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ABSTRACT
The first half of this paper explores the origin of systematic biases in the measurement
of weak gravitational lensing. Compared to previous work, we expand the investigation of
point spread function instability and fold in for the first time the effects of non-idealities in
electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together,
these now explain the additive A(�) and multiplicative M(�) systematics typically reported
in current lensing measurements. We find that overall performance is driven by a product of a
telescope/camera’s absolute performance, and our knowledge about its performance.

The second half of this paper propagates any residual shear measurement biases through
to their effect on cosmological parameter constraints. Fully exploiting the statistical power of
Stage IV weak lensing surveys will require additive biasesA � 1.8 × 10−12 and multiplicative
biases M � 4.0 × 10−3. These can be allocated between individual budgets in hardware,
calibration data and software, using results from the first half of the paper.

If instrumentation is stable and well calibrated, we find extant shear measurement software
from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements
on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies
with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis
from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms
would need calibration on simulations to avoid introducing bias at a level similar to the
statistical error. Requirements on hardware and calibration data are discussed in more detail
in a companion paper. Our analysis is intentionally general, but is specifically being used to
drive the hardware and ground segment performance budget for the design of the European
Space Agency’s recently selected Euclid mission.
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1 IN T RO D U C T I O N

Statistical measurements of weak gravitational lensing in a large
sample of galaxies offer a direct way to probe the dark sector of the
Universe (see reviews by Hoekstra & Jain 2008; Massey, Kitching &
Richard 2010b). Gravitational lensing is the deflection of light from
distant galaxies during its journey to us, by an amount that depends
on the intervening distribution of matter (including dark matter) and
the geometry of space–time (which is currently governed by dark
energy). The deflection of light produces slight shear distortions in
the galaxies’ apparent shapes, and adjacent galaxies appear to line
up in characteristic patterns across the sky.

Galaxy ellipticities are typically distorted only a few per cent
by weak gravitational lensing. Detecting this tiny signal is difficult
because the image shapes are also changed an order of magnitude
more by convolution with the point spread function (PSF) of the
telescope, detector and atmosphere, as well as by distortion in the
camera. These other effects must be modelled and corrected; even
subtle residual contributions can significantly bias cosmological
measurements.

In the first half of this paper we explore three types of error that
affect galaxy shape measurement.

(i) Inaccuracies in the model of the convolutional PSF, from
which observed galaxy shapes must be deconvolved (this builds
upon work by Paulin-Henriksson et al. 2008).

(ii) Inaccuracies in correction for any effect that cannot be treated
as a deconvolution. This includes detector effects such as charge
transfer inefficiency in CCDs or interpixel capacitance in HgCdTe
devices, which perturb pixel values in a non-linear fashion.

(iii) Inaccuracies in the measurement of galaxy shapes. Mini-
mizing noise, particularly in faint galaxies, forces measurement
methods to apply pixel weights which must subsequently be un-
done.

We propagate these measurement errors through a tomographic
cosmic shear analysis (theory developed by Hu 1999; Jain & Tay-
lor 2003; Bernstein & Jain 2004 and measurements obtained by
Kitching et al. 2007; Massey et al. 2007a; Schrabback et al. 2010)
to determine the bias they induce upon constraints on the dark en-
ergy equation of state parameter w (Song & Knox 2004; Ishak 2005;
Simpson & Bridle 2005).

In the second half of this paper, we establish requirements on
additive and multiplicative cosmic shear systematics to meet future
scientific goals. We also use our earlier results to consider how
residual additive biases can be empirically identified and removed,
and assess the impact of residual multiplicative biases that cannot
be self-consistently identified within a data set. Our analysis is in-
tentionally performed with a scope sufficiently general to cover any
future Stage IV weak gravitational lensing survey. It is particularly
motivated by, and drives the hardware and ground segment perfor-
mance budget for the design of the European Space Agency’s re-
cently selected Euclid mission (Laureijs et al. 2011). This work gen-
eralizes the conclusions of Amara, Réfrégier & Paulin-Henriksson
(2010). During the final preparation of this paper, Chang et al.
(2012) posted to the arXiv an analysis of future prospects for the
Large Synoptic Survey Telescope (LSST). There is some overlap in
ambition, but complementary methodology. Like Chang et al. we
employ a bottom-up approach in this paper, propagating various
instrumental imperfections through to errors on cosmological pa-
rameters. However, rather than simulating the detailed performance
of a baseline telescope model, we work analytically to build a gen-
eral framework for propagating general system performance. In a

companion paper, Cropper et al. (2012), this allows us to perform a
top-down, systems engineering analysis: starting from the science
requirements and flowing down to requirements on subsystem per-
formances. Using the understanding from this paper, the total error
budget and mitigation can be sensibly allocated between individual
budgets in hardware, calibration data and software performance.

This paper is organized as follows. In Section 2, we define the ba-
sic galaxy shape and cosmological quantities of interest that would
be measured in a weak lensing experiment with no (or idealized)
errors. In Section 3, we explore the various types of error that
can be introduced during realistic galaxy shape measurement and
may prevent recovery of the true signal. Our underlying approach
builds upon the work of Paulin-Henriksson et al. (2008) – however
the mathematical expressions rapidly lengthen when we introduce
more sources of error. For clarity, we therefore choose to evolve
the formalism in three stages, one for each source of error. In Sec-
tion 4, we derive requirements on shear measurement biases for a
cosmic shear survey seeking to measure dark energy. In Section 5,
we determine whether those requirements are met by extant shear
measurement software described in the literature. We do this at fixed
galaxy fluxes and, using our results from the first half of the paper,
averaging over the full population of galaxies that will be seen by a
survey. We conclude in Section 6.

2 ID E A L I Z E D W E A K L E N S I N G
MEASUREMENT

2.1 Perfect shear measurement

Many techniques have been developed to precisely measure the
shapes of galaxies (see Bridle et al. 2010; Kitching et al. 2011b).
For the sake of a concrete example, we shall consider the generic
class of methods based upon galaxies’ quadrupole moments. In
a method based on unweighted quadrupole moments (see Bartel-
mann & Schneider 2001), the shape of any localized object in a 2D
image I(r, θ ) can be quantified via its size,

R2 ≡
∫∫

I (r, θ ) r2 r dr dθ∫∫
I (r, θ ) r dr dθ

, (1)

and complex ellipticity,

ε = ε1 + iε2 ≡
∫∫

I r2e2iθ r dr dθ∫∫
I r2 r dr dθ

. (2)

Gravitational lensing magnifies and shears a galaxy of intrinsic
size Rint and ellipticity εint into one of size Rgal > 0 and ellipticity:

εgal = εint + Pγ γ , (3)

where the shear ‘polarizability’ Pγ ≡ ∂εint/∂γ ≈ 1.86 is the
amount by which the ellipticity of a galaxy changes during gravi-
tational lensing1 (Kaiser, Squires & Broadhurst 1995; Luppino &
Kaiser 1997). When this galaxy is imaged by any camera, it is

1 Strictly, Pγ depends on galaxy morphology and is also a 2 × 2 tensor
acting separately on the real and imaginary components of ellipticity. On
average, however, it is very close to the identity tensor times a real scalar
2 − 〈|εint|2〉 (Rhodes, Réfrégier & Groth 2000). Leauthaud et al. (2007)
show that 〈|εint|2〉 is consistent with a constant value of 2 × 0.262 for
galaxies to at least redshift z = 2.6. We greatly simplify subsequent analysis
by assuming scalar Pγ ≈ 1.86.
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convolved with a PSF (of size RPSF and ellipticity εPSF), producing2

an observed source of larger size,

R2
obs = R2

gal + R2
PSF, (4)

and perturbed ellipticity,

εobs = εgal + R2
PSF

R2
gal + R2

PSF

(
εPSF − εgal

)
. (5)

Weak lensing analyses observe the shape of each galaxy then
try to correct it for (or deconvolve it from) the PSF, to recover the
galaxy’s true ellipticity. The system PSF can be measured from stars
also within the field of view. Rearranging equations (4) and (5) so
that only observable quantities appear on the right-hand side, the
galaxy’s ellipticity is

εgal = εobsR
2
obs − εPSFR

2
PSF

R2
obs − R2

PSF

. (6)

The intrinsic ellipticity of individual galaxies is uninteresting so, to
isolate the cosmologically relevant information, ellipticity is nor-
malized into a shear estimator:

γ̂ ≡ (Pγ )−1 εgal. (7)

This ensures that, averaging over a large number of galaxies,

〈γ̂ 〉 = (Pγ )−1〈εint〉 + (Pγ )−1Pγ 〈γ 〉, (8)

and we recover 〈γ̂ 〉 = 〈γ 〉 so long as the intrinsic galaxy ellipticities
are random and hence 〈εint〉 = 0 (but see Catelan, Kamionkowski &
Blandford 2001; Crittenden et al. 2001; Natarajan et al. 2001;
Joachimi & Schneider 2008; Schneider & Bridle 2010; Kirk et al.
2012, for instances of ‘intrinsic alignments’ when this does not
hold).

The average shear is zero so, to compare to theoretical models,
the measured shears are then combined into two-point correlation
functions:

ξ+(θ, zA, zB ) ≡ 〈γ Aγ ∗
B

〉
(θ, zA, zB ), (9)

ξ−(θ, zA, zB ) ≡ Re(〈γ Aγ B〉(θ, zA, zB )), (10)

where the angle brackets indicate averaging over all pairs of galax-
ies A and B in a survey that are at redshifts zA and zB and sepa-
rated on the sky by an angle θ , or within bins around those values
(Crittenden et al. 2001; Bartelmann & Schneider 2001). The corre-
lation functions trace a cosmological, ‘cosmic shear’ signal at θ >

0. Results are often expressed in terms of the shear power spectrum
C(�), the Fourier transform of a weighted sum of ξ±(θ ).

If galaxy shapes are autocorrelated with themselves, a zero-lag
term σ 2

γ δ(θ = 0) is added. This is included by Paulin-Henriksson
et al. (2008, equation 11) but we disregard it because it can be
readily avoided by excluding such galaxy pairs in practice. If the σ 2

γ

autocorrelation term were not removed from an analysis, it would
be white noise, independent of scale in the Fourier transform. This
must be marginalized over as an unknown constant of integration,
subtracted from measurements or added to theoretical models.

2 Relationships (4) and (5) are exact using unweighted moments, but hold
for some other methods only if both the galaxy and the PSF are approxi-
mately Gaussian. We shall return to this issue in Section 3.3.

2.2 Parametric shear measurement bias

Deviations from perfect shear measurement are commonly
parametrized following Huterer et al. (2006) and the Shear TEsting
Programme (STEP; Heymans et al. 2006; Massey et al. 2007b) as

γ̂ = (1 + m)γ + c. (11)

We shall henceforth represent all real-world, imperfect measure-
ments using a hat.

2.2.1 Constant shear measurement bias

We first consider shear measurements that have small additive bias
c with constant mean 〈c〉 and random noise σc, plus small multi-
plicative bias m with constant mean 〈m〉 and random noise σ m. Pairs
of these shear measurements can be folded through the calculation
of a correlation function (9) to produce

ξ̂+(θ, zA, zB ) ≡ 〈γ̂ Aγ̂
∗
B

〉
(12)

= 〈(1 + m)(1 + m)〉 ξ+ + 〈|c|2〉 (13)

plus cross terms only in the presence of shear-dependent selection
effects (see e.g. Jain, Jarvis & Bernstein 2006, and the discussion
in Appendix A).

