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ABSTRACT

The shapelets method for image analysis is based upon the decomposition of localized objects
into a series of orthogonal components with convenient mathematical properties. We extend
the ‘Cartesian shapelet’ formalism from earlier work, and construct ‘polar shapelet’ basis
functions that separate an image into components with explicit rotational symmetries. These
frequently provide a more compact parametrization, and can be interpreted in an intuitive
way. Image manipulation in shapelet space is simplified by the concise expressions for linear
coordinate transformations, and shape measures (including object photometry, astrometry and
galaxy morphology estimators) take a naturally elegant form. Particular attention is paid to the
analysis of astronomical survey images, and we test shapelet techniques upon real data from the
Hubble Space Telescope. We present a practical method to automatically optimize the quality
of an arbitrary shapelet decomposition in the presence of observational noise, pixelization and
a point spread function. A central component of this procedure is the adaptive choice of the
scale size and the truncation order of the shapelet expansion. A complete software package to
perform shapelet image analysis is made available on the World Wide Web.

Key words: methods: analytical — methods: data analysis — techniques: image processing —

galaxies: fundamental parameters.

1 INTRODUCTION

In the shapelets formalism (Refregier 2003; hereafter Shapelets I),
individual objects in an image are decomposed into weighted sums
of orthogonal basis functions. The particular set of basis functions
has been chosen to be mathematically convenient for image ma-
nipulation and analysis. In astronomical images, it also provides a
compact representation for the shapes of galaxies of all morpholog-
ical types. Refregier & Bacon (2003; hereafter Shapelets II) showed
how these properties could be used to measure the slight distortions
in galaxy shapes due to weak gravitational lensing. The elegant be-
haviour of shapelets under a Fourier transform also enabled Chang
& Refregier (2002) to reconstruct images from interferometric
observations. Massey et al. (2004) used shapelets to simulate re-
alistic astronomical images containing galaxies with complex mor-
phologies. A classification scheme for galaxy morphologies using
principal-component analysis of the shapelet basis set was discussed
in that paper and applied to the Sloan Digital Sky Survey by Kelly
& McKay (2004). A method similar to shapelets has also been inde-
pendently suggested by Bernstein & Jarvis (2002; hereafter BJ02).

In this paper, we expand upon the earlier work of Shapelets I,
Shapelets II and BJO02, developing the formalism of ‘polar
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shapelets’, in which an image is decomposed into components
with explicit rotational symmetries. Whilst the original Cartesian
shapelets remain useful in certain situations, the polar shapelets,
which are separable in r and 6, frequently provide a more elegant
and intuitive form. We find estimators of the flux, position and size
of an object, that form naturally from groups of its polar shapelet
coefficients. We calculate the behaviour of a polar shapelet model
during linear coordinate transformations. We also improve the ba-
sic shapelet decomposition by incorporating treatments of pixeliza-
tion, observational noise and point-spread functions, and optimizing
the overall quality of image reconstruction while maximizing data
compression. To test our method upon real data, we extract isolated
galaxies from the Hubble Deep Fields (hereafter HDFs; Williams
et al. 1996, 1998). These deep, high-resolution images from the
Hubble Space Telescope (HST) provide typical examples of the ir-
regular shapes of distant galaxies.

A complete IDL software package to perform the image decompo-
sition and shape analyses presented in this paper can be downloaded
from http://www.astro.caltech.edu/~rjm/shapelets/.

This paper is laid out as follows. In Section 2, we introduce the
Cartesian and polar shapelet basis functions, and their relation to
each other. In Section 3, we investigate the qualitative effects of
varying the shapelet scale size 8 and set quantitative goals for the
optimization of this choice. In Section 4, we develop practical tech-
niques to cope with the effects of pixelization, seeing and noise in
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real data. We then demonstrate various applications of shapelets: in
Section 5, we illustrate the manipulation of images in terms of their
changing polar shapelet coefficients under coordinate transforms. In
Section 6, we construct basic shape estimators for a shapelet model,
including flux, centroid and size measures. In Section 7, we develop
more advanced shape measures that can be used to quantitatively
distinguish galaxies of various morphological types. We conclude
in Section 8.

2 SHAPELETS FORMALISM

2.1 Cartesian basis functions

The shapelet image decomposition method was introduced in
Shapelets I, and a related method has been independently suggested
by BJO2. The idea is to express the surface brightness of an object
f(x,y)as alinear sum of orthogonal two-dimensional (2D) functions,

FO=D"" Farm bum @3 ), M

n1=0ny=0

where the f,, ,, are the ‘shapelet coefficients’ to be determined.
The dimensionful shapelet basis functions ¢, ,, are

Hyy (x/B) Hy (v/B)e” /2
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where H,(x) is a Hermite polynomial of the order of n, and B is

the shapelet scale size. They are shown in Fig. 1. These Gauss—

Hermite polynomials form a complete and orthonormal basis set;

this ensures that the shapelet coefficients for any image can be simply

and uniquely determined by evaluating the ‘overlap integral’

ﬁl].)lz :// f(x)¢,,l,,,2(x;ﬂ)d2x. (3)
R

In practice, a shapelet expansion (equation 1) must be truncated
at a finite order ny + n, < npg. The array of shapelet coefficients
is sparse for typical galaxy morphologies, which therefore can be
accurately modelled using only a few coefficients. As shown in
Shapelets I, data compression ratios as high as 60:1 can be achieved
for well resolved HST images. Note, however, that our choice of
Gauss—-Hermite basis functions was not governed by the physics of
galaxy morphology and evolution but by the mathematics of im-
age manipulation. As we shall see throughout this paper, a shapelet
parametrization is mathematically convenient for many tasks com-
mon in astronomy and other sciences.

Gy (%3 8) = , 2

2.2 Polar shapelet basis functions

Polar shapelets were introduced in Shapelets I as an orthogonal
transformation of the Cartesian basis states, and were independently
proposed by BJO2. They have all the useful properties of Cartesian
shapelets, and a similar Gaussian weighting function with a given
scale size B. However, the polar shapelet basis functions are instead
separable in r and 6. This renders many operations more intuitive,
and makes polar shapelet coefficients easy to interpret in terms of
their explicit rotational symmetries.

The polar shapelet basis functions x,,(r,0;8) are also
parametrized by two integers, n and m, and a smooth function
f(r, 0) in polar coordinates may be decomposed into

f(r, 0) = Z Z fn.an,m(n 0; ﬁ) (4)

n=0 m=—n

The polar shapelet coefficients f, , are again given by the ‘overlap
integral’

fz// £, 0) Xum(r, 0; B)r dr do. 5)
R

BJ02 showed that the ‘polar Hermite polynomials’ H, , (x),
which were described in Shapelets I, are related to associated
Laguerre polynomials

x9er dP
_— (yPtde—x
e ©)

Li(x) =

for n, > n; by
Hyp o (x) = (=1 () X" MLy (x), (7N

where n; and n, are any non-negative integers. In this paper we shall
instead prefer the simpler n, m notation, where n = n, + n; and
m = n, — n;. In this scheme, n can be any non-negative integer, and
m can be any integer between —n and n in steps of 2. We truncate the
series at n < nm,,. Although the only allowed states are those with
n and m both even or both odd, this condition will not be written
explicitly alongside every summation for the sake of brevity.

