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Abstract. Shereshevsky has shown that a shift–commuting homeomorphism
from the two–dimensional full shift to itself cannot be expansive, and asked

if such a homeomorphism can have finite positive entropy. We formulate an
algebraic analogue of this problem, and answer it in a special case by proving

the following: if T : X → X is a mixing endomorphism of a compact metrizable

abelian group X, and T commutes with a completely positive entropy Z2–
action S on X by continuous automorphisms, then T has infinite entropy.

1. Introduction

Let Σ = {0, 1, . . . , k − 1}Z2
be the full two–dimensional shift on k symbols, and

let h : Σ→ Σ be a shift–commuting continuous map (or cellular automaton) on Σ.
Shereshevsky [13] has shown that h cannot act expansively, and has conjectured
that the topological entropy of h must lie in {0,∞}. A special case of this conjecture
concerns the case where h is an endomorphism of the group structure on Σ (see
Lemma 1 below). A natural algebraic version of Shereshevsky’s problem is the
following (notice that for e > 1 a mixing algebraic Ne–action does not automatically
have positive entropy).

Problem. If T is a positive entropy mixing Ne–action on a compact abelian group,
commuting with a completely positive entropy Zd–action, and 1 ≤ e ≤ d − 1, can
T have finite entropy?

Here and below we restrict attention to metrizable compact groups, and use “en-
tropy” to mean either topological entropy or entropy with respect to Haar measure
(which is maximal for ergodic compact group endomorphisms by Berg’s theorem
[1]).

A related problem is Lehmer’s problem, originally stated in [4]: if

p(x) = (x− λ1) . . . (x− λn)

is a monic polynomial in Z[x] with constant term ±1, can the quantity

M(p) =
∏
|λi|>1

|λi|

be made arbitrarily close to 1? Lind [6] Theorem 9.3, has shown that if the answer
to Lehmer’s problem is “yes” then for every r ∈ (0,∞] there is an ergodic automor-
phism of a compact abelian group with entropy r, and in [5] that if the answer is
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“no” then every ergodic automorphism of the infinite torus T∞ must have infinite
entropy.

The partial result we prove is the following.

Theorem 1. Let T : X → X be a mixing endomorphism of the compact abelian
group X, that commutes with a Z2–action S with completely positive entropy. Then
T has infinite entropy.

2. Notation and background

Following Lind in [5] we adopt the following terminology. An action U (of N,
or Z2 and so on) by monomorphisms of a countable discrete abelian group M is
ergodic, mixing, has positive entropy, completely positive entropy, infinite entropy

if and only if the dual action Û (of N, or Z2 and so on) on the compact metrizable
abelian group X = M̂ respectively is ergodic, mixing, has positive entropy, com-
pletely positive entropy, infinite entropy. If N ≤M is a U–invariant subgroup, then
the surjective homomorphism M̂ → N̂ = M̂/N⊥ dual to the inclusion N ↪→ M

realizes the action V̂ on N̂ as a factor of the original action Û on M̂ , where V
denotes the action U restricted to N .

For example, in this terminology, h(U on M) ≥ h(V on N) is the statement
corresponding to the observation that the entropy h(V̂ ) of the factor dynamical
system V̂ is less than or equal to the entropy h(Û) of Û .

Since an ergodic endomorphism of a compact abelian group has completely pos-
itive entropy [11], if U is an ergodic monomorphism of a countable discrete group
M , and N ≤ M is a U–invariant subgroup, then U |N has (completely) positive
entropy.

Following Kitchens and Schmidt [3] there is an algebraic description of any Z2×
N–action on a compact abelian group X. Let S(1,0) and S(0,1) be generators for the
Z

2–action S on X, and let T = T1 be the S–commuting generator of the N–action
on X. Then Ŝ(1,0), Ŝ(0,1) and T̂ are commuting monomorphisms of M = X̂, the
first two of which are also surjective. By identifying the action of these three maps
with multiplication by x, y, and t, the additive group M takes on the structure of
an S+–module, where S+ = Z[x±1, y±1, t].

