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Abstract

Quantifying uncertainty in models derived from observed seismic data is a major issue. In this work
we examine the geological structure of the subsurface using controlled source seismology which gives the
data in time and the distance between the acoustic source and the receiver. Inversion tools exist to map
these data into a depth model, but a full exploration of the uncertainty of the model is rarely done because
robust strategies do not exist for large non-linear complex systems. There are two principal sources of
uncertainty: the first comes from the input data which is noisy and band-limited; the second, and more
sinister, is from the model parametrisation and forward algorithm themselves, which approximate the
physics to make the problem tractable. To address these issues we propose a Bayesian approach using
the Metropolis-Hastings algorithm.
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1 Introduction

Seismic reflection surveying is the principal mean of investigating the geological structure of the Earth to
depths of about 30km. Acoustic energy from a source on the surface propagates into the Earth and is
partially reflected due to a change of acoustic impedance between different layers of rock. The amplitude
and phase of the reflected energy is dependent on the change of the elastic parameters at the interface, i.e.,
p-wave velocity, s-wave velocity and density (see Glossary at section 9).

In the field, a series of acoustic sources are fired into the sub-surface at known points along the seismic
profile to be investigated and each source is recorded by an array of receivers. Knowledge of the position
of the source and receiver locations are used during processing to collect together recorded traces with the
same geometrical mid-point between the source and receiver called a common midpoint (CMP) gather. A
CMP gather consists of a number of traces with varying source-receiver offsets. On figure 1, we can see a
simple example of a gather with only two traces: the recorded peak on the first trace of Figure 1(b) shows
how long it took for the signal to travel from source S1 to receiver R1. On Figure 2, we have an example of
a gather with three traces and on the first trace we can see four distinct peaks each corresponding to the
travel time of the signal from source S1 to receiver R1 after being partially reflected by four different layers
with velocities vi and depth zi, i = 1, . . . , 4.

Once the distortion due to the variation of offsets is removed through a process called normal move-out
(NMO) correction, the signals can be stacked together to enhance the required reflected signal from the
background noise. For the NMO correction to be effective, it requires an estimate of the sound velocity
structure of the sub-surface. In this paper we propose a Bayesian based method to address this problem.

Unlike manual velocity picking by a trained operator, the Bayesian model provides us with the most
probable velocity model and the uncertainty associated to it and each of its parameters. There is also
the flexibility of adding prior knowledge about the structure to be analysed and control over most of the
variables.

In section 2, we introduce the preprocessed data. In order to understand how the data is sorted and
filtered and the model structured, we introduce the tools used to run our analysis in sections 3, 4 and 5.
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In section 6, we explain how all these tools are combined to deliver a model for the velocity structure of
the subsurface. Synthetic and real data sets are used in section 7 to show the model efficiency compared to
other methods. In section 9, we have a small glossary of geophysics terms used in this paper. For further
reference, see oil [1].
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Figure 1: (a) 1.5-D single-layer model (i.e., model in which velocities are assumed to be functions of the
depth only) showing the energy propagation path from the sources S1 and S2 (fired independently at
different times to avoid mixed signals) to receivers R1 and R2 centred around a CMP through one layer
with velocity v1, depth z1 and zero-offset travel time t01 . (b) The vertical traces represents the amplitude of
the reflected energy arriving at x1 = 150m (distance between S1 and R1) and x2 = 225m (distance between
S2 and R2) against time. The amplitudes spikes on the traces correspond to the two-way travel time for
the energy to travel from the sources S1 and S2 to the sub-surface reflectors and back to the receivers R1

and R2.
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Figure 2: (a) Simple 1.5-D model showing the energy propagation path from sources S1, S2 and S3 to
receivers R1, R2 and R3 through a series of layers with velocities v1, . . . , v4 and zero-offset travel times
t01 , . . . , t04 separated by horizons at z1, . . . , z4 (b) each vertical trace represents the amplitude of the reflected
energy arriving at a given receiver with a known source-receiver offset x1, x2 and x3 against time. The
amplitudes peaks on the trace correspond to the two-way travel time for the energy to travel from the source
to the sub-surface reflectors and back to the receiver (e.g., the first spike around 3.75s on the first trace at
x1 = 900m corresponds to the travel time from source S1 to receiver R1 when the energy is reflected from
horizon z1 which in (a) is represented by the lightest shade of grey). The shape of the pulse is a function
of the band-limited nature of the seismic source. The dashed lines on (b) show the result of the automatic
picking algorithm described in Section 6.

2 The Preprocessed Data

In order to create a velocity model, we need to understand the data and set variables. A common midpoint
gather (CMP) represents an ensemble of traces with the same midpoint; each trace consists of a sequence
of points Akj where xj is the distance between source Sj and receiver Rj , (∆(t) · k) is the time when the
amplitude Akj was recorded and ∆(t) is a fixed sampling rate.

The signal recorded is bipolar so each trace alternates between positive and negative values that corre-
spond to the reflection strength or noise. When the signal reaches an interface with a significant change of
acoustic impedance, the energy is partially reflected which is detected by the receiver and gives a peak on
the data trace. Within a CMP gather, these interfaces form coherent peaks through the traces following
an approximate hyperbolic curve that corresponds to a possible layer. Therefore, in order to analyse this
data, these peaks need to be selected and sorted (e.g. picking the peaks on each trace of Figure 2(b) and
matching it to its respective layer). In subsection 6.1, we give an automatic method to pick and sort these
points but, for now, we’ll assume that they were already picked using the Bayesian picking method or any
equivalent method, e.g., manual picking and matching of peaks in each trace. In Figure 3, we can see the
plot of a single trace and in Figure 4, the plot of a whole gather consisting of 80 such traces.
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Figure 3: Plot of one recorded trace or wiggle in a given source-receiver distance xj . The “spikes” on the
trace correspond to possible layers. Even though the peaks seem clear, coherence over a set of traces is
necessary in order to make a good pick. Therefore, we need to analyse gathers as a whole in order to confirm
coherence.

