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The effect of frame dragging on the iron Kα line in X-ray binaries
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ABSTRACT
The clear characteristic time-scale picked out by the low-frequency quasi-periodic oscillations
(QPOs) seen in many black hole and neutron star binaries has the potential to provide a very
powerful diagnostic of the inner regions of the accretion flow. However, this potential cannot
be realized without a quantitative model for the QPO. We have recently shown that the same
truncated disc/hot inner flow geometry which is used to interpret the spectral transitions can
also directly produce the QPO from Lense–Thirring (vertical) precession of the hot inner flow.
This correctly predicts both the frequency and spectrum of the QPO, and the tight correlation
of these properties with the total spectrum of the source via a changing truncation radius
between the disc and hot flow. This model predicts a unique iron line signature as a vertically
tilted flow illuminates different azimuths of the disc as it precesses. The iron line arising from
this rotating illumination is blueshifted when the flow irradiates the approaching region of the
spinning disc and redshifted when the flow irradiates the receding region of the disc. This gives
rise to a characteristic rocking of the iron line on the QPO frequency which is a necessary
(and probably sufficient) test of a Lense–Thirring origin. This is also an independent test of
disc truncation models for the low/hard state, as vertical precession cannot occur if there is a
disc in the midplane.

We show that it may be possible to observe this effect using archival data from the Rossi
X-ray Timing Explorer or XMM–Newton. However, a clean test requires a combination of
moderate resolution and good statistics, such as would be available from a long XMM–
Newton observation or with data from the proposed European Space Agency mission Large
Observatory for X-ray Timing.
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1 I N T RO D U C T I O N

Low-frequency quasi-periodic oscillations (QPOs) are commonly
observed in the X-ray flux of both neutron star and black hole
binaries (NSBs and BHBs, respectively; collectively X-ray binaries,
XRBs). They are most clearly observed as strong, coherent features
in the power spectral density (PSD) which are Lorentzian in shape
and so can be described by amplitude (i.e. fractional rms variability),
centroid frequency (f QPO) and width (�f ). These properties are
observed to be tightly correlated with the spectral properties of the
source which vary dramatically as the source rises from quiescence
to outburst before falling once more into quiescence (see e.g. van
der Klis 2006; Belloni 2010).

The physical processes behind this spectral evolution are com-
paratively well understood. The spectral energy distribution (SED)
consists of three main components: a quasi-thermal disc; a power
law (with high and low energy cut-offs) and a reflection spectrum.

�E-mail: a.r.ingram@durham.ac.uk

When the source flux is low (low/hard state), the power law is hard
(photon index � ∼ 1.7) and dominates the SED. As the source flux
increases, the power law softens and weakens while the disc and
reflection spectra increase in luminosity (intermediate state). Even-
tually at the peak of the outburst, the disc completely dominates
(high/soft state), although sometimes there is also a strong high-
energy tail (very high state). The disc spectrum is well explained
by a standard thin disc (Shakura & Sunyaev 1973) and the power
law can be reproduced by Compton up-scattering of disc photons
by hot electrons in an optically thin corona. A fraction of the lumi-
nosity emitted from the corona will then reflect off the disc to give
a reflection spectrum with the most obvious features being a strong
iron Kα line and a ∼30 keV hump (see e.g. Fabian et al. 2000).

The truncated disc model, in which the thin disc only extends
down to some radius ro, can naturally explain the evolution of
the SED (Esin, McClintock & Narayan 1997; Done, Gierliński &
Kubota 2007). Interior to ro is a large scale height, optically thin
accretion flow (hereafter the flow) which acts as the Comptonizing
corona. As the source flux increases, the truncation radius moves
inwards, thus increasing the flux of disc photons incident on the
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flow and softening the power-law emission while simultaneously
decreasing all characteristic time-scales associated with ro. In this
picture, ro moves from ∼60 to 6 (in units of Rg = GM/c2) during the
rise to outburst and back out again during the fall back to quiescence.

QPOs are observed in the PSD during both the rise and the
fall. During the rise, the PSD displays a QPO (with harmonics)
superimposed on a broad-band noise of variability. The broad-band
noise can be roughly characterized by two zero-centred Lorentzians
with widths f b and f h (e.g. Belloni, Psaltis & van der Klis 2002).
The QPO frequency moves from ∼0.1 to 10 Hz as the source flux
increases and is correlated with rises in both f b and f h (Psaltis,
Belloni & van der Klis 1999; Wijnands & van der Klis 1999). For
BHBs, this is commonly classified as the type C QPO. Eventually
the broad-band noise disappears and the PSD is dominated by a
type B QPO which has f QPO ∼ 6 Hz. Before the source completely
transitions into the high/soft state, type A QPOs are observed which
are much broader and weaker features, typically centred at f QPO ∼
8 Hz. During the fall, the same is observed in reverse (see Casella,
Belloni & Stella 2005 for more details of the A, B, C classification
system and Belloni 2010 for a review of hysteresis behaviour).
Because these three types of QPO are not observed simultaneously
(even though the transition between type A and type B QPOs can
be very rapid) and they occupy a similar frequency range, it is
possible that they are driven by three different variants of the same
underlying physical process.

NSBs display a similar phenomenology of QPO types and spec-
tral transitions (although the nomenclature is very different; see
e.g. van der Klis 2005 for details). There is very strong evidence
that the QPOs in both classes of object are produced by the same
process. The correlations between f QPO, f b and f h hold, with the
same gradient, for both NSBs and BHBs (Wijnands & van der Klis
1999; Klein-Wolt & van der Klis 2008) with the only difference in
frequency being entirely consistent with mass scaling (Ingram &
Done 2011).

The physical process responsible for driving the QPO remains
poorly understood. There are many QPO mechanisms suggested in
the literature (e.g. Tagger & Pellat 1999; Titarchuk & Osherovich
1999; Fragile, Mathews & Wilson 2001; Wagoner, Silbergleit &
Ortega-Rodrı́guez 2001; Kato 2008; Cabanac et al. 2010; O’Neill
et al. 2011; Wang et al. 2012). However, such a rich phenomenol-
ogy means that these models are rarely able to explain all of the
known QPO properties simultaneously. In Ingram, Done & Fragile
(2009), we suggested perhaps the most promising QPO model to
date. Based on the model of Stella & Vietri (1998), we considered
the QPO to result from Lense–Thirring precession. This is a rela-
tivistic effect which occurs because a spinning compact object drags
space–time as it rotates. The orbit of a particle which is outside the
plane of black hole spin will therefore undergo precession because
the starting point of the orbit rotates around the compact object.
Stella & Vietri (1998) and Stella, Vietri & Morsink (1999) showed
that the Lense–Thirring precession frequency of a test mass at the
truncation radius is broadly consistent with the QPO frequency.
Schnittman (2005) and Schnittman, Homan & Miller (2006) de-
veloped this into a fully relativistic description of a misaligned
ring, showing that its direct emission and iron line signature should
be modulated on the precession frequency, which could be some-
what higher than observed. However, the real problem with these
models is that the energy spectrum of the QPO is dominated by
the Comptonized emission (Rodriguez et al. 2004; Sobolewska &
Życki 2006), requiring that the QPO mechanism predominantly
modulates the hot flow rather than the disc (although the variabil-
ity could be produced elsewhere before propagating into the flow;

Wilkinson 2011). We consider instead a global precession of the
entire hot flow, which naturally explains the QPO spectrum. Such
global precession has been seen in recent numerical simulations
(Fragile et al. 2007; Fragile 2009). We show in Ingram et al. (2009)
that the predicted frequency range is completely consistent with the
type C QPO in BHBs and also in NSBs (Ingram & Done 2010).