It will be useful later to construct the natural invertible extension of the endo-
morphism T . Let M denote the set {tk}k≥0 of powers of t. This is a multiplicative
subset of S+, and the localisation S+

M is S = Z[x±1, y±1, t±1]. The S+–module
M also has a localisation, MM, which is an S = S+

M–module. It follows that the
third generator of the Z3–action corresponding by duality to the S–module MM is
the natural invertible extension T̃ of T , and h(T̃ ) = h(T ) by Section 3.3 of [10]. An
alternative description of the invertible extension is via tensor products: there is a
canonical isomorphism of S–modules between MM and M ⊗S+ S by Theorem 4.4
of [9].

Similarly, a Z2–action by automorphisms of a compact abelian group X gives
the dual group M = X̂ the structure of an R–module, where R = Z[x±1, y±1]. We
shall use the canonical inclusion R ⊂ S+ without comment.

The Z2–action corresponding to the cyclic R–module R/p (where p is a prime
ideal in R) is known to have completely positive entropy if and only if the ideal p is
principal and not generated by a polynomial of the form xaybφ(xcyd), where φ is a
cyclotomic polynomial [7], Section 6. More generally, the Z2–action corresponding
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to the R–module M has completely positive entropy if and only if for every prime
ideal p associated with M the action corresponding to the cyclic module R/p has
completely positive entropy by [7], Theorem 6.5. Notice that the set of associated
prime ideals of M as an R–module is identical to the set of associated primes of MM

as an R–module, so that passing to the invertible extension of the transformation
T does not affect the completely positive entropy condition on S.

3. Proof in a special case

The special case for which we first prove Theorem 1 is that in which the com-
pletely positive entropy Z2–action S has a particularly simple form: in general, the
actions S and T make M = X̂ into an S+–module; assuming that the actions take
the form of Lemma 1 or Lemma 2 amounts to assuming that the module M is of the
form S+/q, and that the ideal q is of the form 〈t− g(x, y), f(x, y)〉 for polynomials
g, f ∈ R. In Lemma 1 we assume in addition that the polynomial f is a constant,
and in Lemma 2 that f is not a constant.

Lemma 1. Let X = R̂/p and let S be the corresponding Z2–action on X. Let T be
a mixing, S–commuting endomorphism of X. Assume that p = 〈p〉 for a rational
prime p or p = {0}. Then h(T ) =∞.

Proof. If p = 〈p〉 then X = F
Z

2

p , and the Z2–action S is the full two–dimensional
shift on p symbols. It follows that T : X → X is an algebraic cellular automaton
determined by a polynomial g ∈ Fp[x±1, y±1] as follows. If g =

∑
(a,b)∈G c(a,b)x

ayb,
where G ⊂ Z2 is the (finite) support of g, then T = Tg is determined by

(Tx)(n,m) =
∑

(a,b)∈G

c(a,b)x(a+n,b+m)

(where addition is performed in Fp). Notice that Tg is mixing if and only if g is
non–constant since multiplication by g can have a non–trivial finite orbit if and
only if g is constant. The case G = {0} cannot therefore occur.

Assume first that the set G∪{0} does not lie on a line. We shall find a sequence
{Xn}n∈N of closed Tg–invariant subgroups of X = F

Z
2

p such that for every n ∈ N,
T |Xn is an expansive map, and FixK(T |Xn) ≥ pKn for all K,n ∈ N (here FixK
denotes the number of points with period K). Then the basic inequality

h(U) ≥ lim sup
K→∞

1
K

log FixK(U) (1)

for expansive maps U [2] applies to show that h(T |Xn) ≥ limK→∞
1
K log pnK =

n log p, so that as n→∞, h(T ) ≥ h(T |Xn)→∞.
To construct the groups {Xn}, notice that since the points in G ∪ {0} do not

lie on a line, we may find a line ` through 0, with rational slope, which has non–
empty intersection with the interior (in R2) of the convex hull of G ∪ {0}, and is
not parallel to any of the faces of the convex hull of G ∪ {0}. Since expansiveness
of a continuous function on a compact metric space is a topological property, we
may use any metric on X = F