As plotted in Fig. 2, the dimensionful polar shapelet basis func-
tions are therefore

fom(r,0: ) = S { [ — mD)/21! }”2

Bimi+t nt[(n + |m])/2]!
|m| y Im| r —r2/28% —imb
X ™ LG 2 E e e " (8)

These are different from the Laguerre expansion used by BJO2 in
two ways. Those are the complex conjugate of our basis functions:
i.e. their m is equivalent to our —m. The Laguerre expansion in BJ02

-0.4

Figure 1. Cartesian shapelet basis functions, parametrized by two integers
n1 and ny, and here truncated at nymax = 6. An image can be decomposed
into a weighted sum of these functions. This basis is particularly convenient
for many aspects of image analysis and manipulation commonly used in
astronomy and other sciences.
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Polar shapelet basis functions

Figure 2. Polar shapelet basis functions. The real components of the com-
plex functions are shown in the top panel, and the imaginary components in
the bottom. The basis functions with m = 0 are wholly real. In a shapelet
decomposition, all of the basis functions are weighted by a complex num-
ber, the magnitude of which determines the strength of a component and the
phase of which sets its orientation.

is also normalized by one less factor of 8. This dimensionality en-
sures that, as in the case of Cartesian shapelets, the polar shapelet
basis functions are orthonormal

// X:‘m(r, 9’ ﬂ) Xn’.m’(rv 93 ,3) rdrdf = Sll.n/ 8m,m’ (9)
R

and complete (see, e.g., Wiinsche 1998)

[o¢] n

DD Xm0 B, 03 ) = 80 — )80 — 0, (10)
n=0 m=—-n
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Figure 3. Example polar shapelet decomposition of a HDF galaxy. Top
panel; the moduli of the polar shapelet coefficients, with a logarithmic colour
scale. Bottom panel: the original galaxy image using a linear colour scale and
its shapelet reconstruction using 7 max = 20. Additional reconstructions are
shown using only particular sets of coefficients, to highlight the contribution
of components containing different symmetries.

where § is the Kronecker delta and the asterisk denotes complex
conjugation. Only those basis functions with m = 0 contain net
flux.

// Xn,m(r’ e,ﬂ)rdr do = zﬁﬁ 5m0- (11)
R

Fig. 3 demonstrates the polar shapelet decomposition of a galaxy
found in the HDF. The original image (middle left-hand panel)
agrees well with the reconstruction using 7y, = 20. The top panel
shows the modulus of the polar shapelet coefficients as a function
of the n and m indices. The dominant coefficients have small values
of both indices, demonstrating the compactness of a polar shapelet
representation, and further improved prospects for data compres-
sion. The bottom panel shows the reconstruction of the galaxy us-
ing only coefficients with given values of n or |m|, thus highlighting
the contributions of terms with specific rotational symmetries. The
off-central bulge is captured in the |m| = 1 coefficients and the main
spiral arms in the |m| = 2 coefficients. The spiral arms can also be
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seen as the rotation of the n-only reconstructions with increasing

radius. The fainter spiral arms appear as an interplay of the |m| =4
and 5 coefficients.

2.3 Conversion between Cartesian and polar shapelets

Cartesian shapelets are real functions, but polar shapelet basis func-
tions x,.. and coefficients f,, are both complex. However, their
symmetries

Xn,—m(rv evﬂ) = ij;,;(rv 9’,3) = Xn,m(ry _Q;ﬂ),

simplify matters somewhat if we are concerned only with the rep-
resentation of real functions f(x), such as the surface brightness of
an image. Equations (9) and (12) imply that f(x) is real if and only
if

fn,—m = f:m (13)

Coefficients with m = 0 are thus wholly real. All polar shapelet
coefficients are paired with their complex conjugate on the other
side of the line m = 0. Therefore, even though the polar shapelet
coefficients f,,, are generally complex, the number of indepen-
dent parameters in the shapelet decomposition of a real function is
conserved from the Cartesian case.

A set of Cartesian shapelet coefficients f,, ,, with ny + n, <
nmax can be transformed, into polar shapelet representation with
n < Mpax, USING

ny !n2!

1/2
nm = —n/2qm 8’11 -
Ja, 1 {[("+m)/2]![(n—m)/2]z} +na,

el m , (lH»m) (nfm)
jm 2 2
X E E 1 " n! Snl’+n§.nl Sz

=0 n/=0

12)

(14)
The particular choices of truncation scheme for Cartesian and polar

shapelets now make sense as a way to keep this mapping one-to-
one.

3 CHOICE OF SHAPELET SCALE SIZE

A shapelet decomposition requires values for the scale size B and
for the centre of the basis functions x. to be specified in advance.
Choosing the centre is relatively easy: there are many methods well
known in the astronomical literature to accurately determine as-
trometry from the flux-weighted moments of objects. However, the
selection of B is a less well-posed problem. In this section, we shall
first use some properties of polar shapelets to describe the effect that

the choice of the scale size has upon a shapelet decomposition. We
shall then set quantitative criteria for the selection of B in arbitrary
galaxy images that we can implement in a practical algorithm.

Note that the selection of 8 will be linked to the selection of 72,y
As shown in Shapelets I Section 2.4, these two parameters deter-
mine the maximum extent 6 ,,,, and finest resolution 6 i, that can
be successfully captured by a shapelet model. If npy,, — o0, any
object can be represented using any scale size 8. However, if the
shapelet expansion is truncated at finite 71y,y, the shape information
needs to be more efficiently contained within fewer coefficients. It
is clearly desirable in this situation to select a scale size B that com-
presses information, and lets us store the smallest possible number
of coefficients.

3.1 Radial profiles

Our discussion can be simplified by initially considering only the ra-
dial profile of an object, thus reducing the task to a one-dimensional
problem. Let us consider an object with surface brightness f(x).
The radial profile of the object f(r) is its brightness averaged in
concentric rings about its centre, i.e.

_ 1 27
fr)= 2—/ f(r,6)ds. (15)
T Jo
With the object decomposed into polar shapelets as in equation (5),
itis easy to show that this is given by
even
F0Y="" fro X073 B).

n

(16)

This simple expression results from the fact that only the m = 0
basis functions are invariant under rotations. These are given by
(=12

BT
The first few rotationally invariant basis functions are written ex-
plicitly in Table 1.

As a concrete example, we consider the decomposition of galaxy
images from the Hubble Deep Fields (Williams et al. 1996, 1998).
The mean radial profile of spiral galaxies is typically exponential,
f(r) oc e7"/"0, with some characteristic radius scale r. Fig. 4 shows
the shapelet reconstruction of an exponential radial profile using
various values of B, with ny,,x = 20 and the integral in equation (5)
calculated numerically.

