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Abstract

The theory of system signatures [1] provides a powerful framework for reliability

assessment for systems consisting of exchangeable components. For a system with m

components, the signature is a vector containing the probabilities for the events that

the system fails at the moment of the j-th ordered component failure time, for all

j = 1, . . . ,m. As such, the signature represents the structure of the system. This

paper presents how signatures can be used within nonparametric predictive inference,

a statistical framework which uses few modelling assumptions enabled by the use of

lower and upper probabilities to quantify uncertainty. The main result is the use of

signatures to derive lower and upper survival functions for the failure time of systems

with exchangeable components, given failure times of tested components that are ex-

changeable with those in the system. In addition, it is shown how the failure times

of two such systems can be compared. This paper is the first in which signatures are

combined with theory of lower and upper probabilities, related research challenges are

briefly discussed.
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1 Introduction

In recent decades, system signatures have proven to be a powerful tool for qualifying relia-

bility of coherent systems consisting of exchangeable components, which also can be used to

quantify aspects of reliability of a system such as its failure time distribution [1]. Consider a

system consisting of m components which have exchangeable random failure times [2]. It is

convenient to call these ‘exchangeable components’, informally they can be said to be all ‘of

the same type’. As an example, consider batteries of the same brand; their failure times will

not be identical, but not knowing the individual batteries failure times the exchangeability

assumption implies that the information about the failure time of one specific battery is the

same as the information about the failure time of any other specific battery. It should be

emphasized that such failure times are not statistically independent, as for example learning

that one battery’s failure time is small will provide important information about the ran-

dom failure time of another battery. A standard situation where such an exchangeability

assumption is reasonable, and indeed implicit to many standard statistical methods, is when

the components (batteries) for which failure times are observed had been chosen by simple

random sampling from a batch of exchangeable components, with interest in predicting the

failure times of one or more components from the same batch. Throughout this paper it is

assumed that the system is coherent, which means that the system can never change from

‘not functioning’ to ‘functioning’ due to failure of one or more further components [3]. Let

the random failure time of the system be TS, and let Tj:m be the j-th order statistic of the

m random component failure times for j = 1, . . . ,m, with T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The

system’s signature is defined to be the m-vector q with j-th component

qj = P (TS = Tj:m) (1)

so qj is the probability that the system failure occurs at the moment of the j-th component

failure. Assume that
∑m

j=1 qj = 1; this assumption implies that the system functions if all

components function, has failed if all components have failed, and that system failure can

only occur at times of component failures. The signature provides a qualitative description

of the system structure that can be used in reliability quantification [1]. For example, the

survival function of the system failure time can be derived by

P (TS > t) =
m
∑

j=1

qjP (Tj:m > t) (2)

and the expected value of TS can be derived by

E(TS) =
m
∑

j=1

qjE(Tj:m) (3)

2



An attractive feature of describing system structures through signatures is the possibility to

compare the reliability of different systems based on stochastic ordering of their signatures,

as long as the components in these systems are all exchangeable [1]. This paper presents an

alternative to compare the reliability of different systems by directly considering the random

system failure times. Derivation of the signature of a system is generally not straightforward,

indeed the signature for a relatively basic system structure can already be complex, but it

only has to be derived once for a system following which it can greatly simplify several

quantitative inferences related to the system’s reliability.

The main goal of this paper is to explore the use of signatures in imprecise reliability [4],

in particular in the nonparametric predictive inference (NPI) framework [5, 6]. It should be

emphasized that the signature itself will not be generalized into an imprecise probabilistic

version. This would potentially be an interesting topic for research, for example if the system

structure is not known precisely or if it suffices to work with approximate signatures due

to complexity of deriving exact signatures. In NPI for system reliability lower and upper

probabilities are used to reflect the limited knowledge about reliability of the components,

using only the information from component tests.

In this paper, the use of signatures for system reliability is explored in the generalized the-

ory of uncertainty quantification where lower and upper probabilities (also called ‘imprecise

probability’ [7] or ‘interval probability’ [8]) are used instead of precise probabilities. Section

2 presents the use of system signatures to derive NPI lower and upper survival functions

for a system. In Section 3 comparison of reliability of two systems is presented by directly

considering the random failure times of the systems. This includes explicit consideration

of the difference between failure times of two systems. Section 4 contains some concluding

remarks, particularly providing a brief discussion on main research challenges.

2 Predicting system failure time

This section presents the NPI lower and upper survival functions for systems with exchange-

able components, derived by generalizing expression (2) to lower and upper probabilities.