Taking the Fourier transform to yields a power spectrum:3

Ĉ(�, zA, zB ) = (1 + M) C(�, zA, zB ) + A, (14)

where

A = 0, (15)

M = 2〈m〉 + 〈m2〉 = 2〈m〉 + 〈m〉2 + σ 2
m δ(0) (16)

≈ 2〈m〉. (17)

We have expanded the mean squared error 〈m2〉 term but note that
〈m〉2 � 〈m〉 and that M terms arise only from the correlation of
galaxies with other galaxies. Thus a constant multiplicative bias in
shear measurements leads to a similarly constant multiplicative bias
in a measurement of the shear power spectrum. If the autocorrelation
terms discussed in Section 2.1 are included, equation (15) gains an
additional white noise term,

σ 2
γ = [1 + 2〈m〉 + 〈m2〉]Pγ

−2σ 2
εgal

+ σ 2
c . (18)

This notation is also discussed in Kitching et al. (2012a).

2.2.2 Spatially/temporally varying shear measurement bias

We next consider shear measurement biases in which c and m vary
from galaxy to galaxy, and their deviations from a mean value can

3 Amara & Réfrégier (2008, equation 13) rearrange equation (12) as a
Taylor series expansion of the measured correlation function,

Ĉ(�) ≡ C(�) + {A0 + A1 C(�) + · · ·},
and label everything inside the curly brackets as different types of ‘additive
error’ C

sys
� . Simple multiplicative biases easily arise, so we instead find it

helpful to keep terms A and M separate. Because of the shape of the 


cold dark matter (
CDM) cosmological power spectrum, they are nearly or-
thogonal and have quite different implications (see Section 4). We therefore
restrict our notation for A to refer solely to pure additive terms.
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be correlated in patterns across a survey. In general, A and M
become functions of scale, orientation on the sky, and redshift:

Ĉ(�, zA, zB ) =
∑

�′
(1 + M(�, �′, zA, zB ))C(�′, zA, zB )

+ A(�, zA, zB ) (19)

(see Appendix A of Kitching et al. 2012a). The additive systematics
A now include a contribution from the spatially varying additive
shear measurement bias. The M matrices mix power from differ-
ent scales, as well as physical E-mode and non-physical B-mode
signals, where C = CE + iCB. Anisotropic errors could arise from
PSF terms in off-axis cameras, from non-square pixels, from some
detector effects, or in ground-based surveys where gravity loading
and the prevailing wind can impose preferred directions. In this
paper, we shall only consider the simpler situation in which the
systematic errors are isotropic on average within a survey. In this
case, the matrices are diagonal, so A and M become functions of
only scale and redshift:

Ĉ(�, zA, zB ) = (1 + M(�, zA, zB ))C(�, zA, zB ) + A(�, zA, zB ).

(20)

Using the notation σ 2[x] to represent the covariance about the mean
of error δx in pairs of galaxies separated by θ > 0, we find

A(�, zA, zB ) = σ 2[|c|](�, zA, zB ), (21)

M(�, zA, zB ) ≈ σ 2[m](�, zA, zB ) + 2〈m〉(zA, zB ). (22)

Paulin-Henriksson et al. (2008) miss the second half of equation
(22) because they ignore bias terms when expanding mean squared
errors. This was reasonable for purely additive systematics, as spa-
tially constant terms disappear during a Fourier transform; but in this
case we judge that the bias term is likely to be the most problematic.
Instead, we find that cosmic shear biases arise from a combination
of (a) absolute biases in shear measurement and (b) uncertainty in
or lack of knowledge about shear measurements. This dichotomy
will emerge as a general result throughout Section 3.

3 R EALISTIC WEAK LENSING
M E A S U R E M E N T E R RO R S

3.1 Imperfect PSF correction

Errors in shear measurement can arise from several sources. For
example, our model of the PSF will inevitably be imperfect because
it is obtained from noisy stars and must be interpolated to the po-
sition and colour of each galaxy (e.g. Hoekstra 2004; Mandelbaum
et al. 2005; Massey et al. 2005; Jain et al. 2006; Paulin-Henriksson,
Réfrégier & Amara 2009; Cypriano et al. 2010).

Via a first-order Taylor series expansion of equation (6), model
errors in the PSF size δ(R2

PSF) and ellipticity δεPSF propagate into
an imperfect estimate of the galaxy ellipticity:

ε̂gal ≈ εgal + ∂εgal

∂
(
R2

PSF

) δ
(
R2

PSF

)
+ ∂εgal

∂εPSF
δεPSF. (23)

The partial derivatives of (6) are

∂εgal

∂
(
R2

PSF

) = R2
obs(

R2
obs − R2

PSF

)2 (εobs − εPSF) = εgal − εPSF

R2
gal

, (24)

∂εgal

∂εPSF
= − R2

PSF

R2
obs − R2

PSF

= −R2
PSF

R2
gal

, (25)

and the derivative with respect to the other real/imaginary compo-
nent of the PSF ellipticity is zero. In equations (24) and (25), the
first equality is expressed in terms that are observable in an im-
age, and the second equality reflects fundamental source properties.
Inserting the latter into (23) yields

ε̂gal ≈
⎧⎨⎩1 +

δ
(
R2

PSF

)
R2

gal

⎫⎬⎭ εgal

−
⎧⎨⎩R2

PSF

R2
gal

δεPSF +
δ
(
R2

PSF

)
R2

gal

εPSF

⎫⎬⎭ . (26)

Arranged thus (cf. Paulin-Henriksson et al. 2008, equation 8), the
last two terms display an elegant symmetry: the product of the
PSF size and our knowledge of its ellipticity, then its absolute
ellipticity and our knowledge of its size. The STEP parameters
can be easily read off from this expression. Note that if the PSF
ellipticity is known perfectly (δεPSF = 0), c = −mεPSF/Pγ and the
two are related.

When folding this imperfect shear estimator through the cal-
culation of a correlation function (9), to multiply out some angle
brackets we follow Paulin-Henriksson et al. (2008) in assuming that
inaccuracies in the model of the PSF shape are independent of the
shape of the PSF and the size of galaxies to which it is applied. If
that does not hold, the angle brackets cannot be separated and some
cross-terms can be introduced that are computed in Appendix A. An
additional assumption that Paulin-Henriksson et al. (2008) and we
make is that the size of the PSF is roughly constant across the sur-
vey, such that

〈
R2

PSFR
2
PSF

〉
(�) ≈ 〈R4

PSF

〉
. In exact correspondence

to the various terms of equations (21) and (22), we find

A(�, zA, zB ) = 1

Pγ
2

〈
R4

PSF

R4
gal

〉〈|δεPSF|2
〉

(�, zA, zB )

+
〈|εPSF|2

〉
Pγ

2

〈
R4

PSF

R4
gal

〉 〈∣∣∣δ(R2
PSF

)∣∣∣2〉〈
R4

PSF

〉 (�, zA, zB ),

(27)

M(�, zA, zB ) =
〈

R4
PSF

R4
gal

〉 〈∣∣∣δ(R2
PSF

)∣∣∣2〉〈
R4

PSF

〉 (�, zA, zB )

+ 2

〈
R2

PSF

R2
gal

〉 〈
δ
(
R2

PSF

)〉
〈
R2

PSF

〉 (zA, zB ). (28)

In combination, this reproduces equation (11) of Paulin-Henriksson
et al. (2008), except for the autocorrelation term now intentionally
omitted from (27) (see Section 2.1) and the linear term now ap-
pended to (28) (see Section 2.2.2).

We shall expand the (scale-dependent) mean squared error
terms that reflect a measurement error, like 〈|δεPSF|2〉, into a bias
〈|δεPSF|〉2, plus a covariance about the mean σ 2[|εPSF|]. For the
sake of legibility, we do not likewise expand the mean squared error
terms on instrument performance, such as 〈|εPSF|2〉, but the split is
implicit. For legibility, we also omit the notation showing functional
dependence on scale and redshift, but note that all bias terms are
functions of (zA, zB) and all covariances are functions of (�, zA, zB).
Indeed, since 〈Rgal〉 scales with redshift, every term really will vary
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as a function of redshift. To second order in δ, we find

A = 1

Pγ
2

〈
R4

PSF

R4
gal

〉
σ 2[|εPSF|]

+ 〈|εPSF|2〉
Pγ

2

〈
R4

PSF

R4
gal

〉⎛⎜⎝
〈
δ
(
R2

PSF

)〉2

〈
R4

PSF

〉 +
σ 2
[
R2

PSF

]
R4

PSF

⎞⎟⎠ , (29)

where the spatially constant term in the first line disappears as a
delta function at � = 1 (or the fundamental mode of the survey)
in Fourier space; a similar cross term involving the (implicit) bias
on εPSF is also zero in the second line. Note that all ellipticities
have two components that add in quadrature. Ignoring a bias term
in M proportional to the square of one already present (therefore
negligible if the bias is small), we also find

M = 2

〈
R2

PSF

R2
gal

〉 〈
δ
(
R2

PSF

)〉
〈
R2

PSF

〉 +
〈

R4
PSF

R4
gal

〉
σ 2
[
R2

PSF

]
〈
R4

PSF

〉 . (30)

We shall explore concrete values for the terms in equations (29)
and (30) in Section 4.5. For now, notice how the systematics are
driven mainly by the size of the PSF – to the fourth power, which
is why cosmic shear measurements are generally easier from above

the Earth’s atmosphere. However, δ
(
R2

PSF

)
terms (proportional to

only the second power) arise if the PSF is wavelength dependent
and measured from stars that are a different colour to galaxies
(Cypriano et al. 2010). This effect is worse for diffraction-limited
space-based observations than ground-based imaging, where the
PSF is determined primarily by atmospheric turbulence. It would
likely be spatially constant (and therefore disappear fromA at least),
except that chromatic aberration may exacerbate it on a character-
istic scale related to the size of a telescope’s field of view (Plazas &
Bernstein 2012). It is anyway a function of redshift.

Equation (29) in particular shows that overall performance is
driven by the product of instrument stability and knowledge about
that instrument. This quantifies the tradeoffs discussed by Amara
et al. (2010). To obtain reliable cosmological measurements, we
first need high-quality instrumentation to deliver a system PSF that
is

(i) small (RPSF),
(ii) nearly circular (the bias component of 〈|εPSF|2〉) and
(iii) stable (the variance component of 〈|εPSF|2〉; we have already

assumed that its size is constant).

It is then equally important to

(i) understand and accurately model that PSF.

The 〈δ〉 terms reflect a calibration bias in the PSF model (e.g. in
its colour), and are likely to spatially constant. The σ 2[ ] terms
reflect a lack of knowledge (e.g. from sparse sampling of a spa-
tially/temporally varying PSF pattern), and are likely to vary as a
function of scale in such a way that they are largest around the mean
distance between stars, the size of the telescope’s field of view or
(reflecting the intrinsic variation in the PSF pattern) turbulence cells
in the atmosphere.

3.2 Imperfect correction for detector effects

As well as convolution with a PSF (which in practice can include all
optical and electronic effects that act linearly on pixel values), as-
tronomical images can also be degraded in more complicated ways.