As can be seen in the top panel of Fig. 4, the quality of
the reconstruction depends on the choice of B. For small values

Xn()(r; /3) =

Ly /B2 "7 (17

Table 1. The first few rotationally invariant polar Shapelet basis functions.
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Figure 4. Decomposition of an exponential profile into radial polar
shapelets. Top panel: the thick dark line shows the input exponential profile.
The reconstructed profile is shown for different values of the shapelet scale
B with nmax = 20. Bottom panel: the corresponding shapelet coefficient
profile f o versus shapelet order n.

(B < 0.4r) the reconstruction is oscillatory and cuts off the profile
at large radii (r = 1.5r(). For large values (8 2 0.8r), the recon-
struction fails to reproduce the cusp at small radii (r < 0.4r() and ex-
ceeds the true profile at » ~ 0.6r,. However, for intermediate values
(0.5r¢ < B < 1.1ry), the reconstruction is good throughout the range
0.1r¢ < r < 2.8r. This range can of course be expanded by includ-
ing more shapelet coefficients of higher order. As 71, — 00, the in-
put model can be recovered with arbitrary precision using any value
of B.

The corresponding behaviour in shapelet space is apparent in the
bottom panel of Fig. 4. The f, coefficients can be thought as
the profile of the galaxy in shapelet space or the ‘shapelet profile’.
For low values of B the shapelet profile is very flat, showing that
the power is distributed almost evenly throughout all orders. For
B = 0.5r, the coefficients a, ,, are seen numerically to be o (n +
1)~2. This will be an important result for the convergence of shape
estimators formed from series of shapelet coefficients in Section 6.
Convergence is fastest at 8 ~ 0.8r(, with a,, ,, o (n + 1)~>2. For
higher values of 8, the signs of a,, begin to alternate and the
convergence once again falls below o (n 4+ 1)"2 at 8 ~ 1.1r,.

Fig. 5 demonstrates the importance of a proper choice of the
parameters 8 and ny,, for the practical decomposition of a spiral
galaxy in the HDF. Its spiral arms complicate measurement, but its
radial profile is approximately an exponential with a scalelength of
ro &~ 3 arcsec (12 pixel). The left-hand column shows the growth
in complexity of a shapelet model using increasing npy.x. Note, in
particular, the rotation of the core ellipticity as npy,, is increased
from 2 to 8 and higher-order moments are included to resolve the
spiral arms. In this column, g is allowed to vary in order to mini-
mize the least-squares difference between the model and the HDF
image, shown at the bottom. The middle column shows shapelet

© 2005 RAS, MNRAS 363, 197-210
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Figure 5. Shapelet decomposition of a real spiral galaxy in the HDF. The
best-fitting de Vaucouleurs profile has r( >~ 12 pixels. Left-hand column: the
shapelet model shows growing complexity with increasing nmax. For each
of these fits, B is varied to minimize the least-squares difference between
the data and the model. Right-hand columns: the shapelet decomposition
has a preferred scale size. The residual between the original (in the bottom
right-hand panel) and these models with fixed nmax = 20 and varying B, is
smallest with 8 =~ 0.5r¢.
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decompositions at fixed nyx = 20, with varying 8. The residuals
are plotted in the right-hand column. As in Fig. 4, we find that the
best overall image reconstruction uses 0.5ro < B < 0.7r¢. This is
perhaps at the low end of the range suggested by Fig. 4 because of
the extra high-frequency detail contained in the spiral arms.

By experimentation we have found a fairly wide range of 8 val-
ues that produce a faithful shapelet reconstruction. The information
is then concentrated into the few lowest shapelet states, with fast
convergence to the final model, and truncation is possible at a com-
putationally acceptable value of ny,,x. We shall now consider ways
to formalize this process, and hone our choice of x., B and 7y,
using quantitative criteria.

3.2 Existing optimization methods

Methods in the literature that face similar choices suggest several
distinct philosophies for the quantitative selection of parameters
equivalent to x., 8 and ny,. The suggestions, outlined below, differ
both in the goals set for an ideal decomposition and the method used
to achieve it.

(i) Shapelets I suggested a geometrical argument using 0 min, & max:
the minimum [point spread function (PSF) or pixel] and maximum
(entire image) sizes on which information exists. This could be
iterated using functional rules on x. and rzf as defined by shapelet
coefficients. However, the coefficients change as a function of 7y,
and it is not clear what the rules should be.

(ii) Van der Marel & Franx (1993) fit one-dimensional (1D)
Gauss—Hermite polynomials to spectral lines. They arbitrarily fix
nmax = 0, probably finding this sufficient because their spectra have
relatively high signal-to-noise (S/N) ratios and their lines have a
nearly Gaussian profile. Parameters equivalent to x. and § are ob-
tained from the best-fitting Gaussian. This also determines f and
in 1D is equivalent to constraining f; = f, = 0, i.e. the derivatives
of the Gaussian with respect to x. and 8. The number of variables
is reduced and the problem rendered tractable. Unfortunately, this
does not help us in 2D because while both a1+ can be forced to zero
by varying x., no unique recipe can be found for setting the three
n = 2 states using only one value .

(iii) Van der Marel et al. (1994) relax the constraint on f. This is
an improvement as f; is only the first term of an expression for the
centroid, expanded using all odd f, in equation (51). Without the
higher-order corrections, the true object centroid is moved slightly
from the origin: amongst other things rendering rotations and shear
operations more complicated. Instead, they set x, from the theoreti-
cal rest wavelength of a line. Unfortunately, astrometric calibration
clearly cannot be performed with such accuracy. Nor has the n =2
problem been solved.

(iv) Kaiser, Squires & Broadhurst (1995) combine fitting with a
stand-alone object detection algorithm, HFINDPEAKS. Translated into
shapelet language, their approach is roughly equivalent to placing x .
at data peaks and then finding a width B such that the signal-to-noise
ratio v in fo is maximized.

(v) Bernstein & Jarvis (2002) propose a similar approach. They
prescribe B by requiring f,y = 0, while moving x. to ensure
f1+1 = 0. Higher coefficients are then determined afterwards by
linear decomposition. To first order, this 8 constraint is equivalent
to that for HFINDPEAKS. This B is generally larger than values chosen
by our x 2 method below, and it can be several times larger for a high
signal-to-noise ratio object containing lots of substructure such as
the galaxy in Fig. 3. This method may indeed prescribe the optimal
decomposition for weak lensing as the shear signal in the quadrupole

moments becomes concentrated in one number; however, a predis-
position towards particular states often leads to poor overall image
reconstruction and PSF deconvolution, so it is not necessarily ideal
for all applications.

(vi) Kelly & McKay (2004) were able to set a fixed physical
scale of B = 2 kpc for galaxies in the Sloan Digital Sky Survey,
where photometric redshifts were available. However, galaxies have
abroad distribution of physical sizes, and it may in fact become more
difficult to interpret a shapelet model derived using this method.

(vii) Marshall (in preparation) describes a fully Bayesian ap-
proach to applying the shapelet transform in the context of image
reconstruction. Here, x ., 8 and 7, are varied in order to maximize
the evidence (the probability of observing the data, marginalized
over all shapelet coefficients). At high S/N ratio, this method gives
a value of B which approaches the same as that from our x2 method
below, but otherwise tends to prefer a fractionally larger B, con-
servatively eliminating some ‘noise’ in favour of a smoother image
reconstruction. However, this is computationally slow, a serious is-
sue when analysing large images.

