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ABSTRACT

We present a method to simulate deep sky images, including realistic galaxy morphologies
and telescope characteristics. To achieve a wide diversity of simulated galaxy morphologies,
we first use the shapelets formalism to parametrize the shapes of all objects in the Hubble
Deep Fields. We measure this distribution of real galaxy morphologies in shapelet parameter
space, then resample it to generate a new population of objects. These simulated galaxies
can contain spiral arms, bars, discs, arbitrary radial profiles and even dust lanes or knots.
To create a final image, we also model observational effects, including noise, pixellization,
astrometric distortions and a point-spread function. We demonstrate that they are realistic by
showing that simulated and real data have consistent distributions of morphology diagnostics:
including galaxy size, ellipticity, concentration and asymmetry statistics. Sample images are
made available on the world-wide web. These simulations are useful to develop and calibrate
precision image analysis techniques for photometry, astrometry and shape measurement. They
can also be used to assess the sensitivity of future telescopes and surveys for applications such
as supernova searches, microlensing, proper motions and weak gravitational lensing.

Key words: gravitational lensing — methods: statistical — galaxies: fundamental parameters —

galaxies: statistics.

1 INTRODUCTION

As astronomical surveys are growing in size and scope, so image
analysis methods are increasing in complexity and accuracy. In order
to calibrate these new methods, it is essential to have a large sam-
ple of images containing objects with properties that are already
known. Since real data are subject to the uncertainties of observa-
tional noise, telescope aberration and seeing, several packages have
been developed to manufacture artificial images (e.g. SKYMAKER, see
Erben et al. 2001, or ARTDATA in IRAF, see Tody 1993). The accuracy
of image analysis methods can then be assessed by comparing their
output with the known input image properties that were specified
before the addition of such observational effects.

The image simulation packages currently available are particu-
larly valuable for imitating deep ground-based data. However, they
limit themselves to a representation of galaxies as parametric forms
such as symmetric de Vaucouleurs or exponential profiles. Deep
space-based images, on the other hand, contain many irregular or
asymmetrical galaxies with complex resolved features such as spi-
ral arms, mergers and dust lanes. One possibility for simulating
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space images, utilized by Bouwens, Broadhurst & Silk (1998a,b),
is to repeatedly reuse well-resolved galaxies from the Hubble Deep
Fields (HDFs; Williams et al. 1996, 1998). However, this restricts
us to morphology templates from a relatively bright and nearby
sample. Fainter galaxies cannot be used because they have been
significantly contaminated with background noise. Consequently,
the morphological properties of the faint galaxy population are not
fairly represented. This method also faces the difficulty that the same
real galaxies must be reused many times within one simulation. Al-
though the HDFs are indeed very deep (Irsiqw = 27.60 at 100,
Williams et al. 1996), they only cover a small area (~6 square ar-
cmin each) and contain a finite number of galaxies. Even if we were
to source our real galaxies from larger surveys such as the Groth
strip (Groth et al. 1994) or the Medium Deep Survey (Ratnatunga,
Griffiths & Ostrander 1999), we would still face the difficulty of
using particular real galaxies many times in a large simulation.

In this paper, we present a method for simulating deep images that
contain genuinely unique objects, yet replicate the morphological
distribution of galaxies in the HDF at all depths. This method has
the advantage of allowing us to simulate arbitrarily large, deep sur-
veys with no repetition of galaxy shapes. It also allows us to know
accurately the intrinsic properties of each galaxy, before adding
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telescope-specific noise properties, systematic effects and convolu-
tion with a point-spread function (PSF).

Our method is to decompose all objects in the HDFs into shapelet
parametrizations, following the formalism introduced by Refregier
(2003, hereafter Shapelets I) and Refregier & Bacon (2003, hereafter
Shapelets II). Using just a few coefficients, these can completely
quantify the shape properties of all galaxies, including spiral arms,
bars and arbitrary radial profiles. We then model their distribution of
shapelet coefficients, and draw from this probability distribution new
sets of shapelet coefficients, representing new galaxies. In particular,
we take into account the covariance between shapelet coefficients so
that, for example, shapes depend upon magnitude and size (e.g. faint
galaxies appear more irregular than bright ones). In this method,
we therefore do not input any model of physical morphology or
evolution. Rather, we exclusively use the measured statistics of the
shapelet coefficient distributions from a real galaxy sample, as a
function of magnitude and size. The new galaxy images can then
be analytically convolved with any PSF, pixellated, and given an
appropriate amount of noise for any exposure time down to the
depth of the HDF.

These simulations have several significant applications. We can
use them to calibrate the effectiveness of image analysis and detec-
tion methods such as SEXTRACTOR (Bertin & Arnouts 1996), IMCAT
(Kaiser, Squires & Broadhurst 1995), GiM2D (Simard 1998), GAL-
FIT (Peng et al. 2002) and wavelet routines (e.g. Meyer 1993). By
examining the errors in shape measurement at various signal-to-
noise ratio (S/N) levels of galaxy detection, we can also predict the
accuracy of future experiments requiring accurate shape measure-
ment. An example of this for space-based cosmic shear surveys is
presented in Massey et al. (2003).

This paper is organized as follows. In Section 2 we give a brief
overview of the shapelet formalism and describe how the HDF
galaxies are modelled using shapelet coefficients. In Section 3, we
show how the properties of the shapelet basis functions make them
eminently suitable for this method. In Section 4 we discuss the
means by which we recover a smooth probability distribution of
galaxy morphologies in shapelet parameter space. In Section 5 we
generate new galaxies by resampling the distribution. We then add
observational noise and show an example of the final simulated
images.

We then demonstrate that the simulations do indeed have similar
properties to the HDFs. For this purpose, we consider in Section 6
commonly used quantifiers for galaxy morphology. We find good
agreement between simulations and the real HDF galaxies for mea-
sures such as the size—magnitude distribution, ellipticity, concentra-
tion, asymmetry and clumpiness indices (e.g. Bershady, Jangren &
Conselice 2000; Conselice, Bershady & Jangren 2000a). It is this
agreement that is the final justification of our shapelet-based sim-
ulation method. We compare our method with others in Section 7
and summarize our findings in Section 8. Sample images may be
downloaded from http://www.ast.cam.ac.uk/~rjm/shapelets.

2 SHAPELET SOURCE CATALOGUE

In this section, we describe the detection of HDF galaxies and their
modelling as shapelets. This procedure creates a parametrized cat-
alogue of real galaxy morphologies, which we will require later.

2.1 Source detection

Objects are initially detected using SEXTRACTOR (Bertin & Arnouts
1996) upon the HDF /-band (F814W) images, together with the
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pixel weight maps outputted by DR1zZLE (Fruchter & Hook 2002).
The convolution mask and detection parameters were adapted from
those used by Williams et al. (1996). In particular, we use a com-
paratively low S/N detection threshold, DETECT_THRESH, of 1.3.
This affords recovery of faint galaxies and minimizes incomplete-
ness, at the expense of many false-positive ‘detections’ of noise,
which need to be flagged and filtered out later (see Section 2.2).
Stars with CLASS_STAR > 97 per cent are immediately discarded,
as we wish to model only galaxies. The image is then segmented into
small square ‘postage stamp’ regions around the remaining galax-
ies. The sizes of these regions are set to (3 x A_IMAGE + 5) pixels
square, where A_LIMAGE is a measure of the galaxy’s major axis
provided by SEXTRACTOR. This area is slightly smaller than those
illustrated in Fig. 1; it is compact enough to be computationally ef-
ficient, but large enough to ensure that the shapelet basis functions
are close to zero at the boundaries of the image.