Suppose that in a test of n components, exchangeable with those in the system considered,

the observed failure times were t1 < t2 < . . . < tn. For ease of notation, define t0 = 0 and

tn+1 = ∞. These n observations partition the non-negative real-line into n + 1 intervals

Ii = (ti−1, ti) for i = 1, . . . , n + 1. Consider reliability of a system with m components, so

interest is in the m failure times of those components, say T1, . . . , Tm. The test data and

T1, . . . , Tm are linked via repeated use of the assumption A(n), see [5, 6, 9] for more details.
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Let Sj = #{Tl ∈ Ii, l = 1, . . . ,m}, then

P (
n+1
⋂

j=1

{Sj = sj}) =

(

n+m

n

)−1

(4)

for all (s1, . . . , sn+1) with sj non-negative integers and
∑n+1

j=1 sj = m. For any event involving

the m future observations, equation (4) implies that the number of such orderings for which

this event holds can be counted. Generally in NPI a lower probability for the event of interest

is derived by counting all orderings for which this event has to hold, while the corresponding

upper probability is derived by counting all orderings for which this event can hold [5, 6].

The order statistics of the m future observations T1, . . . , Tm are the ordered component

failure times introduced in Section 1, denoted by T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The following

probabilities for Tj:m, for j = 1, . . . ,m, are derived by counting the relevant orderings [9],

and hold for i = 1, . . . , n+ 1,

P (Tj:m ∈ Ii) =

(

i+ j − 2

i− 1

)(

n− i+ 1 +m− j

n− i+ 1

)(

n+m

n

)−1

(5)

NPI provides a precise probability for this event Tj:m ∈ Ii, as each of the
(

n+m

n

)

equally

likely orderings of n test observations and m future observations has the j-th ordered future

observation in precisely one interval Ii. The probabilities (5) straightforwardly lead to the

following NPI lower and upper survival functions for Tj:m, these are the sharpest bounds for

the probability of the event Tj:m > t that can be justified without further assumptions. The

NPI lower survival function for Tj:m is

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i+1

P (Tj:m ∈ Il) for t ∈ (ti−1, ti] (6)

and the corresponding NPI upper survival function is

STj:m
(t) = P (Tj:m > t) =

n+1
∑

l=i

P (Tj:m ∈ Il) for t ∈ [ti−1, ti) (7)

At observed failure times ti there is no imprecision in these NPI lower and upper survival

functions, that is STj:m
(ti) = STj:m

(ti) for i = 1, . . . , n, while STj:m
(0) = STj:m

(0) = 1. Beyond

the largest observed component failure time in the test, the NPI lower survival function is

equal to zero but the NPI upper survival function remains positive,

STj:m
(t) = 0 and STj:m

(t) = P (Tj:m ∈ In+1) =
m
∏

l=j

l

n+ l
> 0 for t > tn

This reflects that there is no evidence in favour of such components, and hence the system,

surviving past time tn (this is reflected by the lower survival function being equal to zero),

4



but the evidence against this is limited as there are only n observations thus far (this is

reflected by the upper survival function being a positive decreasing function of n).

To combine NPI with system signatures, it is important to explain a key ingredient of

theory of lower and upper probabilities, namely a set P of precise probability distributions,

each denoted by P ∈ P , which corresponds to the assessed values and which is such that the

lower probability of an event E is P (E) = infP∈P P (E) and P (E) = supP∈P P (E). In his

theory of interval probability, Weichselberger [8] calls such a set a ‘structure’, see [5] for more

details and strong consistency properties of inferences based on such a construction of lower

and upper probabilities. Generally, in NPI the assumption A(n) provides precise probabilities

for some events involving one or more future observations, and the corresponding structure

consists of all precise probabilities which assign those values to all those events. So, the

structure Pj for Tj:m, for j = 1, . . . ,m, consists of all precise probability distributions which

assign P (Tj:m ∈ Ii) as given in (5) to interval Ii, for each i = 1, . . . , n+1. As interest is in the

system failure time TS, let PS be the structure corresponding to NPI for TS. PS is derived

directly from the Pj, j = 1, . . . ,m, by the logical relationship that exists based on equation

(2) for the precise probability distributions in the respective structures. This means that for

each probability distribution in PS ∈ PS, there is a combination of probability distributions

in the structures Pj that, by (2), leads to PS. Also the reverse relation holds, namely that any

combination of probability distributions in the structures Pj lead, by application of (2), to a

probability distribution PS which belongs to PS. The NPI lower and upper survival functions

for TS are derived by minimisation and maximisation, respectively, of the probabilities for

events TS > t over the structure PS. While in general this would be non-trivial optimisation

problems, NPI provides a simple solution as explained below.