There are other more subtle properties that are naturally predicted
by the precessing flow model. Heil, Vaughan & Uttley (2011) show
that the QPO frequency is linearly related to the source flux on
short time-scales (∼3 s). We show in Ingram & Done (2011) that
propagating fluctuations in mass accretion rate which give rise to
the broad-band noise (e.g. Lyubarskii 1997; Arévalo & Uttley 2006)
will affect the moment of inertia of the flow leading the precession
frequency to fluctuate. The linear relation with flux then occurs
because both the flux and the precession frequency depend on mass
accretion rate. Although it is very encouraging that this property
is predicted by the model, we still do not have unambiguous proof
that the flow precesses – a QPO produced from any mode of the hot
flow will also couple to fluctuations propagating through the hot
flow, and should give an f QPO–flux relation.

The interpretation of the QPO as vertical precession requires a
truncated disc as otherwise the flow could not cross the equatorial
plane. The issue of whether or not the disc truncates is still some-
what controversial. The line clearly depends on the spectral state,
with a very small narrow line seen in the dimmest low/hard states
(e.g. Tomsick et al. 2009), and a very broad line when the source
is very close to the transition to the soft state (e.g. Hiemstra et al.
2011; a hard intermediate state just after the transition from the
soft state). However, in the brighter low/hard states, Nowak et al.
(2011) show that the broad iron line in Cyg X-1 can be variously
interpreted as implying a disc anywhere from 6 to 32Rg (for their
Obs 4) depending whether the continuum is thermal Comptoniza-
tion, non-thermal Comptonization, multiple Compton components
or includes a jet contribution. Fabian et al. (2012) show another
deconvolution of a similarly shaped spectrum from Cyg X-1, where
the spectrum below 10 keV is dominated by highly ionized, highly
smeared reflection, with a very small inner radius of ∼1.3Rg and
a very steep emissivity profile (also known as the light bending
model). We note that this light bending geometry is inconsistent
with the independent requirement on the untruncated disc geometry
that the source is beamed away from the disc in order to produce
an intrinsically hard spectrum (Malzac, Beloborodov & Poutanen
2001).

The issue is clearly still very controversial, though we note
that the rapid spectral variability can only currently be explained
with an inhomogeneous Comptonization continuum model (Kotov,
Churazov & Gilfanov 2001; Arévalo & Uttley 2006), where the line
profile is consistent with a truncated disc (Makishima et al. 2008).
Here we simply assume the truncated disc geometry, and use this
to propose a distinctive test of a vertical precession origin of the
QPO. As a tilted flow precesses, the illumination pattern on the
disc rotates. The resulting iron line is boosted and blueshifted at
a time when the flow illuminates the approaching side of the disc,
and redshifted when the flow illuminates the receding side of the
disc. Since this periodic rocking of the iron line is a requirement
of the Lense–Thirring QPO model, this also offers a potentially
unambiguous test of disc truncation. Our geometry differs from the
Schnittman et al. (2006) model, where a precessing inner disc ring
producing the iron line and continuum. Instead, we have a hot inner
flow replacing the inner disc to produce the continuum, and preces-
sion of the entire hot flow produces a rotating illumination pattern
which excites the iron line from the outer thin disc.
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936 A. Ingram and C. Done

The paper is ordered as follows. In Section 2, we define the
accretion geometry assumed for the model. In Section 3, we will
calculate the implications of our assumed geometry on a very simple
toy spectral model. In Section 4, we will take this further by intro-
ducing a reasonable spectral model before analysing the likelihood
of observing this effect in Section 5.

2 M O D E L G E O M E T RY

In this section, we outline the geometry used for our QPO model.
We assume that the spin axis of the compact object is misaligned
with that of the binary system as may be expected from supernova
kicks (Fragos et al. 2010). Because of frame dragging, the orbit of
an accreting particle from the binary partner will precess around the
spin axis of the compact object. The effect of frame dragging on an
entire accretion flow depends on the dynamics of the flow. A thin
accretion disc being fed by a binary partner out of the spin plane
of the compact object will form a Bardeen–Petterson configuration
(Bardeen & Petterson 1975) where the outer regions align with
the binary partner and the inner regions align with the spin of
the compact object, with a transition between the two regimes at
rBP. The value of rBP is not well known, with analytical estimates
ranging from ∼10 to 400 Rg (see e.g. Bardeen & Petterson 1975;
Papaloizou & Pringle 1983; Fragile et al. 2001). In the thin disc
regime, warps caused by the misaligned black hole propagate in a
viscous manner. This means that the time-scale on which a warp
is communicated is much longer than the precession period and
therefore a steady configuration forms. In contrast, warps in a large
scale height accretion flow are communicated by bending waves
(see e.g. Lubow, Ogilvie & Pringle 2002; Fragile et al. 2007) which
propagate on approximately the sound crossing time-scale which is
shorter than the precession period. For this reason, the hot flow can
precess as a solid body with the precession period given by a surface
density weighted average of the point particle precession period at
each radius (Liu & Melia 2002), while a cool disc forms a stable
warped configuration. This solid body precession of a hot flow has
been seen explicitly in recent numerical simulations (Fragile et al.
2007) for the special case of a large scale height flow which we
consider here.

The key aspect is that the flow angular momentum has to be
misaligned with the black hole spin. Yet the outer thin disc will
warp into alignment with the black hole at rBP. Since this radius
is poorly known, there are two possible scenarios. First, rBP may
be small enough for the outer thin disc to still be aligned with the
binary partner at the truncation radius. In this case, the hot flow is
misaligned with the black hole spin by the intrinsic misalignment of
the binary system which will naturally lead to solid body precession
of the entire flow. Secondly, if rBP is large, the disc and hence hot
flow are intrinsically aligned with the black hole spin. However,
precession may be possible. The flow has a large scale height, so is
sub-Keplarian. At the truncation radius it overlaps with the Keplar-
ian disc, so this overlap layer is probably Kelvin–Helmholtz unsta-
ble, producing turbulence. Clumps forming from random density
fluctuations in regions high above the midplane could temporarily
misalign the flow leading to intermittent precession. This predicted
intermittency has the advantage of naturally explaining the observed
random jumps in QPO phase (Miller & Homan 2005; Lachowicz &
Done 2010).

Here we assume the first geometry, i.e. assume that rBP is very
small. However, the effect of rotating illumination on the iron line
is qualitatively the same in the second geometry, differing only in
the details. In the next section, we outline the geometry used. We

work under the assumption that the central object is a black hole,
but the geometry is valid for neutron stars also.

2.1 Disc

The geometry we consider for the two component accretion flow is
illustrated in Fig. 1. We assume that the disc has angular momentum
vector set by the binary system, ĴBS, and that this is misaligned with
the spin axis of the black hole (the z-axis) by an angle β. The flow
angular momentum vector, Ĵflow, precesses around the z-axis with
phase given by the precession angle, γ . The plane of the disc is the
plane orthogonal to ĴBS, while the plane of the flow is orthogonal to
Ĵflow. In this coordinate system, the binary partner will orbit in the
‘disc’ plane. The observer’s position is described by an inclination
angle, θ i, and a viewer azimuth, φi, which can take the range of
values 0 ≤ θi ≤ π/2 and 0 ≤ φi ≤ 2π. Here, θ i is defined with
respect to the binary (i.e. the disc) angular momentum vector and
φi is defined with respect to the x-axis.