This can include global detector non-linearity, in which the number
of counts in each pixel is a non-linear function of the incident flux,
or non-local effects such as charge transfer inefficiency in CCDs
(Janesick 2001; Bristow 2003) and interpixel capacitance or persis-
tence in HgCdTe devices (Barron et al. 2007; McCullough 2008;
Seshadri et al. 2008).

These operations cannot be treated mathematically as a convo-
lution, so the correction procedure outlined in Section 3.1 does not
apply. We therefore introduce a new category of non-convolutive
(NC) perturbations in galaxy size RNC and ellipticity εNC. The de-
tails of these may depend on the flux and size of the galaxy, but we
take a generic approach (which can hold for small, faint galaxies)
in which the observed quantities become

Robs ≡
√(

R2
gal + R2

PSF

) + RNC (31)

and

εobs ≡ εgal + R2
PSF

R2
gal + R2

PSF

(εPSF − εgal) + εNC. (32)

Note that we have not explicitly included non-convolution effects on
stellar images from which the PSF is modelled. The images of bright
stars will also be degraded, and the budgets for δRPSF and δεPSF

should allow for this. However, many of the most serious non-linear
effects operate in the sense that the degradation of bright sources is
much less than that of faint sources (Massey et al. 2010a; Hoekstra
et al. 2011). In this case, the perturbations on galaxies RNC and εNC

will dominate, in the budget for galaxy shape measurement rather
than the (separable) budget for PSF modelling. A weak lensing
analysis then seeks to recover

εgal =
(

1 + R2
PSF

R2
gal

)
(εobs − εNC) − R2

PSF

R2
gal

εPSF (33)

= (εobs − εNC) (Robs − RNC)2 − εPSFR
2
PSF

(Robs − RNC)2 − R2
PSF

, (34)

where we have taken care on the second line to include only ob-
servable quantities on the right-hand side.

In practice, any correction scheme will inevitably have inaccura-
cies δRNC and δεNC, so only an imperfect estimation is possible of
εgal. Again we expand the shape observables as a first-order Taylor
series:

ε̂gal ≈ εgal + ∂εgal

∂
(
R2

PSF

) δ
(
R2

PSF

)
+ ∂εgal

∂εPSF
δεPSF

+ ∂εgal

∂(RNC)
δ(RNC) + ∂εgal

∂εNC
δεNC, (35)

where the first two partial derivatives remain unchanged as (the
second form of) equations (24) and (25), and

∂εgal

∂RNC
= 2R2

PSF (Robs − RNC) (εobs − εNC − εPSF)[
(Robs − RNC)2 − R2

PSF)
]2

= 2R2
PSF

(
εgal − εPSF

)
R2

gal

√(
R2

gal + R2
PSF

) , (36)

∂εgal

∂εNC
= −(Robs − RNC)2

(Robs − RNC)2 − R2
PSF

= −R2
gal + R2

PSF

R2
gal

. (37)
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Thus

ε̂gal ≈ εgal

⎧⎨⎩1 + R2
PSF

R2
gal

⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2δRNC√
R2

gal + R2
PSF

⎞⎠⎫⎬⎭
− R2

PSF

R2
gal

⎧⎨⎩δεPSF + R2
gal + R2

PSF

R2
PSF

δεNC

+
⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2δRNC√
R2

gal + R2
PSF

⎞⎠ εPSF

⎫⎬⎭. (38)

This imperfect ellipticity measurement translates into additive
cosmic shear systematics

A = 1

P 2
γ

〈
R4

PSF

R4
gal

〉
σ 2[|εPSF|]

+ 1

P 2
γ

〈(
1 + R2

PSF

R2
gal

)2〉
σ 2[|εNC|]

+ 〈|εPSF|2〉
P 2

γ

〈
R4

PSF

R4
gal

〉⎛⎜⎝
〈
δ
(
R2

PSF

)〉2

〈
R4

PSF

〉 +
σ 2
[
R2

PSF

]
R4

PSF

⎞⎟⎠

+ 4
〈|εPSF|2〉

P 2
γ

〈
R4

PSF

R4
gal

〉⎛⎝ 〈δRNC〉2〈
R2

NC

〉 + σ 2[RNC]

R2
NC

⎞⎠ . (39)

Mixing thus emerges between corrections for convolution and non-
convolution effects. In the second term for example, imperfections
δεNC in the correction for detector effects are enhanced during
subsequent deconvolution.

The multiplicative cosmic shear systematics

M = 2

〈
R2

PSF

R2
gal

〉⎛⎝
〈
δ
(
R2

PSF

)〉
〈
R2

PSF

〉 + 2
〈δ(RNC)〉
〈Robs〉

⎞⎠

+
〈

R4
PSF

R4
gal

〉⎛⎝σ 2
[
R2

PSF

]
〈
R4

PSF

〉 + 4
σ 2[RNC]〈

R2
obs

〉
⎞⎠ (40)

plus bias terms proportional to the square of those already present
(therefore negligible if the bias is small). The second term 〈δRNC〉
reflects overall uncertainty in the model of non-convolution effects,
such as the density and characteristic release time of charge traps in
CCDs. These quantities may be stable over long periods of time, but
the error may vary as a function of object flux (hence redshift) if, in
this case, the CCD well-filling model is inaccurate. The fourth term
σ 2[δRNC] reflects unaccounted variation of an effect at different
positions within a detector. Depending on survey tiling strategies,
NC terms are likely to be largest on physical scales corresponding
to linear multiples of the chip size (see Cropper et al. 2012).

3.3 Imperfect shape measurement methods

In the previous sections we examined the impact of errors in the
measurements of the PSF and detector effects, but we implicitly
assumed that the observed galaxy moments are unbiased. In prac-
tice, the unweighted size Robs and shape εobs of a faint galaxy may
be subject to errors δRobs, δεobs for a whole variety of reasons in-
cluding miscentring, background gradients/structure, pixellization

and simply noise. We therefore need to consider also the impact
of imperfections in the measurements of the galaxies. This leads to
new contributions to the observed ellipticity:

γ̂ ≡ (P̂γ )−1 ε̂gal (41)

≈ εgal

Pγ

+ 1

Pγ

∂εgal

∂
(
R2

PSF

) δ
(
R2

PSF

)
+ 1

Pγ

∂εgal

∂εPSF
δεPSF

+ 1

Pγ

∂εgal

∂(RNC)
δ(RNC) + 1

Pγ

∂εgal

∂εNC
δεNC

+ 1

Pγ

∂εgal

∂
(
R2

obs

) δ
(
R2

obs

)
+ 1

Pγ

∂εgal

∂εobs
δεobs − δPγ

Pγ
2 εgal. (42)

The new partial derivatives of (34) are

∂εgal

∂
(
R2

obs

) = −R2
PSF

R2
gal

(εgal − εPSF)

Robs(Robs − RNC)
, (43)

∂εgal

∂εobs
= R2

gal + R2
PSF

R2
gal

. (44)

Alternatively, note that ∂εgal/∂Robs = −∂εgal/∂RNC. Including ob-
servational error, we thus find the shear measurement γ̂ has biases
given by STEP parameters (equation 11):

c = 1

Pγ

R2
PSF

R2
gal

⎧⎨⎩R2
gal + R2

PSF

R2
PSF

(δεobs − δεNC) − δεPSF

−
⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2 δRNC

Robs − RNC
+

δ
(
R2

obs

)
Robs(Robs − RNC)

⎞⎠ εPSF

⎫⎬⎭,

(45)

m = R2
PSF

R2
gal

⎧⎨⎩ δ
(
R2

PSF

)
R2

PSF

+ 2 δRNC

Robs − RNC
−

δ
(
R2

obs

)
Robs(Robs − RNC)

⎫⎬⎭
− δPγ

Pγ

. (46)

We have so far considered only shape measurement using un-
weighted moments. This approach greatly simplifies the calcula-
tions, but potentially limits the applicability to real data. This is
because the presence of any noise in an image formally leads to
infinite noise in the measurements of unweighted moments. It may
be feasible to measure (close to) unweighted moments in the special
cases of very bright stars, or of repeated detector effects, by stacking
data to suppress the noise.

It is never possible in practice to measure directly the unweighted
moments of faint galaxies, and one has to use weighted moments
instead. The optimal weight function to use is the one that maxi-
mizes the signal-to-noise ratio, which in turn implies that the weight
function closely resembles the galaxy profile. This is naturally done
by methods that fit parametric shape models to the data (e.g. Bridle
et al. 2001; Miller et al. 2007; Kitching et al. 2008). Moment-
based methods (e.g. Kaiser et al. 1995; Rhodes et al. 2000, here-
after KSB and RRG) instead construct sizes Rgal w and ellipticities
εgal w from quadrupole moments weighted by a radial Gaussian
function, the size of which is matched to the object. There are no
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simple expressions that relate Rgal and εgal in terms of observed
weighted moments, equivalent to the unweighted versions (31) and
(32). Derivations using weighted moments are complicated and in-
volve mixing of higher order moments (Kaiser 2000; KSB; RRG;
Réfrégier 2003; Melchior et al. 2011). For any individual galaxy,
however, it is possible4 to define without loss of generality various
P′ quantities to form a shear estimator from weighted moments:

γ̂w ≡ 1

Pγ

(
1 + 1

P ′
R

R2
PSF w

R2
gal w

)(
εobs w

P ′
εobs

− εNC w

P ′
εNC

)

− 1

Pγ

1

P ′
R

R2
PSF w

R2
gal w

(
εPSF w

P ′
εPSF

)
, (47)

where we have intentionally arranged terms to resemble equa-
tion (33). For individual galaxies, especially those with complex
intrinsic shapes, it can be that γ̂w 
= γ̂ , as long as averaged over a
large population of galaxies, 〈γ̂w〉 = 〈γ̂ 〉.

The P′ quantities fulfil two roles, and can even be expressed as
the product of discrete quantities:

P ′
x = WxPx. (48)

Both components of P ′
x are tensors, but they are nearly diagonal, so

for simplicity we shall treat them as scalars. The first component Wx

compensates for the weight function’s changes to moments, e.g.

R2
PSF w

R2
gal w

≡ WR

R2
PSF

R2
gal

, (49)

εPSF w ≡ WεPSF εPSF, (50)

etc. Numerical values of this component depend upon the shape
measurement method, but for small galaxies WR ∼ 1 as it governs a
ratio of similar quantities and Wε ∼ 1/2 (for all the ellipticities). The
second component Px encodes the way in which the effective PSF
is altered by the weight function, and its numerical values depend
upon the PSF properties. For a Gaussian PSF, all P values are exactly
equal to 1. This approximately holds for a smooth (e.g. ground-
based) PSF or a small PSF (or a large galaxy). For an Airy PSF, the
outer diffraction wings are damped by the weight function,5 leading
to large differences between weighted and unweighted quantities.
For large galaxies, the weight function will be extended and the
suppression is small. For small galaxies, size estimates are most
affected, and we find PR ∼ 2: the net effect of the weight function
is equivalent to reducing the PSF size. Ellipticities are less affected,
with Pwε ∼ 1 in any observing regime. This depends weakly on the

4 For example, the shear estimator in KSB (in the absence of non-
convolutive effects) is

γ̂w = (P γ
KSB

)−1
[
εobs w − P sm (P sm

PSF

)−1
εPSF w

]
,

where

P
γ
KSB = P sh − P sm (P sm

PSF

)−1
P sh

PSF.