The NPI lower and upper survival functions for the failure time TS of a coherent system

consisting ofm exchangeable components, with the system structure represented by signature

q, can be derived by the following generalizations of equation (2)

STS
(t) = P (TS > t) = inf

PS∈PS

PS(TS > t) = inf
PS∈PS

m
∑

j=1

qjPS(Tj:m > t)

=
m
∑

j=1

qj inf
Pj∈Pj

Pj(Tj:m > t) =
m
∑

j=1

qjP (Tj:m > t) (8)

STS
(t) = P (TS > t) = sup

PS∈PS

PS(TS > t) = sup
PS∈PS

m
∑

j=1

qjPS(Tj:m > t)

=
m
∑

j=1

qj sup
Pj∈Pj

Pj(Tj:m > t) =
m
∑

j=1

qjP (Tj:m > t) (9)

The crucial step in the derivations of (8) and (9) is the fourth equality. In general theory of
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lower and upper probabilities [5,6] only

inf
PS∈PS

m
∑

j=1

qjPS(Tj:m > t) ≥
m
∑

j=1

qj inf
Pj∈Pj

Pj(Tj:m > t) (10)

and

sup
PS∈PS

m
∑

j=1

qjPS(Tj:m > t) ≤
m
∑

j=1

qj sup
Pj∈Pj

Pj(Tj:m > t) (11)

would hold, so justification of the fourth equalities in (8) and (9) is required. The argument

is given for the case of the NPI lower survival function, justification of the NPI upper

survival function follows the same steps. For the equality to hold in (10), the probability

distributions in Pj which minimise Pj(Tj:m > t) for all t must be attained simultaneously

for all j = 1, . . . ,m. That this holds follows from the derivation of (5), as given in [7],

which is based on the
(

n+m

n

)

equally likely orderings of the n data observations and m

future observations. Each NPI lower survival function for a Tj:m, for all j = 1, . . . ,m, can

be derived by considering, for each of the equally likely orderings, the situation with all

future observations assigned to interval Ii = (ti−1, ti), by the specific ordering, to actually

be located immediately to the right of ti−1 (so to the left of ti−1 + ǫ for any ǫ > 0) with all

their probability mass for this interval. This construction clearly corresponds to the NPI

lower survival function for Tj:m, and can be used in each interval to get all these NPI lower

survival functions, so for all j = 1, . . . ,m, simultaneously.

Example 1

Figure 1 presents the signatures of six coherent systems with m = 4 exchangeable com-

ponents. Suppose that n = 4 components exchangeable with those in such a system were

tested, leading to ordered failure times t1 < t2 < t3 < t4, which create the partition I1, . . . , I5

of the positive real-line. Table 1 presents the probabilities (5), denoted by jPi = P (Tj:4 ∈ Ii)

for j = 1, . . . , 4 and i = 1, . . . , 5, together with the NPI lower and upper survival functions

for Tj:4 as given by (6) and (7), respectively. Table 2 presents the NPI lower and upper

survival functions STS
(t) and STS

(t) for the system failure time TS, from (8) and (9), for

each of the six systems presented in Figure 1.

Table 2 illustrates that the upper survival function for the system failure time is always

equal to one in the first interval and the corresponding lower survival function is less than one.

Of course, these upper and lower survival functions decrease at each observed failure time

of a component in the test. The lower survival function is zero after the largest observation

while the upper survival functions always remains positive. Tables 1 and 2 show that the

upper survival function in interval Ii is equal to the lower survival function in interval Ii−1.
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Dq Eq q

 = (0,0,0,1)

= (1,0,0,0)

1
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3
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 = (0,1/3,2/3,0)

1

2

3

4

 = (1/4,1/4,1/2,0)

1

2

3

4

  = (0,2/3,1/3,0)

1

2 3 4

 = (0,1/2,1/4,1/4)F

Figure 1: Coherent systems with 4 exchangeable components

j = 1 j = 2 j = 3 j = 4

i 1Pi ST1:4
ST1:4 2Pi ST2:4

ST2:4 3Pi ST3:4
ST3:4 4Pi ST4:4

ST4:4

1 0.500 0.500 1 0.214 0.786 1 0.071 0.929 1 0.014 0.986 1

2 0.286 0.214 0.500 0.286 0.500 0.786 0.171 0.757 0.929 0.057 0.929 0.986

3 0.143 0.071 0.214 0.257 0.243 0.500 0.257 0.500 0.757 0.143 0.786 0.929

4 0.057 0.014 0.071 0.171 0.071 0.243 0.286 0.214 0.500 0.286 0.500 0.786

5 0.014 0 0.014 0.071 0 0.071 0.214 0 0.214 0.500 0 0.500

Table 1: jPi, STj:4
(t) and STj:4

(t) for t ∈ Ii, for n = 4 and m = 4

This is a property that generally holds for the lower and upper survival functions in this

paper, and which follows directly from (6) and (7).

Figures 2 and 3 present the NPI lower and upper survival functions for the six systems in

Figure 1 based on n = 30 observations of component failure times, simulated from theWeibull

distribution with shape parameter 2 and scale parameter 1. The 30 ordered simulated

component failure times are given in Table 3.