Figure 4: Grayscale map of a single gather formed by 80 recorded traces as in Figure 3. Note that the
hyperbolic looking patterns are the ones we need to sort and model, the brightest ones usually correspond
to significant changes in velocity and possibly a change in the sub-surfaces geology. The biggest challenges
are: to accurately sort the data closer to the seabed and to identify relevant velocity changes in deep water,
in this case, time greater than 5s.
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3 Velocity Models for Backscattered Seismic Reflection Data

Consider the case where a single 1.5-D layer is detected and assume that it is parallel to an array of m
receivers (see Figure 2(a)). Then the travel-time equation applies:

t2j = t20 +
x2j
v2x
, (3.1)

where xj ≥ 0, j = 1, . . . ,m, is the distance of the j-th source-receiver pair, vx > 0 is the layer’s horizontal
velocity, tj ≥ 0 is the real travel time and t0 ≥ 0 is the two-way travel time of a vertically reflected ray or

t0 =
2z

vz
(3.2)

where z > 0 is the layer’s depth (Fig. 1(a)) and vz is the layer’s vertical velocity (see Kearey and Brooks
[8] and Yilmaz [13]).

In the case of a 1.5-D seismic model set where all n layers are parallel to an array of m geophones (see
Figure 2(a)), the travel-time equation is given by

t2ij = t20i +
x2j
v2xi

, i = 1, . . . , n; j = 1, . . . ,m, (3.3)

where xj ≥ 0 is the offset distance (or the position of the j-th geophone relative to the source), tij ≥ 0 is the
ray’s real travel time reflected from the i-th layer to the j-th receiver, vxi > 0 is the i-th layer’s horizontal
stacking velocity approximated by the root mean square (RMS) velocity given by Dix’s equation (see Dix
[4] and Dix [5])

v2xi =

n∑
i=1

v2int(i)(t0i − t0i−1)

n∑
i=1

(t0i − t0i−1)

(3.4)

for i > 1 and vx1 = vint(1), vint(i) is the layer’s real velocity, t0i ≥ 0 is the travel time of a vertically reflected
ray from the i-th layer to the receiver or

t0i =
2zi
vzi

(3.5)

where zi is the i-th layer’s depth (Fig. 2(a)) and vzi is the i-th layer’s vertical velocity.
As we discussed in Section 2, the only variable observed is the wave amplitude against time in a fixed

offset. In order to build the model, we assume that the points forming coherent curves or layers were already
picked and their travel times recorded. Usually, the data is processed using manual picking, i.e., an expert
identifies visually the layers that appear to be relevant in each gather. This is an extremely time-consuming
process that relies on this expert experience where no quantitative estimate of uncertainty is made and
layers near noise level are normally missed. Until Section 6, the number of layers n is assumed to be known
when we propose a method to identify layers without the need for manual picking.

Here we described a geometrically simple problem but, even though, the target horizons for real sub-
surface geology are three-dimensional, multilayered and non-parallel, locally these horizons can be assumed
to be a multilayered 1.5-D model. For the simple 1.5-D single layer model, estimating the corresponding
velocity model is trivial; however, as more layers are added, the number of variables and the uncertainty
sources grow. We also have to consider that the recorded data includes ambient noise and signal loss which
degrades the ability to identify the reflected events accurately.
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Therefore, we propose a Bayesian method which can produce a flexible and reliable model and an
estimate of its uncertainty. Prior information for these Bayesian models include the tools used in manual
picking: well-log data, outputs from other geophysical models, semblance plots and expert judgement. In
the next sections, we build the models used to analyse this processed data and show how it works in
synthetic and real examples.

4 Bayesian Models

Given a set of picked points, the data goes through two different Bayesian models: (M1) isotropic model
(vi = vxi = vzi) estimating vi and zi (and subsequently t0i) and (M2) anisotropic model (vxi 6= vzi)
estimating vxi , vzi , zi and t0i . Usually vxi ≈ vzi , so the isotropic model (M1) can be used to produce start
points to the anisotropic model (M2) and reduce the search area when new variables are inserted. Here the
only observed variables relevant to the travel-time equations are the recorded travel times and the offsets
and we want to estimate RMS velocities and depths with interval velocities and two-way travel times as a
by-product.

While the interval velocity represents the real velocity of the wave, it is the stacking velocity approxi-
mated by the RMS velocity that defines the hyperbolic shape. The interval velocity is a property intrinsic
to the geology of the rock and more susceptible to variation between layers and its correlation to the travel-
time increments is not trivial even using Dix’s equation. The RMS velocities, in the other hand, usually
create a more predictable smooth trend that handles well weak priors. When fairly accurate information
about interval velocities exist (i.e., well-logs and other surveys), priors for RMS velocities can be easily
derived. Experts use RMS velocities and two-way travel times in their analysis more often than interval
velocities and depths and, most of the time, this information is used as an input in further modeling; interval
velocities and depths are seem as a final output but rarely used as a modeling input. An alternative to the
model proposed here is to use interval velocities and depth increments as our target variables but, in this
work, we choose to use a combination that satisfies the industry and easily handles the expert information.