This prescription conveniently leaves a border of sky background
and noise around the edge of each image. We use all of the border
pixels that do not belong to any other object in the SEXTRACTOR cat-
alogue to locally renormalize the pixel weight map. As noticed by
Williams et al. (1996), the inverse variance map output during the
data reduction of the HDF systematically overestimates the noise
by a factor of a few. This bias also varies as a function of position
around the image. While SEXTRACTOR requires only relative weights
between pixels, and is thus unaffected by this bias, we need to cali-
brate the absolute value of noise for the shapelet decomposition.

2.2 Shapelet modelling

Shapelets are a complete, orthonormal set of 2D basis functions.
A linear combination of these functions can be used to model any
image, in a similar way to Fourier or wavelet synthesis. The shapelet
decomposition is particularly efficient for images localized in space,
such as those of individual galaxies. The formalism was first intro-
duced in Shapelets I, and a related method has also been indepen-
dently suggested by Bernstein & Jarvis (2002).

For the polar shapelet analysis, the surface brightness f(x) of an
object can be written as

FO =Y =33 B), M
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where f is a scale parameter, and x, is the position of the centre
of the basis functions. Only combinations of n and m where both
are even or both are odd should be included in this summation. The
basis functions ., expressed in their polar separable form, are
given by
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where L(x) are the Laguerre polynomials (see e.g. Boas 1983). The
index n describes the radial oscillations and the index m describes
the order of rotational symmetry. Orthonormality ensures that the
shapelet coefficients a,, are given by
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These are Gaussian-weighted multipole moments of the surface
brightness, familiar in several branches of astronomy.
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Figure 1. Shapelet modelling of a selection of HDF /-band galaxies. Higher
S/N galaxies typically require more shapelet coefficients so we display a
variety of source galaxies, noting the shapelet nmax required to reach a re-
construction with X% = 1. In all cases, the first column shows the original
HDF image; the middle column shows the shapelet model; the right column
shows the residual. The image size and colour scale is different for each row.

For reasonable choices of the centroid x. and scale size S, the
galaxy shape information is contained within only the first few
shapelet coefficients. The series in equation (1) can then be trun-
cated at some finite order np,. In order to make good choices for
X, B and np,,, we first define X% as the difference between the orig-

inal and reconstructed image, renormalized with respect to the local
noise level. We then attempt to find the values of x. and § which
achieve x? = 1 with the fewest possible shapelet coefficients, or
minimum n.,,,. Shapelet coefficients with higher n can be discarded
and the shapelet model will still be consistent with the data.

A practical algorithm to perform this optimization by iteratively
exploring {x., B, nmax } space is described in Massey et al. (2003).
The algorithm creates a catalogue of optimized shapelet decomposi-
tions for ~500 objects per square arcmin in the HDFs. However, this
represents only 81 per cent of the ‘objects’ detected by SEXTRACTOR.
Approximately two dozen of the brightest of these galaxies require
adecomposition with 71, > 15 to achieve Xf < 1. Toreduce the di-
mensionality in later analysis, these parametrizations are truncated
at this point regardless, with x. and 8 chosen to give the best pos-
sible, if slightly imperfect, shapelet fit. The algorithm also fails to
converge to fits with x? < 1 for a further 42 galaxies in close pairs,
as identified by the SEXTRACTOR segmentation map; 36 galaxies be-
cause of their proximity to bright stars or the edge of the image; and
60 more objects across the HDFs (about 10 per cent of all SEXTRAC-
TOR detections), which are mainly false detections of noise owing
to the low S/N detection threshold set in Section 2.1. Note that the
number of decompositions which fail owing to contamination from
a near neighbour is roughly independent of magnitude. Indeed, the
slope of the number counts for galaxy pair members is within 1o of
that for all the galaxies in the HDF: therefore this particular effect
should not introduce any bias.

Fig. 1 displays a selection of HDF galaxies at various S/N levels,
and their shapelet reconstructions (see also Shapelets I, figs 3 and
4). Faint galaxies typically require an n,x of only 2, 3 or 4, while
brighter, larger objects require an increasing number of shapelet
coefficients to model their greater degree of detail. The right-hand
column of Fig. 1 shows the reconstruction residuals, which are con-
sistent with noise even for irregular galaxy morphologies.

2.3 Treatment of the PSF

During the modelling of galaxy shapes, we must in general account
for the PSF of the WFPC2 camera that has smeared the HDF images.
Since our objective here is to simulate only HST images, we do not
apply any correction. The PSF will be naturally contained within the
shapelet parametrization of the galaxy images and these are inten-
tionally left unaltered. When we create simulated images, they will
automatically have been smeared by the WFPC2 PSF: effectively
circularized on average, because of the random reorientation of the
new galaxies.

However, for other applications it may be desirable to simulate
observations from other telescopes such as the James Webb Space
Telescope (JWST; http://www.stsci.edu/jwst/), Supernova Accel-
eration Probe (SNAP; http://snap.lbl.gov/) or Gaia (http://astro.
esa.int/gaia/). It would then be necessary to take account of their
different instrumental properties. The ideal way to do this would be
to deconvolve HDF galaxies from the WFPC2 PSF analytically in
shapelet space (see Shapelets I, section 3), and then to reconvolve
simulated galaxies with a new PSF at the end. Unfortunately, we
have found this method difficult to implement in practice. The pro-
cess of deconvolution naturally pushes information into high-n and
m shapelet coefficients, as shown in Shapelets I, fig. 8. Although
the ensuing galaxy reconstructions are still realistic, information
about the overall galaxy morphology distribution is spread thinly
over an increased number of coefficients. This distribution is no
longer sufficiently well sampled by galaxies in the HDFs for the
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smoothing-and-resampling method presented in Section 4 to be ef-
fective.

An alternative solution exists to simulate images with a PSF of
the same size or larger than that of HST. The WFPC2 PSF can be
conveniently maintained throughout the simulations, and the images
convolved again at the end with a second ‘difference’ kernel. This
kernel is intended to make up the difference between the original
PSF of WFPC2 and that of the new instrument. It can be obtained
by deconvolving the WFPC2 PSF from the new PSF, an operation
performed easily in shapelet space (see Shapelets II Section 3). An
example of this method can be seen in Massey et al. (2003).

3 ADVANTAGES AND DISADVANTAGES
OF USING SHAPELETS

3.1 Advantages of shapelets

Fig. 1 demonstrates the superb quality of shapelet-based image re-
construction possible for all galaxy morphologies. Particularly for
spiral or irregular galaxies, we find the shapelet models superior to
those using traditional radial profiles alone e.g. GALFIT (Peng et al.
2002). That paper contains plots similar to Fig. 1; but with much
worse residuals.

