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1 Introduction and summary

Various methods and models indicate that in QCD, the presence of a sufficiently

large isospin chemical potential leads to condensation of mesonic particles. Such

new ground states may have interesting properties, such as non-isotropy or even

non-homogeneity. Intuitively, condensation will take place when the chemical po-

tential is of the order of the mass of the lightest meson in the system. In QCD,

this would thus imply that a modest chemical potential leads to the formation of a

pion condensate, and increasing the potential further is then expected to trigger rho

meson condensation and so forth. While this intuitive picture is simple, computing

such condensation effects from first principles is hard, though is indeed suggested by

phenomenological models [1–3] as well as studies that make use of the string/gauge

theory correspondence [4–6] (though not all of these contain the analogue of a pion

sector). Obtaining these results from the lattice still remains a challenge.

When additional scales are present in the problem, it is conceivable that more

interesting or non-intuitive things happen. One particular situation that we will be

interested in here is the effect of finite volume. In the context of the string/gauge
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theory correspondence, there is a canonical example involving gauge theory in a

space with finite volume, the dual description of which involves string theory on

AdS5 × S5 in global coordinates. According to the conjecture, this describes N = 4

super-Yang-Mills theory on the compact manifold living on the boundary three-

sphere (plus time). In its original form [7], the string/gauge theory correspondence

links string theory on the Poincaré patch of AdS5×S5 with N = 4 super-Yang-Mills

theory on the non-compact R3,1. The Poincaré patch of the string theory background

arises as the near-horizon limit of the supergravity solution for Nc → ∞ coincident

D3-branes. This brane construction serves as the starting point for the “derivation”

of the correspondence. In contrast, global AdS5×S5 space does not arise as the near

horizon limit of any D-brane configuration. However, it is strongly believed that the

correspondence holds here as well, in the manner described above. Generalisation to

finite temperature is straightforward and amounts to compactifying the time circle

both on the gauge and gravity sides, with the size of the thermal circle S1 being

inversely proportional to the temperature of the system. When the temperature

is high enough, the system undergoes a Hawking-Page phase transition and empty

thermal AdS space is replaced with a Schwarzschild black hole with a spherical

horizon [8]. The existence of this phase transition is possible because of the presence

of a dimensionless parameter (the ratio of the radii of the thermal circle and of the

three-sphere), which is not present at infinite volume.

In order to study mesonic excitations in this model, one has to add matter fields

to it, or in holographic language, to add probe branes. In order to stay as close

as possible to the N = 4 model, one can add D7-branes, which was done in global

AdS in [9]. This modification of the system breaks supersymmetry down to N = 2

and incorporates quarks in the fundamental representation of the gauge group. If

the bare quark mass is chosen to vanish, the conformal invariance of the system is

preserved. The isometries of the internal three-sphere give rise to a global SO(4)

R-symmetry, and for Nf branes, one has in addition an SU(Nf ) flavour symmetry.

Chemical potentials can be introduced for all of these, but in the present paper we

will study the effect of a chemical potential associated to the latter, and will call it

an ‘isospin potential’ (see [10] for an analysis of some of the effects of an R-symmetry

potential).

In this compact gauge theory, we find two features which to our knowledge have

not been observed in the literature before. The first is that the particles which

condense first are not vector excitations (‘rho mesons’), but rather scalar particles

charged under the global symmetry group.1 This is an effect which in fact survives

1This could perhaps have been expected from the analysis of the meson spectrum of [11], which

finds that these SO(4) charged scalar mesons are the lightest, but their work does not discuss the

effect of a chemical potential, and the qualitative argument based on only a comparison of the mass

may in any case not be the complete story.
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the large radius limit at fixed temperature, i.e. the limit towards a black hole in the

Poincaré patch. The anisotropy of the condensate is thus in the direction of the

internal manifold, in contrast to what has been assumed in earlier literature for this

model [5, 6, 12], and in contrast to results in the Sakai-Sugimoto model [4].

The second feature is that the thermal pole masses of some of the mesons can

cross as the dimensionless ratio is varied.2 This suggests that, as the chemical poten-

tial is increased from zero, the particles which condense first to form a new ground

state may not always be the same, but depend on this parameter. We indeed confirm

this crossing behaviour also for the condensate formation, by explicit computation

of the fluctuation spectrum, construction of the condensate solutions and a compu-

tation of their free energies. In our model the crossing does not involve the lightest

particle, so the ground state remains a condensate of SO(4) charged scalars, but

in other models the situation may not be so simple, and it would be interesting to

investigate this further.

2 Holography with a dual S3

2.1 Brane embeddings in global AdS5 × S5 and AdS5-Schwarzschild

In this section we will briefly review some properties of the global AdS5 × S5 and

AdS5-Schwarzschild spaces as well as various embeddings of D7-probe branes in these

geometries [9]. String theory in global AdS5 × S5 space is believed to be dual to the

N = 4 SYM theory at zero temperature, which lives at the boundary of this space,

which is an S3 × R. Turning on the temperature makes the time direction (both in

the gauge and gravity sides) compact, with the radius being inversely proportional

to the gauge theory temperature.

The metric of the global AdS5 spaces (both at zero and finite temperature) is

given by

ds2 =

(
1 +

r2

R2

)
dτ 2 +

dr2

1 + r2

R2

+ r2dΩ2
3 +R2dΩ2

5 , (2.1)

where the origin of the AdS space is at r = 0, the boundary is at r →∞, and R is the

AdS radius. The Euclideanised time direction τ is periodic with period Rτ . Since

the theory is conformal, it implies that only the ratio of the thermal circle τ and

the size of the boundary sphere on which dual theory is living, R/Rτ , is physically

observable, i.e. unchanged by the conformal symmetry of the theory.

As the temperature of the thermal AdS space is increased, a first order Hawking-

Page phase transition takes place and global AdS-Schwarzschild space replaces the

thermal AdS space as the proper ground state of the system [8]. The metric of the

2This crossing behaviour is somewhat reminiscent of the mixing of states observed in [4].
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global AdS-Schwarzschild black hole is given by

ds2 = −
(

1 +
r2

R2
− M2

r2

)
dt2 +

dr2

1 + r2

R2 − M2

r2

+ r2dΩ2
3 +R2dΩ2

5 , (2.2)

where M2 = 8GNmbh/(3π) and mbh is the mass of the black hole, while its temper-

ature is given by

T =
1

4π

(
2r0

R2
+

2M2

r3
0

)
, (2.3)

where

r2
0 = R2

(
−1 +

√
1 + 4M2/R2

2

)
. (2.4)

The dimensionless ratio R/Rτ is proportional to TR, and we will later on expand our

results for large values of this parameter, interpreting this limit as one at finite tem-

perature and large volume [9, 13], so that a comparison with results in the Poincaré

patch can be made.