Set the variable t∗ij = tij + eij as the recorded travel time where eij ∈ R is the error between the real
and recorded travel time assumed to be normally distributed with zero mean and standard deviation σtij
given below. In both models, we make the assumption that depth and velocity are independent. Since the
error is normally distributed, t∗ij is normally distributed with mean

µtij =

√
4
z2i
v2zi

+
x2j
v2xi

(4.1)

and standard deviation

σtij = qiµtij (4.2)

where qi is Beta-distributed with shape parameters αi and βi which can be set with the help of an expert.
Say µtij is expected to be approximately 3.74s and σtij ≈ 0.01 seconds, so we could set αi = 4 and βi = 2000.
In the case where no specific prior information is given about σtij , it is reasonable to assume that σtij ≤ 0.05
seconds.

In the anisotropic model, we assume that vzi = aivxi where ai is normally distributed with mean around
1 and a small standard deviation σai > 0 which accounts for the fact that those velocities are usually similar.
Now, assume that vx1 is normally distributed with mean µ1 ∈ R and standard deviation σ1 > 0 and write

vxi = vx(i−1)
+ s(i−1)d(i−1), i = 2, . . . , n, (4.3)

where d(i−1) is gamma distributed with parameters kd(i−1)
and θd(i−1)

and s(i−1) indicates the change in
velocity between two layers, i.e., vxi is greater than vx(i−1)

with probability γi, vx(i−1)
remains the same with
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probability δi and vx(i−1)
is less than vxi with probability 1− γi − δi. So

s(i−1) =


−1, vx(i−1)

> vxi
0, vx(i−1)

= vxi
1, vx(i−1)

< vxi

(4.4)

and

P
(
S(i−1) = s(i−1)

)
=


γi, s = −1
δi, s = 0
1− γi − δi, s = 1.

(4.5)

In most cases, experts assume that the odds of having si−1 = −1 or si−1 = 0 are really low, normally
around 1% each.

While it might seem unnecessary to define RMS velocities recursively, this method allows the trend to
be controlled since the curve formed by the RMS velocities is expected to be fairly smooth and mostly
increasing. For example, if the water layer has a RMS velocity of 1480m/s, it is highly unlikely that the
next layer’s RMS velocity will be less than that. This semi-Markovian recursive definition results in a low
correlation between jumps in RMS velocities and simplifies the detection of empty layers, i.e., with the same
properties of the previous one. It also simplifies the diagnosis of the model and allows local prior updates.

Now assume that the first layer’s thickness z1 is normally distributed with mean µz1 > 0 and standard
deviation σz1 > 0 and that

zi = z(i−1) + dzi−1 (4.6)

where dzi−1 is Gamma-distributed with parameters kdzi−1
and θdzi−1

.
For similar reasons why we defined RMS velocities recursively, defining depths with increments guaran-

tees an always increasing depth, helps detect extremely thin or repeated layers and gives us the advantage
of a low correlation between layers’ thicknesses.

Writing the posterior distribution for the multilayered model, we have

π (vx,a,vz, z,q|t∗,x) ∝ f (t∗|vx,vz, z,q,x)πµ1,σ1(vx1)πµz1 ,σz1 (z1)× (4.7)

×
n∏
i=2

πγi−1,δi−1
(Si−1)πθd(i−1)

,kd(i−1)
(d(i−1))πθdz(i−1)

,kdz(i−1)
(dz(i−1)

)× (4.8)

×
n∏
i=1

παi,βi(qi)πµai ,σai (ai) (4.9)

≈ f (t∗|vx,vz, z,q,x) exp

[
−(vx1 − µ1)

2

2σ21

]
exp

[
−(z1 − µz1)2

2σ2z1

]
×

×
n∏
i=2

P
(
S(i−1) = s(i−1)

) [
d
kd(i−1)

(i−1) exp

(
−
d(i−1)

θd(i−1)

)] (
dzi−1

)kdzi−1 exp

(
−
dzi−1

θdzi−1

)
×

×
n∏
i=1

{[
qαi−1
i (1− qi)βi−1

]
exp

[
−(ai − µai)

2

2σ2ai

]}
(4.10)

where t∗ =
{
t∗ij

}
i=1,...,n;j=1,...,m

, x = {xj}j=1,...,m are the observed values and vx = {vxi}i=1,...,n, a =

{ai}i=1,...,n and z = {zi}i=1,...,n are the variables that we aim to estimate. As a result, vz, t0 and q are also
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estimated. The likelihood function f (t∗|vx,vz, z,q,x) is given by

f (t∗|vx,vz, z,q,x) ∝
n∏
i=1


exp

− m∑
j=1

(
t∗ij −

√
4z2i /v

2
zi + x2j/v

2
xi

)2
2q2i

(
4z2i /v

2
zi + x2j/v

2
xi

)


m∏
j=1

(
qi

√
4z2i /v

2
zi + x2j/v

2
xi

)


. (4.11)

The number of parameters to estimate grows with the number of layers and so does the number of
constants to be set by an expert using his own judgement and uncertainty about the model. Since we
assume that t∗ and x are given, the information on the amplitudes isn’t used. Priors for velocity and depth
jumps are set with the help of an expert and the subspace where this posterior exists is bounded by the
solution of the Dix equation for interval velocities as follows:

vint(i) =


vx1 , i = 1√√√√(v2xit0i − v2xi−1

t0i−1

)
t0i − t0i−1

, i > 1
(4.12)

If useful prior information on pairs of interval velocities and two-way travel times is available, then it
can be transformed into a prior for RMS velocities and depths, otherwise the equation above should be
used only to guarantee that the interval velocities are kept in the domain of positive real numbers. Other
prior trends can be imposed using this result, say by requiring an increasing interval velocity curve.