There are also many more advantages to using the shapelet
parametrization for image simulations. For example, the truncation
in ny,, produces data compression by setting a minimum and max-
imum physical scale of interest (see discussion in Shapelets I). The
discarded high-n order coefficients contain a small amount of high
spatial frequency information. But because we have ensured that
the reconstruction has been pursued up to an order 7., such that
x2 < 1, we know that the high-frequency remainder is consistent
with noise. Usefully for astronomy, the resolution of a shapelet
model is also greatest near its centre. The compression factor for
typical galaxy morphologies can be as high as 50 (Shapelets I).
Furthermore, this compression is achieved through a parameter-
independent truncation of a series. With its complete basis set,
shapelets avoid the requirement in GALFIT or GIM2D (Simard 1998) to
specify in advance the number and type of profiles for each model.
A Karhunen-Loéve decomposition would also require models to be
specified in advance for both the image and the noise. Furthermore,
the orthonormality of the shapelet basis set guarantees a unique and
linear one-to-one mapping from the image plane to the coefficients.
This advantage, and many of shapelets’ convenient mathematical
properties are lost to methods using an overcomplete basis set such
as PIXON (Pifia & Puetter 1993).

It is mainly for these convenient mathematical properties that we
choose to model galaxies using shapelets. For example, an object’s
orientation is controlled to first order by the phase of the a,, coeffi-
cient (corresponding to the position angle of the object’s ellipticity);
and its chirality (handedness) by the relative phase of the a4, coeffi-
cient. The first can easily be factored out of the parametrization, so
that the ellipticity of all objects becomes aligned to the horizontal
axis. The image can then be flipped, if necessary, so that the sign of
the a4, phase is positive and the outer isophotes of all objects twist
in the same anti-clockwise sense. Correlations between remaining
shapelet coefficients a,,, are of course maintained in order to pre-
serve the morphology of the galaxy. Any two well-sampled objects
which are identical apart from their orientation will then decom-
pose into identical shapelet coefficients. This greatly increases the
sampling density of the galaxy morphology distribution. Simulated
galaxies will later be randomly rerotated and flipped as they are
created.
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Shapelets are also designed to be convenient for many aspects of
image manipulation and post-processing. Since the shapelet basis
functions  ,, are the eigenfunctions of the 2D Quantum Harmonic
Oscillator, they are invariant under Fourier transform up to a phase
factor. This renders convolutions (e.g. with a PSF) easy and quick
to perform. It also suggests a well-developed mathematical notation
from quantum mechanics. Convolutions become a bra-ket matrix
multiplication (see Shapelets II). Translations and rotations, useful
for simulating dithered images, are described to first order by a few
applications of @ and &' ladder operators. So too are the distorting
shears produced by both optical aberrations within a telescope and
weak gravitational lensing within galaxy clusters (see Shapelets I).

3.2 Disadvantages of shapelets

There are two main criticisms often levelled at shapelets. The first is
that a Gaussian—Laguerre expansion may not easily capture the ex-
tended wings of many galaxies. After truncation in 72,y the shapelet
basis set is left incomplete and not ideally matched to typical expo-
nential or de Vaucouleurs profiles. A demonstration that our algo-
rithm does select sufficiently high 7., is the remarkable match in
the concentration index between shapelet models and real galaxies
shown in Section 6. In fact, the ability of a shapelet decomposition
to recognize correlations between adjacent pixels may even enable
it to extend further than SEXTRACTOR into the wings of a faint object
at the threshold of detection, where flux in individual pixels is lost
beneath the noise.

A potentially greater problem for our simulations is the second
criticism that a shapelet decomposition can produce artefacts when
itis truncated. Indeed, any truncated basis set that is complete rather
than overcomplete will be subject to spurious residuals that resem-
ble one basis state, owing to the near-cancelling of large positive and
negative coefficients in others. For shapelets, this emerges as ring-
ing, and is particularly apparent after PSF deconvolution or around
long and thin galaxies, which are less well-matched to the circular
basis functions. Furthermore, a desire to keep the shapelet decom-
position method linear prevents the imposition of a positive-definite
constraint. The spurious residuals can therefore appear as either
extra positive flux or negative holes. However, we note that this oc-
curs widely in other methods, including wavelets, where it is only
removed by a (non-linear) projection in wavelet space on to the sub-
space of positive solutions. While most low-level residuals will be
lost in the final simulated images beneath even modest background
noise, we turn around this disadvantage in Section 5.1. There we
use the absence of any negative holes in a noise-free image as a
first-order diagnostic that the morphed shapes of simulated galaxies
are realistic.

4 SHAPELET PARAMETER SPACE

4.1 The multidimensional Hubble tuning fork

A sample of galaxy morphologies can be thought of as a distribu-
tion of points in a multi-dimensional shape parameter space. The
axes in this space might represent size, magnitude, position an-
gle (PA) and so on. Each point corresponds to a particular galaxy
with a specific morphology, and various correlations may emerge
between variables. For example, the classic Hubble tuning-fork di-
agram (Hubble 1926; Sandage 1961; de Vaucouleurs 1959) relates
the object ellipticity, the bulge/disc ratio, and the extent to which the
spiral arms are unwound. GIM2D (Simard 1998) and GALFIT (Peng
et al. 2002) software use axes parametrized by the relative amounts



218  R. Massey et al.

—
o

Kernel

822/ 800
o
)
T
L

._‘
=)
T
icie:
o
»
T
s s

o
o0
o
S
T
s

Modulus of coefficient ag,/84

Modulus of coeff
!
'

e
o

0.0 0.5 1.0 1.5 0.0 0.2 0.4 0.8
Modulus of coefficient azy/ag, Modulus of coefficient ag/ag

T T T T T T

o
S
3

o

(]

-
N

T
=
—

|

Modulus of coefficient ay/84
o
N
[NE

(Relative) phase of coefficient ag;

|
3

L L L
0 /2 ™ 3n/2 2
(Relative) phase of coefficient ay,

I

22 24 26 28 30 3
AB Magnitude

0.6 T T T T mg ™
- -
= §
e« g m
2 & 2
7 04r g
© o
£ %5
0
E i:“
- 02 a.,
3 T 3
3 z 2
& @
@ Q
0.0 (S

o
N
w
I
o

24 26 28 30
AB Magnitude

/2 ™ 3r/2 2n
(Relative) phase of coefficient ay,

Figure 2. Phase space correlations and smoothing in the shapelet parameter
space. The top left panel displays the position of measured HDF galaxies
along two axes of shapelet space; the top right panel shows the probability
distribution produced by smoothing this distribution. The other left panels
display further projections of the PDF on to shapelet coefficient, size and
magnitude axes, while the remaining right panels display phase correlations
between shapelet coefficients. The colour scale is logarithmic in the bottom
left panel. This figure can be seen in colour in the on-line version of the
journal on Synergy.

of exponential or de Vaucouleurs/Sérsic functions (de Vaucouleurs
1959; Sérsic 1968) required to fit the radial profile of a galaxy.