Introducing D7-probe branes in this geometry corresponds, in the holographic

language, to adding flavour hypermultiplets to N = 4 SYM on the sphere S3. A

study of various D-brane probes, in particular D7-probe branes, in these geometries

was performed in [9, 13]. It was found that at zero (and low) temperature, there

are two possible D7-brane embeddings in this dual geometry. The first type of

embeddings are those in which the D7-brane completely fills the AdS5 space and

wraps the S3 ∈ S5 which is equatorial (i.e it is a D-brane with vanishing extrinsic

curvature). The second type of embeddings are those in which the D7-brane wraps a

non-maximal S3 ∈ S5 which shrinks along the radial direction of AdS5 and becomes

zero before the brane reaches the origin of AdS5. The first series is dual to the

N = 2 SYM theory with massless hypermultiplets, while for the second class the

hypermultiplet is massive, and its mass is related to the distance at which the D7-

brane “stops” before the origin of the AdS5. Interestingly, as the “quark” mass is

varied a topology changing phase transition occurs [9]. It was further analysed in

detail in [13] that this phase transition is actually third order, unlike most of the

phase transition associated to probe branes in holographic duals, which are usually

first order.

In the high temperature phase, the situation is similar to that in infinite volume.

One finds that Lorentzian and black hole embeddings exhaust all possibilities. As

for infinite volume, these correspond to D7-branes that stay outside the horizon or

reach the black hole horizon respectively.

In this paper we will be studying various D-brane embeddings in the presence of

an “isospin” chemical potential. For that purpose, instead of using the coordinates

(2.1), it will be useful to use another set of coordinates given by

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +

R2

u2
(du2 + u2dΩ2

5) , (2.5)
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which is related to (2.1) via the coordinate change

u =
1

2
(r +

√
r2 +R2) . (2.6)

In these coordinates the origin of the AdS space is at u = R/2, while the boundary

is an S3 at u→∞. We will also use

ds2 = − 1

4z2

(
1 + z2

)2
dt2 +

R2

4z2

(
1− z2

)2
dΩ̄2

3 +R2 dz2

z2
+R2dΩ2 , (2.7)

which is related to the previous coordinates by z = R/(2u). Let us also note that in

the z coordinate the origin of AdS space is at z = 1, while the boundary is at z = 0.

Similarly for the system at finite temperature in addition to metric (2.2) we will

also use (u, t) coordinates,

ds2 = −2ρ2
H

uR2

F (u)

W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2 +R2dΩ2

5 , (2.8)

where

F (u) = 1− u2,
ρ4
H

R4
=

1

16
+
M2

4R2
, W (u) = 1− uR2

4ρ2
H

. (2.9)

Note here that the variable u is dimensionless and ranges from u ∈ [0, 1], where the

horizon is at u = 1, and the boundary is at u = 0. The Hawking temperature of this

black hole is

T =

√
2ρH

πR2
√

1− R2

4ρ2H

. (2.10)

For numerical investigation it turns out that another form of the metric at finite

T will also be useful.3 If we change coordinates as

v =
1− u

1− uR2

4ρ2H

Λ =
8ρ2

H

4ρ2
H +R2

, (2.11)

then the metric becomes

ds2 = − v(Λ− v)

(1− v)(2− Λ)
dt2+

Λ− 1

(2− Λ)(1− v)
R2dΩ̄2

3+
Λ− 1

4(1− v)2v(Λ− v)
R2dv2+R2dΩ2

5 ,

(2.12)

where

dΩ2
3 =

1

4
(dα2 + dβ2 + dγ2 + 2 cos βdαdγ). (2.13)

In these coordinates v = 0 is the horizon while v = 1 is the boundary, and Λ is

function of the temperature given by

Λ =
4(πTR)2

3(πTR)2 −
√

(πTR)2 (−2 + (πTR)2)
. (2.14)

3This is related to the fact that the solutions at vanishing bare quark mass can be related to

Heun functions in these coordinates.
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2.2 Chemical potentials and homogeneous solutions

In this section we will construct solutions which correspond to adding a chemical

potential associated to the global SU(2) flavour symmetry. This symmetry originates

from the fact that we are considering two coinciding D7-probe branes. In addition

to the SU(2) symmetry, our systems also exhibits another global SO(4) symmetry

associated to the residual global isometry of the system of probes. In principle one

could also consider switching on a chemical potential which is associated to this

symmetry group, as it was done in e.g. [10]. However, our prime interest will be the

physically more relevant SU(2) group, which has direct analogue with the SU(2)

flavour symmetry group in the Sakai-Sugimoto model [4].

In order to turn on a chemical potential corresponding to this global SU(2)

“isospin” symmetry, let us consider two coincident D7-branes, which for simplicity

have equatorial embedding θ = 0, so that the induced metric on the D7-branes is

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 +
R2

u2
du2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +R2dΩ2

3 . (2.15)

In other words, the D7-probes fill out the full AdS5 space, as well as a maximal

S3 ∈ S5. We should note that there are two S3 factors present on the world-volume

of the brane, one Ω̄3 which is dual to the boundary S3 and another one S3 in S5,

which is part of the global symmetry group.

As explained in the previous section, in order to turn on a chemical potential

we need to turn on the A0 component of the gauge field, such that it satisfies the

boundary condition

A0(x, z → 0)→ µIτ
3 . (2.16)

As a first guess for finding the ground state of the system in the presence of this

chemical potential, we consider the homogeneous ansatz

A = A
(3)
0 (u)τ 3 dt , (2.17)

so that the DBI action becomes

S = −TD78π4R3

∫
dz
√
−g(z)

[
1 +

π2R4

2λ

(
∂zA

(3)
0 (z)

)2

gtt(z)gzz(z)

]1/2

. (2.18)

The equation of motion for the field A0(z) can be integrated once, yielding

∂z(A
(3)
0 (z)R) =

4cz(1 + z2)√
(1− z2)6 + 32 c

2π2

λ
z6

, (2.19)

where c is an integration constant. We are looking for a physical configuration which

is smooth and differentiable everywhere. Specifically, we require that the field A0

and its derivatives are smooth at the origin of AdS space. However, by expanding the

– 6 –



right hand side of the above equation near the origin of AdS space one sees that the

radial derivative of the A0 field is non-vanishing. In other words, it is not possible to

obtain any nontrivial (different from a constant solution) homogeneous solution which

is smooth at the origin. This observation persists also for the Yang-Mills truncation

of the DBI action, and it also holds in the Poincaré limit (see [14]). Hence as the

starting configuration for our fluctuation analysis we will use a homogeneous solution

with non-zero isospin potential, given by

A0 = a0τ
3 , a0 = const. . (2.20)

This solution implies that at zero temperature, the homogeneous background does

not lead to generation of an isospin density.

Above the Hawking-Page transition, the situation is similar. The homogeneous

ansatz yields a first order differential equation,

∂uA
(3)
0 (u)

(
1− uR2

4ρ2
H

)2

= a0 , (2.21)

where a0 is an integration constant. This is solved by

A
(3)
0 (u) =

µI(1− u)

1− uR2

4ρ2H

, (2.22)

where we have imposed the boundary condition that A0(u→ 0) = µI at the bound-

ary, and also required vanishing of A0 at the horizon of the black hole in AdS space.

