every non-zeron € 74, the polynomial w™ — 1 does not lie in p.

An algebraic Z?-action X, is an algebraic factor of X if there is a surjective continuous
equivariant homomorphism ¢ : X1 — X».

The next lemma shows that if the module corresponding to an algebraic Z?-action
is Noetherian, then infinite topological entropy can only be created by the presence of
(a factor of) a full shift with infinite alphabet. This result is easily obtained from [11] or
[14, Proposition 19.4]; a proof is included here to make the paper relatively self-contained
and to show how the algebraic properties of the module M interact with the dynamical
properties of the system Xj,.

LEMMA 2.2. For a Noetherian system Xy the following conditions are equivalent:

(1) X does not admit a non-trivial closed apy-invariant subgroup H with the property
that the restriction of ay to H is an algebraic factor of the shift action of 7Z¢ on
(']I‘")Zd for some n > 0;

(2) M is a torsion module;

(3) Xy has finite topological entropy.

Proof. (1) =— (2). Suppose that M is not a torsion module and N = M/ Tor(M).
Then N is a non-zero torsion-free Rz-module.

We claim that N is isomorphic to a submodule of the free module R; of rank n for some
n > 1. Let Ny denote the localization of N at the prime ideal {0}. Since N is Noetherian,
Ny is a finite-dimensional vector space over F' = Z(ufl, o u}tl), the quotient field
of Ry. Let B = {by, ..., b,} be any F-basis of Ny9. The map m — m/1 embeds N as a
submodule of Ny. Choose a finite R;-generating set A of N, and an element p € Ry
with the property that p - a lies in the Rgz-submodule generated by B for all a € A.
The submodule generated by {b1/p, ..., b,/p} contains N, and is a free R;j-module of
rank n. This proves the claim.

The system Xy is therefore an algebraic factor of the shift action on (T")Zd. Since N
is a quotient of M, by duality there exists a closed a-invariant subgroup H C X such that
the restriction of @ to H is conjugate to Xy .

(2) = (1).Let H C X be a closed «-invariant subgroup such that the restriction
of o to H is an algebraic factor of the shift action on (T”)Zd for some n > 0. The dual
module of the shift action on (T”)Zd
which implies that H is a torsion-free Ry-module. On the other hand, H is a quotient of
the Rz-module M, which is a torsion module by assumption (2). Hence H= {0}, so that
H is trivial.

(2) = (3). Let {m, ..., my} generate M as an Ry-module. For j = 1,...,k let
I; C Ry denote the ideal defined by

is isomorphic to the direct sum of n copies of Ry,

Ij={peRs|p-mj=0}
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Since M is a torsion module, each /; is non-zero. For j =1, ..., k let M; denote the Ry-
module Ry/I;. Since each /; is non-zero, XMj has finite entropy by [11, Theorem 3.1].
Let

M=M®&- - & M.

Since each Xy, has finite entropy, Xy also has finite entropy. The map (r1, ..., k)
rimy + - - - + rpmy expresses M as a quotient of M’. The dual of this map embeds Xy, as
a sub-action of Xy, so in particular X, has finite entropy.

(3) = (2). If M is not a torsion module, then it contains R; as a submodule.
By duality, the shift action of Z? on TZ" is therefore an algebraic factor of Xj. Since the
former action has infinite entropy, Xj; has infinite topological entropy. a

3. van Kampen’s theorem

In the proof of Theorem 1.1 the following structure theorem of van Kampen [15] will be
used in place of the lifting of toral maps. This result splits continuous maps into a ‘linear’
part (a character) and a ‘nonlinear’ part in a unique way. It is also used in this connection
by Walters [16].

THEOREM 3.1. Let X be a compact connected abelian group and let f : X — T be a
continuous map with f(e) = 1. Then there exist a character ¢ € X and a continuous map
S(f) : X — R such that

S(f)e) =0, f(x)=¢x) FSDO forallx e X. 1)
Moreover, ¢ and S(f) are uniquely defined by (1).