4.2 The multidimensional shapelet tuning fork

In this work, we instead choose the axes of our galaxy morphol-
ogy distribution to be the magnitudes and complex phases of the
polar shapelet coefficients. First, we describe the properties of this
‘shapelet parameter space’. In the following section, we will then ar-
gue that the underlying probability density function (PDF) of galaxy
morphology is relatively simple in this parameter space and may be
recovered from a finite sample like the HDFs.

Projections of shapelet parameter space are shown in Fig. 2. Each
point in the top-left panel represents a data vector encoding the
shape information about one HDF galaxy. Collectively, they de-
scribe the overall morphology distribution of distant galaxies. The
rotations and reflections used to pre-align galaxies have consider-
ably compressed this space (without loss of information) and al-
lowed it to be more densely sampled by only a finite number of
galaxies. Notice that there are correlations evident in the parame-
ters, which correspond to the construction of the familiar shapes
of galaxies. In the middle-left plot, for example, the scatter of el-

lipticity values widens for faint galaxies which are known to be
more irregular. In the bottom-right plot, deviations from the diago-
nal show twisting isophotes that can grow, with higher order basis
functions, into spiral arms. It is also important to notice that some
regions of parameter space are empty. A random set of shapelet co-
efficients will not produce a realistic galaxy shape: there is not even
a positive definite constraint imposed upon an image in the shapelet
formalism.

Two other axes are required for our parameter space, since real
galaxy morphologies clearly vary as a function of size and mag-
nitude (e.g. Fig. 5 later). Storing the shapelet scalefactor 8 (see
Section 2.2) allows large HDF galaxies to occupy different regions
of parameter space to small ones. Similarly, using magnitude as a
parameter allows galaxies of different luminosities to have different
shapes. Since shapelet coefficients (including ag) scale as the flux,
once we include magnitude as an independent parameter we can
divide all a,,,, by ago. This removes explicit magnitude dependence
from these quantities and coincidentally ensures a convenient ver-
sion of adaptive smoothing at a later stage (see Section 4.4). The
degenerate parameter agy = 1 is now removed, and size and magni-
tude are treated in the same way as any other axis of the parameter
space from now on.

Note that any orthogonal transformation of the shapelet basis
functions would maintain their useful properties of completeness,
orthogonality and Fourier transform invariance. For instance, the
Cartesian version of shapelets can be used instead (see Shapelets I),
but without the convenient factoring out of the orientation and hand-
edness of the object. Using principal components analysis (PCA;
e.g. Francis & Wills 1999), it is possible to calculate the optimal lin-
ear combination of shapelet coefficients to quantitatively describe
galaxy morphology with the fewest numbers. However, both ellipti-
cal and spiral galaxy shapes are already quite simple to manufacture
by specifying only a few polar shapelet coefficients; we therefore
avoid the extra complication of PCA in this paper. Of course, the
principle components of galaxy morphology are interesting in their
own right. These are being studied elsewhere.

4.3 Recovery of a smooth underlying PDF

The top-left panel of Fig. 2 shows a slice through the parameter
space of galaxy morphologies, populated by §-functions represent-
ing real, observed shapes. Unlike a distribution parametrized simply
by bulge/disc ratios and disc inclination angles, it is not obvious a
priori that an underlying, smooth PDF should exist for galaxy mor-
phologies in shapelet space. However, the compact shapelet repre-
sentation of astronomical objects suggests that this ought to be the
case, and we will attempt to recover it by smoothing this parameter
space.

Once the validity of the smoothed PDF has been established,
it will be a simple matter to resample it and thus to synthesize
a population of galaxies. Monte Carlo techniques can be used to
generate unlimited numbers of realistic galaxies in this fashion, to
fill any amount of sky area in a simulated imaging survey.

The remaining panels of Fig. 2 demonstrate that the parameter
space is indeed smooth in those places where it is well sampled.
We assume that some other regions are equally smooth, but poorly
sampled because of the finite number of galaxies in the HDF. We
note that voids are also expected in the parameter space, where the
shapelet expansions do not correspond to realistic galaxy shapes. We
will therefore be careful not to smooth the PDF with large smooth-
ing lengths which would significantly encroach upon these voids.

© 2004 RAS, MNRAS 348, 214-226



However, limited perturbations around HDF galaxies may indeed
recover realistic morphologies.

Without an explicitly physical model of galaxy morphology and
evolution built in to shapelets, it is the final results that must
provide the ultimate verification of our statistical method. In Sec-
tion 5, we show that it is indeed possible to find a smoothing length
for the PDF that recovers objects which appear to represent realistic
shapes. In Section 6 we demonstrate quantitatively that their global
properties are realistic, by comparing real and simulated popula-
tions of galaxies via morphology diagnostics commonly used on
deep images.

4.4 Multivariate kernel smoothing method

Many practical approaches have been devised to smooth discrete
samplings of a multivariate PDF. Our main constraint in selecting
one of these methods is the very high dimensionality of our data set.
The median n,, required for objects in the HDF is 4. However, even
with the efficient data compression that shapelets can afford, models
of the highest S/N galaxies use values for n,,,x as high as 15. Adding
object size and magnitude, this corresponds to 137 total coefficients,
and this is therefore the maximum number of dimensions required.

To smooth and resample this data set, we have chosen the Ker-
nel smoothing method which is eloquently reviewed by Silverman
(1986). Kernel smoothing can be considered as an alternative to
using histograms. It avoids the ambiguity of binning and instead
yields a smooth analytic curve. For one-dimensional data, each sam-
ple data point is replaced by a smooth Gaussian kernel. To create
a PDF, all the kernels can be summed and then normalized to inte-
grate to unity. The width of these smoothing Gaussians still remains
to be decided, but methods exist for optimizing this factor. Each
kernel can even be given a different width, calculated as a func-
tion of a quick local density estimate, in order to produce adaptive
smoothing.

In data with more than one dimension, each sample point is re-
placed by a multivariate kernel. To help overcome the difficulties
associated with the leaking of probability density into the wings of
many-dimensional kernels, we replace the Gaussian with a more
compact Epanechnikov kernel (Epanechnikov 1969),

2
3 — (B f A< Ox; <
Kex) =9 4 |~ \ & o ThEtE s
0

elsewhere, 4)

where we have reformatted the shapelet coefficients of each HDF
galaxy into a data vector x;, and dx; are deviations in shapelet space
from these real data points. In each case, 7 is a coefficient index
running from 1 to 137. A; are smoothing widths which will be deter-
mined for each direction of our PDF space in Section 5.1. Isodensity
contours of this kernel are multivariate ellipses, the axes of which
are aligned with those of the coordinate axes (see Fig. 2). In general,
they could be allowed to point in any direction (Sain 1999), but we
do not find this to be necessary.