In contrast to the low temperature situation, we see that there is now a non-vanishing

isospin density present, even for this homogeneous system.

3 Perturbative analysis of the homogeneous vacuum at T = 0

While the homogeneous and isotropic solution which was discussed in the previous

section is a legitimate solution to the equations of motion, we expect that for large

enough values of the chemical potential this configuration will become unstable and

“decay” into another, presumably non-homogeneous or non-isotropic ground state.

Our expectations are based on a similar analysis which was previously performed for

the Sakai-Sugimoto model in [4]. A major difference, however, with respect to the

analysis of that paper is that we are now dealing with a field theory on a compact

space. In the present section we will discuss the perturbative stability analysis at

T = 0, which from a technical perspective largely follows the meson spectrum analysis

of [11]; we recall some elements of that construction for completeness and in order

to be able to compare with the finite temperature analysis which is to follow in

section 4.
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3.1 Scalar fluctuations at zero temperature

We will start the perturbative analysis of the homogeneous solution (2.20) by con-

sidering scalar perturbations. By scalars we here mean scalars in the dual theory

that are also scalars from the point of view of the D7-probe, i.e. gauge theory scalar

fields which are uncharged under the SO(4). Some of the scalars in the dual gauge

theory originate from the components of the gauge field on the D7-probe and will be

analysed in the next section. Our starting point is the flat (i.e. maximal) D7-probe

embedding with the world-volume field (2.20) turned on. The induced metric on the

world-volume was written in (2.15). Since the D7-probe brane is filling out the full

AdS5 space and wrapping a maximal S3 in S5, there are only two transverse scalars

to the brane world-volume, and they are within the S5. To see which scalars these

are, let us write the metric on S5 as

ds2
5 = R2(dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

3) . (3.1)

Instead of using the (θ, φ) coordinates it will be more convenient to introduce coor-

dinates

w1 = R sin θ cosφ w2 = R sin θ sinφ, (3.2)

so that the metric on S5 becomes

ds2
5 =

(
1− w2

1 + w2
2

R2

)
dΩ2

3 + dW 2(w1, w2) . (3.3)

Here dW 2 is a complicated expression in terms of w1, w2, which however significantly

simplifies for w1 = 0, w2 = w, as it then becomes

dW 2(w1, w2)→ dw2

1− w2

R2

. (3.4)

It can easily be checked from the equations of motion that it is indeed consistent to

set one of the w1, w2 to zero.4 We expect that the first instability will appear already

for the lowest lying (S-wave) mode on the dual gauge theory sphere S̄3, which is also

a singlet on S3 ∈ S5. Therefore, when looking for the instabilities in the system, we

will look at the fluctuation which is a function of only the time and u-coordinates.

Let us define the fluctuation variable as

Ψ(t, u) = δw2(t, u) . (3.5)

4The fluctuation in the other direction leads to the same spectrum, so we will not comment on

it any further (though we should emphasise that this is a property of the equatorial embedding not

shared by non-zero bare quark mass embeddings).
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The induced metric on the D7-brane becomes

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3

+
R2

u2
du2 +R2

(
1− Ψ(t, u)2

R2

)
dΩ2

3 +

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

. (3.6)

We next need to write down the action for the scalar fluctuation to leading order

in α′. A subtle point here is that all scalars are in the adjoint representation of the

SU(2) group on the world-volume of two D7-branes. The approach we adopt here

to write the action, is to first treat all scalars as abelian and derive the action for

the fluctuation by linearising the DBI action. In the last step we then promote all

fields to be in the adjoint representation by introducing an overall trace in front of

the action (for more on this and other approaches, see e.g. [6, 15]).

Following these steps we end up with the action governing the scalar fluctuations,

S = −TD7
4π6R4

λ

∫
dudt u3

(
1 +

R2

4u2

)(
1− R2

4u2

)3

×

[
−R

2

2

(
4u

4u2 +R2

)2

DtΨ
(a)DtΨ

(a) +
u2

2R2
∂uΨ

(a)∂uΨ
(a) − 3

2

Ψ(a)Ψ(a)

R2

]
. (3.7)

Since we expect that an instability will appear in the gauge direction orthogonal to

the background field A0, we make the ansatz for the fluctuation field to be

Ψ(t, u) = e−iωt
(
Ψ(1)
ω (u)τ 1 + Ψ(2)

ω (u)τ 2
)
, (3.8)

where we have focused on one Fourier mode.

The equations of motion for the components Ψ
(1)
ω and Ψ

(2)
ω are coupled, but can

be decoupled by changing variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) . (3.9)

The equations of motion for the components Ψ(±) are

∂u(
√
−gguu∂uΨ(±)

ω )√
−gguu

− gtt

guu

(
ω ± A(3)

0

)2

Ψ(±)
ω +

3

R2guu
Ψ(±)
ω = 0 , (3.10)

which for the specific metric on the D7-brane world-volume become

∂2
uΨ

(±)
ω +

∂u

(
u5
(

1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 ∂uΨ
(±)
ω

+

[
R4

u4
(
1 + R2

4u2

)2 (ω ± µ)2 +
3

u2

]
Ψ(±)
ω = 0 . (3.11)
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These equations can be solved by reducing them to Schrödinger form. A very similar

equation has been analysed in [11] for the determination of the mesonic spectrum

on the world-volume of a probe D7 brane at T = 0, in global AdS space. Following

steps similar to those in [11], and focusing on modes which are constant both on the

S3 ∈ S5 and on the gauge theory S̄3, we obtain for the spectrum of fluctuations

(µ+ ω)R = ±(3 + 2n) n = 0, 1, 2, . . . . (3.12)

Here n is the main quantum number. We see that the key effect of the non-vanishing

chemical potential is to shift the frequency ω → ω + µ. Because of this we see that

for large enough chemical potential µ > µcrit = 3/R, the frequency of the lowest lying

mode becomes zero, signalling that the homogeneous solution potentially becomes

unstable at this value of the chemical potential, and a condensate of the scalar might

form.

3.2 Vector fluctuations at zero temperature

Following the perturbative analysis in the scalar sector, we now turn our attention

to vectors. We again expect unstable modes, but would like to know whether or not

they occur before the instability of the scalar sector. An analysis of the vector mode

spectrum was performed in infinite volume limit (on the Poincaré patch) in [16] and

then later extended to non-zero chemical potential in [5, 6, 12]. At finite volume and

vanishing temperature and chemical potential the spectrum can be found in [11].

The upshot of the analysis of [16] is that the lowest lying supermultiplet consists of

two transverse scalars describing the transverse fluctuations of the D7-brane in the

S5, one scalar which originates from the vector component in the internal S3 ∈ S5

wrapped by the D7-brane, and gauge components in the non-compact directions of

AdS5. As one moves to the compact case, i.e. global AdS space [11], the states from

this supermultiplet get reorganised (split) so that the lightest state in the compact

space is the scalar which originates from the component of the gauge field in the

direction of the internal S3 ∈ S5. The vector components in the direction of the dual

sphere as well as the transverse scalars both have larger masses. We now want to see

how the fluctuations from the vector sector are shifted upon introducing a chemical

potential.