4. Rigidity of equivariant maps
For any algebraic Z¢-action X = (X, &) and for any locally compact abelian group A,
denote by AX the group of all continuous maps

h:X —> A, h(e)=ce,

equipped with point-wise multiplication. The action « induces the structure of an
Rg-module on AX by defining

poh(x) =) pm)-hoam().

neZd
A key observation is that X can be regarded as a submodule of TX with this structure.

PROPOSITION 4.1. Let X = (X, «) be a connected Z%-action. Then RX and TX/S(\ are
isomorphic as Rg-modules.

Proof. The correspondence f +— S(f) from Theorem 3.1 induces a map S from TX
to RX. If f, f» are elements of TX then, by the uniqueness part of Theorem 3.1,
S(fifa) = S(fi) — S(f2), so that S is a group homomorphism. Similarly, if 6 is a
continuous endomorphism of G, then S(f o 8) = S(f) o 6. Hence, S : TX — RX
is an Ry-module homomorphism. For any f in R, S(e?"i/) = f, so that the map S
is surjective. Since ker(S) = X , the statement follows. O
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If f and g are functions from Z? to C and g has finite support, the convolution
f*g:7Z% — Cis given by

g =Y fG—)-gQ).

jezd

Write L2(Z%) for the set of all square-integrable functions Z¢ — C (with respect to the
counting measure on Z%).

In addition to van Kampen’s theorem, a simple version of the L? zero-divisor problem
is needed (see [6] for an overview).

PROPOSITION 4.2. If f € L>*(Z%) has f g = 0 for some non-zero function g : Z¢ — C
with finite support, then f is identically zero.

Proof. Since the support of g is finite, there exists n € Z? such that the support of g % 8y is
contained in N¢. Replacing g by g 8y if necessary, we may assume that the support of g is
contained in N¢. Let f 2 € L*(T¢) denote the Fourier transforms of f and g respectively.
By the choice of g, § = p|q for some non-zero polynomial p(z) € Clzy, ..., z4]-
Define V(p) C T¢ by

V(p)={x €T | p(x) = 0}.

We claim that 14(V (p)) = 0 for any non-zero p, where A4 is the Haar measure on T,
This may be proved by induction on d. If d = 1, then V (p) C T is finite since every non-
zero polynomial has only finitely many roots. If d > 1, choose polynomials py, ..., pk in
Clzi, -+, zqa—1] such that

k
Pt za) =Y piat, s 2a-1)
i=0

Since p is non-zero, p; is non-zero for some i. By the inductive hypothesis,
ra—1(V(pi)) = 0. If (z1,...,24-1) lies in Td_l\V(pi), then the map z
p(z1,-..,2d—1,2) is a non-zero polynomial in C[z]. This implies that for any
(21, ..., zd—1) € T¢"N\V(p;), the set

{zeT|(z1,...,24-1,2) € V(p)}

is finite. By Fubini’s theorem,

r(V(p) = / / Ivpydirdrg—1 =0,
Ta-1 JT

where I is the indicator function, which proves the claim. Since g = p|s and f z

f/;g = 0, it follows that f: 0 almost everywhere, so that f = 0. O
LEMMA 4.3. If X = (X,a) is a mixing connected algebraic Z%-action, then

Tor(TX) ¢ X.
Proof. Let M denote the set of all square-integrable functions

h:X — C, he)=0.
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Defining
p-h@) =) pih(@oad)
iezd
for p € Ry gives M the structure of an R;-module.
We claim first that M is torsion-free. Let & be an element of Tor(M); for any non-trivial
X € X define a function hy : 7 — C by

hy (i) = h(x o a(i)).

Since « is mixing, the map i — yx o «(i) is one-to-one. Hence,

Sl ®P < Y OO < oo

iezd xeX

This shows that 4, € LZ(Zd) for all x € X. Note that LZ(Zd) itself is an R;-module
with respect to the multiplication p - h = p * h. Furthermore, the map 4 — h, is an
R;-module homomorphism from M to L2(Z4). Since Tor(L%(Z%) = {0} by
Proposition 4.2, we conclude that &, = 0 for all x, so that ~ = 0. This proves that
M is torsion-free.