3.3 Optimization of image reconstruction

We shall adopt a choice of B and nny.x that is suitable for many
applications, including overall image reconstruction and PSF de-
convolution. Different models will be quantitatively compared via
the overall reconstruction residual

e [fobs(X) = free(es BT V[ fups () = frec(x: B)]

"

(18)
Npixels — Mcoeffs

where fps(x) is the observed image and f.(x; B) is the recon-
structed image from the shapelet model. V is the covariance matrix
between pixel values, i.e. its diagonal elements are the noise vari-
ance in each pixel. We will need to know this a priori, or estimate
it from blank areas of the image. npiys is the number of pixels in
the observed image and 7.5 1S the number of shapelet coefficients
used in the model. The residual itself has variance (Lupton 1993)

(1) = ——

An example of typical x? isocontours on an 7, versus f plane
is shown in Fig. 6 for an elliptical galaxy from the HDF. The hor-
izontal trough is present for all galaxies (and many other isolated
objects). This demonstrates that there is indeed an optimum g for
the reconstruction of this image. As one might expect, it is roughly
independent of np., but decreases very slightly as more coeffi-
cients are added. By increasing np,,x — 00, the reconstruction can
be improved to arbitrary precision. However, stopping at the 2 = 1
contour produces a model where the residual is consistent with
the noise. Additional coefficients would just model the background
noise and should be excluded.

The form of these typical contours thus suggests a unique location
in parameter space. We will choose 8 and r,,, s that the model lies
at the intersection of the trough and the x2 = 1 contour, i.e. at the
leftmost point on the contour. To achieve this, we set quantitative
goals of

19)

Npixels — Hcoeffs

x2 B
B 0, (20)
x.=0 21

and x? = 1 or flattens out

2
ox, <o(x) ~ 2
anmax ! Npixels

(22)
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Figure 6. xf isocontours on an 7 m,x versus B plane for an elliptical galaxy
in the HDF. The roughly horizontal trough is typical, with a well-pronounced
excursion of the xf contours to lower nm,x for well-chosen values of S.
The challenge is to locate the leftmost section of the sz = 1 contour in
an automated and efficient way. The arrows show individual steps (each
containing several substeps) taken by our optimization algorithm described
in Section 4. Also shown are geometrical € min, @ max constraints and the
target x2 = 1 contour.

The first constraint ensures that the scale size is well suited to effi-
ciently model the image. The second ensures that the shapelet centre
matches the object centroid. The third guarantees that sufficient co-
efficients (11, ) are included to model an object, but with truncation
that ‘smooths over’ observational noise. A flatness constraint is also
included (in the right-hand side of equation 22). This is particularly
important for galaxies with a near neighbour or for very faint objects
that have noisy and fragmented x 2 contours. In these cases, includ-
ing additional shapelet coefficients may not significantly improve a
fit, so the series is truncated early.

We apply extra geometrical constraints to the minimum 6 ,;;, and
maximum 6, scales of the decomposition, to prevent the model
from containing features smaller than the pixel scale or extending
off the edge of an image, where it would be unconstrained.

3.4 Automatic optimization algorithm

Satisfying the three conditions (20)—(22) would ensure that a
shapelet decomposition uses the optimum values of 7ny,, B and
x.. It is easy to determine the values of these parameters once the
entire 71 y,, versus B plane has been examined, as in Fig. 6. However,
this is a slow process, so we need a practical algorithm to more effi-
ciently explore this parameter space, and to iterate rapidly towards
our targets. The numerical implementation of this iteration will in-
evitably be non-trivial, because it combines both minimization and
root finding, in a space with one axis discrete. Here we describe
a code that we have developed to repeatedly decompose an object
into shapelets, test the residual, and improve the decomposition pa-
rameters. Its stepwise approach is shown in Fig. 6, and the full code
can be downloaded from the World Wide Web.

© 2005 RAS, MNRAS 363, 197-210
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Objects are first detected in an image using SEXTRACTOR (Bertin
& Arnouts 1996), a friends-of-friends peak-finding algorithm. After
experimenting on various data sets, we have found the results of
SEXTRACTOR highly sensitive to input settings. To avoid reliance
upon these settings, we use SEXTRACTOR as sparingly as possible. We
set low detection thresholds in order to obtain a complete catalogue,
and filter out false detections later. We use the measurement of the
FWHM of each object to make an initial guess at 8, and also to set the
size of the fixed, circular ‘postage stamp’ region that is extracted
around each object. We aim for a postage stamp large enough to
contain the entire object, but small enough to isolate it from its
neighbours and to make the routine computationally efficient. We
then use the SEXTRACTOR segmentation map to identify pixels in the
postage stamp but well away from any object. These are used to
estimate the background noise level, or to locally renormalize the
pixel weight map. Within reasonable limits, the process is stable
with respect to such parameters and we shall not be too concerned
as to the exact SEXTRACTOR settings.

Using constant 7, = 2 for speed, g is varied in order to mini-
mize x?2 and satisfys the criterion in equation (20), via a 1D version
of the Numerical Recipes AMOEBA routine: crawling vertically in
Fig. 6. During each step of this iteration, the centroid is simultane-
ously shifted to re-zero the series in equation (51) in the shapelet
coefficients and thus satisfy the criterion in equation (21). As the
calculation of the centroid is independent of 8 for isolated objects
(see Section 7), this part of the iteration is both stable and fast. Fig. 6
also shows the additional geometrical constraints of 6 ;, > 0.2 pixel
and 6y, not falling off the edge of the postage stamp. These act as
hard boundaries to the region of parameter space that the amoeba is
allowed to explore.

Once the optimum B has been found, 71,y is increased until the
criterion in equation (22) is satisfied: crawling horizontally in Fig. 6.
The increases are performed in steps of two, because even n states
frequently improve the fit more than odd n states (primarily due to
the addition of a new f, o circular state). The value of 7y, is fine-
tuned to the exact best value at the end. If two values of n,,, both
allow a decomposition with Xf =1 = 1o, the lower value is taken.

If the object warranted more coefficients than the initial guess of
Nmax = 2, B and x are again readjusted at the new 7y, using our
1D AMOEBA routine. Another 71, search then starts back at 71,,x = 2
and increases again in steps of two. The algorithm terminates when
either the horizontal or vertical search returns to the same value as it
started. All three conditions in equations (20)—(22) have then been
met. Computation time for each object increases o< n#, . On a single
2-GHz processor, our algorithm takes ~ 45 min to process all of the
3596 objects detected in the HDF North.

A selection of reasonably bright HDF galaxies is shown with
their shapelet models in Fig. 7. The right-hand column shows the
reconstruction residuals, which are consistent with noise even for ir-
regular galaxy morphologies. A comparison of their shapelet-based
shape estimators to traditional SEXTRACTOR measurements is shown
in Fig. 8.

