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Abstract In this paper we present two different kinds of error estimators for
acoustic problems: a residual-based and a dual weighted residual one. The
former error estimator is explicit and cheap to compute. The latter is based
on a duality argument and it is capable of computing accurate and reliable
estimations of quantities of interest, which can be safely used for finite element
analysis and model validation. The error estimators presented in this work are
designed to work with a hp- adaptive discontinuous Galerkin (DG) methods.
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1 Introduction

In the last decades the internal noise of road vehicles has been of increasing
interest to manufacturers and customers. It is particularly important that
manufacturers are able to predict the noise at an early stage of a new design so
that expensive mistakes can be avoided. There are several numerical methods
that can be used (see [1] for an overview) and new methods continue to appear.
One of the most common is wave-based modelling method [2–7] where the
domain is subdivided into a number of convex subdomains and a set of wave
functions for each sub-domain is selected to construct the system matrices.

Moreover other methods of completely different nature are also available
like statistical energy analysis (SEA) and ray tracing methods, in between
them we can find dynamical energy analysis (DEA) methods [8–10] which
interpolate between the two of them. DEA methods are particularly interesting
because SEA and ray tracing are in fact complementary in many ways. Ray
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tracing handles wave problems with a small number of reflections very well. On
the other hand SEA is suitable for complex structures carrying wave energy
over many sub-elements including potentially a large number of reflections and
scattering events.

Another class of methods consists in those based on finite element methods
(FEMs). This kind of methods seems to be the most accurate according to [1]
and they come in a big variety: there are both polynomial based methods [11,
12] and non-polynomial based methods [13–16].

Adaptivity can be used with FEMs to improve the accuracy of numerical
solutions with a modest increase in the computational costs. There are mainly
two ways to adapt elements in a mesh, by splitting the elements in smaller
elements - h-adaptivity - or by changing order of polynomials used in the
elements - p-adaptivity. However, by far the most efficient adaptive technique
is called hp-adaptivity which embraces both ways deciding for each element
which of the two techniques to apply. In order to adapt a mesh to improve the
accuracy of the computed solution it is necessary first of all to understand the
distribution of the error across the mesh. This very delicate task is normally
accomplished using error estimators. In this paper we present two different
kinds of error estimators for acoustic problems: a residual-based and a dual
weighted residual (DWR) one. The former error estimator is explicit and cheap
to compute. The latter is based on a duality argument and it is capable of
computing accurate and reliable estimations of quantities of interest. With
minor modifications, the error estimators presented in this paper can be used
with continuous Galerkin methods as well.

In this paper we are going to consider the source model problem (1), which
can be used to simulate the behavior of an acoustic system under the action
of an external force. Equation (1) is the complex valued formulation of the
Helmholtz’s equation in a bounded and either polygonal or polyhedral domain
Ω contained in R

d, where d = 2, 3. To make the exposition simple we allow
only for Dirichlet boundary conditions on ∂Ω.

{

−∇ · (A∇u) − (ω/c)2 u = f in Ω,
u = p on ∂Ω.

(1)

Moreover we denote by f the external force, by ω the frequency and by c > 0
the speed of sound. We allow for ω to be complex in order to introduce damp-
ing into the model. The boundary conditions are characterized by the complex
valued function p ∈ H1/2(∂Ω). The remaining coefficient A may be discon-
tinuous and it can be used to model the presence of different materials with
different densities in the system, we assume that the matrix-valued function
A is real symmetric and uniformly positive definite, i.e.

0 < a ≤ ξTA(x)ξ ≤ a for all ξ ∈ R
2 with |ξ| = 1 and all x ∈ Ω .

(2)
The paper is structured as follows: In Section 2 we provide a detailed

description of the hp-DG weak formulation of our model problem. Section 3
provides the background and basic results for the energy norm error estimator.
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Section 4 provides the background and basic results for the DWR error esti-
mator. We describe our adaptive procedure in Section 5. Section 6, is devoted
to presenting and discussing the numerical results.

2 Formulation of the discontinuous Galerkin method

ThroughoutL2(Ω) denotes the usual space of square integrable complex valued
functions equipped with the standard norm. When we want to restrict this
norm to a measurable subset S ⊆ Ω, we write ‖g‖0,S, etc.