We implement an adaptive smoothing of our PDF by
reparametrizing da,,, as a,,/ ag. Given a constant A;, this creates
an effective smoothing kernel for each object of widths A, = agoA;.
This functional form is useful because the brighter HDF objects are
less frequent, and are therefore more isolated in probability space.
Since a(, roughly correlates to total flux, we obtain a larger smooth-
ing radius for brighter objects and better recover the underlying
probability distribution. We will prove that this recipe does produce
realistic morphologies in Section 6.
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5 IMAGE GENERATION

5.1 Resampling the galaxy morphology PDF

Having recovered a realistic and analytic PDF of galaxy morpholo-
gies, we now wish to resample this distribution to generate brand
new galaxy populations. The main advantage of the kernel smooth-
ing approach now becomes apparent. Without resorting to costly
numerical integration, Silverman (1986) Section 6.4.1 presents a
quick bootstrap method to generate a Monte Carlo sample from a
PDF constructed with §-functions smoothed by kernels K(5x). We
take the following steps to simultaneously smooth and resample the
parameter space of HDF galaxies:

Stepl: Randomly select one of the original HDF
galaxies, uniformly and with replacement.

Step2: Generate a small perturbation éx; from
the probability density function K (§x;). (®)]

Step3: Add éx; to the shapelet coefficients x; of
the HDF galaxy. This simulates a new

galaxy, sampled from the overall PDF.

This approach is arrived at by simply regarding the PDF as a sum
of small kernels rather than one overall function. Individually, these
kernels are quick to compute; and the dimensionality of the PDF
can even be lowered for faint objects that require fewer coefficients.
The perturbations can be quickly sampled from an Epanechnikov
kernel K(6x) by generating three random numbers from a uniform
probability distribution between —X; and A;. If the first does not have
the highest absolute value, take it and discard the rest; otherwise take
the second. Iterating this procedure to generate sufficient objects for
a simulated Hubble Deep Field requires only a few minutes on a
1-GHz PC.

We must now decide how to choose the overall smoothing length
i If &; =0, the kernel is a 6-function and the original HDF objects
are recovered exactly. This arrangement will create simulations of
limited practical use, but in Section 6 they act as an intermediate test
of the shapelet decomposition. As A; — 00, the coefficients for sim-
ulated galaxies become completely random and the objects become
unrealistic. In this limit, since no positive-definite constraint is ever
imposed in the shapelets formalism, we find that simulated objects
exhibit undesirable holes of negative flux. Fig. 3 shows realizations
of how a typical galaxy from the HDF is altered by increasingly large
perturbations to its shapelet coefficients, showing negative flux for
large A; perturbations.

We therefore require a choice of A; which is sufficiently large
to produce new galaxies, yet sufficiently small to maintain realistic
morphological properties. By measuring the minimum pixel val-
ues of many different galaxy realizations, we find suitable results
if Aphase S 15° and Apoaui S 4x[mean separation between near-
est neighbours in that dimension]; beyond these values, negative
holes rapidly appear. For the purposes of this paper, we therefore
fix X; to these limiting values. This still represents relatively weak
smoothing, but the variety and realism of generated morphologies
is pleasantly surprising: polar shapelets are indeed sufficiently close
to the Principal Components of galaxy morphology that small per-
turbations in shapelet space correspond to reasonable and realistic
changes within galaxy types. A quantitative demonstration of these
remarkable results is presented in Section 6.
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Figure 3. The effect of perturbing galaxy morphologies in shapelet space. Each image in the top row shows a real HDF galaxy, rotated by random angles.
Its shapelet coefficients are incrementally perturbed in successive rows, although its overall flux is kept constant for the purpose of this plot. A degree of
perturbation corresponding to our choice of the smoothing length X; is shown inside the box: these images represent typical simulated galaxies. Perturbations
larger than A; produce objects which contain significantly negative pixel values. The left panel depicts a spiral galaxy; the right panel a more typical irregular

form. The colour scale is logarithmic.

5.2 Scattering galaxies on the sky

A Monte Carlo population of genuinely new yet realistic objects has
been extracted from the PDF of galaxy morphology. These galaxies
are now allocated random orientations and locations on the sky, at
a density of 700 per arcmin?. This constant has been calibrated to
recover the same total number counts, after the addition of noise,
as are measured in the HDFs (see Section 6.1). No attempt is made
here to correctly model the two-point correlation function of galaxy
positions, or to include galaxy mergers beyond those sufficiently
advanced to appear as one object in the input SEXTRACTOR catalogue.

The correct slope in the size and magnitude distributions are auto-
matically ensured over a wide range of validity, since size and mag-
nitude are intrinsic variables of the PDF (see the bottom-left panel
of Fig. 2). However, it is important to consider the question of com-
pleteness in our simulations for very faint galaxies. A discrepancy
could arise through either non-detections of faint HDF galaxies by
SEXTRACTOR or non-convergence of their shapelet decompositions.
The first effect is minimized by our choice of SEXTRACTOR param-
eters (see Section 2.1) and the second is shown in Section 2.2 to
be under control. However, the number counts of galaxies at the
very faint end (I 2 29) are also highly sensitive to the the precise

background noise properties (see Section 2.1). For this reason, we
choose not to consider galaxies fainter than / = 29.

At the bright end, we also expect the simulations to be incom-
plete, since the HDFs were intentionally chosen by STScI as areas
containing few large, bright galaxies. In the future, we will extend
our simulations in this respect by incorporating ‘Groth survey strip’
(Groth et al. 1994) and ACS galaxies into the object source cata-
logue. One could also compensate for any known incompleteness by
preferentially selecting for under-represented galaxy types in step 1
of procedure (5).

5.3 Modelling telescope and observational effects

The shapelet models of galaxy images are actually analytic func-
tions. These can quickly be convolved with a PSF that has also been
decomposed into shapelets, using the matrix operation in Shapelets
11, section 3.1. Stars can also be included in an image, given a mag-
nitude distribution, by repeatedly placing the shapelet model of the
PSF in an image at the appropriate flux amplitude. All of these an-
alytic objects are then integrated within square pixels of the same
0.0398 arcsec resolution as the DRIZZLEd Hubble Deep Field. Our
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images have a somewhat larger solid angle than the HDFs because
the missing quarter from the WFPC ‘L’ is restored.

Observational noise can now be added, at a level appropriate to
the desired exposure time. We have simply added photon counting
noise (proportional to the square root of the raw pixel values), and
Gaussian background noise (with an amplitude determined from
the HDF itself). However, it would be easy to add a background
level, cosmic rays and even instrumental distortions: the shearing
for which could be performed conveniently in shapelet space before
pixellization. A further effect, not included in our simple model,
is noise that is correlated between adjacent pixels. Aliasing occurs
as a side-effect of the DRIZZLE algorithm, which recovers image
resolution by stacking several dithered exposures. This aliasing can
make it possible to detect slightly fainter objects and also introduces
some spurious objects at very low S/N. The steep slope of the real
number counts beyond / = 29 exacerbates this problem, and we
would not yet trust the noise model on our simulations for galaxies
any fainter than this.