4 DECOMPOSITION OF REAL DATA

4.1 Least-squares fitting

Unlike the continuous, analytic formalism presented in Section 2,
real images are complicated by pixelization, PSF convolution and
noise. In order to incorporate these effects, we shall first adopt a
somewhat different approach to shapelet decomposition than the
overlap integrals (3) and (5). We shall instead fit shapelet coefficients
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Figure 7. Shapelet models of a selection of HDF galaxies, with their
shapelet scale size B and maximum order nyax determined automatically.
In all cases, the image residuals are entirely consistent with noise. Our code
to perform this task, by minimizing the least-squares difference between the
model and input images, is described in the text.
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Figure 8. The successful recovery of object statistics from the shapelet
parameters of HDF galaxies. For comparison to the SEXTRACTOR measure-
ments, shapelet size measurements are shown without PSF deconvolution. In
the right-hand panels, galaxies requiring nmax > 15 coefficients have been
forced into the final bin, and in the bottom-right panel, points have been
randomly offset a small amount for clarity.

to the data using a least-squares method. As the model f.(x) in
equation (18) is linear in the shapelet coefficients, we can solve for
the minimum Xf solution (18) exactly. We obtain (see Lupton 1993;
Chang & Refregier 2002)

o =MV MYV L (23)

where f, ., is a vector of the derived shapelet coefficients, f , is
the surface brightness in each pixel arranged as a data vector, V is
the covariance matrix between pixel values and M is a matrix of
each shapelet basis function evaluated in each pixel. A fit achieving
%2 = 1 has successfully modelled all significant spatial variation in
the image and removed observational noise.

If the noise per pixel is known, 1o confidence limits can be derived
on all of the assigned coefficients using this fitting method (Lupton
1993). If a complete pixel noise map is available (e.g. from multiple
exposures stacked using DRIZZLE software — Fruchter & Hook 2002),
it can be used to down-weight noisy pixels where cosmic rays or
hot/cold pixels were present in some of the exposures. Although
the code available on the World Wide Web simply uses a diagonal
matrix for V that contains only the noise level in each pixel, the
method is, in general, able to use the full covariance matrix that
contains the amount of covariance between different pixels. In real
data, the flux in adjacent pixels is indeed slightly correlated because
of convolution with the PSF and also because of additional aliasing
effects introduced by DRizZLE. If this effect is important, the pixel-
to-pixel covariances could be estimated from empty regions of an
image and included in the calculation. In particular, this may have a
small improvement on statistics measured from very small objects
(cf. Massey et al. 2004).

A constant background level can also be removed using this
method, by adding an undetermined constant to the set of basis
functions. Poor flat-fielding or local background gradients near a
bright object can also be fitted and removed by adding a plane with a
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variable slope. Although these functions are not strictly orthogonal,
the procedure works well in practice as long as there are sufficient
pixels around the fitted object that contain only background noise.

4.2 PSF deconvolution

All real images are inevitably seen after convolution with a point
spread function. In astronomy, this is typically caused by atmo-
spheric turbulence or ‘seeing’ (for ground-based observatories),
aperture diffraction at the primary mirror and imperfect telescope
tracking or optics. The combination of such effects can be measured
from the size and shape of stars observed in an image (because these
distant objects would be point-like in the absence of a PSF), and
can be fitted with a shapelet model in the same way as the galaxies.
Shapelets I presented the matrix operation for convolving an image
with a Gaussian PSF in shapelet space. Shapelets 11 extended this
derivation to a general PSF and demonstrated PSF deconvolution
via matrix inversion. However, the inversion of the PSF matrix is po-
tentially slow and may be numerically unstable. Our least-squares
fitting method will allow us to elegantly sidestep this process by
convolving the basis functions with the PSF model in advance, then
fitting this new basis set to the data. The returned shapelet model,
reconstructed using the unconvolved basis functions, will be auto-
matically deconvolved from the PSE.

The formalism for convolution in shapelet space is presented in
Shapelets I Section 4 and involves three separate scale sizes for three
separate objects: « for the unconvolved model, g for the PSF and
y for the convolved model (there are also corresponding values of
n® ., nf.andn?, ). We assume that 8 is known. We can optimize
a as in Section 3.3. However, the choice of y is a matter entirely
internal to the fitting procedure. Just as before, if nl,  — oo, any
y will work (but this time without increasing the number of exter-
nal free parameters in the model). In practice, however, it is still
necessary to truncate this series somewhere. Note that y? = o? +
B2 was incorrectly suggested as a ‘natural choice’ for this param-
eter in Shapelets 1. Another choice would be y = «, which, with
nl .. =ne.., makes the convolution matrix P, , symmetric and thus
simplifies its calculation.

The optimum values for y and n} are, in fact, obtained from
an argument concerning the information present in shapelet coeffi-
cients. A shapelet model contains information only between mini-
mum and maximum scales

Gmm = % and gmax = ﬂ\/ Nmax + 1. (24)

During convolution, 6%; and 6"

min add in quadrature to produce
7. similarly for 6 . y and n?,_ should therefore be chosen to
precisely capture the information contained on all of these new
scales. Writing (n%_ + 1) as N, etc. for brevity, we find

max

(a? Ny + B*Ng) (>Np + B>No)

/1 25
Y [4] NoN; (25)
and
2N, 2N
I L\l SV (26)
a?N; + PN,

The PSFs of cameras on board the Hubble Space Telescope
are well known and stable. Fig. 9 shows an oversampled TINYTIM
(Krist & Hook 1997) model of the Wide-Field Planetary Cam-
era 2 (WFPC2) PSF, raytraced through an engineering model, plus
charge diffusion to simulate photon capture within the CCD cam-
eras. This is easy to model with shapelets, except for the fact that its
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Figure 9. Shapelet model of the TINYTIM (Krist 1995) WFPC2 PSF plus
charge diffusion. Top panel: a horizontal slice through the centre of the PSF.
Bottom panel: the moduli of its polar shapelet coefficients to nmax = 15. Note
that the amplitude scales are all logarithmic: the core is actually modelled
very successfully out to the second diffraction ring. For speed we do not
bother capturing the wings.

steep cusp and extended wings are intrinsically ill-matched to the
Gaussian around which shapelets are constructed. The PSF is shown
in the figure beside a shapelet decomposition up to nfSF = 15. This is
sufficient to accurately capture the core and the first two diffraction
rings, which are already more than two orders of magnitude below
the maximum, but does not extend to the four faint diffraction spikes
or far into the low-level wings (note that the colour scales are log-
arithmic). In principle, this could be further extended at a cost to
processor time by using more shapelet coefficients.