The interpretation of such quantities is method specific. If γ̂ w ∼
(Pγ )−1(P ′

εobs
)−1εobs w, the middle factor can be interpreted as part of ei-

ther the polarizability (e.g. KSB; Massey et al. 2007c, use higher order
moments to construct (Pγ P ′

εobs
)−1), or as part of the ellipticity (e.g. Kaiser

2000; RRG, use higher order moments to convert weighted ellipticities to
unweighted ellipticities (P ′

εobs
)−1εgal w).

5 Consider the pathological example of a PSF consisting of a core plus a
ring at large radius. The ring lowers the perceived flux of a galaxy, but has
no effect on its size or shape as determined from weighted moments.

intrinsic ellipticity and size but, since we shall generally consider
limiting cases of small/faint galaxies, we shall henceforth treat these
factors as constants.

We now re-evaluate the additive and multiplicative biases, ac-
counting for the use of weighted moments. This could involve
replacing all mentions of observable sizes and shapes by their
weighted equivalents. However, for comparison with our earlier
results, and to eventually express engineering requirements on in-
strumentation, it is more convenient to continue to use unweighted
quantities. Substituting equations (49) and (50) into (47), we find

γ̂w ≡ 1

Pγ

(
1 + 1

PR

R2
PSF

R2
gal

)(
εobs

Pεobs

− εNC

PεNC

)

− 1

Pγ

1

PR

R2
PSF

R2
gal

(
εPSF

PεPSF

)
. (51)

This expression clearly demonstrates how weighted moments can
naturally suppress bias. However, this advantage comes at a price.
The evaluation of the P factors requires knowledge of higher order
shape moments, which can be well known for bright stars but are
especially noisy for faint galaxies. The absolute values of PεPSF ,
PεNC and Pεobs adjust the balance between different contributions
to the bias, but errors in those quantities are functionally identical
to errors in εPSF, εNC and εobs, which we have already considered.
Observational errors in PR propagate into a new source of bias, via

γ̂ w ≈ γ w + ∂ γ w

∂
(
R2

PSF

) δ
(
R2

PSF

)
+ ∂ γ w

∂εPSF
δεPSF

+ ∂ γ w

∂(RNC)
δ(RNC) + ∂ γ w

∂εNC
δεNC

+ ∂ γ w

∂
(
R2

obs

) δ
(
R2

obs

)
+ ∂ γ w

∂εobs
δεobs

+ ∂ γ w

∂PR

δ(PR) − δPγ

Pγ

γ w, (52)

where the derivatives of γ w gain pre-factors of 1/PR or 1/PRPε

compared to those of γ and

∂ γ w

∂PR

= − 1

PR

(
R2

gal

PRR2
gal + R2

PSF

)(
γ w + εPSF

Pγ PεPSF

)
. (53)

If the size of the PSF depends upon wavelength, this term in-
troduces a sensitivity to spatial variations in the colour of a galaxy
(whereby the PSF is different in the bulge and the disc; Voigt et al.
2012; Semboloni et al., in preparation). This is because multiple
galaxy profiles result in galaxies with identical observed moments,
so the estimate for PR becomes biased. Similar biases in PR also
arise in parametric fitting methods if the model does not reflect
galaxies’ true morphological characteristics (Voigt & Bridle 2010),
suffers from aliasing (Bernstein 2010) or is non-linear (Réfrégier
et al. 2012). In this paper we do not distinguish between these indi-
vidual origins, but consider all such effects part of a general method
bias.

We conclude that a shear estimator γ̂ w constructed from weighted
moments has STEP biases:

c = 1

Pγ PR

R2
PSF

R2
gal

⎧⎨⎩
(

PRR2
gal + R2

PSF

R2
PSF

)(
δεobs

Pεobs

− δεNC

PεNC

)
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− δεPSF

PεPSF

− εPSF

PεPSF

⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2 δRNC

Robs − RNC

+
δ
(
R2

obs

)
Robs(Robs − RNC)

+ PRR4
gal

R2
PSF(PRR2

gal + R2
PSF)

δPR

PR

⎞⎠⎫⎬⎭, (54)

m = 1

PR

R2
PSF

R2
gal

⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2 δRNC

Robs − RNC
+ μ

⎞⎠ , (55)

where

μ ≡ −
δ
(
R2

obs

)
Robs(Robs − RNC)

−PR

R2
gal

R2
PSF

{
δPγ

Pγ

+
(

R2
gal

PRR2
gal + R2

PSF

)
δPR

PR

}
(56)

is the component of bias due to the galaxy shape measurement
method. The STEP parameter q, which flags an (incorrect) quadratic
response to shear, could be produced by measurement errors that
depend on intrinsic ellipticity such as δεobs(εgal). Averaged over a
galaxy population, these are functionally identical to errors δPγ .

Observational errors are likely isotropic, i.e. 〈δεobs〉 = 0, and spa-
tially constant, i.e. in the absence of galaxy–galaxy autocorrelations
σ 2[R2

obs] = σ 2[|εobs|] = σ 2[Pγ ] = σ 2[PR] = 0. This general case
thus has additive cosmic shear systematics:

A = 1

P 2
RP 2

γ

〈
R4

PSF

R4
gal

〉
σ 2[|εPSF|]

P 2
εPSF

+ 1

P 2
RP 2

γ

〈⎛⎝P 2
R + R2

PSF

R2
gal

⎞⎠2〉
σ 2[|εNC|]

P 2
εNC

+ 〈|εPSF|2〉
P 2

RPγ
2P 2

εPSF

〈
R4

PSF

R4
gal

〉⎛⎜⎝
〈
δ
(
R2

PSF

)〉2

〈
R4

PSF

〉 +
σ 2
[
R2

PSF

]
R4

PSF

⎞⎟⎠

+ 4 〈|εPSF|2〉
P 2

RPγ
2P 2

εPSF

〈
R4

PSF

R4
gal

〉⎛⎝ 〈δRNC〉2〈
R2

NC

〉 + σ 2[RNC]

R2
NC

⎞⎠
+ 〈|εPSF|2〉

P 2
RPγ

2P 2
εPSF

〈
R4

PSF

R4
gal

〉
α2, (57)

where

α2 ≡
〈
δ
(
R2

obs

)〉2

〈
R4

obs

〉 +
〈

R4
gal

R4
PSF

〉〈⎛⎝ PRR2
gal

PRR2
gal + R2

PSF

⎞⎠2〉
〈δPR〉2〈

P 2
R

〉 .

(58)

The first term in α2 could arise due to pixellization effects, but
this will be zero for resolved imaging and deviations could be
measured only by changing the plate scale in a camera. Note that
if autocorrelations of galaxy shapes with themselves are included
in the correlation function analysis (see Section 2.1), the additive
cosmic shear systematics gain an extra white noise term σ 2

γ (zA, zB )
as in equation (18). The multiplicative cosmic shear systematics

become

M = 2

PR

〈
R2

PSF

R2
gal

〉⎛⎝
〈
δ
(
R2

PSF

)〉
〈
R2

PSF

〉 + 2
〈δ(RNC)〉
〈Robs〉 + 〈μ〉

⎞⎠

+ 1

P 2
R

〈
R4

PSF

R4
gal

〉⎛⎝σ 2
[
R2

PSF

]
〈
R4

PSF

〉 + 4
σ 2[RNC]〈

R2
obs

〉
⎞⎠. (59)

4 R E QU I R E M E N T S TO M E E T F U T U R E
S C I E N C E G OA L S

4.1 How much systematic bias is tolerable?

Total experimental error from any measurement is always a combi-
nation of systematic and statistical errors. Systematic bias (i.e. the
deviation of a measured value from the truth) can be reduced by e.g.
stabilizing a telescope or raising it above the Earth’s atmosphere.
Statistical error (i.e. the confidence interval allocated to a measured
value) is limited by the finite number of measurements within a
survey, and can be reduced by e.g. increasing survey volume. The
diagrams inset within Fig. 1 illustrate how an unrecognized system-
atic bias shifts measurements, which are drawn from a statistical
likelihood distribution around the offset value.

Classical astronomical survey design optimizes an observation
that is limited by systematic biases inherent to a technique or its
interpretation. This limitation drives surveys wider, deeper or to
higher resolution, until their statistical error becomes smaller than
the systematic bias. However, several surveys planned for the next
decade have scientific goals that require them to image the entire
sky outside the plane of the Milky Way. Further increasing survey
area is impossible, and increasing survey depth can be prohibitively
expensive: especially for space-based surveys, where mission cost
jumps in step functions with mirror size (bigger launch vehicles
become necessary) or survey duration (additional redundancy of
components). For these surveys, the statistical error is fixed and
the classical trade-off is inverted; the key question becomes how
much systematic bias is tolerable? We shall answer this quantita-
tively by considering the probability with which an experiment’s
reported measurement of a particular parameter could have been
obtained by an unbiased experiment. This is the overlap integral
between the likelihood distribution reported by an experiment, and
the likelihood distribution that would have been reported by an un-
biased experiment (i.e. the same distribution, recentred around the
parameter’s true value).6

Throughout this section, we shall consider statistical errors de-
scribed by a Gaussian of width σ . There are two ways in which a
systematic bias can be described. Following frequent use in the lit-
erature, and as illustrated in the upper inset panel of Fig. 1, we shall
first consider an experiment with an exact amount of bias, b. The
lowest curve in Fig. 1 shows the probability that a reported mea-
surement could have been sampled from the unbiased (re-centred)
likelihood. This is simply the (cross-hatched) overlap integral under

6 This is a frequentist argument based on p-value like statistics; a Bayesian
methodology, in which evidence ratios for a target model with and without
systematics could also be considered. We shall also only consider the one-
dimensional bias on a single parameter at a time (cf. Dodelson, Shapiro &
White 2006; Shapiro 2009; Shapiro et al. 2010).
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Figure 1. The effect of a systematic bias in an experiment, as a function of statistical error σ , assuming all likelihood distributions are Gaussian. The y-axis
is the chance that a reported experimental result is drawn from the reported likelihood distribution, centred around the true value. The two lower (black)
curves show this chance in the presence of some exact systematic bias b, for the reported statistical errors (lower) or total errors (upper). The top (blue) curve
shows this chance if b is instead a 95 per cent CL on the (unknown) true bias. In this case, the true bias could be zero, so the overlap with the ideal likelihood
distribution is always greater. Using this latter definition, we require b < 0.31σ for a 95 per cent overlap with the ideal PDF.

two Gaussians with variance σ 1 = σ 2 = σ and mean μ1 = 0, μ2 =
b:

pstat
overlap(b) =

∫ ∞

−∞
min

⎧⎨⎩ e
−x2

2σ2

√
2πσ 2

,
e− (x−b)2

2σ2

√
2πσ 2

⎫⎬⎭ dx (60)

= 1√
2πσ 2

(∫ |b|
2

−∞
e

−(x−|b|)2
2σ2 dx +

∫ ∞

|b|
2

e− x2

2σ2 dx

)
(61)

= 1 − erf

(
1

2
√

2

|b|
σ

)
. (62)