Final output is as a FITS image, a sample of which is
displayed in Fig. 4. Larger images may be downloaded via
anonymous FTP from the shapelets web page at http://www.ast.
cam.ac.uk/~rjm/shapelets. Notice the wide range of galaxy mor-
phologies and behaviours present in Fig. 4. In particular, features
resembling spiral arms, dust lanes and resolved knots of star forma-
tion are present, together with various radial profile shapes. By eye,
the simulated galaxies look very similar to those in a similarly-scaled
section of the HDF itself, reproduced in Fig. 5. We will quantitatively
examine whether our simulation effectively mimics the morphology
distribution of HDF galaxies in the following section.

6 STATISTICAL TESTS AND RESULTS

We now demonstrate quantitatively that our simulated images are
realistic, in the sense that commonly used morphology measures
for our galaxies match the distributions of those for galaxies in the
HDFs. First, we consider the number counts and size distributions,
using photometry and size measures from SEXTRACTOR (Bertin &
Arnouts 1996).These ought to be roughly consistent by construc-
tion, because they are closely related to two of the axes in our param-
eter space. Then we compare more detailed morphology measures,
such as concentration (Bershady et al. 2000), asymmetry (Conselice
et al. 2000a), clumpiness (Conselice et al., in preparation) and el-
lipticity. These are not automatically expected to match, because
our shapelet-based PDF does not directly represent these quantities.
Thus, a comparison between these properties for simulated and real
data provides a rigorous and fair test of how realistic our simulations
are.

6.1 Size and magnitude

In order to carry out these tests, we first apply the SEXTRACTOR
object-finding and shape measurement package on the version 2
reductions of the HDF-N and HDF-S (Williams et al. 1996, 1998),
together with a 6 arcmin® simulated image of the same depth. As
an intermediate test, we also analyse a simulated image containing
shapelet reconstructions of galaxies drawn from a PDF left as §-
functions. These should be identical to the objects in the HDF and
act as a test of the shapelets modelling procedure rather than the
perturbations in shapelet space. In all four cases, approximately
320 galaxies brighter than I < 29 were detected per arcmin®. For
the galaxies only, we extracted observed magnitudes (MAG_BEST)
and sizes (FWHM_IMAGE).
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Figure 5. Section of the real HDF, with the same size and scale as Fig. 4.

Fig. 6 compares the size versus magnitude distributions of the
simulated images with those of the two HDFs, excluding the stars.
Fig. 7 then shows the galaxy number counts for real and simulated
cases in more detail. These match well over six or more orders of
magnitude, whether the simulations used a §-function PDF or the
full version. Note, however, that the noise in the simulated images is
not aliased in the same way as the DRIZZLE algorithm has caused the
real data to become (see Section 5.3). The number counts beyond
I ~ 29 are highly sensitive to background noise properties, and are
indeed increased in the simulated image if we artificially smooth
the noise. Clearly DRIZZLE is something that needs further attention
in a future implementation.
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Figure 6. Size versus magnitude plane for 6 arcmin® I-band images to HDF
depth, measured with SEXTRACTOR. Top-left panel: for a simulated image
containing shapelet reconstructions of HDF galaxies (the PDF kept as -
functions). Top-right panel: for a simulated image with galaxies perturbed
in shapelet space. Bottom panels: for real galaxies in the Hubble Deep Fields
North and South, calculated using the same SEXTRACTOR input parameters
as reference. The stellar locus is omitted from all panels. This figure can be
seen in colour in the on-line version of the journal on Synergy.
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Figure 7. Number counts in simulated /-band images (solid red), normal-
ized by area on the sky. Also shown are number counts for the Hubble Deep
Field North (dot—dashed) and South (dashed). This figure can be seen in
colour in the on-line version of the journal on Synergy.

For the present purposes, we apply magnitude cuts and com-
pare only the brighter objects, which are unaffected by such minor
changes. These cuts are at levels determined by the stability of an
individual diagnostic to noise. Fig. 8 compares the size distribu-
tion of the simulated objects brighter than / = 29 with those of the
HDF galaxies, as found by SEXTRACTOR. We find that there is ex-
cellent agreement in the shape of this distribution: the median and

Number of objects
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Figure 8. Size distribution of objects in a 6 arcmin® simulated image with

limiting magnitude / = 29 (solid red). Also shown are size distributions for
the Hubble Deep Field North (dot—dashed) and South (dashed). This figure
can be seen in colour in the on-line version of the journal on Synergy.

standard deviation FWHM for real galaxies in the HDFs are 0.30
and 0.24 arcsec. For simulated objects, these figures are 0.31 and
0.23 arcsec. This agreement comes about partly (but not entirely) by
construction. It was somewhat expected that our simulated images
will closely match real data in terms of their magnitude and size
distributions, but the final high precision is encouraging.

6.2 Galaxy morphology diagnostics

We can more stringently test the reliability of our algorithm to re-
produce properties of real galaxies by measuring morphological
parameters which are entirely independent of shapelets. We apply
a series of commonly used morphology diagnostics to two differ-
ent realizations of the simulated images. A first version, containing
unaltered shapelet models of HDF galaxies, tests the shapelet mod-
elling process in isolation. A second simulated image, with galaxies
drawn from the fully smoothed morphology PDF tests the fairness
of these perturbations in shapelet space.

A first basic analysis is to determine the gross shape of galaxies,
i.e. their ellipticities. The ellipticity of all the galaxies was obtained
from SEXTRACTOR. Following a convention in weak lensing litera-
ture, we here define two independent components of ellipticity as

_ AIIMAGE’ — BIMAGE’
~ ALIMAGE’ + B_IMAGE’

e cos(2 x THETA_IMAGE), ~ (6)

_ AIMAGE’ — B_LIMAGE’
~ AIMAGE’ + B IMAGE’

where A_IMAGE and B_IMAGE are the lengths of the major and
minor axes of the ellipse, and THETA_IMAGE is the angle between
the major axis and the horizontal (all parameters supplied by SEX-
TRACTOR). Fig. 9 compares this ellipticity distribution of the real
and fully simulated objects brighter than I = 29. Again, these are in
excellent agreement: with standard deviations in e = \/e} + €3 of
0.64 for real data, 0.62 for simulated data using a §-function PDF
and 0.62 for simulated data using the full PDF.

The four images have also been passed through the model-
independent morphology software developed by Conselice et al.

e sin(2 x THETA_IMAGE),  (7)

© 2004 RAS, MNRAS 348, 214-226



Number of objects

|l N IO A A O T A

._\
o

|
o
o
o
o
o
o
<3

Number of objects

= L bbb b b b b

o

~1.0 -0.5 0.0 0.5
Ellipticity component 2

Figure 9. Ellipticity distribution, as defined in equations (6) and (7), of
objects in 6 arcmin® simulated image with limiting magnitude I = 29 (solid
line). Also shown is the ellipticity distribution for the Hubble Deep Fields
North (dot—dashed) and South (dashed), and a Gaussian with the same mean
and rms (dotted). This figure can be seen in color in the on-line version of
the journal on Synergy.