Since we are going to construct sequences of adaptively refined shape-
regular meshes with at most one hanging node per face, we denote the meshes
by Tn, where n is the index of the mesh. The meshes Tn are either partitions
of Ω ⊂ R

2 into open triangles or quadrilaterals {K}K∈Tn
or partitions of Ω ⊂

R
3 into open tetrahedrons or hexahedrons. We also assume that, in the interior

of each element K ∈ Tn, the positive definite matrix A is constant. In presence
of jumping coefficients, the jumps are aligned with the meshes used in this
work. The diameter of an element K ∈ Tn is denoted by hK . Furthermore, we
assume that these diameters are of bounded variation, i.e. there is a constant
b1 ≥ 1 such that

b−1

1 ≤ hK/hK′ ≤ b1, (3)

whenever K and K ′ share a common face. We store the diameters of the
elements of Tn in the mesh size vector h = (hK)K∈Tn

. Similarly, we associate
with each element K ∈ Tn a polynomial degree pK ≥ 1 and define the degree
vector p = (pK)K∈Tn

. We assume that p is of bounded variation as well, i.e.
there is a constant b2 ≥ 1 such that

b−1

2 ≤ pK/pK′ ≤ b2, (4)

whenever K and K ′ share a common face.
For a partition Tn of Ω and a degree vector p, we define the discontinuous

Galerkin (DG) finite element space Sn of complex valued functions by

Sn = { v ∈ L2(Ω) : v|K ∈ PpK
(K), K ∈ Tn }, (5)

where, if K is either a triangular or a tetrahedral element, PpK
(K) is the space

of polynomials on K of total degree less or equal to pK , otherwise if K is either
a quadrilateral or a brick element, PpK

(K) is the space of polynomials on K
of degree less or equal to pK in each dimension.

Next, we define some trace operators that are required for the DG method.
To this end, we denote by EI,n the set of all interior faces of the partition Tn
of Ω, and by EΓ,n the set of all boundary faces of Tn. Furthermore, we define
En = EI,n∪EΓ,n. The boundary ∂K of an element K and the sets ∂K \Γ and
∂K ∩ Γ will be identified in a natural way with the corresponding subsets of
En.

Let K+ and K− be two adjacent elements of Tn, and e ∈ EI,n be given
by e = ∂K+ ∩ ∂K−. Furthermore, let v be a scalar-valued function, that is
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smooth inside each element K±. By v±, we denote the traces of v on e taken
from within the interior ofK±, respectively. Since we are dealing with jumping
coefficients we use the definition of the weighted average of the diffusive flux
from [17]. Following the definition in [17] we define the diffusive flux A∇nv
along e ∈ EI,n as:

{{A∇nv}} = ω−(A∇nv)
− + ω+(A∇nv)

+ ,

where

ω− =
nT
K+A+nK+

nT
K−A−nK− + nT

K+A+nK+

, ω+ =
nT
K−A−nK−

nT
K−A−nK− + nT

K+A+nK+

,

where we denote by nK± the unit outward normal vector of ∂K±, respectively.
Similarly, for a scalar function we have the following weighted average

{{v}} = ω−v+ + ω+v− .

Then, the jump of v across e ∈ EI(Tn) is given by

[[v]] = v+ nK+ + v− nK− ,

[[A∇nv]] = A+∇nv
+ · nK+ +A−∇nv

− · nK− .

On a boundary face e ∈ EΓ,n, we set {{A∇nv}} = A∇nv and [[v]] = vn , with n
denoting the unit outward normal vector on the boundary Γ .

Remark 1 The weighted mean value {{·}} satisfies the following relation:

(A∇nu)
+ ·nK+v++(A∇nu)

− ·nK−v− = {{A∇nu}} · [[v]]+ [[A∇nu]]{{v}} , (6)

which is already a well-known result for the standard DG mean value [18].

For a mesh Tn on Ω and a polynomial degree vector p, let Sn be the finite
element space defined in (5). We consider the (symmetric) weighted interior
penalty discretization [17] of (1): find un ∈ Sn such that

An(un, v) = F (v) , for all v ∈ Sn , (7)

where

An(u, v) :=
∑

K∈Tn

∫

K

AK∇nu · ∇nv − (ω/c)2 uv dx

−
∑

e∈En

∫

e

(

{{A∇nv}} · [[u]] + {{A∇nu}} · [[v]]
)

ds+
∑

e∈En

∫

e

c [[u]] · [[v]] ds,

F (v) :=
∑

K∈Tn

∫

K

fv dx−
∑

e∈EΓ,n

∫

e

p n · ∇nv ds+
∑

e∈EΓ,n

∫

e

cpv ds .
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here, ∇n denotes the element-wise gradient operator and AK denotes the
restriction of A onto K. Furthermore, the function c ∈ L∞(En) is the discon-
tinuity stabilization function that is chosen as follows: we define the functions
h ∈ L∞(En) and p ∈ L∞(En) by

h(r) :=

{

min(hK+ , hK−), r ∈ e ∈ EI,n, e = ∂K+ ∩ ∂K−,

hK , r ∈ e ∈ EΓ,n, e ∈ ∂K ∩ Γ,

p(r) :=

{

max(pK+ , pK−), r ∈ e ∈ EI,n, e = ∂K+ ∩ ∂K−,

pK , r ∈ e ∈ EΓ,n, e ∈ ∂K ∩ Γ,

and set the penalty parameter to be

c = αγK
p2

h
, (8)

with γK = ω+nT
K+A+nK+ = ω−nT

K−A−nK− , and with a parameter α > 0
that is independent of h, p, A+ and A−. The parameter c defined here is an
hp-version of the weighted penalty parameter [17].