3.2.1 The gauge theory vector fluctuations

Let us start with the vector components in the direction of the sphere S̄3 of the

dual gauge theory. These fluctuations are dual to the vector excitations in the gauge

theory. Similarly to what we did for scalars, we start by writing the fluctuations as

A = A
(3)
0 (u)τ 3dt+Ra

(1)
i (t, u, Ω̄3)τ 1dθ̄i +Ra

(2)
i (t, u, Ω̄3)τ 2dθ̄i , (3.13)

where i = (1, 2, 3) are indices on the dual S̄3, and as for scalars we fluctuate in the

gauge directions orthogonal to A
(3)
0 . Since we know that the lowest lying vector is a
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singlet on S3 we do not have to consider excitations which depend on the coordinates

of the internal sphere.5

Next, we linearise the Yang-Mills action on the world-volume of the D7-probe,

S = −TD7π
2R

4

2λ

∫
d8ξ
√
−g
[
(∂uA

(3)
0 )2gttguu

+R2
(

((Dtai)
(a))2gttgii + (∂ua

(a)
i )2guugii

)
+R2(faij)

2giigjj
]
, (3.14)

where

(Dtai)
(a) = ∂ta

(a)
i − εabcA

(b)
0 a

(c)
i , faij = (∂ia

(a)
j − ∂ja

(a)
i ) . (3.15)

Here, gij is the metric on S̄3. The equations of motion for the fluctuations a
(a)
i are

given by

√
−gεabcA(c)

0 Dta
(b)
i g

ttgii +
√
−g∂t

(
Dta

(a)
i

)
gttgii + ∂u

(√
−g∂ua(a)

i guugii
)

+
∑
j

(√
−g
(
∂ja

(a)
i − ∂ia

(a)
j

)
gjjgii

)
= 0, (3.16)

In order to solve this equation let us Fourier transform in the time direction. In order

to decouple the equations for the fluctuations a
(1)
i and a

(2)
i we introduce a new pair

of variables

X̄
(±)
i (u, ω, Ω̄3) = e−iωt

(
a

(1)
i (u, ω, Ω̄3)± ia(2)

i (u, ω, Ω̄3)
)
. (3.17)

This finally yields the fluctuation equations

∂u

(√
−gguugii∂uX̄(±)

i

)
+
∑
j

∂j

(√
−ggjjgii

(
∂jX̄

(±)
i − ∂iX̄(±)

j

))
−
√
−ggttgii

(
ω ± A(3)

0

)2

X̄
(±)
i = 0 , (3.18)

which are equivalent to

Du
(
∂uX̄

(±)
i

)
+∇j

(
∂jX̄

(±)
i − ∂iX̄(±)

j

)
− gtt

(
ω ± A(3)

0

)2

X̄
(±)
i = 0. (3.19)

In order to solve these equations, we make a factorised ansatz for X̄i, as a product of

radial and angular functions, and expand the angular part X̄ Ω̄3
i (Ω̄3) on S̄3 in terms

of vector spherical harmonics. In general, the fluctuations could also depend on a

direction on internal sphere S3. However, as mentioned before, we will focus only

5In the language of [11] we consider type II fluctuations, with type I fluctuations to be considered

in the next subsection. Looking ahead, it turns out that type III fluctuations condense after type I

fluctuations and we will not consider them in detail here.
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on singlets under the global SO(4) symmetry group. Also, while there exists three

type of vector spherical harmonics on S̄3, it has been argued in [11, 16], that for

fluctuations of the vector field which are taking place in S̄3 ∈ AdS5, only Y l,±
i which

transform in
((

l∓1
2
, l±1

2

))
, l ≥ 1) irreducible representations of SO(4) are relevant.

Hence we expand the fluctuations as

X̄
(±)
i (u, ω, Ω̄3) =

∑
l̄,s=±

Φ̄
(±)

ω,l̄,s
(u)Y l̄,s

i , (3.20)

where the index (±) refers to the two linear combinations of modes as defined in

(3.17), and the ± index refers to the value of the index s labelling the vector spherical

harmonics.

The spherical harmonics satisfy the identities

∇i∇iY l,±
j −Rk

jY
l,±
k = −(l + 1)2Y l,±

j ,

εijk∇jY
l,±
k = ±(l + 1)Y i

l,± ,

∇iY l,±
i = 0 ,

(3.21)

Using these identities the equation for the vector fluctuations can be rewritten as

Φ̄
(±)′′

ω,l̄,s
(u) +

∂u

(√
−g(u)guu(u)P (u)

)
(√
−g(u)guu(u)P (u)

) Φ̄
(±)′

ω,l̄,s
(u)

− 1

guu(u)

[
gtt(u)

(
ω ± A(3)

0 (u)
)2

+ (l̄ + 1)2P (u)

]
Φ̄

(±)

ω,l̄,s
(u) = 0 , (3.22)

where the ± sign in front of A0 in the equation is correlated with the (±) sign on the

Φ̄(±) and P (u) is the inverse of the u-dependent part of the the metric factor in front

of dΩ̄2
3. We should note that this equation is independent of the quantum number

s = ±1, which will be different when we start looking at the vector fluctuations in

the direction of the internal sphere. In the case of zero temperature the fluctuation

equation becomes (see also [11])

Φ̄
(±)′′

ω,l̄
(u) +

∂u

(
u3
(

1 + R2

4u2

)(
1− R2

4u2

))
u3
(
1 + R2

4u2

) (
1− R2

4u2

) Φ̄
(±)′

ω,l̄
(u)

+

[
R4

u4
(
1 + R2

4u2

)2 (ω ± µ)2 − R2

u4
(
1− R2

4u2

)2 (l̄ + 1)2

]
Φ̄

(±)

ω,l̄
(u) = 0 . (3.23)

This equation is very similar to (3.11), and can again be cast in Schrödinger form.

We then find that the spectrum of vector fluctuations for the l̄-th spherical harmonics

is given by

(ω ± µ)R = (3 + l̄ + 2n) n = 0, 1, 2, 3.... l̄ = 1, 2, 3.... , (3.24)
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Here n is again the main quantum number, and l̄ is an SO(4) quantum number

corresponding to the sphere S̄3 ∈ AdS5. We see that the result is again the same as

the one in [11] if we consider SO(4) singlets (i.e. set l = 0), except that the chemical

potential shifts the frequency ω → ω ± µ.

From equation (3.24) we see that for a critical value of the chemical potential

given by µcrit = 4/R, the lowest lying mode l̄ = 1 will become massless. Therefore,

we expect that when the chemical potential is larger than this value, the system

potentially becomes unstable.