(2002), Bershady et al. (2000) and Conselice (2003), in order to
measure the concentrations (C), asymmetries (A) and clumpiness
(S) values of the real and simulated galaxies. We first describe how
these three quantities are calculated, and then compare the distribu-
tions obtained for these measures from real data and simulations.
These ‘CAS’ parameters are very informative, as all nearby galaxy
types (ellipticals, spirals, dwarfs, etc.) fall in distinct regions of CAS
space (Conselice 2003). These parameters thus capture most of the
variation in galaxy structures and have frequently been used for
quantitative morphology classification.

The concentration index, C, is defined in terms of the ratio of the
radii containing 80 per cent (rgy) and 20 per cent (r,) of the object’s
total flux:

CESXlog(@)‘ ®)

20

For the total flux, we use the flux within an aperture 1.5 times the
size of the Petrosian radius at n = 0.2 (Bershady et al. 2000). The n
parameter is defined as the ratio of the surface brightness at a radius
divided by the surface brightness integrated within the radius, such
that at the centre of a galaxy, n = 1 and at the very edge of a galaxy
(where its surface brightness is 0), n = 0.

Typical values of C for real galaxies range from approximately
2 to 6. Galaxies with C > 4 are usually ellipticals or spheroidal
systems: a galaxy with an r'/# profile has C = 5.2. A purely expo-
nential disc galaxy has C = 2.7 (Bershady et al. 2000). Objects with
lower light concentrations are shown by Graham et al. (2001) to be
systems with low central surface brightnesses and often low inter-
nal velocity dispersions. Low concentration values are also found
for dwarf galaxies (e.g. Conselice, Gallagher & Wyse 2002). The
concentration index thus correlates, within some scatter, with the
total mass of a galaxy.

The asymmetry index used in this paper (called A5, in Conselice
et al. 2000a; Conselice, Bershady & Gallagher 2000b) is calculated
by rotating an image by 180° and subtracting the it from the original.
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Then we evaluate
Z |1x1y - les‘o — min Z |B~w - Blsf’
Doyl Do eyl ’

where I, , is the galaxy surface brightness in the (x, y) pixel of the
image, B, , the sky background in the same pixel, and superscripts
denote rotations. Sums are over all pixels within the same n = 0.2
Petrosian radius from which the total light measurement is made.
Minimization is then over different choices of the centre of rotation
(see Conselice et al. 2000a).

The asymmetry index is sensitive to any physical processes in a
galaxy that produce asymmetries in light distributions, such as star
formation, galaxy interactions/mergers, and projection effects such
as dust lanes. There is a general correlation between the asymme-
try value and the (B — V) colour (Conselice et al. 2000a). Since
most galaxies are not edge-on systems, star formation and galaxy
interactions/mergers are the dominant effects that produce asymme-
tries in real galaxies. These two effects can often be distinguished,
however. Systems with asymmetries A > 0.35 are generally created
by interactions or mergers (Conselice 2003; Conselice et al. 2003).
However, other merger events can have more modest asymmetry
values. From this and more detailed studies of the asymmetry in-
dex, it has been concluded that A is most sensitive to bulk structures
in galaxies (Conselice 2003).

The clumpiness parameter, S, is a measure of the high-spatial
frequency component of galaxies. It is calculated by smoothing
a galaxy image with a smoothing length o, then subtracting this
smoothed version /7  from the original image. This leaves a resid-
ual map containing oflly those features with a high-spatial frequency.
Summation is again performed over pixels within the n = 0.2 Pet-
rosian radius, although those from the central cusp are ignored.
Also including a correction for the background B, ,, the clumpiness
is then defined as

ny Ly = I;,V| B ny ’B"v)’ - B

2y I

The clumpiness index is sensitive to the instantaneous rate of star
formation, and correlates very well with Ho equivalent widths; it
also correlates to a lesser degree with broad-band colours (Conselice
2003). Other details of its calculation and properties are discussed
in detail in Conselice (2003).

‘We also use the Petrosian radius R (Petrosian 1976) to characterize
the galaxies, defined as the position where n = 0.2. The Petrosian
radius is found to be a better index than the SEXTRACTOR FWHM
radius for determining morphological sizes, as SEXTRACTOR radii are
based on isophotal thresholds which will represent different physical
distances from the galactic centre depending on the distance to the
galaxy. Because 1 is aratio of surface brightnesses in a given galaxy,
the run of n with r in a galaxy is immune to many such types of
systematic effects (Sandage & Perelmuter 1990) and Petrosian radii
are found to be a stable tool for deriving morphological parameters
independent of distance (Bershady et al. 2000).

‘We are now in a position to compare the measurements for C, A, S
and R for real and simulated images. Projections from this morpho-
logical parameter space for real and simulated data are displayed in
Figs 10-12, and relevant statistics are compiled in Table 1.

As can be seen from the scatter in the plots, the agreement between
simulations and real data is rather good: we are very pleased by the
encouraging results. The matching distributions of the concentration
parameter puts to rest one criticism frequently levelled at shapelets
(see Section 3), that a truncated Gaussian—Laguerre expansion may
not stretch far enough spatially to capture the extended wings of

A = min [ &)

S=10x

(10)
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Figure 10. Concentration versus asymmetry, as defined in equations (8) and
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for a simulated /-band image containing shapelet reconstructions of HDF
galaxies (the PDF kept as §-functions). Top-right panel: for a simulated
image with galaxies perturbed in shapelet space. Bottom panels: for real
galaxies in the Hubble Deep Fields North and South.

typical astronomical objects. Clearly our algorithm sets n,,, high
enough to avoid this problem while still modelling the HDF galaxies
using only a few coefficients.

The final population of simulated galaxies does contain asymme-
try values lower than those in the real data, although the distributions
agree within 1o. This slight discrepancy is caused by neither de-
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Figure 11. Concentration versus Petrosian radius, as defined in equation
(8) and the text, for 6 arcmin?® square images with limiting magnitude / =
26. Panels are ordered as in Fig. 10.
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Table 1. Galaxy morphology statistics. The first two columns show results
for real objects, taken from the Hubble Deep Fields. Compare this with
objects in simulations created using a §-function PDF or the full shapelet-
morphing procedure.

HDF-N HDEF-S Simulation with Full
§-function PDF simulation

(C) 3.11 3.13 3.03 3.07
rms C 0.39 0.40 0.44 0.42
(A) 0.18 0.17 0.19 0.07
rms A 0.20 0.22 0.27 0.25
(S) 0.23 0.28 0.27 0.08
rms S 0.28 0.28 0.15 0.19
rms e 0.64 0.64 0.62 0.62

ficiencies in the shapelet modelling procedure, nor the increased
clustering of galaxies at short separations in real data, because it
is absent from the simulation created with a §-function PDF. De-
creased object asymmetry must therefore be a by-product of the PDF
smoothing. There is no obvious a priori reason why this should hap-
pen. Even m states are symmetric and odd m states antisymmetric,
so if the absolute values of all coefficients are randomly changed
by the same amount, the overall symmetry of the object should stay
constant. However, our nearest-neighbour prescription from Sec-
tion 5.1 results in an average smoothing length across typical even
m states, and particularly the m = O states, of approximately twice
that for odd m states. This may simply be because the first state is
even, and the smoothing length tends to get shorter as n increases.
A more sophisticated adaptive smoothing method might be found
to prevent this effect, but we have not pursued that idea here. We
note the asymmetry discrepancy, but note also that it is relatively
small.