The signatures of systems C and F are not stochastically ordered, which leads to their

NPI lower and upper survival functions crossing as is illustrated in Figure 2, and the same

applies for systems D and E, shown in Figure 3. These lower and upper survival functions

clearly indicate the differences in the system reliability for these six systems. However, one

may wish to quantify the differences in reliability more precisely, a new approach that can

be used for this will be presented in Section 4.
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q (1, 0, 0, 0) (0, 0, 0, 1) (0, 13 ,
2
3 , 0)

i STS
STS

STS
STS

STS
STS

1 0.50 1 0.99 1 0.88 1

2 0.21 0.50 0.93 0.99 0.67 0.88

3 0.07 0.21 0.79 0.93 0.41 0.67

4 0.01 0.07 0.50 0.79 0.17 0.41

5 0 0.01 0 0.50 0 0.17

q (14 ,
1
4 ,

1
2 , 0) (0, 23 ,

1
3 , 0) (0, 12 ,

1
4 ,

1
4)

i STS
STS

STS
STS

STS
STS

1 0.79 1 0.83 1 0.87 1

2 0.56 0.79 0.59 0.83 0.67 0.87

3 0.33 0.56 0.33 0.59 0.44 0.67

4 0.13 0.33 0.12 0.33 0.21 0.44

5 0 0.13 0 0.12 0 0.21

Table 2: STS
(t) and STS

(t) for t ∈ Ii

0.086 0.167 0.277 0.319 0.394 0.400 0.402 0.481 0.494 0.599

0.601 0.642 0.642 0.712 0.720 0.732 0.790 0.832 0.863 1.023

1.088 1.097 1.172 1.185 1.334 1.336 1.620 1.851 2.060 2.329

Table 3: 30 simulated component failure times for Example 1

Example 2

To further illustrate the NPI lower and upper survival functions for systems presented in

this paper, consider linear and circular consecutive k-out-of-m:F systems, which fail if and

only if k or more linearly or circularly ordered components fail. Such systems have received

much attention in the reliability literature in recent years, particularly also with focus on

their signatures [10, 11, 12]. Table 4 gives n = 30 component failure times simulated from a

Weibull distribution with shape parameter 3 and scale parameter 1. Figure 4 presents the

NPI lower and upper survival functions, based on these data, for both a linear and circular

consecutive 2-out-of-4:F system, for which the signatures are also given in the figure. The

circular system fails for all neighbouring pairs of failing components for which the linear

system fails, but in addition it also fails if only the first and last ordered components fail.

This results in the circular system being less reliable than the linear system, as shown in

Figure 4. Figure 5 presents similar NPI lower and upper survival functions for the linear

and circular consecutive 3-out-of-6:F systems based on the same component failure data.
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Figure 2: The lower and upper survival functions

These systems are clearly more reliable early on than the 2-out-of-4 systems. For all these

four systems considered, the lower survival function is zero beyond the largest observed

component failure time, t = 1.425, reflecting that the data provide no evidence in favour

of survival beyond this time, yet the corresponding upper survival functions are positive

reflecting the fact that such survival cannot be deemed to be impossible on the basis of the

30 observations only.

0.223 0.265 0.372 0.419 0.564 0.630 0.675 0.685 0.709 0.727

0.747 0.798 0.807 0.824 0.850 0.887 0.914 0.921 0.981 0.987

0.994 1.008 1.073 1.115 1.167 1.182 1.275 1.397 1.400 1.425

Table 4: 30 simulated component failure times for Example 2

3 Comparing failure times of two systems

System signatures provide a straightforward way to compare the reliability of two systems

with m exchangeable components (so both systems having components of the same single

type) if the signatures are stochastically ordered [1]. Let the signature of system A be qa

and of system B be qb, and let the failure times of these systems be T a and T b, respectively.

If
∑m

j=r q
a
j ≥

∑m

j=r q
b
j for all r = 1, . . . ,m then P (T a > t) ≥ P (T b > t) for all t > 0. Such
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Figure 3: The lower and upper survival functions

a comparison is even possible if the two systems do not have the same number of compo-

nents, as one can always increase the length of a system signature in a way that does not

affect the corresponding system’s failure time distribution [1], hence one can always make

the two systems’ signatures of the same length. However, many systems’ structures do not

have corresponding signatures which are stochastically ordered. For example, the signatures