Z
2

p compatible with the product topology. For any
r ≥ 0, let S(r) be the closed square in R2 with side length r, centre 0 and two sides
parallel to `. For any x,y ∈ X, let ρ(x,y) = 0 if x = y, and ρ(x,y) = 2−I(x,y) if
not, where

I(x,y) = inf{r ≥ 0 | xn 6= yn for some n ∈ Z2 ∩ S(r)}.
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Now choose a unit vector v ∈ R2 normal to `. Let r′ > 0, r′′ > 0 be the greatest
distances, in the directions of v and −v respectively, between ` and a line parallel
to ` meeting G (by construction, these lines meet G in exactly one point each: call
these points m1 and m2). Now let G = {m1,m2, . . . ,mc}. Let r′′′ > 0 be the
distance between adjacent points in `∩Z2, and select a point k ∈ `∩Z2\{0} closest
to 0. For any R > max{2r′, 2r′′, r′′′}, and for any n ∈ N such that nk is distance
strictly less than R from 0, put

Xn = {x = (xn) ∈ X | xm = xm+nk for all m ∈ Z2}.

Let `1 and `2 be the lines parallel to ` containing sides of the square S(R). If
ρ(x,y) ≤ 2−R for any x 6= y in Xn then xn 6= yn for some n outside the interior
of S(R). Moreover, n cannot lie between `1 and `2 by construction. Since ` has
rational gradient, there is a least real R′ ≥ R and a line `′ parallel to ` and distance
R′/2 from ` such that xn′′ 6= yn′′ for some n′′ ∈ `′∩Z2, so there exists n′ ∈ S(R′)∩Z2

such that xn′ 6= yn′ and then ρ(x,y) = 2−R
′
. By construction, we know that for

j = 1 or 2, xn′+mi−mj
= yn′+mi−mj

for all i ∈ {1, 2, . . . , c}\{j}.
It follows that (Tg(x))n′−mj

6= (Tg(y))n′−mj
for j = 1, 2. If ρ(Tg(x), Tg(y)) ≤

2−R then, by the construction of Xn, ρ(Tg(x), Tg(y)) = 2−R
′+2r1 for some r1 with

r′ ≤ r1 ≤ r′′. (We are assuming without loss of generality that r′ ≤ r′′).
So, inductively, we argue that if 2−R

′+2r1+···+2rk = ρ(T kg (x), T kg (y)) ≤ 2−R for
some k ∈ N with r′ ≤ ri ≤ r′′ for i ≤ k, then

ρ(T k+1
g (x), T k+1

g (y)) ≤ 2−R =⇒ ρ(T k+1
g (x), T k+1

g (y)) = 2−R
′+2r1+···+2rk+1

for some r′ ≤ rk+1 ≤ r′′. Eventually, we must get R′ − 2(r1 + · · · + rk) < R for
some k ∈ N, which gives ρ(T kg (x), T kg (y)) > 2−R. So the map Tg restricted to Xn

is expansive, with expansive constant δ = 2−R.
Notice that R (and hence |nk|, and hence n) may be chosen arbitrarily large

without affecting the expansiveness of Tg restricted to Xn.
We may therefore apply (1) to the map Tg restricted to Xn for all n ≥ 1.
Since Fp is an integral domain, the convex hull of the support GK of the poly-

nomial defining TKg is given by scaling the convex hull of G by K, centred at 0.
Now x ∈ X is fixed by TKg if and only if

xn =
∑

m∈GK

c(K)
m xn+m mod p

for suitable coefficients c(K)
m ∈ Fp and for all n ∈ Z2. Let k′ ∈ ((r′+ r′′)v + `)∩Z2,

and let `′′ be the line through 0 and k′. Given K,n ∈ N, let R(K,n) be the
semi–closed quadrilateral in R2 with vertices 0, nk, Kk′, and nk + Kk′ including
only those border points in ` and `′′. A point x in Xn fixed by TKg may now be
constructed by choosing xn freely for all n ∈ R(K,n). This gives a total of pC(K,n)

choices, where C(K,n) = |R(K,n) ∩ Z2| = KnC for some C = C(1, 1) ≥ 1. It
follows that