The behaviour of the clumpiness parameter is also reasonable.
Truncation in shapelet modelling smooths galaxies slightly, and thus
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removes the tail of objects with very high S. Morphing in shapelet
space apparently acts to then smooth some of the galaxies further.
This is peculiar because, if anything, the galaxies in Fig. 3 appear by
eye to become more clumpy as the smoothing length is increased.
Overall, the agreement of the simulated distributions with real data
is remarkably consistent with the field-to-field variation between
the two HDFs. Indeed, clumpiness is a rather unstable statistic to
measure. For example, even the slight rise in mean clumpiness for
the §-function simulation might be significant: especially since it
is apparent despite the missing tail at high S. It is possible that
the increase is caused by residual artefacts in the shapelet models,
but more plausibly because the noise in our simulated images is not
correlated between adjacent pixels. The HDFs themselves have been
DRIZZLEd in order to achieve their high resolution, a process which
also aliases the image. As a simple approximation to this effect,
we have tried smoothing the noise slightly in our simulations, by a
top hat kernel 3 pixels wide. This process does indeed remove the
slight disparity observed in the simulated clumpiness distribution,
but simultaneously creates many false detections of faint, circular
objects from the noise at the magnitude limit around 7 > 29.

Therefore we conclude that our shapelet simulations obtain sim-
ilar morphology distributions to those found in real data. This is
most encouraging as these were not arranged by construction, and
the level of realism seen here is a strong vindication of the shapelet
modelling of galaxies. Perturbing shapelet parameters to create new
galaxies can introduce a few minor deviations, but these are small
compared to natural variation between objects, and are well under-
stood and quantified. We can therefore use shapelets as a tool for
investigating galaxy morphology and for creating realistic simulated
images.

7 COMPARISON WITH OTHER METHODS

There have been many packages in the literature which simulate as-
tronomical observations, including SKYMAKER (see Erben et al.2001)
and ARTDATA in IRAF (Tody 1993). These typically parametrize
galaxy shapes using simple physical models such as ellipses with de
Vaucouleurs or exponential profiles. The smooth variation allowed
for these parameters enables them to generate an unlimited num-
ber of unique simulated galaxies. These methods are particularly
valuable for simulating images from ground-based telescopes. Un-
fortunately, deep images from HST contain galaxies with resolved
features more complex than these analytical models, so such simu-
lations are useful in only a limited regime.

This was realized by Bouwens et al. (1998), who designed simula-
tions to investigate the evolution of galaxy morphology in the HDF.
Indeed, their work succeeds in ruling out pure luminosity evolu-
tion of galaxies: which precisely demonstrates the need for deep
image simulations to contain more irregular and asymmetric mor-
phologies. Their method repeatedly places the few brightest HDF
galaxies on to a simulated image, and is similar to that which ours
would have been, had we left the PDF as an (unsmoothed) sum of
8-functions. Some physics can be added to rescale and redshift these
few sources, but it remains a very small population from which to
simulate a large imaging survey, and containing members drawn
exclusively from the local universe. Creating realistic images was
not the intention of Bouwens et al. (1998) and, for our objectives,
their method would require the addition of more physics (e.g. galaxy
evolution, star formation histories, redshift distributions, etc.).

Our technique attempts to capture the best aspects of both meth-
ods, by defining a smooth parameter space that can yield an unlim-
ited number of unique galaxies, but also contains a rich diversity
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of their morphologies (potentially any morphology, in fact, since
the set of shapelet basis functions is complete). Since the parameter
space is populated via statistical rather than physical arguments, it
is the many tests to which we have subjected our simulated images
that demonstrate the validity of our method. We find a regime span-
ning six orders of magnitude in luminosity where our simulations
are valid, and their statistical properties match those of real data.
This ability to produce simulated images containing galaxies with
realistic morphologies is a significant advance.

8 CONCLUSIONS

We have presented a method for generating simulated deep sky
images of an arbitrarily large survey area, as might be observed
with extended observations with the Hubble Space Telescope. These
simulated images are populated with all morphological types of
galaxies, based upon those in the Hubble Deep Fields.

The simulated galaxies are drawn from a multivariate distribution
of realistic morphologies, described using the shapelet formalism
(Refregier 2003a). In order to generate this morphology distribu-
tion, we decompose all HDF galaxies into shapelet components us-
ing least-squares fitting. We optimize this decomposition by finding
the scale length 8 and number of modes n,,,x which produces a best
shapelet coefficient fit to each galaxy. The resulting coefficients of
HDF galaxies form a cloud of points in shapelet space; these points
are replaced by smooth kernels in order to recover the underlying
probability distribution of real galaxy morphologies. The smooth
distribution is then resampled, using an unbiased Monte Carlo tech-
nique, to obtain new galaxies.

We place these simulated galaxies on to HDF-sized images, si-
multaneously including effects such as PSF, pixellization, photon
shot noise and Gaussian background noise. The level of detail in the
resulting simulated galaxies includes features such as realistic radial
profiles, spiral arms, dust lanes and resolved knots of star formation.

We have noted that the global morphological properties of the
simulated galaxy population must match those of real galaxies if
our simulations are to be useful. We have demonstrated that this
is the case by comparing various morphology diagnostics in sim-
ulated and real galaxies, including number counts as a function of
magnitude, the size distribution, ellipticity distribution, and concen-
tration, asymmetry and clumpiness indices. A test involving purely
the shapelet decomposition and reproduction of the HDF galaxies
preserves all of these statistics with high precision, and we conclude
that a shapelet decomposition can successfully capture the morpho-
logical properties of all galaxy types. A few slight discrepancies
are introduced to the statistics by perturbing their shapelet coeffi-
cients (or smoothing the morphology distribution) to manufacture
genuinely new galaxy shapes. However, these differences are small
compared with even the natural variations between objects. Several
minor effects have been well quantified by our various tests, and
their causes understood for correction in future implementations.

An important application for our simulated images is presented
in Massey et al. (2003), where they are used to predict the sensi-
tivity to weak gravitational lensing of the proposed SNAP satellite.
However, the simulations presented here are in no way specific to
gravitational lensing, and may be used for testing image analysis
in various branches of astronomy. Further simulated images and
catalogues are available from the authors.

A useful extension to this work will be to include ‘Groth survey
strip’ (Groth et al. 1994) galaxies and ACS data when constructing
the morphology probability distribution. This will provide future
simulations with a more extensive sample of large, bright galaxies,
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improving the fidelity of the simulations in this region of parameter
space. A method is also in development to generate multi-colour
simulated images using several HDF passbands and photometric
redshifts. A by-product of this work is a complete morphological
catalogue of all the HDF galaxies in shapelet space. This catalogue
will be used in a future paper on the automated morphological clas-
sification of galaxies at high redshift.
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