3 Energy norm a posteriori error estimator

An a posteriori error estimator is an essential part of the adaptive procedure,
since it determines where it is necessary to adapt the mesh and the finite
element space to minimize the error of the computed solution. This is possible
because the a posteriori error estimator is capable of estimating the error in
each element from the computed solution un.

The main results in this section are theorems 1 and 2 showing the relia-
bility and the efficiency of the residual error estimator introduced below. The
reliability ensures that, up to a constant and to asymptotically higher order
terms, the error estimator ηj gives rise to an a posteriori upper bound for
error in the energy norm; on the other hand, the efficiency ensures that, up
to a constant and to asymptotically higher order terms, the true error bounds
the error estimator ηj from above. Together these two results ensure that the
computable quantity ηj is linearly proportional to the true error, up to asymp-
totically higher order terms. So it is safe to assume that the true error decays
on a sequence of meshes where the a posteriori error ηj decays, too.

In this section we are going to extend the results from [19] to acoustic prob-
lems with discontinuous coefficients. The results from [19] cannot be applied
straightaway in this case because the presence of the term − (ω/c)2 u in (1)
is making the problem non-coercive. Similarly to [19] the error estimator η is
defined as:

η2 :=
∑

K∈Tn

η2K ,



6 Stefano Giani

where ηK is the estimation of the error on the element K. The terms ηK are
defined as follows:

η2K := η2RK
+ η2FK

+ η2JK
,

where
η2RK

:= p−2

K h2
K‖fn +∇ · (A∇un) + (ω/c)2un‖

2
0,K ,

η2FK
:=

1

2

∑

e∈EI,n

p
−1
e he‖[[A∇un]]‖

2
0,e ,

η2JK
:=

1

2

∑

e∈EI,n

c‖[[un]]‖
2
0,e +

∑

e∈EΓ,n

c‖un − pn‖
2
0,e ,

where pn is the trace of a function in H1(Ω) such that

pn|e ∈ PpK
(e), e ∈ EΓ,n, e ∈ ∂K ∩ ∂Ω,K ∈ Tn,

and where fn is the elementwise L2 projection of f onto the finite element
space.

In order to extend the theory in [19] we need to introduce an auxiliary
coercive problem. Consider the following problem related to (1):

{

−∇ · (A∇û) = g in Ω,
û = p on ∂Ω,

(9)

with g ∈ L2(Ω) and the corresponding DG formulation: find ûn ∈ Sn such
that

Bn(ûn, v) = G(v) , for all v ∈ Sn , (10)

where

Bn(û, v) :=
∑

K∈Tn

∫

K

AK∇nû · ∇nv dx

−
∑

e∈En

∫

e

(

{{A∇nv}} · [[û]] + {{A∇nû}} · [[v]]
)

ds+
∑

e∈En

∫

e

c [[û]] · [[v]] ds,

G(v) :=
∑

K∈Tn

∫

K

gnv dx−
∑

e∈EΓ,n

∫

e

p n · ∇nv ds+
∑

e∈EΓ,n

∫

e

cpv ds ,

where gn is some approximation of g onto the finite element space.
As for problem (1), we define an error estimator also for problem (9):

η̂2 :=
∑

K∈Tn

η̂2K ,

where η̂K is the estimation of the error on the element K. The terms η̂K are
defined as follows:

η̂2K := η̂2RK
+ η̂2FK

+ η̂2JK
,

where
η̂2RK

:= p−2

K h2
K‖gn +∇ · (A∇ûn)‖

2
0,K ,
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η̂2FK
:=

1

2

∑

e∈EI,n

p−1
e he‖[[A∇ûn]]‖

2
0,e ,

η̂2JK
:=

1

2

∑

e∈EI,n

c‖[[ûn]]‖
2
0,e +

∑

e∈EΓ,n

c‖ûn − pn‖
2
0,e ,

Lemma 1 Let û be the solution of (9) and ûn ∈ Sn its DG approximation
obtained by (10). Then we have that the error in the norm

‖û‖2DG,Tn
:=

∑

K∈Tn

‖A∇û‖20,K +
∑

e∈En

c‖[[û]]‖20,e , (11)

is bounded by η̂ multiplied by a hidden constant independent of h and p, i.e.