Given such a complicated model, the Metropolis-Hastings algorithm is used to obtain estimates for the
pertinent variables. The results obtained at this stage are usually accurate enough but, to refine them and
reduce the modelling error, a Gaussian process modelling phase based on a Taylor expansion of (3.3) can
be applied as we describe in Section 5.2.

5 Estimation

In this Section, we suppose that we observe each t∗ij , i = 1, . . . , n; j = 1, . . . ,m at a given xj and that
the number of layers n is fixed. In the isotropic model, our aim is to estimate the depth (zi) and the
velocity (vxi) for each layer. In the anisotropic case, we also estimate z and vzi and additionally a. In this
section we introduce the tools used to estimate the model parameters. As mentioned before, we use the
Metropolis-Hastings algorithm to obtain these estimates and we provide a tool to refine these values using
a Gaussian process.

When informative priors exist, specially in the number of layers, and the target space is small, the steps
in section 5.1 become optional since its main purpose is to reduce the search space, locate new layers when
used jointly with the algorithm in Section 6 and retrieve quick estimates for the target parameters, specially
depths and velocities. The most desirable feature of the method in section 5.1 is speed and, in section 5.2,
precision.

5.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (M-H) (see Metropolis et al. [10] and Hastings [7]) generates n states
of a Markov chain by drawing samples from a target probability distribution with unknown shape; in our
case, the posterior distribution in (4.10).

It is necessary to feed the chain with the initial values defining the chain’s first state. Here we can use
estimates from previous analysis, expert judgement or a random value inside the target search interval.
Under normal circumstances, any of these options allow the chain to converge to the expected region in the
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sampling space. The only differences are the number of iterations necessary for the chain to converge and
the number of samples discarded during the “burn-in” stage.

Given the number of variables to be estimated, the complexity of the model and the size of the search
area, we use a component-wise sampling strategy. In order to generate a d-dimensional chain update Xn,
we use d nested steps each consisting of an ergodic chain. While not the most elegant, the simplest and
most efficient approach is to use d uniform proposal distributions over the search interval for each variable
to be estimated. As stated in Roberts and Rosenthal [12], adaptive hybrid algorithms like this are ergodic
and satisfy the law of large numbers. While it is not possible to cover the whole search space, we can easily
monitor if the chain is walking towards a boundary and if the algorithm is showing signs of divergence. It
is common that a few marginal posteriors, usually the ones related to the target variables, show signs of
convergence to a region of the search space but, in order to assure we have a good uncertainty analysis of
the whole model, the chain is run until all marginals show signs of stability. In most examples where expert
prior information was used, we noticed that it is enough to sample each component around 10.000 times in
order to have convergence. When no prior information or extremely large search intervals were used (e.g.
0 ≤ v ≤ 15.000), around 100.000 samples were necessary.

It is natural to think that there is a high correlation between all the variables involved, which is true
when talking about RMS velocities and depths. However, as we mentioned before, the difference between
velocities and depths in each layer present a rather low correlation. Since the purpose of this stage is to
produce quick rough estimates from a statistical point of view, it is unnecessary to spend resources in a
more time consuming model that might not produce better results. This section is used later on in section
6 with a search algorithm that works out the number of layers in the model, it would be unreasonable to
create a correlation matrix or use a more complicated model while trying to sort the data efficiently. As an
example, the pre-sorted model for the real data in section 7 would produce an initial square matrix with
6144 rows, roughly 288Mb, for each variable which would have to be updated and cropped through the
MCMC. This would be slow but feasible if just a single gather were to be analysed at a time, but it would
be impraticable in an array of gathers. Due to the low correlation between differences and the nature of
these variables, it is acceptable to assume independency to generate rough approximations and reduce the
target space for the Gaussian process in section 5.2.

When the initial search space is too large, in order to avoid walking around improbable regions of the
parameter space, the search area is reduced by using p% credibility intervals generated by the last n runs
as boundaries for the next n runs. Say that 10.000 samples are generated and 99% credibility intervals are
estimated, than the next 10.000 samples will be generated from points inside this subspace. This way, after
repeating this process 5 times, the final intervals will cover roughly 95% of the posterior distribution. Most
of the strategies cited here, while unconventional, are much faster and flexible, specially when combined
with Section 6.

5.2 Gaussian Process Modelling

The Metropolis-Hastings algorithm is a robust and time-efficient code for velocity models. When applied
to synthetic examples, it returns expected values for the parameters we want to estimate close to their real
values but, usually, the standard deviations are not close to their true values mainly due to the assumption
of a hyperbolic fit and recursive errors from the use of Dix’s equation. In order to make estimates more
accurate, we apply a Gaussian process model using as the target space the one defined by the M-H intervals
(see Rasmussen and Williams [11]). In order to avoid convergence problems, the first prior from the M-H
is used as the prior for this process or an uniform distribution over the M-H credibility interval.