The flow then precesses around a circle centred on the black hole
spin axis, from being aligned with the disc when γ = 0, to being
misaligned by angle 2β with respect to the disc when γ = π. We
can define a vector r̂d which points from the black hole to any point
on the disc plane. If the top of the flow is its brightest part, the region
of the disc most strongly illuminated by the flow for a given γ is
where the angle between r̂d and Ĵflow is smallest. The smallest this
angle can ever be is for r̂d = ε̂ when γ = π, i.e. this is the most that
the flow angular momentum vector ever aligns with any azimuth
of the disc plane. ε̂ therefore defines the azimuth of the disc which
sees the maximum illumination from the flow. Material in the disc
is spinning rapidly and, because precession is prograde, this orbital
motion is anticlockwise for our geometry. The viewer azimuth φi

therefore specifies the direction with respect to the viewer in which
disc material in the maximally illuminated region (i.e. on the ε̂-
axis) is moving. For φi = 0, the receding part of the disc is most
strongly illuminated as the flow precesses. Instead, for φi = π/2 the
maximum illumination is on the patch directly in front of the black
hole. For φi = π the maximum illumination is on the approaching
side of the disc, while for 3π/2 it for the patch directly behind the

Figure 1. Schematic diagram illustrating the coordinate system we are
considering. The black hole is at the origin and the black hole angular
momentum vector is aligned with the z-axis. ĴBS is the (unit) angular
momentum vector of the binary system (and the disc), misaligned with the
z-axis by an angle β. ε̂ then completes a right handed Cartesian coordinate
system {x, ε̂, ĴBS} such that the disc plane is described by the plane ĴBS =
0. Ĵflow is the angular momentum vector of the flow and we see its orientation
precesses around the blue dotted ring, its phase described by the precession
angle γ . The flow, shown in (translucent) blue, is then described by the plane
orthogonal to Ĵflow. The observer’s position is described by θ i and φi.
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Frame dragging and the iron line 937

black hole. We assume that the disc is razor thin and flat (i.e. no
flaring). The mathematical definitions for the geometry we use are
outlined in Appendix A.

2.2 Flow

Unlike the disc, the flow has volume and scale height, so we must
make some assumptions about its shape. We assume that it is a
crushed sphere, i.e. viewed from above it is circular but it has
an elliptical cross-section as illustrated in Fig. 2. The semimajor
axis of the ellipse is ro and the semiminor axis is ho. We choose
to parametrize this by defining a scale height, h/r, such that ho =
(h/r)ro. Fig. 2 also shows that we set an inner radius, ri, such that the
core of the quasi-spherical flow is missing. This is to incorporate a
flavour of the numerical simulations which show that shocks (at the
bending wave radius) can truncate the inner region of the hot flow
(Fragile et al. 2007). Any point on the flow surface is then a distance
r away from the black hole, where r is a function of the angle θ f .
We assume that each radius of the surface radiates the gravitational
potential energy released at that radius (i.e. we use a surface rather
than a volume emissivity). This gives a simple analytic model where
the central parts of the flow (outside of ri) are brighter than the
outer parts, but that these bright regions are near the poles which
gives a reasonable reflection fraction (
/2π), while also giving a
reasonable precession frequency (set by ri, ro, M, the surface density
profile which we assume to be constant, and a∗, where a∗ is the
dimensionless spin parameter: equation 1 in Ingram et al. 2009).
Note that, even though this is a simplified prescription, the most
influential aspect of the flow geometry is where the brightest region
lies. In nearly all imaginable geometries, this point lies at the pole
of the flow (as it does for our geometry). Thus our mathematically
convenient assumptions for flow geometry should provide us with
results not materially different from a far more difficult calculation
assuming a geometry identical to the Fragile et al. (2007) simulation.
More details of the flow geometry are presented in Appendix A.

Fundamentally, the precession frequency modulates the contin-
uum as the pole moves in and out of sight. The QPO maximum
occurs when the pole faces the observer and the minimum when it
faces away. Thus the region of the disc preferentially illuminated is
in front of the black hole (from the point of view of the observer)
at the QPO maximum and behind for a QPO minimum. Because
precession is prograde, this means that the flow illuminates the ap-
proaching disc material during the rise to a QPO maximum (because
the pole has to first move towards us in order to face us) and the re-
ceding material on the fall to a QPO minimum. Below we calculate

Figure 2. Schematic diagram illustrating the cross-section of the flow. See
text for details.

the self-consistent illumination pattern for the disc as a function of
QPO phase for our assumed geometry.

3 I MPLI CATI ONS OF A PRECESSI NG FLOW

3.1 Disc irradiation

Each flow surface element will radiate a luminosity dL over a semi-
sphere (because the element radiates away from the black hole).
A disc surface element with area dAd will intercept some fraction
of this luminosity. This fraction can be calculated self-consistently
from the projected area of the disc element. The disc element will
not intercept any of the luminosity from the flow element if it makes
an angle greater than π/2 with a vector which is orthogonal to the
flow element and points away from the black hole (i.e. if it is not
in the unit semisphere of the flow element). Also, as observers with
θ i ≤ 90◦, we only observe reflected photons which are intercepted
by the top of the disc.

The total incident luminosity on the disc surface element is cal-
culated by integrating over the surface of the entire flow. We do
this calculation for every disc surface element over a full range of
precession angles (0 ≤ γ < 2π) in order to build a picture of disc
irradiation as a function of precession angle (and therefore time).
The details of this calculation are presented in Appendix B. For
simplicity, we use a Euclidean metric, i.e. assume that light travels
in straight lines. This should be a fairly reasonable approximation
because we assume a fairly large value of ri throughout the paper
(following Fragile 2009; Dexter & Fragile 2011; Ingram & Done
2012) and so light bending is not very significant (e.g. Fabian et al.
1989).

Throughout the paper, we will use the values ri = 7, β = 15◦

and h/r = 0.9 (we discuss our reasoning for these fiducial values
in Section 3.3). Fig. 3 shows the resulting illumination pattern with
ro = 60, with snapshots taken at five different values of precession
angle γ for an inclination angle of θ i = 60◦. The left-hand plot
shows the pattern as seen by an observer at φi = 0◦, whereas the
right-hand plot shows this for φi = 90◦. The luminosity is grouped
into bins of equal logarithmic size with black, red, green, blue, cyan,
magenta, yellow and orange representing the dimmest to brightest
bins, respectively. The flow is shown in grey with black grid lines
included for clarity. In the top picture of each plot, we also include
a straight black line to illustrate the orientation of the black hole
spin axis. This is misaligned with ĴBS by β = 15◦ but, as Fig. 3
demonstrates, the apparent misalignment between these two vectors
depends on the viewing position. We clearly see the flow precess,
with the pole of the flow moving in a circle around the black hole
spin axis. As it does, the brightest part of the disc is always the
region closest to the pole of the flow meaning that it rotates around
the disc. Because of our asymmetric geometry, the flow starts off
aligned with the disc, is misaligned by 2β when γ = π before
aligning again for γ = 2π. For φi = 0, the maximum misalignment
(giving the maximum illumination of the disc) is on the right-hand
(receding) side of the disc, while for φi = 90 it is directly in front of
the black hole, but in both cases the illumination pattern rotates. In
the next section, we will discuss how this will affect the observed
iron Kα line.

3.2 Effect on the iron Kα line profile

When the flow emission irradiates the disc, bound atoms in the disc
will fluoresce to produce emission lines, the most prominent being
the iron Kα line at ∼6.4 keV (George & Fabian 1991; Matt, Perola
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938 A. Ingram and C. Done

Figure 3. Disc irradiation by the flow as seen by a viewer with θ i = 60◦ and
φi = 0◦ (left) or φi = 90◦ (right). The flow is shown in grey with black grid
lines for clarity. The truncation radius is ro = 60. The luminosity incident
on the disc is grouped into eight bins with black, red, green, blue, cyan,
magenta, yellow and orange representing the dimmest to brightest patches
on the disc. The solid black line in the top picture of each plot indicates the
black hole spin axis. Flow precession causes the characteristic illumination
pattern to rotate around the disc.