For the overlap to be at least 95 per cent (90 per cent), the absolute
value of bias |b| must be less than 0.13σ (0.25σ ). If bias is allowed
to be as large as the 1σ statistical error, the overlap integral is only
62 per cent, which is undesirable. One effect slightly improves this:
as illustrated in the lower inset diagram, reported error bars will
be enlarged to account for an estimate of the systematic bias. The
middle curve in Fig. 1 shows what happens if the achieved level
of bias were treated as a 95 per cent confidence limit (CL) on a
Gaussian systematic error budget, i.e. σ b = b/2. In this case, the
overlap integral becomes

ptotal
overlap(b) =

∫ ∞

−∞
min

⎧⎪⎨⎪⎩ e
−x2

2(σ2+σ2
b )√

2π(σ 2 + σ 2
b )

,
e− (x−b)2

2σ2

√
2πσ 2

⎫⎪⎬⎪⎭ dx, (63)

although this does not significantly affect p.
However, any systematic bias that is known exactly would already

have been subtracted from a measurement! We shall now re-interpret
b as the 95 per cent CL on the absolute value of an unknown bias. A
Gaussian distribution of possible biases with mean zero and width

σ b = b/2 sometimes creates small or even zero bias, so the overlap
of reported and ideal measurements is greater. Marginalizing over
this distribution, the top curve in Fig. 1 shows

p
marginalized
overlap (b) = 1√

2πσ 2
b

∫ ∞

−∞
e

−b′2
2σ2

b ptotal
overlap(b′) db′. (64)

Achieving a 95 per cent (90 per cent) probability that a reported re-
sult could have been drawn from the likelihood distribution re-
centred on the true value now requires |b| < 0.31σ (0.62σ ). Only
69 per cent overlap arises if the systematic and statistical error bud-
gets are equal (σ b = σ ). We shall henceforth require uncertain
biases to have a 95 per cent CL that is less than 31 per cent of the
1σ expected statistical error.

4.2 Propagation of shear measurement errors to biases on
cosmological parameters

We now propagate hypothetical shear measurement errors
A(�, zA, zB ) and M(�, zA, zB ) from Section 3 into biases on de-
rived cosmological parameters, via the Fisher matrix bias formalism
(Taylor & Watts 2001; see also Amara & Réfrégier 2007; Kitch-
ing et al. 2009b). In particular, we concentrate on measurements
of the dark energy equation of state parameter w or its derivative
wa (Chevalier & Polarski 2001; Linder 2003), and marginalize over
other parameters. By requiring that the 95 per cent CL on bias is less
than 31 per cent of the statistical errors afforded by Poisson noise in
a finite survey volume (see Section 4.1), we obtain requirements on
the accuracy with which the PSF must be modelled, detector effects
must be corrected and galaxy shapes must be measured. This is
more stringent than the work of Amara & Réfrégier (2008), who
required bias less than 100 per cent of statistical error.

 at D
urham

 U
niversity L

ibrary on June 27, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


670 R. Massey et al.

We assume a baseline 15 000 deg2 cosmic shear survey re-
solving 30 galaxies per square arcminute with median redshift of
1.0 and split into 10 tomographic redshift bins. This matches the
configuration of the proposed Euclid mission (Laureijs et al. 2011),
and is likely to be similar to any proposed Stage IV survey: for exam-
ple, LSST proposes to survey 18 000 deg2 with an effective density
of 40 galaxies per square arcminute (Jee & Tyson 2011; Bradshaw
et al. 2012). Das et al. (2011) describe the effect of perturbing the
parameters of the baseline survey in a similar analysis.

We use the ICOSMO Fisher matrix software (Kitching et al. 2009b;
Réfrégier et al. 2011) to calculate the concordance 
CDM cosmic
shear power spectrum C(�, zA, zB) in a top-hat basis set (200 bins)
spanning scales 10 < � < 5000 and every pair of redshift bins.
Henceforth, �, zA and zB refer to the median values of the population
of galaxies within these bins. We assume the Limber approximation,
and neglect any power spectrum due to intrinsic alignments. Using
only weak lensing measurements, such an experiment can measure
w with a 1σ , one-parameter statistical error of 0.065, and wa with
a statistical error of 0.41.

4.3 Constant additive and multiplicative shear measurement
bias

To first explore the consequences of the simplest possible systematic
errors, we first impose upon each measurement of C(�) a constant
additive shear measurement bias A (or σ 2

c ) and a constant multi-
plicative shear measurement bias M (or m). This simultaneity of
multiplicative and additive biases has not been explored before, with
previous studies in the literature considering the imposition of only
one type of systematic at a time. Note that although σ 2

c is positive by
definition, and m is almost always negative in practice (e.g. Bridle
et al. 2010), we explore positive and negative values in both cases
because if their values are known, they would be removed from data
(or added to models). The only important parameter is the residual
after this process, i.e. the accuracy to which A and M are known.
By definition, this residual is equally likely to be either positive or
negative.

We find that there is a degeneracy between the two types of bias,
in terms of the way they influence constraints on the dark energy
equation of state parameter w (Fig. 2, top panel). Indeed, if A and
M have the same sign, they can cancel each other out to produce
no net bias on w. However, the tuning of this cancellation is specific
to the parameter being measured: the degeneracy is completely
different for measurements of wa, �m or σ 8.

Given our first order expansion, it is not surprising that the sur-
face of Fig. 2 is approximately fitted by a plane b/σ ≈ −0.093 −
3.9m + 3.3 × 1010σ 2

c . Thus, if the signs of A and M are not known
a priori, guaranteeing |b| < 0.31σ requires

|m| + 8.6 × 109
∣∣∣σ 2

c

∣∣∣ � 0.10. (65)

Whilst surprisingly large constant m can be acceptable for measure-
ments of w (since MC(�) does then not resemble ∂C(�)/∂w), we
again note that this is not true for measurements of other cosmolog-
ical parameters. Most importantly, we note the necessity for joint
requirements onA andM. Whenever requirements are placed onA
when assuming M ≡ 0 or vice versa, one degenerate error budget
is being spent twice. The two requirements should be halved and,
since the bias surface is well fit by a plane, the two requirements
can be linearly traded against each other. This degeneracy has not
been taken into account by earlier work.

Figure 2. The (absolute value of) bias on measurements of the dark energy
equation of state parameters w (colour and solid contours) and wa (dot-
ted contours) from weak lensing surveys with multiplicative and additive
shear measurement systematics. Bias is shown as a multiple of the expected
statistical error σ , and contours are drawn at the same values as in Fig. 1.
Top panel: constant systematics m and σ 2

c . Bottom panel: one realization
of variable systematics M(z) and A(�), as described in the text (note the
change of scale).

4.4 Simple forms of additive and multiplicative shear
measurement bias

As discussed in Section 3, systematics often affect some physical
scales more than others, and it is typically more difficult to measure
the shapes of distant (small, faint) galaxies than nearby (big, bright)
ones. One feasibly more realistic functional form for non-constant
additive systematics is

A(�) = a0

(
1 + �

�0

)β2−β1
(

�

�0

)β1

, (66)

where �0 = 1000, β1 = −1.5, β2 = −3 (equation 29 of Amara et al.
2010). A feasible functional form for multiplicative systematics is

M(zA, zB ) = m(zA) + m(zB ) + m(zA) m(zB ), (67)

where

m(z) = m0
2

π
(1 + z)βm tan−1(αm(z − zT)), (68)
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with αm = 10, βm = 1.5 and a transition in sign at zT = 1 (equation 20
of Amara & Réfrégier 2008).

The bias surface for this parametrization (Fig. 2, bottom panel)
is well fit by a plane b/σ ≈ 0.031 + 110m0 − 7.5 × 1010a0. This
means that, while the error budget,

|m0| + 6.7 × 108|a0| � 2.8 × 10−3, (69)

must again be split between additive and multiplicative systematics,
the allocations can still be traded linearly against each other. Note
that absolute requirements on parametric variables a0 and m0 are
tighter than those on σ 2

c and m partly because the unnormalized
functions are much lower than unity, and partly because A and
MC are now more similar to ∂C/∂w.

4.5 General forms of additive and multiplicative shear
measurement bias

Since the real scale dependence of systematics will remain unknown
for any survey (even after its completion), we now use a Monte Carlo
approach (cf. Kitching et al. 2009a) to explore all possible func-
tional forms of A and M. We explore this very high dimensional
parameter space separately for each type of bias, but remember the
caveat about duplicated error budgets and the necessity/ability to
trade between requirements on each. In general, requirements will
emerge upon the functional forms of A and M. For tractability, we
collapse each function to a single number:

A ≡
∑

z bins
1

2π

∫ �max

�min
|A(�, zA, zB )|�2d ln �∑

z bins
1

2π

∫ �max

�min
�2d ln �

, (70)

M ≡
∑

z bins
1

2π

∫ �max

�min
|M(�, zA, zB )|�2d ln �∑

z bins
1

2π

∫ �max

�min
�2d ln �

. (71)

Thus we generalize σ 2
sys in Amara & Réfrégier (2008) to 3D cor-

relation functions, and include a renormalization, by way of the
denominator, that reduces sensitivity to changes in the adopted �-
range. Values of these performance indicators are shown on the right
and upper axes of Fig. 2. For our baseline survey, the denominator
in (70) and (71) is 55 × 9.0 × 105. For the shorter �-range used
by Gravitational Lensing Accuracy Testing 2010 (GREAT10), the
denominator is 1.8 × 105. Other possible choices for the weighting
inside the integral, and the slightly different approach required for
practical calculations in GREAT10, are discussed in Appendix B.

To span the space of possible systematics functions, we generate
100 000 random realizations ofA(�, zA, zB ); for now, we setM ≡ 0
assuming conservatively that generic systematics contribute equally
to all scales and redshift bins, we generate random systematics by
drawing the value of σc(�, z) in each � and z bin from a Gaussian
PDF centred about 0. The width of the Gaussian remains fixed as
a function of � and z, and we repeat this process several times with
increasingly wide Gaussians (spanning a range that includes cur-
rent performance and future requirements). We then smooth σc with
a 2D boxcar of width 50 (of 200) � bins and 3 (of 10) z bins, and
constructA(�, zA, zB ) ≡ σc(�, zA)σc(�, zB ). The smoothing reflects
the typically continuous form of systematic effects; it is important
here because (unrealistic) realizations of systematics that are un-
correlated between adjacent bins cause less bias in cosmological
parameters. The precise amount of smoothing (particularly in the
� direction) affects requirements on A by around 15 per cent of the
nominal value. While this precision is adequate for current planning

purposes, detailed analysis in the future will require more accurately
constrained forms of A and M to be propagated.