Rewriting the travel-time equation (3.3), we have:

tij =

√
t20i +

x2j
v2i
, i = 1, . . . , n, j = 1, . . . ,m (5.1)

where t0i = 2
zi
vzi

and vi = vxi in the anisotropic case.
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Expanding in a Taylor series of xj :

tij = t0i +
x2j

2v2i t0i
−

x4j
8v4i t

3
0i

+
x6j

16v6i t
5
0i

+ o
(
x8j
)
, i = 1, . . . , n, j = 1, . . . ,m. (5.2)

Now we can write

tastij = gj (t0i , vi) + εij

= ĝj (t0i , vi) + εj (t0i , vi) + εij

= t0i +
x2j

2v2i t0i
−

x4j
8v4i t

3
0i

+
x6j

16v6i t
5
0i

+ εj (t0i , vi) + εij (5.3)

where εij is normally distributed with zero-mean and standard deviation σij and εj (t0i , vi) is a Gaussian
process with zero-mean and covariance matrix

Cov (εj(wk), εj(wl)) = σ2j exp
[
−θ1j (t0k − t0l)2 − θ2j (vk − vl)2

]
. (5.4)

The limited search space increases the odds of convergence of the chains providing us with enough
information to re-estimate the target parameters. Around 99% of the model is described by the polynomial
part of the process so εj(·, ·) and εij work as tuning parameters. As expected, εij will be relevant if the data
is noisy or presents peculiar characteristics while εj(·, ·) represents the modelling error.

The Taylor expansion is not a necessary step but is commonly used by geophysicists to reduce the
hyperbolic effect. We therefore follow this approach to allow comparability with industry procedures.
Using equation (5.1) instead of equation (5.2) in (5.3) causes a small increase on the modelling error but
still produces the desired results. This is due to the fact that the curvature of the fit for large values of x
is overcorrected in (5.1), by using the Taylor expansion in (5.2), part of this error is accounted for. Also,
it is not necessary to use a polynomial of degree 6, the only changes would be on the modelling error and
computational time. The chosen degree is widely used by the industry and it is quite convenient given the
precision and speed it offers.

It is interesting to notice that, by running the model in section 5.1 for longer, it is possible to approach
the results obtained using the Gaussian process in the sense that the posterior means are almost the same
as we would expect. However, as mentioned before, that model is still limited by independence assumptions
which result in unresolved uncertainty around each parameter.

6 Sorting the Data

We now explain how the raw data is sorted; the peaks in the data have to be selected and matched to their
respective layers and these layers have to be validated to form a coherent model. We call this procedure the
Automatic Picking Algorithm which we detail in the next subsection. Here we will assume that a gather
is formed by a m-by-N matrix A of recorded amplitudes. Given this matrix A, we aim end up with the
number of layers n ≤ N and t∗i=1...n, j=1...m which are required in Section 5.

Roughly, the algorithm searches each trace for local maxima and minima, matches trends formed by
these points using a correlation and semblance analysis (see Section 6.2) and saves the best candidates for
further analysis using the processes discussed in Section 5. As mentioned before, the use of a semi-Markovian
definition of velocities’ and depths’ jumps, independent samplers and a component-wise M-H allows us to
locally search the dataset for layers by letting the number of layers to vary without compromising the rest
of the model as we can see in the next subsection.

6.1 Automatic Picking Algorithm

So far, in sections 3 to 5, we assumed that the recorded travel-times and the number of layers were given.
Here we describe how we select the points from the matrix of recorded amplitudes and match them to
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possible layers. We tried to mimic some of the steps that an expert would take when presented to a raw
data file as we were, the process is a matching algorithm that detects the outlines of the picture described
by the data. It is somewhat similar to a sharpening filter that enhances the main features in a picture and
fades the background noise.

This statistically-based automatic peak-picking process consists of detecting peaks in each gather and
matching them to their respective layers using adjacent gathers to include or exclude new points or layers.
In details,

1. Treat the first trace of the gather A·1 as a curve, pick its extremes (points with the highest and lowest
amplitudes - since the signal is bipolar, these amplitudes are always non-zero) and save their recording
times (t∗k1) and amplitudes (ak1). This sets an upper boundary p for the number of possible layers
k = 1, . . . , p. Minimum peak height, minimum peak distance and threshold can be set here to reduce
the number of noisy picks. A reasonable choice for minimum peak height is the average absolute
height of the last 5% of points in each column or the receiver’s factory standard error.

2. Start counter k = 1, . . . ,m where m is the number of traces. Start counter p = 1, . . . , L2k where L2k

is a preset lag on the number of traces to be used on the next step.

3. Given t∗kp, pick the extremes at t∗kp± l1k (l1k is a pre-set lag on the time difference between two points
in the same layer like the minimum recordable wavelength) on trace (k+ 1) and assign to a(k+1)p the
extreme that retrieves the minimum absolute difference when compared to akp. Say t∗11 = 3.74s and
l11 = 0.02s with amplitude a11 = 1020 then we’ll search the second trace for peaks in the inverval
[3.72s, 3.76s] with amplitudes close to a11. Alternatively, use priors (velocity and zero-offset travel
time - two-way travel time of a vertically reflected ray) or a semblance plot (discussed in 6.2) to build
hyperbolic guide curves based on (3.3) and set lags for each parameter.