(1
4
, 1
4
, 1
2
, 0) and (0, 2

3
, 1
3
, 0) in the example in Section 2 are not stochastically ordered. There-

fore, this section presents a different way to compare the random failure times T a and T b

of two systems A and B within the NPI framework, namely by considering the event that

system B does not fail before system A, so T a ≤ T b. This has the further advantage of

being applicable to any two independent systems, so systems that each only have a single

type of components but with the components of system A of a different type than those of

system B. Subsection 3.1 presents NPI lower and upper probabilities for the event T a ≤ T b

for two systems that share the same type of components, followed in Subsection 3.2 by such

results for two systems with different types of components. Subsection 3.3 generalizes this

by considering the event T a ≤ T b + δ and how the NPI lower and upper probabilities for

this event behave as a function of δ. This enables a more detailed insight into the actual

difference between the random lifetimes of the systems A and B.
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Figure 4: The lower and upper survival functions

3.1 Two systems with components of a single type

Consider two systems A and B with m components each and all their components assumed

to be exchangeable, so both systems share components of a single type. Using the results

presented in Section 2, it is easily seen that a similar result holds for the NPI lower and upper

probabilities as for precise probabilities mentioned above, namely if
∑m

j=r q
a
j ≥

∑m

j=r q
b
j for

all r = 1, . . . ,m then P (T a > t) ≥ P (T b > t) and P (T a > t) ≥ P (T b > t) for all t > 0. If the

signatures qa and qb are not stochastically ordered, a different way to compare the systems’

failure times is needed, and indeed it is natural to consider the event T a ≤ T b. This does

not require both systems to have the same number of components, so let system A consist

of ma components and system B of mb components, where the failure times of all ma +mb

components are assumed to be exchangeable. Let the ordered random failure times of the

components in system A be T a
1:ma

≤ T a
2:ma

≤ . . . ≤ T a
ma:ma

and let the ordered random failure

times of the components in system B be T b
1:mb

≤ T b
2:mb

≤ . . . ≤ T b
mb:mb

. Using the signature

qa and qb of these systems, the following equality holds [1]

P (T a ≤ T b) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (12)

This equality can be used directly in NPI, as the probabilities in the sum on the right-hand

side of (12) are precise-valued in NPI, so no use of lower and upper probabilities is required.
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Figure 5: The lower and upper survival functions

These probabilities are

P (T a
i:ma

≤ T b
j:mb

) =

(

ma +mb

ma

)−1
[

j−1
∑

l=0

(

i− 1 + l

i− 1

)(

ma − i+mb − l

ma − i

)

]

(13)

This follows by a straightforward counting argument, using the fact that exchangeability of

the ma + mb component lifetimes includes that their orderings are all equally likely. This

implies that the
(

ma+mb

ma

)

different orderings of the lifetimes of the ma components in system

A and themb components in system B, neglecting the specific role played by each component

in the system (note that this is taken into account by the signatures), are all equally likely.

For the event T a
i:ma

≤ T b
j:mb

to occur, the number of components in system B failing before

T a
i:ma

, so before the failure time of the i-th failing component in system A, can at most be

j−1. For a value of l ∈ {0, 1, . . . , j−1}, the corresponding term in the sum in equation (13)

counts all equally likely orderings of the component failure times with precise l such times

for components in system B occurring before T a
i:ma

.

Consider, for example, the systems D and E in Figure 1, which have signatures that are

not stochastically ordered. Let their failure times be denoted by T d and T e, respectively,

then this results gives P (T d ≤ T e) = 0.518, which can be interpreted as indicating that these

two systems are about equally reliable, with system E slightly more reliable than system D.
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3.2 Two systems with different types of components

Let system A consist of ma exchangeable components, and system B of mb exchangeable

components, with the components of the different systems being of different types and their

random failure times assumed to be fully independent, which means that any information

about components of the type used in system A does not contain any information about com-

ponents of the type used in system B. The ordered random failure times of the components

in system A and of those in system B are denoted as in Subsection 3.1. Suppose that na

components exchangeable with those in system A have been tested and had ordered failure

times ta1 < ta2 < . . . < tana
, and similarly that ordered observed failure times of nb components

exchangeable with those in system B are tb1 < tb2 < . . . < tbnb
. To avoid notational complexity

assume that there are no tied observations throughout, any tied observations can be dealt

with by breaking ties by adding small values to one or more of the tied observations. Using

the signatures qa and qb of these systems, a result similar to equality (12 holds for the NPI

lower probability for the event T a ≤ T b

P (T a ≤ T b) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (14)

where, as presented in [9]

P (T a
i:ma

≤ T b
j:mb

) =
na
∑

l=1

P
a,i
l [P (T b

j:mb
≥ tal )] (15)

with P
a,i
l = P (T a

i:ma
∈ (tal−1, t

a
l )). The summation in (15) does not include a term for l = n+1

because P (T b
j:mb

≥ ∞) = 0. Let vl ∈ {1, . . . , nb + 1} be such that tbvl−1 < tal < tbvl , then

P (T b
j:mb

≥ tal ) =

nb+1
∑

v=vl+1

P (T b
j:mb

∈ (tbv−1, t
b
v)) (16)