We propagate our random realizations of biases on the cosmic
shear power spectrum into biases on w using the Fisher matrix
bias formalism as before. The largest biases are generated when
the shape of A(�, zA, zB ) is close to that of ∂C(�, zA, zB )/∂w. To
ensure that the bias on w is less than 31 per cent of the statistical
error for 95 per cent of the random realizations, we require

A � 1.8 × 10−12 (72)

(see Fig. 3), including a factor of 1/2 for a non-zero budget on
M. This general requirement is a factor of only ∼3 tighter than
the requirement if A is constant (see the upper panel of Fig. 2 or
the dotted line in Fig. 3a), demonstrating how bad constant additive
systematics can be. Conversely, it is a factor of ∼3 looser than if A
is restricted to the family of curves parametrized by equation (66)

Figure 3. The bias on measurements of the dark energy equation of state pa-
rameter w from weak lensing surveys with (top panel) additive and (bottom
panel) multiplicative shear measurement systematics. Each data point shows
a random realization of systematics with a unique dependence upon angular
scale and redshift (for clarity, only one in three are plotted). The dotted diago-
nal lines show the bias on cosmological parameters if the shear measurement
systematics are constant. The solid diagonal curves show limiting values that
include 95 and 99 per cent of random realizations with a given value of A
or M. An all-sky 3D cosmic shear survey will only be deemed successful if
the measurement bias is � 31 per cent of the statistical measurement error.
At 95 per cent CL, this will require (vertical dashed line) shear measurement
better than A � 3.5 × 10−12 if M ≡ 0, and M � 8.0 × 10−3 if A ≡ 0.
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(see lower panel of Fig. 2), which was a pathological case in the
worst 1 per cent of random configurations.

For the smallest resolved galaxies Robs ≈ 1.25RPSF (i.e. Rgal =
0.75RPSF), in the regime of the most elliptical PSF typically obtained
from astronomical instruments |εPSF| ≈ 0.1, and with an Airy PSF
such that PR ∼ 2, equations (57) and (72) together become

A ≈ 0.79σ 2[|δεPSF|] + 5.2σ 2[|δεNC|]

+ 0.0023

⎧⎪⎨⎪⎩
(
δ
(
R2

PSF

)2)
R4

PSF

+
σ 2
[
R2

PSF

]
R4

PSF

⎫⎪⎬⎪⎭
+ 0.0091

{
(δRNC)2

R2
NC

+ σ 2[RNC]

R2
PSF

}

+ 0.0023

(
δ
(
R2

obs

)2)
R4

obs

� 1.8 × 10−12. (73)

Note that δεPSF at least is likely to have two components that each
contribute to the total bias.

We then generate 100 000 random multiplicative shear measure-
ment biases m(�, z) in the same way and with the same smoothing.
We propagate these into multiplicative cosmic shear systematics
M(�, zA, zB ) via equation (67), and hence into biases on w. To
ensure measurement bias is less than 31 per cent of statistical errors
for 95 per cent of the Monte Carlo realizations, we require

M � 4.0 × 10−3 (74)

(see Fig. 3b), including a factor of 1/2 for a finite error budget
on A. This is a factor of ∼20 tighter than the requirements if M
is constant (see the lower panel of Fig. 2 or the dotted line in
Fig. 3b), demonstrating again that a constant multiplicative shear
measurement bias has surprisingly little effect on w constraints (note
that it does strongly affect constraints on �m and σ 8). The amount
by which the random systematics are smoothed (particularly in the
z direction) affects requirements on M by around 10 per cent of the
nominal value. For the smallest resolved galaxies, equations (59)
and (74) become

M ≈ 1.8

〈
δ
(
R2

PSF

)〉
〈
R2

PSF

〉 + 3.6

〈
δRNC

Robs

〉
+ 2〈μ〉 � 4.0 × 10−3 (75)

plus redundant variance terms that are already constrained more
tightly by equation (73), so which we drop here.

A top-down analysis can now allocate error budgets to each of
the components of A and M, as expanded in equations (73) and
(75). In the absence of other information, a natural choice would
perhaps allocate budgets in, perhaps in inverse proportion to the
coefficient by which they affect the overall science. Cropper et al.
(2012) provide one such breakdown of these error budgets that is
feasible in a dedicated space mission.

4.6 Comparison to other work

Our calculations differ from those of Amara & Réfrégier (2008),
Chang et al. (2012) and Cardone et al. (in preparation) by using
a form-filling approach to consider any possible �-dependence of
systematics, rather than just parametric forms. Amara & Réfrégier
(2008) also assumed only a 2D cosmic shear analysis, with a slightly
lower redshift distribution of source galaxies, and considered power
spectrum measurements up to scales � < 20 000; we exclude such
non-linear scales because poorly understood effects of baryonic

physics are likely to make them difficult to interpret (Kitching,
Heavens & Miller 2011a; Semboloni et al. 2011). The denominator
we introduced in equations (70) and (71) keeps our new A and M
performance indicators independent (within a few per cent) of this
choice of �-range. However, if future understanding of small-scale
baryonic effects could indeed extend cosmic shear measurements
to � = 20 000, statistical errors σ would shrink by ∼10 per cent.
Exploiting this new information would require correspondingly
smaller shear measurement biases.

We can mimic the 2D notation of Amara & Réfrégier (2008)
by multiplying our 3D requirement (72) by its denominator, di-
viding it by the number of (in our case 55) redshift bin pairs that
we considered, and including small corrections. This process plus
small corrections for a few other differences (�-range, z-distribution,
|b|/σ < 1, 100 per cent CL) yields a pseudo-2D requirement a factor
of ∼2 looser than their σ 2

sys � 10−7 per redshift bin. That difference
presumably arises from the details of the redshift slicing, and we
shall not consider it further.

5 C A N T H E R E QU I R E M E N T S B E M E T ?

5.1 Current best shear measurement performance

The performance of shape measurement algorithms can be tested on
simulated astronomical images that contain a known shear signal.
Blind competitions include the community-wide STEP (Heymans
et al. 2006; Massey et al. 2007b) and GREAT (Bridle et al. 2010;
Kitching et al. 2011b) programmes; these have been and are con-
tinuing to be supplemented by efforts by individual groups targeted
towards specific surveys. Assessed using the GREAT metric Q,
these programmes have yielded a steady improvement by a factor
of ∼3.5 yr−1 over the past decade (Kitching et al. 2012b).

GREAT10 is the most recent blind competition, and the first to
employ variable shear simulations, which are required to test scale-
dependent issues. The best methods entered into GREAT10 achieve
A ∼ 2.7 × 10−12 and M ∼ 3.1 × 10−3 on bulge+disc galaxies at
detection signal-to-noise ratio (S/N) = 40 (table 4 of Kitching et al.
2012a, in which these values are expressed as

√
A and M/2, but

see Appendix B for a discussion of slight differences in approach).
For these fairly bright galaxies, current performance surpasses the
requirement on M and the requirements on A and M can be traded
against each other to also be met in combination. Note, however,
that this shape measurement inaccuracy uses all but 1 per cent of the
entire error budget. GREAT10 assumed a spatially/temporally vary-
ing PSF,7 but that it was perfectly known, and that non-convolution
effects could be perfectly corrected. Further development in shape
measurement will be necessary if part of the error budget is to be set
aside for e.g. PSF or charge transfer inefficiency modelling errors.

Faint galaxies are harder to measure, but must be included to
reach Stage IV surveys’ statistical goals on cosmological parameter
estimation. At detection S/N = 20, the best methods now achieve
A ∼ 2.1 × 10−11 and M ∼ 5.6 × 10−3; at detection S/N = 10 they

7 The GREAT10 simulations used ground-based PSF morphologies, but
STEP3 (see http://www.roe.ac.uk/ heymans/step/step3_results.html) con-
cluded that the only factor affecting shear measurement performance was
the ratio of the PSF size to the pixel size. STEP3 was a space-based equiv-
alent of STEP2, run as another public, blind competition. Its results were
never published because they were essentially identical to those from STEP2.
The main conclusion was that equivalent shear measurement performance
could obtained for small galaxies from space as for similarly resolved larger
galaxies from the ground, irrespective of PSF morphology.
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achieveA ∼ 7.4 × 10−11 andM ∼ 1.1 × 10−2. If all galaxies were
this faint, exploiting them (consuming all of the available error
budget) would exceed requirements in

√
A by a factor of 3.5–6.5

and in M by a factor of 1.4–2.8. If an analysis were to proceed
using extant shear measurement methods, accounting for residual
systematic biases would necessarily enlarge the reported error bars –
if all galaxies were at detection S/N = 10, 95 per cent of realizations
of bias would simultaneously satisfy |b|/σ < 3.7 for A and |b|/σ <

1 for M (see Fig. 3).
Shape measurement algorithms can be improved either by fun-

damental progress or by calibration on accurate simulated images.
Extrapolating the current rate of fundamental development (Kitch-
ing et al. 2012b) suggests that, with even minimal continued devel-
opment, the required algorithmic performance will be surpassed,
and substantial margin will be achieved, well before the need to
analyse Stage IV surveys. Indeed, noise bias (Kacprzak et al. 2012;
Melchior & Viola 2012) was unaccounted for by all GREAT10
methods, but appears in faint galaxies at a level consistent with its
being the dominant source of bias (Réfrégier et al. 2012). Proper
treatment of noise bias will therefore improve performance for faint
galaxies. Several additional improvements have also been suggested
(e.g. Bernstein 2010; Viola, Melchior & Bartelmann 2011). For the
first time, methods are thus emerging with sufficient accuracy to
reliably and fully exploit the statistical potential of Stage IV cosmic
shear surveys. Simulations could then be used solely as external
verification tests of data analysis pipelines. Dedicated simulation
efforts are continuing inside the teams of all weak lensing surveys,8

and the GREAT3 programme (Mandelbaum et al., in preparation) is
currently being designed by a worldwide collaboration of the weak
lensing community.

5.2 Empirical diagnosis of residual additive systematics

Although the greatest improvement is formally required in additive
cosmic shear measurement biases, they are potentially the least
troublesome. Many additive systematics can be internally diagnosed
within a shear catalogue, and those that do arise can potentially even
be calibrated out at the catalogue level. This procedure has a long
heritage in Hubble Space Telescope (HST) analyses (e.g. Hoekstra
et al. 1998, 2011; Rhodes et al. 2004, 2007; Miralles et al. 2005;
Jee et al. 2007, 2011; Schrabback et al. 2010).

5.2.1 Calibrating PSF model errors

The best way to internally diagnose PSF modelling errors δRPSF

and δεPSF is to bootstrap real stellar shapes. The PSF model can
be constructed from all but a few of the available stars, then inter-
polated to the positions and colours of the remaining stars as well
as the galaxies. Any offset between the predicted and measured
values will be a sum of δRPSF + δRobs and δεPSF + δεobs, but the
observational contributions should average to zero over a large pop-
ulation of stars. The number of degrees of freedom in PSF variation
due to thermomechanical instability (Jarvis & Jain 2004; Rhodes
et al. 2007; Schrabback et al. 2010), atmospheric turbulence (Jarvis,
Schechter & Jain 2008) or changing gravity load (Iye et al. 2004)
can also be usefully compared to engineering predictions from ray
tracing through optics models (Krist 1995; Hook & Stoehr 2008).

8 See www.darkenergysurvey.org, www.lsst.com, www.euclid-ec.org,
http://www.naoj.org/Projects/HSC/, Rhodes et al. (2012).