3.2.2 The charged scalar fluctuations

Let us now consider fluctuations of the vector field in the direction of the internal

S3 ∈ S5, which are dual to an SO(4) charged scalar field in the gauge theory. Since

the WZW term in the action is now non-zero, when considering fluctuations, we have

to modify the action from (3.14) by adding the term

SWZW =
TD7π

2R4

λ

∫
Tr(C ∧ F ∧ F ) , dC =

4

R
Vol(AdS5). (3.25)

Similarly as before, we make an ansatz as in (3.13) except that the index i is now

taking values in the internal S3. In addition, we will also allow the fluctuations to

depend on both S3 and S̄3 variables. In order to decouple the equations of motion

we redefine variables as in (3.17) and make a factorised ansatz

X
(±)
i (u, ω,Ω3, Ω̄3) = e−iωtΦ(±)(u)Ȳ l̄(Ω̄3)Y l,s

i (Ω3) , (3.26)

where the index (±) refers to the sign in the linear combination (3.17), i denotes the

index in the direction of the internal S3, and the index s = ±1. Also to shorten the

notation we have suppressed indices on the functions Φ(±), which should really also

carry indices (ω, s, l̄, l).

Following the same procedure as for scalars and the other gauge components we

arrive at the equation for the fluctuations (see also [11])

∂2
uΦ

(±) +
∂u(u

5
(

1 + R2

4u2

)(
1− R2

4u2

)3

)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 ∂uΦ
(±) +

R2

u4
(
1 + R2

4u2

)2 (ω ± µ)2Φ(±)

−

[
(l + 1)2 + l̄(l̄ + 2)

R2

u2
(
1− R2

4u2

)2 + 4s(l + 1)

]
1

u2
Φ(±) = 0 , (3.27)

where the sign in the (ω ± µ) is the same as for Φ(±). We should note that this

equation explicitly depends on the quantum number s, which is labelling the vector

harmonics on S3. This is in contrast to the previous case for the equation for vector

fluctuations on S̄3.
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Putting equation (3.27) in Schrödinger form, like we did for the other fluctua-

tions, we obtain for the spectrum

(ω ± µ)R = 3 + 2s+ l + 2n+ l̄ where

l̄ = 0, 1, 2, . . . l = 1, 2, 3, . . . n = 0, 1, 2, . . . s = ±1 . (3.28)

This is the same as (4.31) of [11] except for the shift ω → ω+µ. Let us also note that

the lowest lying excitation carries quantum numbers (l̄ = 0, l = 1, s = −1, n = 0),

and this mode will reach zero frequency when µ > µcrit = 2/R.6

4 Perturbative analysis of the homogeneous vacuum at T 6= 0

In the previous section we have observed that the homogeneous isotropic ground

state at non-zero chemical potential and zero temperature was unstable under both

scalar and vector fluctuations. We would now like to see how is this modified once

the temperature is turned on, paying particular attention to the order in which the

instabilities set in as a function of temperature.

We should emphasise that in contrast to the zero temperature case, where all

fluctuations have real frequency ω (corresponding to stable mesonic scalar and vec-

tor particles), at finite temperature (above the Hawking-Page transition), even in

the absence of chemical potential all fluctuation frequencies have a non-vanishing

imaginary part. When the chemical potential is zero the imaginary part of these

frequencies are negative, corresponding to the fact that these excitations are decay-

ing in time, i.e. that they describe quasi-stable particles. However, as the chemical

potential is turned on, if there is indeed an instability present, we expect that the

negative imaginary part of the frequencies will become positive, i.e. that a decaying

excitation would become an exponentially growing mode, which signals an instabil-

ity. In what follows, we will therefore focus on studying the imaginary part of the

quasi-normal modes of the system.

We start our analysis by looking at the scalar fluctuations, and repeat the pro-

cedure similar to that at zero temperature. Again, we use the metric on the S5 as

in (3.3), keeping only the transverse scalar Ψ(t, u) nonzero (see equation (3.5)) and

making it depend only on time and the radial direction u. As argued before, such

excitation is consistent with the full equations of motion, and should correspond to

the lowest energy mode, an S-wave on S̄3. The induced metric on the D7-brane

6The fact that this excitation has the lowest mass at µ = 0 was also observed in [11], but no

attempt was made to study its condensation under the influence of a chemical potential.
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world-volume is then

ds2 = − 2ρ2
HF (u)

uR2W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2

+R2

(
1− Ψ(t, u)2

R2

)
dΩ2

3 +

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

, (4.1)

where

F (u) = 1− u2 , W (u) = 1− uR2

4ρ2
H

. (4.2)

As before, we Fourier transform the scalar Ψ(t, u) and make the ansatz that it is

pointing in the direction orthogonal to the A
(3)
0 τ 3 in colour space,

Ψ(t, u) =

∫
dω

2π
e−iωt(Ψ(1)

ω (u)τ 1 + Ψ(2)
ω (u)τ 2) . (4.3)

We then again change variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) , (4.4)

so that the equations for the Ψ(±) fluctuations decouple and are given by7

∂u

(
W (u)F (u)

u
∂uΨ

(±)
ω (u)

)
W (u)F (u)

u

+
R4W (u)

8uρ2
HF (u)2

(
ω ± A(3)

0 (u)
)2

Ψ(±)
ω (u)

+
3

4u2F (u)
Ψ(±)
ω (u) = 0 . (4.5)

We solve the fluctuation equation by imposing that the modes satisfy an incoming

boundary condition at horizon,

Ψ(±)
ω (u)

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (4.6)

The equations for the vector fluctuations are derived in a similar way. Let us

first consider the vector fluctuations which are dual to vectors. We take them to

be singlets under the global SO(4) (l = 0), and orthogonal to the isospin chemical

potential in the gauge group as we did at zero temperature, see (3.13). Following

steps similar to those at zero temperature, instead of a
(1)
i , a

(2)
i , we introduce a new

7Note that at T = 0, the equations only depend on ω − µ, and hence the critical chemical

potential coincides with the frequency of the lightest mode. At T > 0 the A
(3)
0 component is no

longer a constant, and obtaining the critical chemical potential is more complicated (physical states

are no longer straight lines in the ω, µ plane).
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pair of variables X
(±)
i , as in (3.17) and Fourier expand it in spherical harmonics as

in (3.20). Hence, we arrive at the equations of motion for these fluctuations

∂2
uΦ̄

(±)s,l̄
ω +

∂uF (u)∂uΦ̄
(±)s,l̄
ω

F (u)
− (l̄ + 1)2 R2

8ρ2
HW (u)F (u)u

Φ̄(±)s,l̄
ω

+
R4W (u)

8uρ2
HF (u)2

(ω ± A(3)
0 )2Φ̄(±)s,l̄

ω = 0 . (4.7)

As for scalars, we impose incoming boundary conditions at the black hole horizon

Φ̄(±)s,l̄
ω

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (4.8)

Finally, we turn to the vector fluctuations dual to the charged scalars. Following

similar steps as we did at zero temperature we arrive at the equations governing

these fluctuations (see equation (3.27))

∂u

(
W (u)F (u)

u
∂uΦ

(±)

)
W (u)F (u)

u

− (l + 1)2 1

4u2F (u)
Φ(±) − l̄(l̄ + 2)

R2

8ρ2
HW (u)F (u)u

Φ(±)

− s(l + 1)

u2F (u)
Φ(±) +

R4W (u)

8uρ2
HF (u)2

(ω ± A(3)
0 )2Φ(±) = 0 . (4.9)

where we have again suppressed the indices (ω, l̄, l, s) on the functions Φ and we

impose incoming boundary conditions at the horizon of the black hole

Φ(±)
∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (4.10)

In order to solve the fluctuation equations (4.5), (4.7) and (4.9), we use a shooting

technique, in which we start from the horizon and look for modes that decay at

infinity i.e. we look for the modes that describe normalisable excitations. These

boundary conditions will be satisfied only for a discrete set of frequencies. We plot

the imaginary parts of those frequencies for the scalar and two vectors, for fixed

temperature and various values of the chemical potential µ, in figure 1.