FixK(Tg on Xn) ≥ p|R(K,n)| = pKnC ≥ pKn.
By (1), letting K →∞, we deduce that

h(Tg) ≥ h(Tg on Xn) ≥ n log p

for all n, so h(Tg) =∞.
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If {0} 6= G ∪ {0} ⊂ ` for some line ` = {. . . ,n(−1),n(0) = 0,n(1), . . . } ⊂ Z2

then we may write Z2 =
⋃
i∈Z `i and FZ

2

p =
∏
i∈Z F

`i
p where each `i is some translate

of ` = `0. For each n ≥ 1 the subgroup

Ln =
∏
i<−n

{0}`i × F`−np × · · · × F`np ×
∏
i>n

{0}`i

is closed and T–invariant, so h(T ) ≥ h(T |Ln) = (2n+ 1)h(T |L0). Let m ∈ `\{0} be
an end–point of the set G∪{0}. Pick ε > 0 with the property that if x = (xn(j)),y =
(yn(j)) are points in F`p, with xn(0) 6= yn(0) then ρ(x,y) > ε for the natural metric on
F
`
p. That is, ρ(x,y) = 2−L(x,y) where L(x,y) = min{|n(i)| | xn(j) = yn(j)∀|j| ≤ |i|}

for x 6= y, and ρ(x,y) = 0 for x = y. It follows that for any K ≥ 1, the set

SK = {x ∈ F`p | xn = 0 if n /∈ {0,m, 2m, . . . , (K − 1)m}}

is (K, ρ, ε′)–separated for all 0 < ε′ < ε, and |SK | = pK (notice that Tg restricted
to ` is permutative on the end–point m). It follows that h(T |L0) ≥ log p, and so
h(T ) ≥ (2n+ 1) log p for all n, hence h(Tg) =∞.

If p = {0}, then T is defined by a polynomial g ∈ Z[x±1, y±1]: T̂ (m) = g · m
in R/p = R. Since T is mixing, the polynomial g is not a constant, so for a
large enough prime p, the reduction ḡ of g mod p is a non–constant element of
Fp[x±1, y±1], which therefore defines a mixing map m̄→ ḡ · m̄ from R/〈p〉 to R/〈p〉
dual to a mixing endomorphism T̄ . The dual of the surjective map R → R/〈p〉
embeds a copy of FZ

2

p as a closed subgroup of X = T
Z

2
, so it is clear from the

separated set definition of topological entropy that h(T ) ≥ h(T̄ ). On the other
hand (by the choice of p above) T̄ is mixing, so the first part of the proof applies
to show that h(T̄ ) =∞.

The remaining possibility is that p = 〈f〉 for some non–constant non–cyclotomic
irreducible polynomial f .

Lemma 2. Let X = R̂/p and let S be the corresponding Z2–action on X. Let
T be a mixing, S–commuting endomorphism of X. Assume that p = 〈f〉 for a
non–constant non–cyclotomic irreducible polynomial f . Then h(T ) =∞.

Proof. In this case the group X = ̂R/〈f〉 is an infinite–dimensional connected
group. Lemma 3.1 of [8] extends to this setting, and shows that if X(Q) is the
group dual to R/〈f〉 ⊗Z Q, then T extends to an endomorphism T (Q) = T ⊗Z 1 :
X(Q) → X(Q) with h(T (Q)) = h(T ).

Write Σ = Q̂ for the one–dimensional solenoid; the group X(Q) then has the
following explicit description. Let P1 and P2 be a pair of parallel lines in Z2 with
the property that P1 and P2 meet the support of the polynomial f in points, and
they are the most widely separated lines amongst those normal to a fixed vector
with that property. Let A denote the subset of points in Z2 that lie on P1 or strictly
between P1 and P2. Now X(Q) is a closed, shift–invariant subgroup of ΣZ

2
, and

by construction the map from X(Q) to ΣA sending a point to its restriction to the
co–ordinates in A is a group isomorphism. That is, a point in X(Q) is completely
determined by the co–ordinates in A, and these may be chosen freely.