A vital test of successful PSF deconvolution is obtained from the
correlation of measured shears with the PSF ellipticity. No residual
signature of the system’s PSF should find its way into the galaxy
shape catalogue, so these should be uncorrelated. However, in a
flawed shear measurement, taking unweighted ε̂PSF ≡ εPSF + δεPSF

and γ̂ w from equations (54) and (55), we obtain

〈
γ̂ w · ε̂PSF

〉 =
〈|εPSF|2

〉
Pγ PRPεPSF

R2
PSF

R2
gal

⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2 δRNC

Robs − RNC

+
δ
(
R2

obs

)
Robs(Robs − RNC)

+ PRR4
gal

R2
PSF

(
PRR2

gal + R2
PSF

) δPR

PR

⎞⎠
− 1

Pγ PR

R2
PSF

R2
gal

(
〈δεPSF〉2 + σ 2[|εPSF|]

PεPSF

)
+ 〈γ w · δεPSF〉 (76)

plus many more terms of order O(δ2), including some proportional
to equations (A4) and (A5). While it would be difficult to identify
and then calibrate out any individual contribution from this mixed
observable, it can be used as an invaluable post facto check that other
techniques have successfully removed almost all of the additive
cosmic shear systematics.

5.2.2 Calibrating residual detector effects

Non-convolution detector effects can accumulate in space-based
instruments over time, as radiation damages the hardware. Thus
any long-term, monotonic drift in the mean 〈Robs〉 or 〈εobs〉 within
each exposure – or, even better, within a calibration field that can
be returned to – indicates a non-zero δRNC or δεNC.

Many detector effects also exhibit a characteristic dependence
upon chip position. This is most notable for charge transfer inef-
ficiency in CCDs, where the image degradation increases linearly
with distance y from the readout register (Massey et al. 2010a),
where ymax is the size of the CCD. In this case, correlating shear
measurements with chip position, or fitting shear measurements as
a function of chip position, measures non-zero:

〈γ w〉|ymax = 1

Pγ PRPεNC

PRR2
gal + R2

PSF

R2
gal

δεNC|ymax

− 2 〈εPSF〉
Pγ PRPεPSF

R2
PSF

R2
gal

δRNC

Robs

∣∣∣∣
ymax

− 1

Pγ PRPεPSF

R2
PSF

R2
gal

{〈δεPSF〉

+ 〈εPSF〉
⎛⎝ δ
(
R2

PSF

)
R2

PSF

+
δ
(
R2

obs

)
Robs(Robs − RNC)

+ PRR4
gal

R2
PSF(PRR2

gal + R2
PSF)

δPR

PR

)}
, (77)

where we assume δεNC|ymax and δRNC|ymax are constant over a suf-
ficiently long time period to gather statistically significant mea-
surements. If 〈εPSF〉 = 0 and all other (PSF, observational) errors
were zero, this would be a direct test of δεNC. However, the reality
that (77) contains terms mixed with residual PSF modelling errors
has made analysis of HST data challenging. Only by first verifying
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the PSF model with tests from Section 5.2.1 (Rhodes et al. 2007;
Schrabback et al. 2010; Hoekstra et al. 2011) were able to subtract
this measurement of δεNC from a shear catalogue, following equa-
tion (34). However, such an empirical, catalogue-level correction
should be seen as a last resort because it addresses neither δRNC nor
the mixing between sources of error whereby an imperfect removal
of additive systematics can introduces an (undiagnosable) multi-
plicative cosmic shear systematic. A much more robust technique,
demonstrated by Leauthaud et al. (2010), is to apply a physically
motivated correction scheme at the pixel level as the first process
during data reduction (e.g. Anderson & Bedin 2010; Massey 2010).
The performance of this technique can again be tested via equation
(77), and improved by iteration.

5.3 Impact of residual multiplicative systematics

Multiplicative cosmic shear measurement biases are potentially
the most troublesome, because there is no known cosmology-
independent way to accurately diagnose residual multiplicative bias
internally within a data set (except that it may leak weakly into a
small unphysical B-mode signal, Vale 2006, but so do many things).
Analyses must either rely upon theoretical calculations of the shear
calibration, or test a measurement pipeline on simulated images
that contain a known signal and rely upon the veracity of those
simulations. Since multiplicative systematic errors are thus more
problematic than additive errors, and because the requirements on
them are similarly hard to meet, we shall investigate them more
carefully.

Rather than considering galaxies all of the same size and de-
tection S/N, we shall now consider a realistic, full population of
galaxies. Some galaxies are bigger and brighter than others, and it
will be easier to measure their shapes. The form of equation (55)
suggests that multiplicative shape measurement biases predomi-
nantly depend upon the relative size of the PSF and the surveyed
galaxies

m ≈ m0 + m1

PR

(
R2

PSF

R2
gal

)
. (78)

This characteristically quadratic performance was indeed apparent
in many of the methods tested in STEP29 (Massey et al. 2007b,
top right-hand panels of fig. 7). Similar behaviour is suggested in
GREAT08 (Bridle et al. 2010, fig. C3) and is explicitly fitted in
GREAT10 (Kitching et al. 2012a, appendix B5) as

m ≈ m0 + αR2
PSF

〈R2
gal〉

〈R2
PSF〉

R2
PSF

〈R2
gal〉

, (79)

where 〈R2
PSF〉 = 3.42 pixels2, 〈R2

gal〉 ≈ 3.552 pixels2 (averaging the
contribution of the bulges and discs), and the best methods achieve
αR2

PSF
≈ 0.005 (Kitching et al. 2012a, fig. 5). Note that GREAT10’s

fiducial PSF had a Moffat profile, for which PR ∼ 1. Diffraction-
limited surveys with PR ∼ 2 will likely achieve better performance
although, since that was only tested in a subset of the GREAT10
data whose results were dominated by method bias, we shall con-
servatively assume only the performance explicitly demonstrated.

We showed in Section 4.3 that constraints on the nature of dark
energy are largely insensitive to a constant multiplicative bias m0.

9 In STEP2, methods that applied an overall ‘calibration factor’ from analy-
sis of independent simulated images (e.g. TS and several not plotted) appear
to have achieved 〈m〉 ≈ 0 by adjusting m0 such that m(〈Rgal〉) = 0 for galaxies
of average size.

The achieved value of m1 is thus likely to be the driving requirement
for success. We shall baseline a currently achievable performance
of m0 ≈ 0 and m1 ≈ 0.006. We shall then fold through the observed
distribution of galaxies sizes to consider the prospects of two generic
regimes proposed for future surveys:10 a space-based mission with
a PSF full width at half-maximum (FWHM) of 0.2 arcsec and a
ground-based telescope with a FWHM seeing of 0.7 arcsec.

5.3.1 Two-dimensional cosmic shear

To quantify the typical size of galaxies in the Universe as a function
of magnitude, we measure the sizes of galaxies in i775W-band obser-
vations of the HST Ultra Deep Field (UDF; Beckwith, Somerville &
Stiavelli 2003) (Fig. 4a). To compute the approximate intrinsic size
of the galaxies, we assume that their profiles are Gaussian (with a
FWHM equal to their measured FWHM), and that the Advanced
Camera for Surveys (ACS) PSF has a FWHM of 0.1 arcsec. Fainter
galaxies are smaller (Fig. 4b) but, down to i775W � 26, most are
intrinsically larger than the ACS PSF.

Many more galaxies are resolved (Robs > 1.25RPSF) by the hy-
pothetical space-based mission than the hypothetical ground-based
survey (Fig. 4c). Crucially, most galaxies in space-based observa-
tions are not only resolved but very well resolved. Following (78),
this naturally leads to a better shear measurement bias (Fig. 4 d).
For a full, realistic population of source galaxies in a 2D cosmic
shear survey from space, current shear measurement performance
satisfies requirement (74), in the absence of PSF variation or de-
tector effects. Any subsequent improvement will provide increased
margin for imperfect PSF and detector models.

Ground-based surveys face two problems. First, a greater im-
provement in shape measurement techniques is required for them to
reach their full potential than space-based surveys (Fig. 4 d). This is
simply because of the difficulty resolving galaxies from the ground,
without even taking into account the much harder task of modelling
the PSF due to a turbulent atmosphere and more variable physical
conditions. Secondly, even in extremely deep images covering the
entire sky, not enough galaxies are resolved (Robs > 1.25RPSF) to
obtain statistical measurement errors on w competitive with other
techniques (Fig. 4c). More galaxies could be included in an analysis
by lowering the size cut,11 for example to Robs > 1.1RPSF. Increasing
the density of galaxies reduces statistical measurement error, but at
a cost of even more rapidly increasing systematic bias, such that
current methods do not meet requirements.

5.3.2 Three-dimensional cosmic shear

Three-dimensional cosmic shear analysis requires measurements
of both shear and redshift for each galaxy, and for the shears to
be measured without (even relative) bias as a function of redshift
(Kitching et al. 2011a). To estimate this bias in a real population of
galaxies, we use photometric redshift estimates for 20 < i775W <

10 A survey’s effective RPSF may be a complicated function of the system
PSF at different times. Some state-of-the-art shear measurement algorithms
downweight the contribution from exposures with poor seeing. This im-
proves the effective RPSF, at a cost of decreased imaging depth.
11 It is far more effective to add small galaxies than faint ones, especially for
a ground-based survey, because faint galaxies are also so much smaller. In
practice, our crude step-function cut is also usually replaced by a smoothly
varying weight function (Hoekstra, Franx & Kuijken 2000); the result of
this will lie between the two extremes we have considered.

 at D
urham

 U
niversity L

ibrary on June 27, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Origins of weak lensing systematics 675

Figure 4. Prospects for 2D weak gravitational lensing surveys. Panel (a):
the observed size Robs and i-band magnitude of objects in the UDF. The
vertical dashed line indicates the size of the ACS PSF. Panel (b): galaxies’
average intrinsic size Rgal as a function of magnitude, under the assumption
that the galaxies and PSF have Gaussian profiles. The error bars indicate
the dispersion in Rgal. Panel (c): the cumulative number density of resolved
galaxies as a function of (limiting) magnitude, with sizes Robs > 1.25RPSF

(thick lines) or Robs > 1.1RPSF (thin lines). The dashed lines correspond
to a space-based mission with a FWHM = 0.2 arcsec for the PSF. Note
that Euclid’s wide-band observations to magnitude 24.5 correspond roughly
to i775W ≈ 25.2 (vertical dotted line). The solid curves are for a typical
ground-based PSF with FWHM = 0.7 arcsec. Panel (d): predicted shear
measurement bias for the best current methods, averaged over the population
of resolved galaxies. Requirement (74) is shown as a horizontal dotted line,
assuming M ≈ 2m (17).

26.5 galaxies in the HST UDF by Coe et al. (2006). The distribution
of best-fitting redshifts peaks around z ∼ 0.5 but also samples a
long tail out to z ∼ 3 (Fig. 5a). Beyond redshift z ∼ 3, the scarcity
of UDF galaxies makes our statistics unstable.

The mean and rms apparent size of galaxies decrease noticeably
above z ∼ 1.5–2 (Fig. 5b). Multiplicative shear measurement bias
will therefore get slightly worse at high redshift (Fig. 5c). For a
space-based survey, meeting requirements in every redshift bin will
demand algorithms with multiplicative biases a factor of 1.8–2.2
better than current methods (which could come from calibration on
very accurate simulated images). Note that this analysis is com-
pletely independent of that in Section 5.1. That their conclusions
are so consistent lends support to both methodologies.