We see that as the value of the chemical potential is increased, the imaginary

parts of the frequencies, which were initially all negative, become less and less neg-

ative and approach zero. When the chemical potential exceeds a critical value, the

imaginary parts become positive one by one, signalling the presence of unstable

modes in the system. Similarly, the real parts of the frequencies are decreasing to

zero as the chemical potential grows, signalling again the onset of an instability. For

a particular value of the temperature presented on the left plot in the figure 1, we

see that the vector dual to the gauge theory charged scalar remains the lightest in
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Figure 1. Plots of the imaginary (left) and real (right) parts of the frequencies for the low-

est lying uncharged scalar fluctuation (red), the vector fluctuation (blue) and the charged

scalar fluctuation (green), at fixed temperature πTR = 2, as a function of the chemical

potential.
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Figure 2. Left is a plot of the real parts of the frequencies for the various modes (colours

as in figure 1) as functions of the temperature at fixed value µR = 5 of the chemical

potential. The plot on the right shows the real parts of the frequencies as functions of both

temperature and chemical potential.

the spectrum and condenses first, followed by the transverse scalar and finally the

vector.

In general, one would expect that particles condense roughly when the chemical

potential become of the order of their mass. It is thus of interest to look at the

behaviour of the masses8 as a function of temperature. Figure 2 shows the result

of this analysis. We here observe another interesting phenomenon, namely that

there is a crossover point at some critical value of the temperature, above which the

lightest vector becomes lighter than the transverse scalar. This suggests that above

the crossover temperature, the lightest vector would condense before the lightest

8We use pole masses here for convenience as they are easy to obtain from the quasi-normal

mode analysis, and the intuition we want to verify is anyhow qualitative.
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Figure 3. Critical chemical potential as function of temperature, in two different dimen-

sionless combinations. The figure on the right shows more clearly what happens in the

TR→∞ limit, which can be interpreted as the large radius limit at fixed temperature.

transverse scalar, if it had not been for the SO(4) charged scalar that condenses

even earlier. One can indeed see that the corresponding imaginary parts cross as

well, approximately at this point, see figure 3.

For large TR, the results read

charged scalar : µcritR ≈ 2.00πTR− 2.00× 0.05

4πTR
+ · · · ,

vector : µcritR ≈ 4.00πTR− 4.00× 0.05

4πTR
+ · · · ,

uncharged scalar : µcritR ≈ 4.16πTR− 4.16× 1.00

4πTR
+ · · · .

(4.11)

The leading order terms should agree with those obtained in the Poincaré patch,

though to our knowledge only the one for the vector has been computed in the

literature [6, 12, 17]. The result for the critical chemical potential of [6, 12] (when

extrapolated to zero bare quark mass) seems to be somewhat larger than ours, which

may be due to the fact that we have used a Yang-Mills truncation rather than the

full DBI action.

5 The new ground states at zero and finite temperature

In the previous two sections we have seen that for large enough chemical potential

the homogeneous ground state on S̄3 ∈ AdS5 becomes unstable under both scalar

and various components of vector fluctuations. This is happening both at zero and

non-zero temperature. In particular we observe that, at zero temperature, vector

fluctuations in the direction of the internal S3 ∈ S5 are the first to became unstable.

As the temperature is increased, these vector components remain the first to become

unstable. On the other hand, the ordering in which the other components of the
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vector fluctuations and the scalar fluctuations become unstable is dependent on the

temperature, as there is a ‘crossover’ temperature above which all vector components

first become unstable.

Our previous analysis was done in perturbation theory, i.e. at the linearised level.

So we would now like to see if the instabilities which we have found are present in

the full non-linear theory, and to explore the new ground state in which the system

settles for large enough values of the chemical potential.

5.1 The new ground state at zero temperature

In section 3.2.2 we have observed that as the chemical potential is turned on, when its

value reaches µ ≥ 2/R, the lowest lying mode of the vector component in the internal

S3, becomes massless, signalling the onset of possible instability in the system. We

have also seen that for even larger values of the chemical potential, the scalar becomes

massless at µ ≥ 3/R and the other components of the vector develop an instability

for µ ≥ 4/R.

To see whether the appearance of these massless modes indeed signals a real in-

stability, we will now turn to the full non-linear theory and try to explicitly construct

the new ground state to which the system would evolve as a consequence of the insta-

bility. As the perturbative analysis suggests that vector components in the internal

S3 direction are first to condense, we will start the analysis of the new ground state

by turning on only those components. We will later, for comparison, also analyse

possible ground states due to condensation of the other fluctuations, and verify that

those always have higher energy than the scalar condensate.

When writing down an ansatz for the scalar condensate ground state, we will

use the fact that in perturbation theory, the first unstable mode is an l̄ = 0, l =

1, n = 0, s = −1 wave (where l̄ labels modes in the S̄3 and l labels modes in the

S3 ∈ S5). As far as the A0 component is concerned, at linearised level one cannot see

the back-reaction of the scalar on the background value of this field, so in principle

one cannot say if in the new ground state the A0 component will start to depend on

the angular coordinates or not.

As a simplest attempt we take A0 to remain homogeneous, i.e. independent of

the S̄3 angular coordinates. With this ansatz, potential problems in the equations of

motion could originate from expression of the form “AαAβg
αβ
S3 ”, which are now turned

on due to the non-vanishing vector field in the direction of the internal sphere S3.