So, as a group

X(Q) ∼= ΣA. (2)
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Choose a finite set Q ⊂ A and a vector n ∈ Z2 with the property that the sets

. . . , Q− n, Q,Q+ n, Q+ 2n, . . .

are all disjoint, and A =
⋃
k∈ZQ+ kn. Then by (2), X(Q) ∼=

(
ΣQ
)Z; the endormor-

phism T (Q) : X(Q) → X(Q) under this isomorphism becomes the map dual to the
infinite matrix

B =



. . . . . . . . . . . .
A1 A2 . . . Ar

A1 A2 . . . Ar
A1 A2 . . . Ar

. . . . . . . . . . . .

 (3)

where each matrix Ai is a |Q| × |Q| rational matrix (the elements of Σ̂Q = Q
Q

are written here as column vectors of length |Q|, and the dual of the direct prod-
uct

(
ΣQ
)Z is the direct sum

⊕
Z

Σ̂Q). We also know that T (Q) is ergodic, so if
Lehmer’s problem were known to have the answer “no”, we could deduce at once
that h(T (Q)) =∞ by [5]. However, the special band structure of the matrix in (3)
allows us to compute the entropy directly.

Write Γ for the group
⊕
Z
Q ∼=

⊕
Z
Q
Q = ̂(ΣQ)Z (where elements of QQ are

written as column vectors), and consider the action of the matrix B on Γ thought
of as an infinite–dimensional vector space over Q.

Assume first that there is some vector γ ∈ Γ\{0} with the property that some
polynomial in B annihilates γ. Then the subspace W ≤ Γ spanned by {Bkγ}k∈N
is finite–dimensional. Let σ : Γ → Γ denote the shift operator. Since W is finite–
dimensional, there exists k ≥ 1 such that the subspaces

W,σk|Q|W,σ2k|Q|W, . . . , σ(K−1)k|Q|W

are all linearly independent for any K ≥ 1, and are all B–invariant. Moreover,
from the band structure of the matrix B, the action of B restricted to the subspace
σj|Q|W is isomorphic to the action of B on W . Finally, the B–invariant subspace
W ⊕ · · · ⊕ σ(K−1)k|Q|W determines a factor of the action of T (Q) on X(Q), so

h(T ) ≥ h(B on
⊕

j=0,...,K−1

σj|Q|W ) =
K−1∑
j=0

h(B on W ) = K · h(B on W ).

On the other hand, B acting on W is itself dual to a non–trivial factor of T (Q), and
so has positive entropy. Since K was arbitrary, we deduce that h(T ) =∞.

If there is no vector γ ∈ Γ\{0} which is annihilated by some polynomial in
B, then there is a vector γ ∈ Γ with the property that the subspace spanned by
{Bkγ}k∈Z is a copy of

∑
Z
Q on which B acts as the shift. Dual to this subgroup is

a factor of T (Q) isomorphic to the full shift with infinite alphabet Σ, so h(T ) =∞
again.

4. General Case

For the general case we use results of Schmidt on how “big” a group must be
in order to carry a completely positive entropy Z2–action. Let X,S, T be as in
Theorem 1. The additive group M = X̂ then has the structure of an S+–module.
By tensoring M with S we may pass to the natural invertible extension of the map
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T , and so assume that M is an S–module. Since S is Noetherian as a ring, the
module M has associated primes (see Theorem 6.1 in [9]). Let q ⊂ S be a prime
ideal associated to M , so there is an m ∈M such that

q = {f ∈ S | f ·m = 0M}.

The map f 7→ f ·m from S to M has as image an isomorphic copy of S/q, so the
original Z2 × Z–action has a factor of the form X = XS/q.