Ground-based observations are more profoundly affected by the
decrease in galaxy size at z � 1.5. Very deep images will help,
because some fraction of systematics is doubtless due to noise bias

Figure 5. Prospects for 3D weak gravitational lensing surveys. Panel (a):
the density of galaxies as a function of photometric redshift zphot for galax-
ies with 20 < i775W < 26.5 (results do not depend strongly on the choice
of limiting magnitude). Panel (b): average galaxy size 〈Rgal〉 as a function
of redshift, under the assumption that the galaxies have Gaussian profiles.
The error bars indicate the dispersion in Rgal. Panel (c): multiplicative shear
calibration bias m as a function of redshift for galaxies with sizes Robs >

1.25RPSF (thick lines) or Robs > 1.1RPSF (thin lines). The dashed line cor-
responds to a space-based mission with a PSF of FHWM = 0.2 arcsec, and
the solid curve is for typical ground-based seeing with FHWM = 0.7 arcsec.
Requirement (74) is shown as a dotted line, assuming M ≈ 2m (17).

(Réfrégier et al. 2012). However, a dramatic improvement in shear
measurement methods will be required for ground-based surveys to
span the high redshifts needed to probe the growth of structure. As
before, this argument is based purely on the small size of galaxies
compared to a ground-based PSF, and does not take into account
additional challenge of modelling the more variable ground-based
PSF.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have derived expressions showing how various sources of er-
ror in galaxy shape measurement propagate into additive biases A
(equation 57) and multiplicative biases M (equation 59) on cosmic
shear results. Additive biases include a contribution from misesti-
mation of a telescope’s PSF shape, and multiplicative biases include
misestimation of the PSF size. This agrees with the behaviour gener-
ically seen in empirical tests of shear measurement methods. For
the first time, we have also propagated into cosmic shear results
the consequences of imperfect correction for non-linear detector
effects, and imperfect image processing algorithms.

We have ascertained the maximum level of additive biasesA(�, z)
(equation 72) and multiplicative biases M(�, z) (equation 74) that
can be tolerated by a next generation cosmic shear survey attempt-
ing to constrain the dark energy equation of state parameter w to
within 0.065 (68 per cent CL). Cosmic shear measurements of w
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are surprisingly insensitive to a constant multiplicative bias. To ex-
plore more generic scale- and redshift-dependent systematic biases,
we have used a form-filling technique; based upon the 95 per cent
CL averaged equally over all possible functional forms, we define
convenient requirements on mean A and M. Cropper et al. (2012)
distribute this overall requirement into budgets on the individuals
sources of error (PSF knowledge, detector knowledge, accuracy of
shape measurement algorithms) in an allocation that is suitable for
a real space mission.

We compare our requirements on galaxy shape measurement soft-
ware to the performance seen recently in the public, blind GREAT10
challenge. Extant shear measurement methods meet both require-
ments for a Stage IV weak lensing surveys, for bright galaxies at
detection S/N = 40 or for a 2D cosmic shear survey from space in
which the contributions from a large population of galaxies are com-
bined. This will generally not provide sufficient galaxies to meet
Stage IV surveys’ goals for the statistical errors on cosmological
parameters. This also assumes that the telescope and instrument
hardware can be well modelled; a modest improvement will create
margin for imperfect modelling and correction of the system PSF
or detector effects.

Fully exploiting the statistical potential of Stage IV weak lens-
ing surveys will require shear measurement software that works
more accurately than current algorithms on faint galaxies. Current
algorithms could introduce systematic biases of the same order of
magnitude as the statistical errors, and the total reported confidence
limits would need to be enlarged by a factor of ∼√

2 to account for
this effect. To be sure of avoiding this problem, if all galaxies were
detected at S/N = 20–10 and all of them were used, additive biases
must be reduced by a factor of 3.6–6.5. However, many tests can
be used to identify and remove portions of a shear catalogue with
additive biases; we have used our new formalism to show exactly
what each test is sensitive to. Using an entire, realistic population
of faint galaxies would also need a reduction in multiplicative bias
by a factor of 1.4–2.8. Averaging over a realistic galaxy population
extending to z � 1.5, a space-based 3D cosmic shear analysis will
need an improvement in multiplicative bias by a factor of 1.8–2.2.
No internal tests can identify multiplicative biases, so the greatest
development effort should be spent to minimize these.

Several new ideas for image analysis techniques are being dis-
cussed in the literature, and ongoing simulation programmes show
potential. The past decade has seen steady improvement in shape
measurement algorithms; extrapolating even minimal continued de-
velopment suggests that the required algorithmic performance will
be met well before the need to analyse Stage IV surveys. Impor-
tantly, it will be at least three to five times easier to meet require-
ments for high-resolution space-based rather than ground-based
surveys, because multiplicative biases depend (theoretically and
empirically) on the inverse square of the S/N and the square of the
PSF size. This conclusion that ground-based surveys will require
much better shear measurement methods than space-based surveys
arises solely because they do not resolve galaxies well, and does not
even take into account the additional challenge of modelling atmo-
spheric turbulence or more rapidly changing physical conditions.
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L., Hirsch M., 2012, MNRAS, 427, 4
Kaiser N., 2000, ApJ, 537, 555
Kaiser N., Squires G., Broadhurst T., 1995, ApJ, 449, 460 (KSB)
Kirk D., Rassat A., Host O., Bridle S., 2012, MNRAS, 424, 1647

 at D
urham

 U
niversity L

ibrary on June 27, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Origins of weak lensing systematics 677

Kitching T., Heavens A., Taylor A., Brown M., Meisenheimer K., Wolf C.,
Gray M., Bacon D., 2007, MNRAS, 376, 771

Kitching T., Miller L., Heymans C., van Waerbeke L., Heavens A., 2008,
MNRAS, 390, 149

Kitching T., Amara A., Abdalla F., Joachimi B., Réfrégier A., 2009a, MN-
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Paulin-Henriksson S., Réfrégier A., Amara A., 2009, A&A, 500, 647
Plazas A., Bernstein J., 2012, PASP, in press
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APPENDI X A : R EMAI NI NG C RO SS TERMS

In Section 3, we ignored several cross terms in earlier calculations
of the additive cosmic shear systematic A because we expect their
contributions to be subdominant as long as the PSF model, detector
characterization and shape measurement method are working prop-
erly. However, tests for the presence of these terms in real data could
be a useful, cosmology-independent way to verify that the pipeline
is meeting requirements. We shall now discuss four noteworthy
order O(δ) terms that potentially add to A. These are

− 〈εgal · εPSF

〉〈R2
PSF

R2
gal

〉

×
⎛⎝ δ
(
R2

PSF

)
R2

PSF

+ 2δRNC

Robs − RNC
+

δ
(
R2

obs

)
R2

gal + R2
PSF

⎞⎠ (A1)

in the presence of the selection bias discussed by Hirata & Seljak
(2003), whereby galaxies are more likely to be detected if their
intrinsic shapes are similar to that of the PSF;

− 〈εgal · δεobs〉
〈

R2
gal + R2

PSF

R2
PSF

〉
(A2)

if, for example, a faulty shape measurement method systematically
truncates the isophotes of elliptical galaxies and

+ 〈εgal · δεNC

〉〈R2
gal + R2

PSF

R2
PSF

〉
(A3)

with charge transfer inefficiency, for which δεNC depends on εgal

(Rhodes et al. 2010); and

− 〈εgal · δεPSF

〉〈R2
PSF

R2
gal

〉
(A4)

if some small galaxies (which have been sheared, so correlate with
their neighbours) are accidentally confused with stars and allowed
to contribute towards the PSF model. Of all these, the first two terms
of (A1) are likely to be the most problematic: the first because stars
and galaxies have different colours, so a PSF model naı̈vely obtained
from stars will be systematically too large, and the secondly because
model inaccuracies in non-linear correction will likely dominate
variations in the effect across the detector.

There are also several terms of orderO(δ2). Two that may feasibly
have non-zero coefficients are

+
〈

δεPSF · δR2
PSF

R2
PSF

εPSF

〉〈
R4

PSF

R4
gal

〉
(A5)

if the PSF modelling errors depend upon the ellipticity of a complex
PSF whose shape changes as a function of radius; and

+ 〈δεPSF · δεNC〉
〈

R2
PSF

(
R2

PSF + R2
gal

)
R4

gal

〉
(A6)

if residuals from the correction of non-linear detector effects also
contaminate the bright stars from which the PSF is modelled.
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Finally, we also ignored cross terms like 〈mγ c〉 in the correlation
functions. Ideally, 〈mγ c〉 = 〈mc〉 〈γ 〉 and 〈γ 〉 = 0, but this latter
equality does not hold in the presence of Hirata & Seljak (2003)
selection biases. Furthermore, we have shown that m and c are both
correlated with δRPSF and therefore with each other, so the pre-
factor may be considerable. This sort of combination could give
rise to a whole new slew of potential intrinsic-intrinsic, intrinsic-c,
intrinsic-m, etc. systematics. We shall explore these in future work.

A P P E N D I X B : PE R F O R M A N C E I N D I C ATO R S
U S E D I N G R E AT 1 0

In equations (70) and (71), we introduced performance indicators
A and M, based upon integrals over a range of scales. For con-
sistency with earlier work (Amara & Réfrégier 2008), we chose to
weight the scales by �2d ln �, but different choices could have been
made. Integration with respect to d� typically raises the numeri-
cal value of A by ∼10 per cent and M by ∼3 per cent. A similar
loosening would also need to be applied to the numerical value of
the requirements, and this is a negligible change. Including weight-
ing by C(�) d� inside the integrals in (71) rescales the performance
indicator and requirement so that they have a numerical value sim-
ilar to A. However, this would mean losing intuition from previous
studies and make the requirements formally cosmology dependent.
Furthermore, since the shape of the C(�) weight approximately re-
covers that of �2d ln �, changes to numerical values are even smaller
than the previous option.

Practical considerations forced the measurements in GREAT10
(Kitching et al. 2012a) to use a different range in � and a different
weight function. It is important to consider the effect of this, because
we use the GREAT10 results as an indication of current best perfor-
mance. The GREAT10 analysis measured Ĉ(�) at linearly separated
values � = {233, 415, 600, 789, 977, 1162, 1350, 1538}, then found
the least-squares fitting function (1 + M)C(�) + A with constant
A = AG and M = MG. This process thus minimizes

χ2(A,M) ≡
∑

�

(Ĉ(�) − (1 + M)C(�) − A)2. (B1)

Therefore

∂χ2

∂A = 2
∑

�

(Ĉ(�) − (1 + M)C(�) − A) = 0 (B2)

so, if M = 0,∑
�

A =
∑

�

(Ĉ(�) − C(�)). (B3)

Approximating the discrete sums with constant �� as continuous
integrals, and remembering that A = AG is constant so can be
extracted from the integrals,

AG =
1

2π

∫ �max

�min
(Ĉ(�) − C(�))d�

1
2π

∫ �max

�min
d�

. (B4)

This is similar to equation (70), although a version in which the
various � scales are weighted differently. The different weighting
changes our conclusions by less than 10 per cent, so we ignore this
small perturbation.

Least-squares fitting also guarantees that

∂χ2

∂M = −2
∑

�

C(�)(Ĉ(�) − (1 + M)C(�) − A) = 0 (B5)

so, if A = 0,

MG =
∑

C(�)(Ĉ(�) − C(�))∑
(C(�))2 (B6)

=
1

2π

∫ �max

�min
C(�)(Ĉ(�) − C(�)) d�

1
2π

∫ �max

�min
(C(�))2 d�

. (B7)

This again is merely a differently weighted version of equation (71),
with negligible effect upon our conclusions.
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