4. At this moment, there might be too many layers picked, most of them following an unreasonable
pattern. So, given the first L∗2k points of each layer k, fit a least-squared non-linear model t =√
a2 + x2/b2, a > 0, b > 0 and reject the layers with low R2 since that indicates a probable misfit

given that we assumed that our candidates should follow an approximate hyperbolic curve;

5. Run a low-precision (around 10000 runs) Metropolis-Hastings algorithm based on the isotropic model
M1 described in section 4 to the first L∗2k points of each layer k. At this point, we assume that we
have a single-layer model and fit M1 to each layer individually. If no prior information is given for
each layer, use a and b as estimates for the mean of t0 and v, δ ·a and δ ·b as estimates for its standard
deviation where δ ≈ 0.1. Use the M-H estimated velocity and t0 to pick the next L3k points;

6. Repeat steps 3-5 until all traces are used;

7. Fit a single-layer isotropic model (see Section 4) to each layer and estimate its parameters, build
hyperbolic boundaries around the picked points using (3.3) and re-pick the most probable points in
each layer.

8. Even though this step is optional, the use of a filter might help eliminate part of the background
noise and enhance the relevant peaks if applied before step 1. We’ve considered three filters that can
be used individually or combined with each other: Hilbert envelope (see Hahn [6]), high-pass filter
(reduces the amplitude of signals with frequencies lower than the cutoff frequency), low-pass filter
(reduces the amplitude of signals with frequencies higher than the cutoff frequency).

After passing the data through this algorithm, we have two r-by-n matrices: A of recorded amplitudes
and t∗ of corresponding travel times where r is the number of layers picked and n, the number of traces in
gather A. Both matrices are used to estimate the required parameters using a full multilayered isotropic or
anisotropic model as described in section 4.
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6.2 Semblance Plot

The semblance plot mentioned on step 3 of the Automatic Picking Algorithm is a map created by calculating
the semblance for a sample of possible velocities and zero-offset travel times. Given a velocity and a zero-
offset travel time, we draw a guideline on the current gather using equation (3.1) and pick the amplitudes
a+j of the closest points to this line in each trace j, j = 1, . . . ,m. The semblance is calculated as follows:

S =

m∑
j=1

(
a+j

)2

m

 m∑
j=1

a+j

2 . (6.1)

The semblance is a dimensionless measure that ranges from 0 to 1 where the most coherent picks are
closer to 1. A sample semblance plot can be seen in Figure 6.

6.3 The Model Structure

The model we use here can be divided in four interlinked steps: create a semblance plot, pick the points
with highest semblance values, match these possible picks to the ones selected by the automatic picking
algorithm described later and discard incoherent points, run the Bayesian models (described in Section 4)
to estimate the parameters involved. On the second step, we identify likely interfaces by either setting a
minimum semblance threshold or using previous results. On the third step, we match the peaks on the
data with their most probable layers. As mentioned before, we use the semblance plot and the Metropolis-
Hastings algorithm to create boundaries and help the automatic picking algorithm “snap” to the right
points. Finally, at this stage, the data is ready to be analysed; we use the Bayesian models in section 4 to
provide the final estimates required. Here, additionally, we can use the Gaussian process stage described in
section 5 to further explain the model variability.

7 Examples

In this section, we present two data sets to test the model suggested in this paper against traditional
methods. The first consists of a synthetic data set created using a finite-difference algorithm that was
analysed with and without added noise. In the second one, we use a real data set consisting of a single
gather.

7.1 Synthetic Data

This 6-layer synthetic gather was produced based on 6 relevant layers from the real data example described
in the next subsection. The actual model used in the synthetic example is given in the first two columns
of Table 1. The synthetic data example is necessary in order to verify the precision of the automatic
picking algorithm in data sets with a controlled noise level. In this case, first we added a small amount of
uncorrelated noise sampled from a normal distribution with mean zero and variance estimated from all points
on each trace then extra noise was created by adding to each point a sample from a Normal distribution
with zero mean and covariance matrix estimated using a 15× 15 matrix centred in the corresponding data
point; this way, the amount of noise added to points near a relevant peak is proportional to its amplitude
as we would expect to happen on real data. We subject the noise-free and the noisy gathers to different
picking methods: manual picking by one of our trained operators Richard, automatic picking without prior
information and automatic picking with prior information.

We used the noise-free synthetic as a control data set; the three methods picked the right 6 gathers with
negligible error. Four kinds of priors were analysed: we restricted the search area to (1) points around real
t0 and v values, (2) points around real t0 values, (3) points around expert judgement on t0 and v and (4)
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vague priors on t0 and v. The first set of priors was relaxed, i.e., the real values for the first layer are 3.743
seconds and 1480 metres per second so we assumed that t0 ∈ (3.7, 3.8) and v ∈ (1450, 1500). The second
method is similar to the first one except that all velocities were amply constrained in an interval between
0 and 15000 m/s. In the case where we used vague priors, no information about the number of layers was
given, velocities were constrained between 0 and 15000 m/s and time between 0 and 10 seconds.

In the cases where we fed the automatic picking algorithm with prior information on only t0 and on
both t0 and v, the M-H converged faster to the target area than when only vague information was given.
We also tested cases where a different number of layers were given and the automatic picking algorithm was
able to recover or eliminate the relevant layers leading to the same results. Apart from when we omitted
the picking stage, this method produced similar results consistently with the noise-free synthetic, regardless
of how unreasonable the priors were. When the picking stage is removed, the search phase that finds new
layers isn’t present; so, inputting a smaller number of layers than the one in the model will result in a model
with the same number of layers or less. Note that it is still possible to reject layers without the picking stage
since layers that are too similar are eliminated, i.e., velocity or time difference below the data precision or
negligible thicknesses.

We subjected the synthetic with noise to similar problems with similar results as the noise-free one. The
results for the case where correlated Gaussian noise was added are presented on Table (7.1). The results
for the Automatic picking column used a non-informative prior for t0 and v.