& Piro 1991). However, this line is in the rest frame of the disc
which is rotating rapidly meaning that a non-face-on observer will
see some regions of the disc moving towards them and others reced-
ing. Doppler shifts mean that emission from the approaching side
is blueshifted while that on the receding side is redshifted. Also,
length contraction along the line of motion beams the emission in
that direction. Thus the blueshifted emission from the approaching
side is also boosted in comparison to the redshifted emission, lead-
ing to a broadened and skewed iron line. An additional energy shift
is provided by time dilation and also gravitational redshift which
combine to broaden the line even further (Fabian et al. 1989, 2000).
Fig. 3 clearly shows that, according to this model, the disc irradi-
ation pattern rotates around the disc meaning that sometimes the
brightest region of the disc is receding (e.g. the φi = 0◦, γ = 4π/5
scenario in Fig. 3), and sometimes the brightest region is approach-
ing (e.g. the φi = 90◦, γ = 2π/5 scenario in Fig. 3). Therefore,
as the flow precesses, the iron line will periodically rock between
redshift and blueshift. In this example, the material in the disc and
the irradiation pattern are both rotating anticlockwise. In general,
they could both be moving clockwise but the resulting pattern is
the same (maximum blueshift, QPO maximum, maximum redshift,
QPO minimum). Lense–Thirring precession is prograde, so the disc
and flow will never be rotating in opposite directions, making this

Figure 4. The iron line profile as seen by a viewer with θ i = 60◦ and φi =
0◦ (left) or φi = 90◦ (right). The rest-frame iron line profile is assumed
to be a δ function at 6.4 keV and the truncation radius is ro = 60 as in
Fig. 3. Different colours represent different snapshots in time with black,
red, green, blue and cyan representing the top to bottom snapshots pictured
in Fig. 3. The rotation of the illumination pattern causes the iron line profile
to rock from redshift to blueshift.

periodic shifting of the iron line profile a unique prediction of the
model.

We use the illumination pattern on each surface element of the
disc to set the amount of intrinsic iron line emission. We assume
that this is a δ function at E0 = 6.4 keV and then use the radius and
azimuth of the surface element of the disc and the inclination of the
observer to calculate the shifted line emission (see appendix).

Fig. 4 shows the iron line profile at five snapshots of time with
black, red, green, blue and cyan lines corresponding to γ = 0, 2π/5,
4π/5, 6π/5 and 8π/5, respectively. We use the same parameters as
for Fig. 3. The details of this calculation are presented in Appendix
D. For simplicity, we do not include light bending but this should not
be a large effect for the comparatively large radii we consider. The
left-hand plot is for φi = 0◦, ro = 60 (i.e. corresponding to the left-
hand plot of Fig. 3) and we see that the iron line does indeed rock
between redshift and blueshift as the illumination pattern rotates.
Note that, for these parameters, the second and fifth snapshots have
an identical iron line profile, as do the third and fourth snapshots.
The right-hand plot is for φi = 90◦, ro = 60 (i.e. corresponding
to the right-hand plot in Fig. 3). We see that the periodic rocking
has a different phase and the peak flux of the blue wing is much
larger. This is because, for the φi = 0◦ case, the approaching side
of the disc is never the brightest part, whereas this does happen for
the φi = 90◦ case. This movement of the iron line is obviously a
very distinctive model prediction and so could provide a detectable,
unambiguous signature of a vertically tilted, prograde precessing
flow, i.e. a clean test of a Lense–Thirring origin of the QPO.

Fig. 5 shows the same thing but now ro = 10. We see that Doppler
boosting of the blue wing is now such a large effect that the red wing
never dominates even when the flow is preferentially illuminating
the receding material. As such, the motion of the iron line is dif-
ferent. Crucially, although the exact shape of the iron line depends
on the illumination pattern and thus the details of the assumed flow

C© 2012 The Authors, MNRAS 427, 934–947
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on A
ugust 21, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Frame dragging and the iron line 939

Figure 5. The iron line profile as seen by a viewer with θ i = 60◦ and φi =
0◦ (left) or φi = 90◦ (right). The rest-frame iron line profile is still assumed
to be a δ function at 6.4 keV but the truncation radius is now ro = 10. The
different colours represent the same snapshots in time as in Fig. 4. We see
the motion of the iron line is different here compared to Fig. 4. Because
of stronger Doppler and relativistic boosting in the inner disc, the red wing
never dominates in the E < 6.4 keV region.

geometry, this dependence on truncation radius is really quite ro-
bust to changes in flow geometry. The differences between Figs 4
and 5 are driven primarily by the difference in disc angular velocity
(i.e. the position of the truncation radius) and not the details of the
modelling. Thus this effect could provide a robust diagnostic for the
accretion flow geometry.

3.3 Modulation of the continuum

As the flow precesses, the luminosity seen by the observer will
change periodically giving rise to a strong QPO (with the quasi-
periodicity provided by frequency jitter among other processes;
Lachowicz & Done 2010; Heil et al. 2011; Ingram & Done 2012).
This is because the total surface area of the flow viewed by the
observer changes and, also, some regions of the flow are brighter
than others meaning that a trough in the light curve would typically
occur when the brightest regions of the flow (i.e. the poles) are
hidden. The calculation for this process is similar to that performed
in Section 3.1. Each flow surface element emits a luminosity dL. The
observer at θ i, φi will see no luminosity from this surface element
if they are not within the unit semisphere of the element, and we
also remove luminosity from lines of sight which are obstructed by
the disc. We can then integrate over every flow element to calculate
the observed luminosity as a function of precession angle.

The blue lines in Fig. 6 show the observed luminosity expressed
as a fraction of the total luminosity, Ltot, plotted against precession
angle. We use the fiducial parameters ri = 7, β = 15◦ and h/r =
0.9 and consider the ro = 60 example. The solid line is for φi = 0◦

and the dashed line represents φi = 90◦. As expected, the observed
luminosity varies with precession angle and the phase depends on
φi. The fractional rms is 8.4 and 4.2 per cent for φi = 0◦ and φi =
90◦, respectively. These values are lower than the observed QPO rms
values of ∼10–15 per cent. However, the predicted values would be

Figure 6. Emission as seen by a viewer at θ i = 60◦ and φi = 0◦ (solid
lines) or φi = 90◦ (dashed lines). The blue line represents emission directly
observed from the flow. We see that precession of the flow introduces a
strong periodicity. The green line represents the total luminosity intercepted
by the disc. This also has a periodicity because the misalignment between
disc and flow changes as the precession angle, γ , evolves. It does not,
however, depend on the position of the observer. The black line is the ratio
between direct and reflected (intercepted) light, (
/2π).

higher if we were to consider that the flow is fed by disc photons,
the flux of which incident on the flow will change periodically
as the flow precesses. We ignore this process here because it will
affect the direct and reflected emission equally and so will not
contribute to the rocking iron line effect.

For the green line, we plot the total luminosity incident on the
disc (which determines the iron line/reflected flux) as a function of
precession angle. Because the disc is flat, this does not depend on
φi. This effectively tracks the misalignment between flow and disc
with the minimum reflection occurring when the flow is aligned
(γ = 0) and the maximum when the flow is misaligned by 2β

(γ = π). Hence the direct and intercepted emissions are generally
out of phase. The black lines show the reflection fraction (inter-
cepted/direct) with the solid and dashed lines representing φi = 0
and 90◦, respectively. This corresponds to the solid angle of the
disc, and the time averaged ratio for φi = 0◦ is 
/2π = 0.263, and
with 
/2π = 0.238 for the φi = 90◦ case. These values are fairly
representative of those observed for the low/hard state (e.g. Życki,
Done & Smith 1999; Gierliński et al. 1999; Gilfanov 2010).

Note that large value of h/r gives a reasonable reflection fraction
but underpredicts the QPO rms. If we had considered, for example,
an overlap region between disc and flow, disc flares or a small
disc scale height, we could have achieved a reasonable reflection
fraction and the correct QPO rms (for this we would also need to
consider the variation in disc seed photons) for a far lower value of
h/r. However, these effects are all very difficult to model and our
assumed geometry should not significantly affect the final results.
Thus we choose the fiducial parameter values to give reasonable
results for a simplified geometry.