The justification of (14) is similar to that of (8) in Section 2, effectively the NPI lower

probabilities for the events T a
i:ma

≤ T b
j:mb

, for i = 1, . . . ,ma and j = 1, . . . ,mb, can all

be attained simultaneously for the same underlying configuration of observed and future

failure times for components of type A (all future observations ‘at’ the right end-point of

each interval) and the same underlying configuration of observed and future failure times

for components of type B (all future observations ‘at’ the left end-point of each interval)

[9]. The corresponding NPI upper probability for the event T a ≤ T b is derived and justified

similarly, and is

P (T a ≤ T b) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
) (17)

13



where

P (T a
i:ma

≤ T b
j:mb

) =
na+1
∑

l=1

P
a,i
l [P (T b

j:mb
≥ tal−1)] (18)

and

P (T b
j:mb

≥ tal ) =

nb+1
∑

v=vl

P (T b
j:mb

∈ (tbv−1, t
b
v)) (19)

Example 3

The pairwise comparison results presented in this section are illustrated using the six sys-

tems from Example 1, each with four exchangeable components but with the different sys-

tems considered having different components and hence independent failure times. Table 5

presents the NPI lower and upper probabilities (14) and (17) for the events T a ≤ T b for

the failure times T a and T b for all combinations of two systems out of the six presented in

Figure 1. For all these 30 events, it is assumed that na = 3 components exchangeable with

those in the system with failure time T a and nb = 2 components exchangeable with those

in the system with failure time T b have been tested and that the ordering of the test data

is ta1 < tb1 < ta2 < tb2 < ta3. Of course, the NPI lower and upper probabilities in Table 5 show

that system A is the least reliable and system B the most reliable of these systems. Notice

that the comparisons of systems A,B,C, F with either system D or E (whose signatures are

not stochastically ordered) give very similar results, yet they all indicate that system E is

slightly more reliable than system D, the same conclusion as drawn in Subsection 3.1. This is

an attractive way to compare the random failure times of two systems, which takes both the

system structures and the information from the test data directly into account and considers

a natural event of interest. The NPI lower probability reflects the evidence in favour of the

event T a ≤ T b while the corresponding upper probability reflects the evidence in favour of

the complementary event T a > T b. The difference between corresponding upper and lower

probabilities, also called the ‘imprecision’, is due to the limited information available and the

relatively weak modelling assumptions. In Table 5 the imprecision of most events is large,

which is due to there being only 5 observations in total. If more test data are available,

the imprecision typically become smaller, with the difference disappearing in the limit if the

number of test data in both groups goes to infinity.

Table 6 presents the NPI lower and upper probabilities for the pairwise comparison of

systems D and E, considering the event TD ≤ TE with nD = 3 observed failure times

for components exchangeable with those in system D and nE = 2 observed failure times

for components exchangeable with those in system E, and all possible orderings of these

observed failure times. These lower and upper probabilities vary of course for the different
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(a, b) P (T a ≤ T b) P (T a ≤ T b) (a, b) P (T a ≤ T b) P (T a ≤ T b)

(A,B) 0.724 0.983 (D,A) 0.110 0.657

(A,C) 0.514 0.950 (D,B) 0.444 0.923

(A,D) 0.438 0.937 (D,C) 0.294 0.810

(A,E) 0.457 0.941 (D,E) 0.257 0.781

(A,F ) 0.524 0.951 (D,F ) 0.304 0.816

(B,A) 0.017 0.276 (E,A) 0.097 0.650

(B,C) 0.059 0.543 (E,B) 0.423 0.924

(B,D) 0.049 0.476 (E,C) 0.272 0.810

(B,E) 0.050 0.486 (E,D) 0.229 0.770

(B,F ) 0.063 0.562 (E,F ) 0.283 0.815

(C,A) 0.076 0.577 (F,A) 0.077 0.556

(C,B) 0.350 0.903 (F,B) 0.343 0.890

(C,D) 0.185 0.717 (F,C) 0.219 0.743

(C,E) 0.190 0.728 (F,D) 0.184 0.696

(C,F ) 0.230 0.771 (F,E) 0.190 0.706

Table 5: Pairwise comparisons of six systems from Figure 1

data orderings, and also the imprecision varies. If the three tested components of type D all

failed before the two of type E, the data do not contain any evidence against the possibility

that components of type D will always fail before components of type E, which is reflected in

P (TD ≤ TE) = 1 in this case. Similarly, the other extreme data ordering does not provide

any evidence in favour of the possibility that components of type D will ever fail before

components of type E, as reflected by P (TD ≤ TE) = 0 for the final ordering in Table 6.