Figure 5: On the left, noise-free synthetic data with layers picked by the automatic picking algorithm. On
the right, synthetic data with enough correlated Gaussian noise added to “hide” the second and the sixth
layers, i.e., the average signal amplitude for those two layers is around noise level.

The proportion of noise added here is much higher than what would be found in a normal real data set
but provides us with an example that challenges the automatic picking algorithm to identify layers that
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Real Values Manual Picking Automatic Picking

t0 (s) v (m/s) t0 (s) v (m/s) t0 (s) v (m/s) Sd(v)

3.743 1480 3.7055 1485.1 3.7409 1481.81 0.3799

3.934 1500 - - 3.9393 1502.6 0.3548

4.194 1520 4.1841 1528.9 4.1889 1523.9 0.4046

4.497 1565 4.4822 1567.2 4.4959 1565.8 0.4130

4.650 1605 4.6346 1615.7 4.653 1607.5 0.8641

6.888 2630 - - 6.8486 2629.152 2.0915

7.8407 2849.9

Table 1: Estimates for velocities and travel-times using the noisy synthetic data - time in seconds and
velocity in meters per second

would be missed by manual picking by a trained operator. In this case, the manual picking method was
unable to identify two of the layers at noise level while the automatic picking was able to identify all of
them and return estimates close to the original values. In all cases, the standard deviation of t0 was reduced
to or below the resolution of the data becoming negligible from a practical point of view. If we consider
that the hyperbola in Eq. 3.1 is a good approximation for each single layer, it is easy to check that its
eccentricity is a function of the velocity only and it approaches 1 as the velocity increases. It is reasonable
to expect such a small error since there are more than enough data points to offer a precise estimate for
t0. Without considering the effects of adjacent layers, we should expect proportionally higher variances
for high velocities on the pre-Gaussian modelling stage as we are approaching asymptotes by using the
hyperbolic approximation and the Gaussian modelling stage should resolve most of the error resulting from
this assumption.

In all cases, providing the automatic picking algorithm with prior information allowed it to converge
much faster to satisfactory values but the fact that priors influence only the speed of convergence, shows
that the model is robust enough to handle synthetic data and similar situations. During our tests, we’ve
also fed the Metropolis-Hastings algorithm with bad priors that are physically plausible (i.e., non-negative
starting points and velocities no higher than 15000m/s) and the estimates obtained were still satisfactory.

On the layers that were meant to be hidden by noise, reasonable estimates were obtained in 100000 runs
without priors and in 10000 runs with prior information on t0. In all cases, the model explained around 99%
of the error. The remaining can probably be explained by numerical errors and approximations. Given the
dimensionality of the problem, specially when multiple gathers are analysed, it is unreasonable to manually
check each chain for convergence so we have automated a few diagnostics strategies.

Mixing is one of the main issues in multidimensional problems and the fastest way to verify mixing
problems is by checking the stability of the marginal chains. As each of the marginal chains are built, their
running mean and median series are checked for stability using lags of 10 and 100. The structure of long-lag
auto-correlation series is also checked in order to avoid highly correlated samples and assure that the chain
“forgot” its initial state.

Another issue is related to different rates of convergence for different parameters. The chains for depths
and velocities tend to take longer to stabilise when compared to the two-way travel times. To assure that all
space was explored, we either tune the variance of the proposal distribution for each parameter to constrict
or expand their search area or the acceptance rate with simulated annealing to assure stability for all chains.

The last problem that has to be addressed is the uncertainty around the number of layers. While we
expect to find at least one layer in a given data set, there is the possibility that the recorded signal was
corrupted by noise and no layers can be selected even though there is a large number of candidates as the
ones mentioned in step 4 of the Picking Algorithm in Section 6.1.

Given that one layer was selected, say the seabed, we might still have too many candidates. So, if
we assume that the total number of candidates is the maximum number of possible layers, we can allow
“bad” candidates to converge to possible good ones like the seabed. Say the first candidate after the seabed
was picked had zero depth or a complex interval velocity, this implies that such layer doesn’t exist in that
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specific gather so we can either delete it if a single gather is being analysed or replace it with the seabed
estimates if we have multiple gathers to allow new layers to be created. Using this method and including
an empty model candidate, the possibility of choosing a bad model because the number of layers was preset
should be reduced.

7.2 Real Data

The real data example is from a seismic survey acquired over the Naturaliste Plateau and Mentelle Basins
off the south west coast of Australia (see Borissova [2]). The data set is from a deep water environment
where complications in the received signal due to reverberation of the seismic energy in the water layer
can be ignored because the travel-time for these arrivals is longer than the target reflections. The research
interest in these data is the high latitude Cretaceous black shales that were deposited on this margin during
a period of extreme high global temperature which may be related to sudden decreases in atmospheric
CO2 concentrations (see Kuypers et al. [9]) and recorded sporadic short-lived glaciations (see Bornemann
et al. [3]). Additional prior control on the geological structure is obtained from a Deep Sea Drilling Project
borehole number 258 (see (author?) [et al]) which provides depths to key boundaries and estimates of
acoustic velocity from recovered rock samples.

Currently the seismic data from this area is being reprocessed and reinterpreted. As part of this work,
a robust quantified velocity model is required to enable generation of depth sections and so provide the
opportunity for a comparison of the automated Bayesian based methods described here with the traditional
manual method. The seismic gather analysed here is close to the borehole and comes from a seismic survey
acquired in 2004 by Geoscience Australia.