4 SP E C T R A L M O D E L L I N G

We now use a full reflected spectrum rather than just a line, and
recalculate the effect of the rotating disc illumination pattern and
varying effective area of the flow for this more realistic scenario.
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940 A. Ingram and C. Done

We consider the same two values of truncation radius as those con-
sidered previously, ro = 60 and ro = 10. These values correspond to
precession frequencies of f QPO(ro = 60) = 0.145 Hz and f QPO(ro =
10) = 5.36 Hz for the fiducial parameters, a spin of a∗ = 0.5 and a
mass of M = 10 M� (i.e. 2.9 and 107.1 a∗(M�/M) Hz). They also
correspond to different spectral states, with ro = 60 giving rise to a
low/hard state (LHS) spectrum and ro = 10 leading to a soft inter-
mediate state (SIMS) spectrum. The QPO in the LHS spectrum will
be of type C whereas it will be of type B for the SIMS spectrum.

4.1 Method

For both the LHS and SIMS spectra, we include quasi-thermal
disc emission, Comptonized flow emission and a reflection spec-
trum. We use XSPEC v12 (Arnaud, Borkowski & Harrington 1996)
throughout. We describe the disc with DISKBB (Mitsuda et al. 1984),
and for simplicity we assume that this spectrum is constant. This
is not strictly true. Fig. 3 shows that the inner disc is periodically
obstructed by the flow, giving a small periodicity in the hottest part
of the disc emission. Also, the non-reflected photons which illumi-
nate the disc will thermalize and add to the intrinsic disc emission,
and this additional thermal emission will vary in intensity, being
stronger when the flow is at its maximum misalignment angle to the
disc, and weakest when the flow is aligned with the disc. This addi-
tional thermal emission is also periodically redshifted/blueshifted in
the same way as the line. However, these effects should be small as
they are diluted by the much larger constant flux from the disc. We
will investigate this in a future paper, as evidence for this may have
been observed (Wilkinson 2011). However, here we are interested
in the iron line region and so ignore this potential contribution to
the QPO in the disc spectrum.

For the flow we assume that every element emits the same spec-
trum, meaning that the periodicity is in the normalization of the flow
spectrum. We describe the spectrum by the Comptonization model
NTHCOMP (Zdziarski, Johnson & Magdziarz 1996; Życki, Done &
Smith 1999) which produces a power-law spectrum with high and
low energy cut-offs governed by the electron temperature and disc
photon temperature (kTbb tied to the disc temperature), respectively.
We fix the normalization of this by the angle averaged flux from
the flow (Ltot), to set the flux from each surface element of the flow.
We then use the method described in Section 3.3 to determine the
modulation of the observed continuum, to calculate the factor by
which to multiply the normalization of NTHCOMP as a function of
phase angle.

We use the method described in Section 3.2 to calculate the il-
luminating flux from the flow at each surface element in the disc,
and use this to set the normalization of the illuminating NTHCOMP

model. We describe the shape of the resulting reflected emission by
RFXCONV (Magdziarz & Zdziarski 1995; Ross & Fabian 2005; Done
& Gierliński 2006; Kolehmainen, Done & Dı́az Trigo 2011). This
is similar in form to the IREFLECT model in XSPEC but replaces the
very approximate ionization balance incorporated in this model with
the much better Ross & Fabian (2005) calculations. This outputs
a partially ionized (parametrized by log10ξ ) reflection spectrum,
including the self-consistent emission lines, for a general illumi-
nating spectrum. We fix the inclination angle of the reflector at θ i

and abundances at solar. We calculate the reflected emission from
this illuminating flux assuming 
/2π = 1. This is an underesti-
mate as RFXCONV assumes that the disc is illuminated isotropically,
whereas in our geometry the illumination is preferentially at graz-
ing incidence. However, the amount of reflection is also set by the

unknown details of the shape of the flow, so this approximation is
good enough to demonstrate the general behaviour of the model.

The reflected emission from each surface element is shifted in
energy depending on the radius and azimuth (see Appendix D).
We sum the reflected emission from all the disc elements to derive
the total reflected emission for each phase. This gives the correct
relative normalization of the continuum and reflected flux, and how
this changes as a function of precession phase angle γ for a given
set of model (ro, ri, β, h/r, θ i, φi) and spectral (kTbb, �, log ξ , kTe)
parameters.

4.2 Phase resolved spectra

The parameters used for each state are shown in Table 1. We assume
that kTbb, � and disc ionization increase as the rise to outburst
continues whereas kTe decreases, as is commonly observed. The
resultant time averaged LHS (ro = 60) spectrum has a 2–10 keV
flux of ∼0.3 Crab and 
/2π = 0.24 (or iron line equivalent with
of 150 eV when fit by a disk line profile rather than a full reflected
spectrum). For the SIMS (ro = 10) spectrum, the flux is ∼0.66 Crab
and the reflection has 
/2π = 0.42 (iron line equivalent width
of ∼240 eV) with a much steeper continuum. These values are
typical of those observed in the relevant states for fairly bright
BHBs (e.g. GRS 1915+104 in its QPO state: Ueda et al. 2010; the
intermediate state of GX 339−4: Tamura et al. 2012), justifying our
choice of parameters.

Fig. 7 shows the LHS spectrum as viewed from a position with
φi = 90◦ and θ i = 60◦ at five different snapshots in time. We use the
same convention as for Figs 4 and 5 with black, red, green, blue and
cyan representing γ = 0, 2π/5, 4π/5, 6π/5 and 8π/5, respectively.
The top plot shows the total spectrum (upper solid lines) and its
components, the constant disc (black dotted line just seen in the
lower left-hand corner of the plot), variable flow (dotted continuum
lines just underneath the total spectra – the symmetry means that
the red dotted line is the same as the cyan, while the green is the
same as the blue) and reflected spectra (lower solid lines). We clearly
see the flow continuum oscillate while the reflection spectrum rocks
between redshift and blueshift, as well as changing in normalization.
The reflection spectrum is in phase with the continuum in this
example because φi = 90◦ (see Fig. 6) but, in general, there is a
phase difference between the two components. The lower left-hand
plot zooms in on the iron line region in the total spectrum, while the

Table 1. Summary of the parameters used for both the LHS and
SIMS spectral models.

LHS SIMS

PHABS Nh (cm−2) 1 × 1022 1 × 1022

DISKBB kTbb (keV) 0.1 0.5
Norm 1 × 108 5 × 104

NTHCOMP kTbb (keV) 0.1 0.5
kTe (keV) 100 60
� 1.7 2.4
Norm 5 4

RFXCONV 
/2π 1 1
log10ξ 2.4 3
Norm 5 4

QPO ro (Rg) 60 10
modulation β (◦) 15 15
and ri (Rg) 7 7
smearing h/r 0.9 0.9
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Frame dragging and the iron line 941

Figure 7. LHS spectrum for five snapshots in time calculated using the
model described in the text, using the parameters listed in Table 1. We
use the same convention as for Figs 4 and 5 with black, red, green, blue
and cyan representing the first to last snapshots. The top plot is a broad-
band spectrum with all of the components. The disc and Comptonization
components are both represented by dotted lines, and the total spectrum as
well as the reflection component is represented by solid lines. The bottom
right-hand plot zooms in on the intrinsic iron line and the bottom left-hand
plot zooms in on the iron line region of the total spectrum. We see that the
motion of the iron line is still present but dilution from the continuum makes
the effect much more subtle in the total spectrum.

lower right-hand plot shows the changes in the reflected emission.
We see that the reflected spectrum displays similar behaviour to the
corresponding δ function (right-hand plot of Fig. 4). The rocking
movement in the underlying reflection spectrum is still visible in the
total spectrum, though somewhat diluted by the changing continuum
level.

Fig. 8 shows the same thing but for the SIMS. As for the δ

function iron line profile in Section 3.2, we see that the major effect
is now the strength and position of the blue wing rather than a
rocking motion from blue to red due to the much stronger Doppler
and relativistic boosting in the inner disc. None the less, there is still
a clear periodic shift in the line shape with QPO phase, although
the pronounced rocking of the iron line peak energy predicted for
the LHS provides more of a ‘smoking gun’ for the Lense–Thirring
model.