Since these terms will typically produce spherical harmonics of higher l-number we

would need to balance them in the equations of motion. However, we expect that the

ground state would originate from condensation of only the lowest harmonic, so that

higher l-harmonics are not needed. It is possible to reconcile these two observations

if the “AαAβg
αβ
S3 ” expression is independent of the angular coordinates. This can

indeed be achieved for a particular linear combination of spherical harmonics given

– 19 –



by

Yα =
ik0

K
Y 1,0,0,−1
α +

(k1 + ik2)

K
Y 1,0,−1,−1
α +

(k1 − ik2)

K
Y 1,0,1,−1
α

where K ≡
√
k2

0 + 2(k2
1 + k2

2) , (5.1)

and k0, k1, k2 are three arbitrary real numbers which are not simultaneously van-

ishing, and (l,m1,m2, s) are the quantum numbers of the spherical harmonics. We

should note here that value of these quantum numbers will be taken to be the same

as those of the lowest lying excitation we have previously found in the perturbative

analysis. Explicitly, the spherical harmonics are given by

Y 1,0,0,−1 =
i

2
dα +

i

2
cos βdγ

Y 1,0,1,−1 = − 1

2
√

2
e−iαdβ − i

2
√

2
sin βe−iαdγ

Y 1,0,−1,−1 = − 1

2
√

2
eiαdβ +

i

2
√

2
sin βeiαdγ ,

(5.2)

where α, β, γ are Euler coordinates on S3 ∈ S5,

ds2
S3 =

1

4
(dα2 + dβ2 + dγ2 + 2 cos βdαdγ) . (5.3)

It is also useful to keep in mind that

(Y l,m1,m2,s
i )∗ = −(−1)m1−m2Y l,−m1,−m2,s

i . (5.4)

Our ansatz for the new ground state is

A0 = A
(3)
0 (u)τ 3 , Aα = Rη(u)Yα(Ω3)τ 1 (5.5)

Plugging this into equations of motion, and using identities (3.21) we get an equation

for A0(u)

∂u

(
(∂uA

(3)
0 )u3

(
1− R2

4u2

)3

/
(

1 + R2

4u2

))
u3
(
1− R2

4u2

)3
/
(
1 + R2

4u2

) − R2

u2
(η(u))2A

(3)
0 (u) = 0 , (5.6)

and an equation for the function η(u)

∂u

(
∂uη(u)u5

(
1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 +
R4

u4
(
1 + R2

4u2

)2 (A
(3)
0 (u))2η(u) +

4

u2
η(u) = 0 .

(5.7)
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Figure 4. Profile of the fields A0 (left) and η (right) of the charged scalar condensate,

evaluated at µR = 2.5. The boundary is at z = 0 and the AdS centre is at z = 1.

Note that these are independent of the parameter K, which only appears in the

angular part of the equations of motion, which is automatically satisfied for our

ansatz.

Equations (5.6), and (5.7) are written in the non-compact coordinate u for which

the AdS centre is at u = R/2 and the boundary is at u =∞. However, for numerical

considerations it is more convenient to perform a coordinate change to compact

coordinates z = R/2u, so that the AdS origin is at z = 1, and the boundary at

z = 0. The equations of motion then are given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
η(z)2A

(3)
0 (z) = 0 ,

∂2
zη(z) +

3 + 4z2 + 5z4

z5 − z
∂zη(z) +

(
4

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
η(z) = 0 .

(5.8)

We are interested in the solutions of these equations that are regular everywhere,

and in particular at the origin of AdS space. This removes half of the solutions, as

can be seen by looking at the z → 1 limit of the above equations. Namely, assuming

that A0 and η are regular at the AdS origin, it is easy to see that the above equations

reduce to the conditions that the first derivatives of A0 and η are vanishing at the

origin. Hence, the general regular solution will be parametrised by two parameters a,

b. We then solve the equations of motion by shooting from the AdS origin, and look

for the solutions at the boundary such that η is normalisable, while A0 is not. This

normalisability condition further reduces the number of parameters by one. Hence

in the expansion near infinity

A
(3)
0 = µ− ρz2 + · · · , A(1)

α = RρηYαz
2 + · · · . (5.9)

both the densities ρ and ρη are functions of the chemical potential µ.

We plot the radial profile of the functions A0(z) and η(z) for one particular

solution in figure 4. As required, we see that the solution is regular everywhere, and
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Figure 5. The plot on the left shows the isospin density ρR (blue) and scalar density ρηR

(red) of the charged scalar condensate as functions of the isospin chemical potential. The

plot on the right shows the scaled free energy as function of chemical potential.

approaches the origin of AdS with vanishing derivative, so that no cusp is present.

We also study various solutions for different values of chemical potential, see figure 5.

The shooting procedure shows that there is a critical value of the chemical potential

µcrit ∼ 2/R below which there is no nontrivial solution present. Above µ = µcrit

a nontrivial condensate of scalar particles forms, and in the neighbourhood of µcrit,

this condensate is to a good approximation given by

ρη =

{
0 for µ < µcrit
√
µ− µcrit for µ > µcrit .

(5.10)

We have also evaluated the free energy for various values of the chemical potential

(see figure 5), and observed that it is less than the (vanishing) free energy of the trivial

configuration, which is in agreement with the statement that this is the ground state.

In summary, our analysis shows that for large enough value of the chemical

potential, this system undergoes a second order phase transition in which the homo-

geneous isotropic solution is replaced with a non-isotropic one. The order parameter

in this transition is the density ρη, and the critical exponent is the same as in the

Landau-Ginsburg theory with positive quartic potential.

In order to complete the picture, and to show that (as expected from the per-

turbative analysis) the charged scalar condensate is always the one with the lowest

energy, we will now construct condensates of the transverse scalar and the vector,

and show that their energies are always higher than the one of the charged scalar.

When constructing the transverse scalar ground state we recall that perturbative

analysis suggested that the s-wave is the first excitation of the scalar which becomes

massless. Hence we make a homogeneous (i.e. only u-dependent) ansatz as follows

A = A
(3)
0 (u)τ 3 dt , Φ = Φ(1)(u)τ 1 , (5.11)
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Figure 6. Left: a plot of the functions A0(z) (solid curve) and ψ(z) (dashed curve) for the

vector solution. Right: plots of the functions A0(z) (solid) and Φ (dashed) for the scalar

configuration, both evaluated at a fixed value of chemical potential µR = 4.5.

where the vector A0 is present to account for the non-vanishing chemical potential,

while all other vector components are zero. The equations of motion for the fields

(A0,Φ) are given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
Φ(z)2A

(3)
0 (z) = 0 ,

∂2
zΦ(z) +

3 + 4z2 + 5z4

z5 − z
∂zΦ(z) +

(
3

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
Φ(z) = 0 .

(5.12)

Similarly, when constructing the ground state originating from vector condensa-

tion, we start with an ansatz which is similar to that of the vector component dual

to a charged scalar, i.e. we write

A0 = A
(3)
0 (u)τ 3 , Aᾱ = ψ(u)Yᾱ(Ω̄3)τ 1 , (5.13)

where Yᾱ is as in (5.5), except that the index ᾱ = 1, 2, 3 now refers to the S̄3 ∈ AdS5.

The equations of motion then become

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− 4

(1− z2)2
ψ(z)2A

(3)
0 (z) = 0 ,

∂2
zψ(z) +

1 + 3z4

z5 − z
∂zψ(z) +

(
4R2

(1 + z2)2
A

(3)
0 (z)2 − 16

(1− z2)2

)
ψ(z) = 0 .