Some terminology: a subgroup Γ ≤ Z
3 is primitive if the quotient Z3/Γ is

torsion–free.
First assume that the ring S/q has positive characteristic p. Then, since X

carries a Z2–action with (completely) positive entropy, by Proposition 24.1 of [12]
the entropy “dimension” s of the Z3–action generated by S and T is 2 or 3. So,
by Proposition 8.2 of [12] there is a primitive subgroup Γ ≤ Z3 with rank s, and a
finite set Q ⊂ Z3 such that Q ∩Q+ m = ∅ for all m ∈ Γ\{0}, and the projection
from X ⊂ FZ3

p to the co–ordinates in Γ̄ = Γ+Q is a continuous group isomorphism.
Under this isomorphism, we see that if s = 3 the automorphism T is a full shift
with infinite alphabet, or if s = 2, is an invertible extension of a mixing algebraic
cellular automaton of a full 2–dimensional full shift. In the former case the entropy
is clearly infinite, and in the latter case it is infinite by Lemma 1.

Now assume that the ring S/q has zero characteristic. For simplicity, let S(Q) =
S ⊗Z Q = Q[x±1, y±1, t±1], and extend T as before (start of proof of Lemma 2)

to an automorphism T (Q) of X(Q) = ̂S(Q)/q. Since X(Q) carries a Z2–action with
completely positive entropy, by Proposition 24.3 of [12] the entropy “dimension” s
of the Z3–action generated by S and T is 1 or 2. By Lemma 8.3 of [12] there is a
primitive subgroup Γ ≤ Z3 with rank s, and a finite set Q ⊂ Z3 such that Q∩Q+
m = ∅ for all m ∈ Γ\{0}, and the projection from X ⊂ TZ3

to the co–ordinates in
Γ̄ = Γ + Q is a continuous group isomorphism. Under this isomorphism, if s = 1
then T (Q) is the invertible extension of an endomorphism of the infinite–dimensional
solenoid (Q̂)Γ, with the band structure of (3). It follows by the argument used in
the proof of Lemma 2 that the entropy must be infinite.

If s = 2 the automorphism T (Q) is the invertible extension of a shift–commuting
endomorphism of the full two–dimensional shift with solenoid alphabet, which may
be treated similarly. Notice that the dual group is isomorphic to

∑
Z2 Q =

∑
Z

∑
Z
Q

(that is, choose a basis for the dual group using vertical strips). The map T (Q) is
then dual to an infinite matrix of the form

C =



. . . . . . . . . . . .
A1 A2 . . . Ar

A1 A2 . . . Ar
A1 A2 . . . Ar

. . . . . . . . . . . .

 (4)

in which each submatrix Ai is finite, but the entries in each Ai are themselves bi–
infinite rational matrices. Exactly as in the proof of Lemma 2, if there is a vector
γ 6= 0 with the property that some polynomial in C annihilates γ, then we may
find arbitrarily many finite–dimensional C–invariant subspaces, on each of which
C restricts to a fixed positive entropy map. If there is no such vector, then there
is a vector γ with the property that the factor of the original dynamical system
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corresponding to the C–invariant subspace spanned by {Ckγ}k∈Z is a full shift with
alphabet Q̂Z. In both cases we see that the entropy is infinite.

Remark 1. (1) If the words “commutes with” are replaced by “carries” in Theorem
1, the result no longer holds. In the disconnected case, there are mixing endo-
morphisms of the group FZ

2

p with entropy log p. In the connected case, the result
remains true if the answer to Lehmer’s problem is “no”.
(2) In the proof of Lemma 2, both cases occur for the possible dimensions of in-
variant subspaces of Γ. Let f = 〈1 + x + y〉 and choose P1 = {(a, b) | a = b},
P2 = {(a, b) | a = b− 2}, Q = {(0, 0), (0, 1)} and n = (1, 1). Then the group X(Q)

is given by

X(Q) = {x ∈ Q̂Z
2
| x(n,m) + x(n+1,m) + x(n,m+1) = 0 for all n,m},

with the Z2–action S given by the shift. If the endomorphism T is defined by
(T (x))(a.b) = x(a,b+1), then the corresponding infinite matrix consists of a diago-
nal line of 1’s shifted one away from the diagonal, which has no finite–dimensional
invariant subspaces. On the other hand, if T is defined by (T (x))(a.b) = 2x(a,b),
the corresponding infinite matrix has infinitely many 1–dimensional invariant sub-
spaces.
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