Fig. 10 demonstrates successful PSF deconvolution. A galaxy
from the HDF is convolved with the WFPC2 PSF (in real space).
This is treated as the observed image, and deconvolved from the
PSF using a shapelet fit. The resulting reconstruction is in good
agreement with the original galaxy image, as can be seen from its
small residual. Note that the optimum scale size B for the model
is slightly lower when PSF deconvolution is performed. This reflects
the need to capture finer details.
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Figure 10. Demonstration of deconvolution from an observational PSE. Top
left-hand panel: a real HDF galaxy. Bottom left-hand panel: the WFPC2 PSF
model, from Fig. 9 but displayed here with a linear colour scale. Bottom mid-
dle panel: the galaxy image convolved with the PSF. This convolution has
been performed in real space, to disassociate the operation from anything
involving shapelets. Top middle panel: a shapelet reconstruction and decon-
volution of the galaxy to nmax = 20, obtained from a fit to the convolved
image, assuming knowledge of the PSFE. Top right panel: the difference be-
tween the true galaxy image and the shapelet model after deconvolution.
This small residual demonstrates the success of PSF deconvolution using
shapelets.

4.3 Pixelization

Real image data are typically stored in discrete pixels. To link this to
the analytic shapelet formalism, one must either smooth the data or
pixellate the shapelet basis functions. Smoothing the data requires
an arbitrary interpolation scheme to be defined, and resampling the
data on to smaller pixels can be very slow. A better approach is
to leave the data alone and to discretize the smooth shapelet basis
functions. This reduces the integrals in equations (3) and (5) to sums
over pixel values, which are fast to compute. However, they are no
longer analytically exact. We therefore need to define a discretiza-
tion scheme that keeps the basis functions as orthogonal as possible,
and the integrals as accurate as possible.

As pointed out by Berry, Hobson & Withington (2004), one can-
not simply adopt the value of basis functions at the centre of each
pixel. Basis functions that contain oscillations on scales smaller than
the pixel size are sampled in an essentially random manner. Their
discrete versions are then neither representative of the analytic func-
tion nor orthogonal. Degeneracies are introduced between shapelet
coefficients during the decomposition that destabilize the inversion
of coefficient matrices in the reconstructed model, and bias quanti-
ties such as the flux of an object. Fortunately, this is rarely a problem
in practical cases, because we can choose nya and B in advance
to isolate only those basis functions that contain oscillations on
scales larger than the pixel (or seeing) size. Under these conditions,
Berry et al. (2004) show that the shapelet basis functions are indeed
orthogonal.

We suggest an even safer alternative here. The Cartesian basis
functions are separable in x and y, and may be analytically inte-
grated within rectangular pixels. This is exactly the same process
undergone by photons arriving at a CCD, where the smooth function
of a real scene becomes binned into digital squares. Once we have
convolved the basis functions with the PSF, and integrated them
within pixels, they can be suitably matched to the data.

To integrate the 2D Cartesian basis functions, first consider the
1D basis functions from Shapelets I,

6o (x) = [2'70 P01 B] 2 H, (%) e, 7

Integrating by parts and using two well-known identities (see, e.g.,
Boas, chapter 12)

H,(x) =2xH, 1(x) — 2(n — 1)H,_»(x) (28)
and
w =2(n — 1)H, »(x), (29)

one can obtain the recurrence relation

b
L= / $n(x)dx (30)

2 —1
= —/3\/; [bos (0 + \/HT L. 31)

Finally, note that

ﬁ /2
Iy = [erf(x)] and (32)
I = —/2B1do (D)1 (33)

This supplies all the necessary integrals. As the 2D Cartesian basis
functions are separable in x and y, it is easy to extend this derivation
to integrate within square CCD pixels:

by pby
Inl.ng =/ / ¢n1(x)¢ng(y)d~Xdy = [n1 X Ings (34)
ay Jay

where, if there is no ‘dead zone’ around the edge of a pixel, (b; —
ay) x (by — ay)is the angular size of a pixel. A missing pixel border,
due for instance to electronics which is unresponsive to light, can
be included by altering the limits on the integral.

We can either use this result to obtain a model in Cartesian
shapelet space, which can later be converted to a polar shapelet
representation using equation (14), or we can integrate the polar
shapelet basis functions within pixels using the same equations. This
integration is a particularly important advance for small galaxies or
for shapelet basis functions at high n, that can contain oscillations
smaller than a single pixel.

The symmetries of polar shapelets can also be used to integrate
models within circular apertures using equations (46)—(49).

5 COORDINATE TRANSFORMATION

Image manipulation via linear transformations is simple in shapelet
space. As in Shapelets I, let us consider an infinitesimal coor-
dinate transformation x — (1 + ¥)x + €, where € = {e;,
€2} is a displacement and W is a 2 x 2 matrix parametrized
as

_ (kTN rn-p ) (35)
vtp K=y
The parameters p, «, € and y; correspond to infinitesimal rotations,
dilations, translations and shears.

An image transforms as f(x) — f'(x) ~ f(x — ¥x — €), which
can be written as

f=0+pR+kK+vy;8;+eT))f, (36)
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where 1%, K , S ; and f",- are the operators generating rotation, con-
vergence, shears and translations, respectively. We adopt a notation
from weak gravitational lensing, where a ‘convergence’ k corre-
sponds to a change in the radius of an object by a factor (1 — «)~.
These transformations can be viewed as a mapping of f ., coeffi-
cients in shapelet space. For example, a finite rotation is

I/é : fn,m = fom= fn,m eimp, (37)

n,m

so a rotation through 180° can be written as

R]SOo : fn.m g n/.m = (_l)m f;l.m- (38)

An (infinitesimal) dilation can be performed in polar shapelet
space by mapping the shapelet coefficients as

Ie : fn,m g fr:m = (1 +K) fn.m
+ % V (n - m)(n + m) fn—2,m

- %\/(ﬂ “mA 2+ m+2) friam (39

The shapelet model may require more coefficients after this trans-
formation. Note that this dilation operation increases both the flux
and the image area by a factor of 1 + 2«, thus conserving surface
brightness. To instead perform a dilation that conserves the total
flux, divide the right-hand side of equation (39) by this factor. To
first order, this is

Ie : fn,m - n,.m = (1 _K)fn,m
+ %\/ (n —m)(n+m) fy_om

- g\/(n —M A2 A m+2) foram. (40)

In Section 6, we shall ensure that shape estimators for a shapelet
model are independent of the scalefactor chosen for the decom-
position by ensuring that the estimators are unchanged under this
mapping.

Rather than these first-order approximations, finite dilations can
be performed to all orders using the rescaling matrix in the appendix
of Shapelets I. This is identical to the convolution matrix, but the
image is convolved with a §-function.

Shears and translations can be performed using

S : fn,m - fr:m = fn.m

+ @[\/(n +m)n+m—=2) fuomo
— \/(}’l —m + 2)(71 —m+ 4) fn+2,)7172]
+ n ;1)/2 [\/(l’l - m)(n —m— 2) f;172,m+2

— \/(n +m + 2)(" +m + 4) ﬁl+2,m+2] (41)

and

o
. r
T: fn,m nm — ﬁl,m

+ 61;7‘;2[\/(;1 ) ot

NV (I’l —m+ 2) frH»l,mfl]
+ 612?/%62 [ V (l’t - m) f;l—l.lil+1

— 1/ (I’l +m+ 2) f;z+l,m+1]v (42)

with the translation specified in units of 8.
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Other image manipulations can also be represented as mappings
of shapelet coefficients. Changes of flux by a factor B are trivially
implemented by the mapping

B : f;l.ﬁl - y:Jn =B x fn,m- (43)

It is also possible to circularize an object with the mapping (see
Section 3.1)

é : ‘f;l‘ﬂl - y:m = fn,m 87}107 (44)
or to flip the parity of an object by reflection in the x-axis using
ﬁ : fn,m g r:.m = f:m (45)

Combining this £ with the rotation operator allows reflections to be
performed in any axis.