(5.14)

We should emphasise here that this equation is derived from an ansatz which uses

spherical harmonics with l̄ = 1, s = −1, similar to the ansatz we used when we

constructed the state for the vector dual to a charged scalar. However, we have also

seen in the perturbative analysis that vector fluctuations in the direction of S̄3 ∈
AdS5 are insensitive to the quantum number s, unlike the fluctuation in direction
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Figure 7. Plots of the densities ρ (blue) and ρη (red), as a function of the chemical

potential µ, at zero temperature, for the vector condensate (left) and scalar condensate

(right).

of S3 ∈ S5. Therefore, it should also be possible to construct an alternative state

with spherical harmonics with l̄ = 1, s = 1. This is indeed this the case, and the free

energy of this state is the same as for the state with l̄ = 1, s = −1.

Equations (5.12) and (5.14) are solved in the same fashion as equation (5.8), that

is by the shooting method and imposing that the solution is regular everywhere and

in particular at the origin of AdS5. The solutions for the radial functions (A0,Φ) for

the scalar configuration and (A0, ψ) for the vector are plotted in figure 6. We also

plot the densities for both configurations (defined analogous to (5.9)) as functions of

the chemical potential, see figure 7.

In order to compare various configurations we plot the free energies for all three

states, see figure 8. As expected from the perturbative analysis, we see that the

state which originates from a condensation of the vector components which are dual

to a charged scalar has the lowest free energy. We also see that as the chemical

potential is increased, the difference between the free energies of the other two states

and the true ground state becomes larger. It is, however, likely that new instabilities

will kick in at some point. Investigating that in detail would require at the least a

perturbative analysis around this new ground state, which we will not attempt here.

5.2 The new ground state at finite temperature

So far we have seen that at zero temperature, the ground state originates from the

condensation of vector components which are dual to a charged scalar, exactly as

perturbation theory suggested. We now want to see what is happening with this new

ground state as the temperature is turned on. We start by making the same ansatz

as at zero temperature, see (5.5). The equations of motion in the coordinates (2.12)

are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
R2η(v)2A

(3)
0 (v) = 0 , (5.15)
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Figure 8. Scaled free energy of the zero-temperature condensates as a function of the

dimensionless chemical potential. The vector is plotted in blue, the scalar in red, the

charged scalar green. The black line along the x-axis denotes the old ground state.

together with

∂2
vη(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vη(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
η(v) = 0 . (5.16)

We are interested in finding regular solutions to these equations. It is easy to see

that the solutions which are regular are parametrised by two free parameters. A

general, perturbative expansion of the solution near the black hole horizon which is

regular is given by

A
(3)
0 (v) = av +

ab2(Λ− 1)

8ΛR2
v2 +O(v3) ,

η(v) = b− (Λ− 1)b

Λ
v − 12b(Λ− 1) + (2− Λ)(Λ− 1)a2R

16Λ2
v2 +O(v3) ,

(5.17)

i.e. a regular solution is parametrised by two real numbers a, b. We also see that

the general regular solution for A0 vanishes at the horizon, as required by global

regularity. We solve this system of equations again using a shooting method with

two free parameters. As at zero temperature, we require in addition that the solution

for η is normalisable at infinity, or explicitly

A
(3)
0 (v) = µ− ρ(1− v) +O((1− v)2) , η(v) = ρη(1− v) +O((1− v)2) . (5.18)

This is possible only for a particular pair of parameters a, b, or in other words both

densities ρ, ρη are functions of the chemical potential. An example of the radial

profiles for a regular solution is plotted in figure 9. We also plot both densities as a

function of chemical potential (see right plot on figure 9). We observe that, just as

at zero temperature, the densities increase as the chemical potential is increased.
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Figure 9. Left are plots of profile of the fields A0 (solid) and η (dashed) for the charged

scalar, evaluated at πTR = 2.5 and µR = 10.1. The boundary is at v = 1 and horizon at

v = 0. Right plot is for densities ρ (blue) and ρη (red), as function of chemical potential

µ, at fixed temperature πTR = 2.5.

As for zero temperature, we should make sure that possible alternative states

which appear due to condensation of other unstable particles have a larger free energy

(as suggested by perturbation theory). We start with the scalar ground state. We

make the same ansatz for the ground state, as we did at the zero temperature, see

(5.11). The equations of motion in the coordinates (2.12) are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
χ(v)2R2A

(3)
0 (v) = 0 ,

∂2
vχ(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vχ(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
χ(v) = 0 .

(5.19)

Similarly, the ground state originating from the vectors is derived starting with the

ansatz (5.13). The equations of motion are given by

∂2
vA

(3)
0 (v)− 2− Λ

4(Λ− v)(1− v)v
ψ(v)2A

(3)
0 (v) = 0 ,

∂2
vψ(v) +

(
1

v
− 1

Λ− v

)
∂vψ(v)

− 2− Λ

(Λ− v)(1− v)v

(
1− (Λ− 1)R2

4(Λ− v)v
A

(3)
0 (v)2

)
ψ(v) = 0 .

(5.20)

As before we consider only regular solutions to the equations (5.19) and (5.20) and

require that the solutions are normalisable. Sample solutions for rather arbitrary

values of the temperature and chemical potential are plotted in figure 10. We have
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Figure 11. Dependence of the charged scalar ground state densities on TR at fixed

chemical potential µR = 4.005.

also evaluated the densities for these solutions, and find a qualitatively similar de-

pendence on the chemical potential as before. We have also verified that indeed

the charge scalar always has a lower free energy than the condensate of the other

particles, as predicted by perturbation theory.

Finally, we present in figure 11 the dependence of the charged scalar condensate

densities on the temperature, for fixed chemical potential. This shows how increasing

the temperature ‘melts’ the condensate.
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6 Discussion and outlook

In this paper we have analysed the stability of the homogeneous isotropic phase

of conformal N = 2 super-Yang-Mills theory on a three sphere in the presence of

an isospin chemical potential. We have found that for sufficiently large chemical

potential, the theory exhibits unstable vector and scalar modes, as well an unstable

vector mode which is dual to an SO(4) charged scalar in the dual gauge theory.

The latter modes turn out to condense first. We have verified this explicitly by

constructing the condensate and showing that it has the lowest energy. The new

ground state is anisotropic in the directions of the internal three sphere within the

five sphere, but isotropic on the gauge theory sphere. Therefore, the new ground

state breaks the global SO(4) symmetry.

Since the anisotropy of the system originates from the compactness of the internal

three sphere, this anisotropy persists if we take the limit towards a non-compact

system, i.e. the limit in which the radius of the sphere on which the dual gauge

theory lives is taken to be very large (at fixed temperature).

We have observed that the spectrum of fluctuations of the more massive vector

and scalar mesons crosses as a function of TR. This does not influence the formation

of the dual charged scalar condensate, but it conceivably plays a role for larger values

of the chemical potential. In particular, by doing a fluctuation analysis around the

dual charged scalar condensate, one expects that at some point new instabilities will

set in, corresponding to the more massive particles condensing as well. An analysis

of this type has to our knowledge not appeared for any string/gauge theory model,

but our results indicate that the structure of condensate formation may be more

intricate than previously suspected.
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