3.3 The difference between the failure times of two systems

The method presented in Subsection 3.2 compares the random failure times of two systems

by considering the event that one fails before the other, but it does not provide insight into

the actual difference between these failure times. Therefore, the approach of Subsection 3.2,

using the same setting of two systems with different types of components, is now generalized

by considering the event T a ≤ T b + δ, so T a − T b ≥ δ, for all real-valued δ. Of course,

the setting of Subsection 3.1 can be similarly generalized. The following generalization of

equation (12),

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ)
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Data ordering P (TD ≤ TE) P (TD ≤ TE)

td1 < td2 < td3 < te1 < te2 0.548 1

td1 < td2 < te1 < td3 < te2 0.442 0.940

td1 < td2 < te1 < te2 < td3 0.371 0.869

td1 < te1 < td2 < td3 < te2 0.328 0.852

td1 < te1 < td2 < te2 < td3 0.257 0.781

te1 < td1 < td2 < td3 < te2 0.219 0.757

te1 < td1 < td2 < te2 < td3 0.149 0.686

td1 < te1 < te2 < td2 < td3 0.181 0.675

te1 < td1 < te2 < td2 < td3 0.072 0.580

te1 < te2 < td1 < td2 < td3 0 0.466

Table 6: Pairwise comparisons of systems D and E with nD = 3 and nE = 2

is proven in the same way as equation (12) [1], and is intuitively logical because adding the

constant value δ to the random lifetime of a system can be thought of as adding it to the

lifetimes of all its components, doing so will not change the signature of the system. This

immediately carries through to the NPI lower probability for this event, which is

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ) (20)

with the NPI lower probabilities in the sum on the right-hand side equal to

P (T a
i:ma

≤ T b
j:mb

+ δ) =
na
∑

l=1

P
a,i
l [P (T b

j:mb
+ δ ≥ tal )] (21)

Let vl,δ ∈ {1, . . . , nb + 1} be such that tbvl,δ−1 < tal − δ < tbvl,δ , then

P (T b
j:mb

+ δ ≥ tal ) =

nb+1
∑

v=vl,δ+1

P (T b
j:mb

∈ (tbv−1, t
b
v)) (22)

The corresponding NPI upper probability for the event T a ≤ T b + δ is

P (T a ≤ T b + δ) =
ma
∑

i=1

mb
∑

j=1

qai q
b
jP (T a

i:ma
≤ T b

j:mb
+ δ) (23)

where

P (T a
i:ma

≤ T b
j:mb

+ δ) =
na+1
∑

l=1

P
a,i
l [P (T b

j:mb
+ δ ≥ tal−1)] (24)

and

P (T b
j:mb

+ δ ≥ tal−1) =

nb+1
∑

v=vl,δ

P (T b
j:mb

∈ (tbv−1, t
b
v)) (25)
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Compared to the NPI lower and upper probabilities presented in Subsection 3.2, which

correspond to those for δ = 0 here, calculation of these NPI lower and upper probabilities

just follows from shifting the mb test observations for components exchangeable to those

in system B by adding δ, or alternatively by subtracting δ from each observation tal . For

changing value of δ, these NPI lower and upper probabilities only change if δ is large enough

to change the ordering of the tb1, . . . , t
b
nb

relative to the values ta1 − δ, . . . , tana
− δ, such a

change of the ordering can happen for at most na × nb different values of δ. Therefore,

P (T a ≤ T b+ δ) and P (T a ≤ T b+ δ) can have at most na×nb+1 different values (including

the case δ = 0), and as function of δ these lower and upper probabilities are step functions

which change value at the same na × nb points, making their computation straightforward

unless na × nb is very large.

Example 4

Systems D and E of Figure 1 have been of interest as their signatures are not stochastically

ordered. Assume now that they have different types of components, with nd = ne = 30

components exchangeable with those of each type in the respective system having been

tested, leading to the failure times in Table 7. The ordered failure times are given in Table

6, which for system D were simulated from a Weibull distribution with shape parameter 3

and scale parameter 1, and for system E from a Weibull distribution with shape parameter

2 and scale parameter 1.

System D System E

0.223 0.747 0.994 0.154 0.585 1.076

0.265 0.798 1.008 0.155 0.598 1.169

0.372 0.807 1.073 0.347 0.642 1.239

0.419 0.824 1.115 0.402 0.692 1.248

0.564 0.850 1.167 0.483 0.738 1.327

0.630 0.887 1.182 0.512 0.822 1.421

0.675 0.914 1.275 0.513 0.843 1.569

0.685 0.921 1.397 0.548 0.848 1.643

0.709 0.981 1.400 0.563 0.863 1.735

0.727 0.987 1.425 0.574 0.938 2.565

Table 7: Simulated ordered component failure times for Example 4

Figure 6 presents the NPI lower and upper probabilities for the event T d ≤ T e + δ as

functions of δ. In the top-left figure, Figure 6.1, these functions are given for the data in

Table 7. For these data, these functions remain constant for values of δ less than −2.342
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or greater than 1.271, as in these cases the two data sets are completely non-overlapping,

which shows in the fact that the NPI lower probability for this event is equal to zero for

δ < −2.342 and the NPI upper probability for this event is equal to one for δ > 1.271.