In this example, we used a real data set to compare the results obtained by the models and the ones
obtained by traditional methods. At first the automatic picking algorithm without informative priors on
t0 and v, produced over 200 layer candidates that were reduced to approximately 50 and later to 8. The
results are listed in Table 2. The data provided was clean enough to return standard deviations lower than
expected for most layers, i.e., less than one millisecond for t0 and less than one meter per second for v.

Manual Picking

t0 (s) v (m/s)

3.7437 1480.5
3.9405 1498.1
4.1943 1518.9
4.4973 1563.5
4.6501 1606.0
6.8877 2632.2

Automatic Picking

t0 (s) v (m/s) Sd(v) P(Layer)

3.7494 1490.4 0.6 0.9993
3.8228 1494.1 0.8 0.9998
4.0129 1520.2 1.0 0.9992
4.1947 1522.6 1.2 0.9998
4.3095 1554.6 0.9 0.9994
4.4198 1573.7 1.1 0.9990
4.5633 1595.3 1.6 0.9988
4.7041 1642.3 1.2 0.9880

Table 2: Velocities and travel-times obtained using manual picking and estimated velocities and travel-times
and the probability that each layer is part of the model obtained using automatic picking for the real data
- time in seconds and velocity in meters per second

The results obtained are consistent with the ones obtained using manual picking since the points picked
(white points on the semblance plot in Figure 6) are close to the trend line formed by manual picks (black
line on the semblance plot in Figure 6). Even though most of the points picked manually were acceptable
when ran using the automatic picking, they weren’t selected as the most probable picks. Here the MCMC
tool used, the Metropolis-Hastings algorithm, returned 95% credibility intervals on each parameter by using
a nested approach of repeated runs that reduces the search area to 99% of the current posterior distribution
as the algorithm shows stability. This reduced search space is then used in a Gaussian process modelling
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Figure 6: The most probable layers picked from CDP 1624 using the automatic picking algorithm without
filters and minimum peak distance set at 100ms. On the left, we have the picked points on the original
gather and on the right, the same layers picked on a semblance plot where the darkest areas correspond
to high semblance points. The black line shows the picks obtained by a trained operator and the white
line shows the results obtained using the Bayesian method. The direction of the lines after the last peak is
irrelevant.

phase, based on a more exact solution to the normal move-out equation, to further decrease the uncertainty
to the noise level in the data by reassigning part of the modelling error.

In this work, the results obtained using the model described, would be accepted as a good result that
could have been obtained by an experienced operator analysing the same data set. When analysing a single
gather, informative priors are not necessary because we are just looking for the vertical velocity trend. To
obtain better results using automatic or manual picking, it is interesting to use adjacent gathers and extra
information obtained from a larger data set to build models in which velocities vary on the x and y axis and
with depth. This way, it is possible to build a correlation structure between gathers and detect or delete
layers faster and more accurately. This will be discussed in future works.

8 Conclusion

The automatic picking algorithm has proved that it can work on single gathers, both synthetic and real. It
retrieves a large number of possible layers that are ranked according to their probability of pertaining to
the current model, leaving space to improve the model by matching this information to adjacent gathers.

As expected, it is less stable as the signal to noise ratio decreases and tends to identify possibly spurious
horizons but the same happens to our trained operators. Similar to the manual picking procedure, this
will improve when dealing with real data sets where spatial oversampling provides additional data to help
discrimination. Therefore, the Bayesian model proposed here proved to be more efficient than manual
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picking and also provided an analysis of uncertainty of the fitted solution which a trained operator cannot
retrieve.

9 Glossary

1.5-D seismic model Velocity model in which velocities are assumed to be functions of the depth only.

acoustic impedance The product of density and seismic velocity, which varies among different rock layers.

band-limited Fourier-transformed data that is restricted to a finite range of frequencies or wavelengths.

common midpoint (CMP) In multichannel seismic acquisition, the point on the surface halfway between
the source and receiver that is shared by numerous source receiver pairs. Such redundancy among
source-receiver pairs enhances the quality of seismic data when the data are stacked. The common
midpoint is vertically above the common depth point or common reflection point.

geophone A device used in surface seismic acquisition, both onshore and on the seabed offshore, that
detects ground velocity produced by seismic waves and transforms the motion into electrical impulses.

normal move-out (NMO) The effect of the separation between receiver and source on the arrival time
of a reflection that does not dip. A reflection typically arrives first at the receiver nearest the source.
The offset between the source and other receivers induces a delay in the arrival time of a reflection
from a horizontal surface at depth. A plot of arrival times versus offset has a hyperbolic shape.

p-wave An elastic body wave or sound wave in which particles oscillate in the direction the wave propagates.
P-waves are the waves studied in conventional seismic data.

receiver A device that detects seismic energy in the form of ground motion or a pressure wave in fluid and
transforms it to an electrical impulse.

s-wave An elastic body wave in which particles oscillate perpendicular to the direction in which the wave
propagates. S-waves are generated by most land seismic sources, but not by air guns. S-waves, or
shear waves, travel more slowly than P-waves and cannot travel through fluids because fluids do not
support shear..

semblance A quantitative measure of the coherence of seismic data as described in (6.2).

source A device that provides energy for acquisition of seismic data, such as an air gun, explosive charge
or vibrator.

trace The seismic data recorded for one channel. A (seismic) trace represents the response of the elastic
wavefield to velocity and density contrasts across interfaces of layers of rock or sediments as energy
travels from a source through the subsurface to a receiver or receiver array.

two-way travel time The elapsed time for a seismic wave to travel from its source to a given reflector
and return to a receiver at the Earth’s surface.
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