The actions of these operators are demonstrated upon areal galaxy
image in Fig. 11.

6 OBJECT SHAPE MEASUREMENT

The above symmetries of the polar shapelet basis functions can be
used to identify combinations of shapelet coefficients that measure
the flux (photometry), centroid position (astrometry) and the size
of an object. Similar weighted combinations of Cartesian shapelet
coefficients were found in Shapelets I, but we find the interpreta-
tion of polar shapelets more intuitive, and the expressions below are
usually simpler than their Cartesian equivalents. For example, the
rotationally invariant part of an object is isolated into its m = 0 co-
efficients. The linear offset of an object from the origin is described
by its m = =1 coefficients and the ellipticity of an object by its
m = =2 coefficients. In the latter cases, the magnitude of the coef-
ficients indicate an amplitude and the phases a direction.

>

Shear (71) Shear (7z)

o

Original

Dilation

e

Circularisation

Rotation

Parity flip

Figure 11. Some simple operations applied to a real galaxy image, by using
the polar shapelet ladder operators or coefficient mappings as described in
the text. The central image is the original galaxy. Starting at the bottom left
and proceeding clockwise, the other images show rotation by 40°, dilation
of k = 0.15, shears of y = 10 per cent, translations, circularization and
reflection in the x-axis.
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6.1 Photometry

Practical measurements of the flux of an object usually introduce a
Gaussian or top-hat weight function in order to limit contamination
from surrounding noise and nearby objects. The flux of a shapelet
model inside a circular aperture can be calculated using only the
coefficients with m = 0. All other coefficients correspond to basis
functions with positive and negative regions that cancel out under
integration around #. From equations (16) and (17) for the radial
profile of an object, we find that

27t ;R even
/ / FOyrdrdo =@ " foo 6, (46)
o Jo n

where

-1 n/2 R 2 2 a2
I = %/ L, (%) ¢ PE rdr. @7
0

Using relation (A9) to integrate by parts, we can find a recursion
relation

R2 (n—2)/2
L =" [1 -Ly, (F) e KPP 2 N (-1 Izi] . (48)
i=0

and a closed form

n/2 R2
[, =1—eFr# 22 (=1 LY (F)
i=0

RZ
o, (ﬂ_ﬂ “

However, the imposition of an integration boundary is unneces-
sary with shapelets because the model is analytic and noise-free. In
the limit of R — oo, we obtain a simple expression for the total flux
in a shapelet model

F= f@)dx = @28 Y fu, (50)
/] > o

a result that can also be recovered by transforming the sum over
Cartesian shapelet coefficients from Shapelets I into polar shapelet
space via equation (14). Cartesian shapelet models can also be in-
tegrated within square apertures using equations (30)—(34).

This extrapolation to large radii does rely upon the faithful rep-
resentation of an object by a shapelet expansion, and the removal
of its noise via series truncation. Such truncation restricts the com-
pleteness of the basis functions, and a weight function (constructed
from a combination of the allowed basis functions) akin to a ‘prior
probability’ is subtly implicit inside our fitting procedure. However,
a fitting method such as ours can beat a direct, pixel-by-pixel mea-
surement. Our fit is able to include flux from the extended wings of
an object, by integrating it over a large area, even when the signal
lies beneath the noise level in any individual pixel. The wings of
galaxies in Fig. 7 are indeed well captured by the shapelet models.

6.2 Astrometry

It can similarly be shown that the unweighted centroid (x., y.) is
. S +iy) f ) dx

Xe + 1y, = ffR 7o) dx

B (87‘[)1/2/32 odd

= > 1+ D' fu, (s1)

n

where the summation is over only odd values of n, because only
these have the m = %1 coefficients that possess the desired rotational
symmetries.

6.3 Size

Measures for the size and ellipticity of an object can be derived from
the unweighted quadrupole moments of the object,

Fy = / / xixy £ . (52)
R

The rms radius R of an object is given by

_ S 5P e dx

R*= 53
NG Y

1/2 3 even
_ ;: Fo _ (167‘; PN w41 f (54)

n

Integrals (46)—(49) can also be used to calculate Petrosian radii
that enclose a specified fraction of the total flux within a circular
aperture.

6.4 Ellipticity

The unweighted ellipticity of an object can also be calculated from
its quadrupole moments.

5 even

> In(n+21" fa, (53)

n

Fiy — Fp42iF,  (16m)'
Fii+ Fx - FR?

£ =

where the complex ellipticity notation of Blandford et al. (1991),
with € = |e| cos 260 + i |e| sin 26, arises here naturally.

7 GALAXY MORPHOLOGY CLASSIFICATION

The shapelet decomposition of an object captures its entire struc-
ture, and useful information is frequently found in coefficients of
higher order than those considered above. In particular, galaxy mor-
phologies are well known to provide an indication of their physical
properties, local environment and formation history. The classical
‘Hubble sequence’ of morphological types has been recently im-
proved by several shape estimators that attempt to classify galaxies
in a more quantitative manner, which correlates directly with the
physical properties of interest (e.g. Simard 1998; Bershady, Jan-
gren & Conselice 2000; van den Bergh 2002).

It is possible to manufacture such morphology diagnostics
from weighted combinations of shapelet coefficients. Introducing
shapelets to this field allows a measurement to take advantage of
our robust treatment of noise, pixelization and PSF deconvolution.
The shapelet expressions for existing shape measures are frequently
elegant; and the natural symmetries in shapelets also suggest new
diagnostics.

7.1 General scale-invariant quantities

One approach is to consider general shape estimators Q, formed
from a linear combination of shapelet coefficients, as an extension
of the previous section

0= .BS Z wn‘mf;l.mv (56)

n.m
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where w,, ,, are arbitrary weights and the exponent s sets the dimen-
sion of the estimator. These are also linear in the surface brightness
of a galaxy. We initially restrict ourselves to using those combina-
tions which are independent of 8 to at least first order. This ensures
that the choice of the scalefactor does not affect the final result,
and is also equivalent to invariance under object dilations (40). We
can then impose further constraints that the estimator must be inde-
pendent of or linearly dependent upon the various other operations
described in Section 5. Setting 0Q/08 = 0 and using the result that

0 fum
s

1
= ﬁ[\/(n +mA+2)n—m+2) fuiom

—\/ (}’l + m)(n - m) fn72,m]v (57)

it is easy to show that we require

2s
Wypm = —F——————=Wy-2m
' J(n+m)(n —m) '
n4+m-—=2)(n—m-—2)
+ \/ (n+m)(n —m) Wn—d.m- (58)

Note that all quantities so formed mix coefficients with only one
value of |m|. This can be chosen to give Q the desired properties
under rotation. Any term on the right-hand side should be ignored
if it refers to non-existent states with negative n. The normalization
of the first term in each series, w, ,, is arbitrary: this can be set to
ensure independence to changes of object flux.