Actually, the changes in these NPI lower and upper probabilities at δ equal to −2.342 or

1.271 are very small and not well visible in Figure 6.1. The same is true at other values of

δ close to these minimal and maximal ones at which the NPI lower and upper probabilities

change. At δ = −2.342, the NPI lower probability T d ≤ T e + δ increases from 0 to 0.00013

and the NPI upper probability increases from 0.03630 to 0.03656, while at δ = 1.271 the

lower probability increases from 0.9870 to 0.9872 and the upper probability increases from

0.99996 to 1.

The 3 further figures included in Figure 6 show the effect of substantial changes to the

actual observations, that is changes that actually change the order of the observations, and

hence how the NPI lower and upper probabilities for the event T d ≤ T e+δ adapt to changes

in the component test data. First, the largest observed failure time for system D, 1.425,

is replaced by 3.425, which makes it the largest observed value in both sets of data. The

resulting NPI lower and upper probabilities for the event T d ≤ T e + δ as functions of δ

are presented in Figure 6.2, but the effect on the figures is not well visible when compared

to the original situation in Figure 6.1. Figures 6.3 and 6.4 show the NPI lower and upper

probabilities with the largest 4 and 10, respectively, values for System D, as given in Table

7, changed by adding 2 to the original data values, which implies that these all become

larger than the largest observation for System E. Now the effect is clear in both figures,

and of course substantially stronger in case 10 observations have been changed. Figure 7

presents the same functions of Figures 6.1 and 6.4, so for the original data and with 10 values

changed, on a larger scale to see the differences more clearly. While the differences for the

larger values of δ are obvious, this figure shows that there have also been some small changes

for δ close to 0 and even for negative values of δ.

4 Concluding remarks

This paper has introduced the use of signatures in the study of system reliability with lower

and upper probabilities. There are many related research challenges, for example a slightly

more challenging topic is simultaneous comparison of more than two systems’ failure times.

The NPI lower and upper probabilities for pairwise comparisons, as presented in Section 3,

cannot be combined directly into such quantifications for multiple comparisons. For example,

it may be of interest to consider the event that a particular one of the systems considered

is the most reliable in the sense of its random failure time being the largest of all systems’
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Figure 6: The difference of failure times of two systems

failure times, so it is of interest to generalize the method presented in Section 3 to derive

NPI lower and upper probabilities for such events. This can be done in NPI along the lines

of such multiple comparisons as presented in [13].

Substantially more challenging research topics include generalization of the approach

presented in this paper for test data including right-censored observations, as often occur for

failure time data [14]. This first requires development of NPI for future order statistics with

such data, which is a challenge indeed as equation (4) cannot be applied in such a setting

and simple counting arguments may need to be replaced by complex optimisation methods.

Once the approach has been extended to include right-censored data, multiple comparisons

are also of interest and can follow the same approach as presented in [15, 16].

Signatures can also be used for reliability quantification for systems for which only failure

or non-failure upon request for functioning is of interest, so without explicit focus on failure

time. Applying this to systems with exchangeable components will be relatively straightfor-

ward and will generalize the results in [17]. In that paper a conjecture was formulated about

optimal redundancy allocation, in line with the results in [18] and [19] for different systems;
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analysis based on signatures might facilitate the proof of that conjecture.

There are major research challenges to the general theory of signatures, solutions to

which may be of particular interest when working with lower and upper probabilities. For

example, the fact that the theory of signatures [1] only applies to systems with exchangeable

components is a very considerable restriction on the practical relevance of signatures and the

related methods for reliability quantification. While there is clearly no direct generalization

of signatures to systems with multiple types of components, the basic idea to separate

aspects of the system structure and of specific component lifetime distributions to support

quantification of reliability could possibly also lead to methods that would simplify such

quantification when theory of lower and upper probabilities is used. A further challenge

is in deriving system signatures for more substantial systems, where it may be of interest

to consider approximation of system signatures. It may be possible to develop a theory

of ‘imprecise signatures’, so sets of signatures that are based on partial information about

the system considered. There are other statistical approaches that use lower and upper

probabilities to quantify uncertainty [4], combination of such approaches with signatures
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also provides many opportunities and challenges for research. This paper opens up a wide

area of interesting research topics, progress on which will help development and application

of NPI methods for system reliability.
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