5 O B S E RVAT I O NA L P R E D I C T I O N S

In this section, we consider how this effect may be best observed.
One potential method is to look at phase lags between different
energy bands. We could define a red wing energy band (say 5.4–
6.4 keV) and a blue wing energy band (say 6.4–7.4 keV) and look
for a phase lag between the two. However, Figs 7 and 8 show that,
due to dilution from the periodically varying continuum, the energy

Figure 8. SIMS spectrum for five snapshots in time calculated using the
model described in the text, using the parameters listed in Table 1. We use the
same conventions as for Fig. 7. We see that, as for the δ function calculation,
the movement of the iron line is characteristically different for the SIMS
compared with the LHS.

shifting of the iron line is very subtle in the total spectrum. This
means that the phase lag between red and blue wings is very small
(2–6 × 10−2π) for our model and consequently may be difficult to
observe. Instead, we consider phase resolved spectroscopy.

5.1 Phase binning

The random phase jumps and varying period characteristic of QPO
light curves make phase resolved spectroscopy difficult. Naively
folding the light curve on the QPO period is not appropriate. It is,
however, possible to isolate the maximum and minimum phase bins
of the QPO by averaging over the brightest and faintest points in the
light curve. Miller & Homan (2005) did this for two GRS 1915+105
light curves, both containing a strong type C QPO. This allowed
them to compare the spectra corresponding to the QPO peak and
trough. This analysis can be taken a step further because a rise
will always follow a trough and a fall will always follow a peak.
This simple phase binning can therefore provide four phase bins as
opposed to two. Crucially, our model predicts that the maximum
redshift always follows the QPO peak and the maximum blueshift
always follows the QPO trough. This is because the pole of the flow
(which is the brightest region) faces us, then is moving away from
us, then faces away from us and then is moving towards us (before
facing us again). Therefore the flow illuminates the observer, then
the receding (redshift) part of the disc, then the region hidden to the
observer and then the approaching (blueshift) part of the disc.

Fig. 9 shows the 2–20 keV light curve of our LHS model with φi =
90◦ and θ i = 60◦. We define a peak as the brightest 10 per cent of the
light curve and a trough as the faintest 10 per cent. These thresholds
are shown as dashed lines. We can therefore isolate the trough, the
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942 A. Ingram and C. Done

Figure 9. The 2–20 keV integrated flux of the LHS model with φi = 90◦ and
θ i = 60◦ plotted against precession angle. The dashed lines are flux thresh-
olds. Intervals of the light curve above the top dashed line are considered
to be the QPO peak, intervals below the bottom dashed line are considered
to be the trough. The rising section which will always follow a trough will
have the bluest iron line profile. The falling section which always follows
the peak will have the reddest iron line profile.

blue rise, the peak and the red fall. This flux selection means that the
majority of the counts lie in the more interesting rise and fall sections
as opposed to the peak and trough (unlike the flux selection of Miller
& Homan 2005 who were interested in the peak and trough spectra).
Fig. 10 (top) shows the result of averaging spectra belonging to each
of these four phase bins. The green line is the trough spectrum, the
blue line is the rise spectrum, the black line is the peak spectrum and
the red line is the fall spectrum. All are plotted as a ratio to a power
law with photon index � = 1.6. We use this photon index rather
than � = 1.7 because the reflection hump makes the total spectrum
harder than the underlying Comptonization. As expected, the rise
spectrum contains the most heavily blueshifted iron line and the fall
spectrum contains the most heavily redshifted iron line. Because
we tie the normalization of the power law across the four spectra,
we can see that the peak spectrum has the highest flux, the trough
spectrum has the lowest and the rise and fall have comparable flux.

In the bottom plot of Fig. 10, we plot the red fall spectrum sub-
tracted from the blue rise spectrum. We use the absolute spectrum
in units of energy × flux rather than a ratio to a power law. The
solid line is for the example shown in the top plot where ro = 60
and the dotted line is for ro = 10. When ro = 60, the red wing of the
iron line dominates during the fall meaning that the solid line in
the bottom plot dips below zero for 5.4 � E � 6.4. During the
fall, the blue wing dominates which gives rise to the hump in the
6.4 � E � 7.4 region. Because of Doppler (and relativistic) boost-
ing, the blue hump is larger than the red dip. When ro = 10, the
inner regions of the disc are moving much faster than the ro = 60
case and therefore boosting is a much more significant effect. So
much so, in fact, that the red wing of the iron line never dominates
over the blue wing, even during the fall. The dotted line in the bot-
tom plot therefore contains no red dip but only a blue hump. The
peak of the blue hump is lower for ro = 10 than for ro = 60 but
the area under the line is greater. This is because the iron line is
more heavily smeared in the ro = 10 case, again due to faster orbital
motion closer to the black hole.

Figure 10. Top: phase binned spectra calculated assuming ro = 60, φi =
90◦ and θ i = 60◦ plotted as a ratio to a power law with photon index � =
1.6. These four phase bins are for the QPO minimum (green), rise (blue),
maximum (black) and fall (red). As expected, the rise has the most heavily
blueshifted iron line and the fall has the most heavily redshifted iron line.
Bottom: the red fall spectrum subtracted from the blue rise spectrum. The
solid line is for the ro = 60 example shown in the top plot and the dashed
line is for ro = 10. The shape of this difference spectrum is different for the
two truncation radii. There is no negative section in the dashed line because
strong Doppler and relativistic boosting in the inner disc prevent the red
wing from dominating.

For both the LHS and the SIMS, the difference in iron line profile
between the QPO rise and the QPO fall is significant, offering the
possibility of direct observation for a range of spectral states. Note
that this association of the rise with the bluest profile and the fall
with the reddest profile is robust as long as we are confident that the
top (pole) of the flow is brighter than the sides. Because type B QPOs
provide a far cleaner signal than type C QPOs, which are always
coincident with broad-band variability, it will be easier to observe
this effect for a source in the SIMS. However, the QPO phase
dependence of the iron line is particularly distinctive for the LHS
model. An enhanced blue wing on the QPO rise, as predicted for
the SIMS model, may feasibly be produced by some other process.
A dominant red wing on the QPO fall and an enhanced blue wing
on the rise, as predicted for the LHS model, can only realistically be
produced by precession and a large truncation radius. Moreover, an
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Frame dragging and the iron line 943

observation showing that the difference spectrum changes between
states as we predict (i.e. the bottom plot of Fig. 10) would surely
provide excellent evidence, not only of the precession model, but
also that the truncation radius moves between the LHS and the
SIMS. In the next section, we assess the likelihood of achieving
such observational confirmation.

5.2 Simulated observations

We test the feasibility of observation directly by simulating phase
resolved spectra using the FTOOL FAKEIT. This adds Poisson noise to
a model before subtracting a representative background and decon-
volving around a given response matrix. We simulate LHS spectra
for 50 phase bins evenly spaced in precession phase angle, γ . We
assume 100 s exposure for each phase bin. This corresponds to 50 ×
100 s = 5 ks of good time. We sort the simulated data into four phase
bins just as we did with the model. For the simulated data there is
just one QPO cycle with a long exposure, but for observational data

there will be many short exposure QPO cycles to average over. As
long as any fluctuations in the accretion geometry over this time
are varying around an average value, the two processes should be
equivalent to a good approximation.