For f in RX, let f € M denote the Fourier transform of f. Since f 00(p) =
f (¢ o ) for any continuous endomorphism 8 of X, the map f +— f is an Rgz-module
homomorphism from RX to M. By the Fourier inversion theorem this map is injective.
Since Tor(M) = {0}, this implies that Tor(RX) = {0}. Proposition 4.1 then shows that
Tor(T¥) C X. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that X, has finite entropy, and let f be an equivariant
continuous map X; — Xj. Define fy : X1 — X; by

Jo(x) = f(x) — f(e). 2

Since f is equivariant, so is fp.

Fix an arbitrary character ¢ € )/(\2 By Lemma 2.2, )/(\2 is a torsion module, so ¢ lies in
the torsion submodule of TX2. Since fy is equivariant and fo(e) = 1, the map & — ho fy
is an Rz-module homomorphism TX2 — TX!. Hence ¢ o fo is an element of the torsion
submodule of TX!. By Lemma 4.3, ¢ o fy lies in XAl . Since the initial choice of ¢ was
arbitrary, this shows that ¢ > ¢ o fp is a group homomorphism from X, to X;. By duality,
there exists a continuous homomorphism 6 : X1 — X5 such that ¢ o f = ¢ o 0 for all
¢ € XAZ Since characters separate points, this implies that fo = 6. Hence f = f(e) + fo
is an affine map.

If X, has infinite entropy, then by Lemma 2.2 there exists a non-trivial closed
az-invariant subgroup H C X with the property that the restriction of o> to H is an
algebraic factor of the shift action on (T”)Zd for some n > 0. Let K C (T”)Zd be a
proper, closed shift-invariant subgroup such that the restriction of «; to H is algebraically
conjugate to the shift action of Z¢ on (T”)Zd /K. Since any non-affine equivariant map
from X to H gives rise to a non-affine equivariant map X; — Xjp, without loss of
generality we may assume that X = (T”)Zd /K, and «; is the shift action.
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For any continuous map g : X; — R define a map
o(g) : X1 — (THZ

by
o(q)(x)(m) = expo q o aj(n)(x).

Letm : (T”)Zd — (T")Zd /K denote the projection map. For any
q:X — RY,

7 o o (g) is a continuous equivariant map from X; to X,. We claim that there exists a non-
zero continuous equivariant map from X; to X; of the form 7 o o (¢) for some continuous
map g : X — R" withg(e) = 0.
For any finite set F C Z¢, let I1r denote the projection map
d
M : (THE - (TF.

. . d . .
Since K is a proper closed subgroup of (T")%", there exists a finite set F C Z¢, and a
point x € (T")¥, such that x does not lie in the image of ITr. Since X; is mixing, for any

i # j e Z4, the kernel of o1 (i) — o1 (j) is a proper closed subgroup of X1. In particular,
there exists y € X such that y # e, and

a1(D)(y) #a1()(y) foranyi,je F.
Choose z € (R™)¥ such that exp(z(i)) = x(i) foralli € F. Let
qg:X — R"

be any continuous map with g(¢) = 0 and ¢ o a1(i)(y) = z(i) for all i € F.
Since 7w o 0(q)(y) does not lie in K, this proves the claim.

Now let g : X1 — R” be any continuous map such that g(e¢) = 0,and r oo (g) : X1 —
X5 is a non-zero map. For any ¢ € [0, 1], define maps g¢; : X1 — R"and h; : X1 — X»
by ¢:(x) = tq(x), hs(x) = m oo (q;). For any ¢t € [0, 1], h; is a continuous equivariant
map from X to X5, and h;(e) = e. We claim that 4, is non-affine for some ¢ € (0, 1].

Suppose this is not the case. Then for each ¢ € [0, 1], A, is a continuous homomorphism
from X1 to X». Let Y denote the set of all continuous maps from X to X». Choose any
metric p on X that gives the topology, and define a metric pp on Y by

po(h1, ho) = sup{p(hi(x), ha(x)) | x € X1}.

The map t+ +— h; is continuous with respect to pp and the set of all continuous
homomorphisms from X to X, forms a discrete subset of Y. Hence ¢ +— A, is constant,
which contradicts the fact that kg = 0 and ] # 0. This proves that some /; is not an
affine map. Since /; is a continuous equivariant map from X; to X, for any ¢ € [0, 1],
Theorem 1.1 follows. O
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