Setting (s, m) = (1, 0), (2, 1), (3, 0) and (3, 2) recovers the flux
F, centroid x, rms square radius R? and ellipticity &, up to the nor-
malization factor of F~! for the latter three quantities. This proves
that these are indeed the only f-invariant linear quantities with such
dimensionality and rotational symmetries. Furthermore, as equa-
tions (50), (51), (54) and (55) describe for unweighted moments,
they must in fact be independent of S to all orders.

All of these basic shape estimators converge for any galaxy with a
shapelet spectrum steeper than n~2. This includes both spiral galax-
ies with an exponential profile, and elliptical galaxies with a ‘de
Vaucouleurs’ profile, as long as 7,y s kept sufficiently low to pre-
vent the high-n coefficients from modelling background noise at
large radii. The flux and centroid estimators converge most rapidly,
so are least sensitive to the choice of 7,,,c. The error on these series
due to truncation can be calculated using any of a range of methods
for generic Taylor series in, for example, Boas (1983).

7.2 Concentration

We can extend this sequence by raising s further. For example, set-
ting s = 5 and m = 0 gives the 2D unweighted kurtosis of the
image, producing an estimate of the concentration of the object.
Unfortunately, such a high value of s yields a series of shapelet co-
efficients that does not converge for galaxies with a de Vaucouleurs
or exponential radial profile.

We have also noted that a ratio of the two existing shapelet scale
sizes, R and B, also works rather well as a concentration index (al-
though this estimator is not independent of ). Further work will
need to be performed to calibrate this estimator to the physical prop-
erties of galaxies.

An alternative approach is to mimic pre-existing, and pre-
calibrated, morphology diagnostics. Bershady et al. (2000) define a
concentration index

C =5log (@> (59)
0
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where rgp and rpy are the radii of circular apertures containing
80 and 20 per cent of the total flux of the object. This correlates
well with a Hubble-type galaxy (Bershady et al. 2000) and also its
mass (Conselice, Gallagher & Wyse 2002). Integrals (46)—(49) can
be evaluated for various values of R, to find rgy and r,, and thus
calculate this quantity for a shapelet model.

7.3 Asymmetry
Conselice, Bershady & Jangren (2000) define an asymmetry index

Zpixc]s [f G, ) — flgoo(xv I
Zpixels f(x’ y) ’

where the superscript denotes an image rotated through 180°. A term
dealing with the background noise and sky level has been omitted
here, as these are automatically dealt with during the shapelet de-
composition process in Section 4. The asymmetry correlates with
the star formation rate of a galaxy (Conselice et al. 2000), and
high asymmetry values often indicate recent galaxy interactions or
mergers.

In a shapelet expansion, all of the information concerning galaxy
asymmetry is contained in coefficients with odd m (and n). Using
the orthonormality condition (9) and rotating via equation (38), we
find the simple form

A

(60)

odd

V2B
A= F Z Ifn,ml- (61)

Estimators of asymmetry under rotations of 120° or 90° can also
be formed from sums of shapelet coefficients with m not divisible
by 3 or 4, respectively.

7.4 Chirality

A quadratic combination of shapelet coefficients can be used to
describe the ‘chirality’ or ‘handedness’ of an object. One dimen-
sionless estimator x |, can be formed for each value of |m|, to trace
the relative rotation of those coefficients, with increasing n. This
is roughly equivalent to tracing the rotation of the isophotes of a
galaxy with increasing radius. For example, the galaxy shown in
Fig. 3 has two prominent spiral arms that unwind in a clockwise
sense, so it has a large, positive value of .

We require that the chirality estimators should be invariant under
global rotation of the object, invariant under changes of flux, invari-
ant to first order under changes of 8 and to flip sign when the object
is mirror-imaged. These conditions uniquely specify

Xim = %22 SN wan £l fms (62)

n=m n'=n+2

where w,, ,,.» = 1 and

V@ +m) ' —m)w, = 4w, o +/(n+m)(n—m), (63)

thus mixing all coefficients with the same value of m.

This estimator has yet to be calibrated against physical quantities.
However, this approach ought to be able to automatically distinguish
between elliptical galaxies and spiral galaxies in way that mimics a
visual classification, and could also be adapted as a function of 725«
to find bars in the cores of spiral galaxies.
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8 CONCLUSIONS

We have extended the formalism of shapelets for image analysis
from basis functions separable in Cartesian to polar coordinates.
Cartesian shapelets are convenient for the initial object decompo-
sition. In particular, we have shown that they can analytically be
integrated inside a square boundary, thus facilitating the pixeliza-
tion of the smooth basis functions. On the other hand, polar shapelets
decompose an object into components with explicit rotational sym-
metries, and often have a more direct physical interpretation. In
addition, they yield more compact representations of typical galaxy
images, as terms with low orders of rotational symmetry tend to
dominate.

We have quantitatively investigated the effects of the choice of the
shapelet scale size parameter, 8. For most objects in astronomical
images, one scale size is clearly optimal for high-quality image
reconstruction, data compression and the fast convergence of shape
estimators. We have developed a practical algorithm to find this
value of B for arbitrary objects in real images, plus optimum values
for the shapelet centre x . and truncation order 7,,,,. This algorithm
can also take into account observational effects including noise,
pixelization and PSF deconvolution.

We have then described a number of applications of polar
shapelets. Shapelet models can be rotated, enlarged and sheared
by simple analytic operations. As the shapelet basis functions are
invariant under Fourier transform, analytic convolutions and de-
convolutions (e.g. from a PSF) are also easy to perform. Linear
combinations of the polar shapelet coefficients of an object produce
elegant expressions for its flux (photometry), position (astrometry)
and size. We also showed how other combinations of shapelet coef-
ficients can be used to distinguish between morphological types of
galaxies. A complete IDL software package to perform the image de-
composition and shapelet image analysis is publicly available on the
World Wide Web at http://www.astro.caltech.edu/~rjm/shapelets/.
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APPENDIX: LAGUERRE POLYNOMIALS

Different conventions have been used to define the Laguerre poly-
nomials, especially before the 1960s. The p! term is omitted from
equation (6) in many older books, and caution must be observed
with the resulting relations. Several useful recursion relations can
be derived to simplify their calculation (e.g. Boas 1983, chapter 12),
which we gather here, using our convention, for future reference:

Lix) =1 (A1)
Lix)=1-x+gq (A2)
—1- -1
Li(x) = (2 + %) L) (x) — (1 + qT) L, »(x)
(A3)
=L (x) = LI (x) (Ad)
14
= (AS)
i=0
dL4( B
ij) =x7" [pLY00) = (p+ @)L ()] (A6)
=-L" () (A7)
0 0
de()C) _ defl(x) _ L?)_l(x) (AS)

dx dx

p—1
- Z LY. (A9)
i=0
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