The top left-hand plot in Fig. 11 shows the result of simulating the
response of the Rossi X-ray Timing Explorer (RXTE) Proportional
Counter Array (PCA; top layer, detector 2). We unfold the spectrum
around a flat power law and, as for the model, take the ratio to a
power law with photon index � = 1.6. We use the same model
as that shown in the top plot of Fig. 10, i.e. ro = 60, φi = 90◦,
θ i = 60◦. Again, the green points are the trough, the blue points
are the rise, the black points are the peak and the red points are
the fall. Although a shift in line energy is visible between the rise
and fall spectra, it is unlikely to be statistically significant due to a
high noise level and low spectral resolution. The two observations
of GRS 1915+105 studied by Miller & Homan (2005) were both
observed with RXTE and, as such, the data were of a comparable
quality to our simulation. They fit the QPO peak and trough spectra

Figure 11. Simulated observations of the phase binned spectra shown in Fig. 10 with ro = 60, φi = 90◦ and θ i = 60◦. These spectra are plotted as the ratio
to a power law with � = 1.6. Again the four phase bins are for the QPO minimum (green), rise (blue), maximum (black) and fall (red). Observed with the
RXTE PCA or the XMM–Newton EPIC-pn for 5 ks, it is difficult to see by eye the difference in iron line peak energy between different phase bins. In contrast,
a 100 ks XMM–Newton observation recovers the model well and the LOFT LAD does so with an exceptionally high precision in 5 ks.
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with a simple continuum model plus a Gaussian function for the
iron line. When allowed to be free in the fits, the centroid energy of
the Gaussian was higher for the trough spectrum than for the peak
spectrum in both observations. However, they were also able to
achieve statistically acceptable results by fixing the centroid energy
to the value measured for the total spectrum. Therefore, although
there is some evidence that the line energy shifts, it is by no means
statistically significant. It should be possible to achieve a slightly
more significant result with RXTE data by comparing the rise and fall
phases rather than the peak and trough, but this is always marginal
in practice due to the limited energy resolution of RXTE fast timing
modes.

The top right-hand plot of Fig. 11 shows the same thing but for the
XMM–Newton European Photon Imaging pn Camera (EPIC-pn).
The Poisson noise level seems to be marginally worse compared
with the simulated PCA data. Although the spectral resolution of
the EPIC-pn is far better than that of the PCA, its effective area is
less (∼0.05 m2 compared with ∼0.12 m2) meaning that we require
a very heavy re-binning to get a reasonable signal-to-noise ratio.
Therefore, it may prove difficult to observe this effect using either
RXTE or XMM–Newton. However, the number of counts in the rise
and fall phase bins could be maximized by halving the peak and
trough phase bins and adding them to either the rise or the fall (i.e.
the first half of the peak phase becomes part of the rise and the
second half becomes part of the fall).

A longer exposure is required to reduce the counting errors. In the
bottom right-hand panel of Fig. 11, we plot the result of assuming
a 100 ks exposure for the EPIC-pn. Encouragingly, we see that the
dominant red wing in the falling phase is indeed resolved. However,
over such a long exposure time, parameters such as ro may have
systematically moved and so care must be taken to take this into
consideration.

The size of the effect is also dependent on our assumptions.
A smaller flow scale height would increase the size of this effect
because the flux emitted from the poles of the flow would be an
even greater fraction of the flux emitted from the entire flow. Frame
dragging could therefore have a larger effect on the iron line than
we predict here making it easier to observe with current instruments
than our simulations imply. However, it also must be noted that the
continuum will be more complicated than we assume here with some
QPO phase-dependent spectral pivoting resulting from a variation
in the flux of disc photons incident on the flow. This will make
observation harder.

The bottom left-hand plot of Fig. 11 shows the potential impact of
the proposed mission Large Observatory for X-ray Timing (LOFT).
We use the ‘required’ response of the Large Area Detector (LAD),
which is the principle instrument of the mission. Because the LAD
has an exceptionally large effective area (10–12 m2), the results are
far clearer than those provided by current missions. In fact, the noise
level is so low with LOFT , it would be possible to constrain spectra
for far more than four phase bins. We could also constrain these
spectra for less than 5 ks good time, meaning that we could conduct
detailed studies of the evolution of the phase resolved spectra.

5.3 RMS spectrum

Since we calculate 50 spectra for both the LHS and SIMS models,
it is simple to calculate the rms spectrum of the QPO. This is simply
the standard deviation of each energy channel in absolute units (i.e.
not divided through by the average). Fig. 12 shows this for the LHS
model (top) and the SIMS model (bottom) with the mean spectrum
plotted in black and the QPO spectrum plotted in red. Since the

Figure 12. Mean and QPO spectra for the LHS (top) and SIMS (bottom)
models. The QPO spectrum is calculated by measuring the standard devi-
ation of each energy channel around the mean value across 50 values of
precession angle.

QPO spectrum is fairly sensitive to model assumptions, it provides
a good way to constrain model parameters against observation. For
the models we use here, the misalignment angle β is large and thus
we see reflection features in the LHS QPO spectrum as the amount
of reflection changes with QPO phase.

By contrast, in the SIMS, the extent of the flow is so small (ri = 7
and ro = 10) that even this large misalignment angle does not give
rise to significant variability in the total reflection fraction. Previous
rms spectral analysis of the QPO has not looked at this in detail
(e.g. Sobolewska & Życki 2006). We plan to address this issue in a
future work (Axelsson et al., in preparation).

6 C O N C L U S I O N S

The truncated disc/precessing inner flow model for the spectral
timing properties of XRBs predicts a QPO phase dependence of
the iron line profile. This results from the inner flow preferentially
illuminating different regions of the disc as it precesses. When the
brightest region of the disc is moving towards us, the iron line will
be blueshifted and boosted. When the brightest region is receding,
the iron line will be redshifted. As the illumination pattern rotates
around the disc, the iron line rocks between blueshift and redshift.
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Frame dragging and the iron line 945

This process always happens in a particular order with the most
heavily blueshifted iron line profile following the QPO trough and
the most heavily redshifted iron line profile following the QPO peak.
It is possible to isolate the peaks and troughs in a light curve using
a simple flux selection. The rising phase, which follows the trough,
is predicted to have the bluest iron line and the falling phase, which
follows the peak, is predicted to have the reddest iron line.

We predict this QPO phase dependence of the iron line profile
to be present for a large range of spectral states (and therefore
truncation radii). This means that it may be best to search for the
effect in spectra containing type B QPOs which have very little
broad-band variability associated with them and therefore provide a
much cleaner signal than type C QPOs. However, the nature of the
iron line phase dependence changes with truncation radius. When
it is large, the red wing can dominate over the blue wing during
the fall from QPO peak to trough. When it is small, Doppler and
relativistic boosting from the rapidly moving inner regions of the
disc means that the red wing can never dominate over the blue
wing. The characteristic shape of the difference spectrum between
rise and fall should therefore change as the spectrum evolves from
the LHS to the SIMS. The dominant red wing of the QPO fall
spectrum in the LHS (the ‘red dip’ in the difference spectrum) is
the most unique model prediction but if we wish to observe this, we
must disentangle the underlying QPO signal from the broad-band
noise. This will be the subject of a future paper. An observation of
the effect in both states, along with confirmation that the difference
spectrum changes with state, would constitute excellent evidence,
not only of the precession model, but also that the truncation radius
moves between the LHS and the SIMS.

Quasi-periodic shifting of the iron line peak energy is a unique
prediction of the Lense–Thirring precession model for the low-
frequency QPO in XRBs. We have shown that it may be possible to
observe such an effect with current missions, but that LOFT will be
able to measure this with precision, enabling us to place accurate
constraints on the accretion geometry.
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Done C., Gierliński M., 2006, MNRAS, 367, 659
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Życki P. T., Done C., Smith D. A., 1999, MNRAS, 309, 561

APPENDI X A: GEOMETRY

In order to perform our calculations, we must define some vectors
using the coordinate system outlined in Fig. 1. We represent the x,
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y and z axes with the standard î , ĵ and k̂ unit basis vectors. It then
follows from Fig. 1 that

ĴBS = − sin β ĵ + cos β k̂,

ε̂ = cos β ĵ + sin β k̂. (A1)

The three vectors î , ε̂ and ĴBS therefore form a right handed Carte-
sian coordinate system: the disc basis vectors. We can define a
vector, rd r̂d, which points from the origin (the black hole) to any
point on the disc where

r̂d = cos φd î + sin φd ε̂. (A2)

Note, because the disc is razor thin, there is no ĴBS component (i.e.
ĴBS · r̂d = 0) and φd is simply the angle between r̂d and the x-axis.
We also define a vector pointing from the origin to the observer
using the disc basis vectors

Ŝ = sin θi cos φi î + sin θi sin φi ε̂ + cos θi ĴBS. (A3)

In order to describe points on the surface of the flow, we must
define flow basis vectors. The ‘z-axis’ of this right handed coordinate
system is Ĵflow which precesses around k̂ as illustrated in Fig. 1.
The other two basis vectors, x̂f and ŷf , must therefore also precess
with the flow. We use

x̂f = cos γ î + sin γ ĵ ,

ŷf = − cos β sin γ î + cos β cos γ ĵ + sin β k̂,

Ĵflow = sin β sin γ î − sin β cos γ ĵ + cos β k̂, (A4)

such that x̂f = î when γ = 0 but, as the precession angle unwinds,
the axes move. We can then specify a point in the flow with the
vector rf r̂ f where

r̂ f = sin θf cos φf x̂f + sin θf sin φf ŷf + cos θf Ĵflow. (A5)

Here, θ f is the angle between r̂ f and Ĵflow and φf is the angle
between r̂ f (θf = π/2) and î .

Because our flow is elliptical with semiminor axis in the Ĵflow

direction and semimajor axis in the â = cos φf x̂f + sin φf ŷf

direction, the distance from the origin to any point on the surface is

rf (θf ) = roho√
(ho sin θf )2 + (ro cos θf )2

. (A6)

Because rf is uniquely determined by θ f , we can define dr = |r(θ f ) −
r(θ f + dθ f )|.

We need to be able to write down the unit vector normal to
the flow surface. We can do this using a few identities. Imagine a
triangle drawn between the two focuses of the ellipse, F1 and F2,
and any point on the circumference of the ellipse, P. We know that
the distance from the origin to either focus is f = √

r2
o − h2

o and
also that the three sides of the triangle add up to 2ro + 2f . We
can define the angle between the line from P to F1 (P F1) and the
line from P to F2 (P F2) as ψ . We know that the surface area unit
vector, Â, goes directly between these two lines such that the angle
between − Â and each line is ψ /2. We can say that Â points from
some point xo â to the point on the flow surface, P, in such a way
that this condition is satisfied. Say that d is the distance from P to F2

and 
 is the angle between the lines F2 F1 and F2 P. We can use the
cosine rule a few times to show that d =

√
f 2 + r2

f − 2f rf sin θf

and cos 
 = (f 2 − r2
o + rod)/(f d). It is then possible to show that

Â = rf r̂ f − xo â√
x2

o + r2
f − 2xorf sin θf

, (A7)

where

cos ψ = 2r2
o + d2 − 2rod − 2f 2

d(2ro − d)
(A8)

and

xo = f − d sin(ψ/2)

sin(π − ψ/2 − 
)
. (A9)

We will also need to define a vector which points from a given
point on the flow to a given point on this disc. This can be
written as

ζ ζ̂ = −rf r̂ f + rd r̂d. (A10)

From this, it is simple to show that the distance between the two
points is

ζ 2 = r2
f + r2

d − rfrd r̂ f · rd r̂d. (A11)

All of these vectors will become very useful for the following
sections.

APPENDI X B: DI SC I RRADI ATI ON
C A L C U L AT I O N S

So, we need to calculate what luminosity a disc element with surface
area dAd = rddφd drd will intercept from a flow surface element
emitting a luminosity dL over a semisphere (because it only emits
away from the rest of the flow). We can then integrate over all flow
elements to work out the total flow luminosity that the disc element
intercepts. For the disc patch to see anything at all from a given
flow element, it must pass two tests. First, does it lie in the unit
semisphere of the flow element, i.e. is Â · ζ̂ > 0. Also, because we
are viewing the top of the system (θ i ≤ 90◦), we only see luminosity
which has reflected off the top of the disc. Therefore, we only count
luminosity incident on the top of the disc in our integral. This means
we require ζ̂ · ĴBS < 0. If one of these conditions is not met, the
luminosity intercepted by the disc element is dLr = 0. If both are,
we have

dLr = (−ζ̂ · ĴBS)dAd

2πζ 2
dL. (B1)

We see that the amount of luminosity intercepted depends on the
projected area of the disc patch as seen by the flow element. If
the patch is face-on as seen by the flow, ζ̂ · ĴBS = 1 and the
projected area is dAd. This area reduces as the patch turns away
from the emitting flow element. The total luminosity incident on a
disc patch is calculated by adding up the contribution from every
flow element.

A P P E N D I X C : F L OW M O D U L AT I O N
C A L C U L AT I O N S

We now need to calculate how much luminosity a telescope with
effective area Aeff will intercept from a given flow element in order
to again integrate over the whole flow. For the telescope to see
any luminosity at all, two tests must again be passed. First of all,
the viewer must be in the unit semisphere of the flow element.
This means we require Â · Ŝ > 0. We also wont see anything if the
emission is blocked by the disc. We know the emission definitely
wont be blocked by the disc if the flow element is above the disc,
i.e. r̂ f · ĴBS > 0. Even if the element is below the disc plane, we still
might be able to see through the hole in the centre of the disc. So,
imagine a point on the flow which is below the disc plane, emitting

C© 2012 The Authors, MNRAS 427, 934–947
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at D
urham

 U
niversity L

ibrary on A
ugust 21, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Frame dragging and the iron line 947

along the vector Ŝ. At some point it will intercept the disc plane.
The distance between the flow element and the point where the
vector crosses the disc plane is ζ . This point will be a distance rd

from the origin. We can write

ζ Ŝ = −rf r̂ f + rd r̂d. (C1)

Dotting both sides with ĴBS and rearranging gives

ζ = −rf r̂ f · ĴBS

cos θi
. (C2)

We then know that

r2
d = ζ 2 + r2

f + 2ζ rf Ŝ · r̂ f . (C3)

If r2
d < r2

o , we still see the flow element through the hole in the disc.
If not, it is hidden by the disc.

So, if the unit sphere and disc obstruction tests are not passed,
the luminosity intercepted by the telescope is dLobs = 0. Otherwise,
this is

dLobs = Aeff dL

2πD2
, (C4)

where D is the distance to the source. Note, because the telescope
is so far away and is pointed straight at the black hole, we can say
that the projected area of the telescope as seen by any flow element
is Aeff . We then just set Aeff/(2πD2) = 1, because it only tells us
about normalization, and sum up the contribution from each flow
element.

APPENDIX D: IRON LINE PROFILE
C A L C U L AT I O N S

A disc element at rd r̂d is rotating with Keplerian velocity vk. An
observer at θ i, φi then sees the disc patch travelling towards them at a

velocity of v = vksin φsin θ i, where φ = φi − φd. The tangent points
of the disc will therefore travel towards the observer at a velocity
of ±vk sin θ i. This means that a photon emitted with energy Eem

with be redshifted by

Eem/Eobs = (1 − 3/rd)−1/2

[
1 + cos α

[rd(1 + tan2 ξo) − 2]1/2

]
, (D1)

where

cos α = sin φ sin θi(cos2 θi + cos2 φ sin2 θi)−1/2,

tan ξo = cos φ sin θi(1 − cos2 φ sin2 θi)−1/2 (D2)

(Fabian et al. 1989, 2000).
For a given precession angle, γ , the flow luminosity incident on

a disc patch described by rd and φd is Lr(rd, φd). If this luminosity
were all emitted at energy Eem, the observer would see a luminosity,
all at Eobs, of

dLobs ≈ Lr(rd, φd)(Eobs/Eem)3 cos θi. (D3)

Here, the approximations come from assuming light to travel in a
straight line. Throughout this paper, we ignore gravitational light
bending thus taking these to be good approximations. This should
be appropriate since the inner radius of the flow is assumed to be
ri = 7 throughout and light bending effects outside of this radius
will be minimal. The total observed luminosity as a function of
energy is calculated by summing the contribution from each disc
patch. As the flow precesses and the function Lr(rd, φd) evolves, the
observed iron line profile will change.
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