‖û− ûn‖DG,Tn
. η̂ + Θ̂ , (12)

where the term Θ̂ is a higher order term defined as:

Θ̂2 :=
∑

K∈Tn

p−2

K h2
K‖g − gn‖

2
0,K + ‖p− pn‖

2

1/2,∂Ω +
∑

e∈EΓ,n

c ‖p− pn‖
2
0,e.

The proof of this lemma is equivalent to the proof of Theorem 3.1 in [19].

Lemma 2 Let û be the solution of (9) and ûn ∈ Sn its DG approximation
obtained by (10). Then we have the local upper bound

η . ‖û− ûn‖DG,Tn
+Θ .

The proof of this lemma is equivalent to the proof of Corollary 3.1 in [19] with
α = 0.

Now, choosing g := f+(ω/c)2u, we have that u ≡ û and similarly choosing
gn := fn+(ω/c)2 un, we have that un ≡ ûn and that η ≡ η̂. So using Lemma 1
and Lemma 2 we have the following two theorems which show the reliability
and efficiency of the error estimator for problem (1).

Theorem 1 (Reliability) Let u be the solution of (1) and un ∈ Sn its DG
approximation obtained by (7). Then we have that the error is bounded by η
multiplied by a hidden constant independent of h and p, i.e.

‖u− un‖DG,Tn
. η +Θ , (13)

where the term Θ is as:

Θ2 :=
∑

K∈Tn

p−2

K h2
K‖f − fn‖

2
0,K +

∑

K∈Tn

p−2

K h2
K(ω/c)2‖u− un‖

2
0,K

+‖p− pn‖
2

1/2,∂Ω +
∑

e∈EΓ,n

c ‖p− pn‖
2
0,e.
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Proof From Lemma 1 and recalling that g := f + (ω/c)2 u and gn := fn +
(ω/c)2 un, we have

‖u− un‖DG,Tn
= ‖û− ûn‖DG,Tn

. η̂ + Θ̂ ≤ η +Θ .

All the terms Θ2 with the exception of
∑

K∈Tn
p−2

K h2
K(ω/c)2‖u−un‖

2
0,K are

higher order terms compared to ‖u−un‖DG,Tn
and they are unlikely to became

dominant. In general the L2 norm of the error is asymptotically of higher order
compared to the DG norm of the error, however in our case for big enough
values of ω, the term

∑

K∈Tn
p−2

K h2
K(ω/c)2‖u− un‖

2
0,K can become dominant

especially on coarse meshes. Nevertheless in the first example presented in
Section 6 the error estimator η mimics very well the behavior of the DG error
even if ω has a quite big value, suggesting that even in case that Θ is dominant,
the error estimator continues to predict correctly the distribution of the error.

Theorem 2 (Efficiency) Let u be the solution of (1) and un ∈ Sn its DG
approximation obtained by (7). Then we have the local upper bound

η . ‖u− un‖DG,Tn
+Θ .

Proof From Lemma 2 and recalling that g := f + (ω/c)2 u and gn := fn +
(ω/c)2 un, we have

η = η̂ . ‖û− ûn‖DG,Tn
+ Θ̂ ≤ ‖u− un‖DG,Tn

+Θ .

4 Dual weighted residual a posteriori error estimator

The main two drawbacks of the energy norm a posteriori error estimator η are
firstly the presence of the hidden constants, which makes η an estimator of
the error and not an approximation of the error. In fact even if the true error
and η are asymptotically linked together, their values could be very far apart.
The second drawback is that the only estimated measurement of the error
that η can provide is the DG norm in (11) of the error and so the sequence of
obtained meshes are constructed to minimize only such norm. However, very
often in practice people are interested in different measurements of the error
for example in acoustics the error of the computed solution in a specific point
in the domain, where a sensor may sit, could be of great interest.

To compensate for all these drawbacks, it is advisable to use a more ad-
vanced a posteriori error estimator called dual weighted residual (DWR) a
posteriori error estimator [20,21]. The main characteristic of this type of error
estimator is the fact that the measurement of the error to target with the
adaptive process can be easily changed. Commonly the measurement of the
error that are used with DWR are quantities with physical meaning. In this
way a DWR adaptive algorithm can be used to accurately estimate specific
quantities for practical interest. For this reason DWR has been already used
in many fields. For example in [22] DWR has been used to accurately compute
the lift and drag of wing profile, moreover in [23,24] DWR has been used to
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accurately compute eigenvalues of eigenvalue problems from different areas of
physics.

The main difference between DWR and the error estimator presented in
the previous section is that in order to compute the residuals of the DWR error
estimator, it is necessary to compute the solution of an auxiliary problem which
is related to the dual/adjoint operator in (7) and whose definition depends on
the choice of the measurement of the solution to target. Let us assume that the
quantity to target can be expressed as a linear functional J(·). Such functional
is used in the definition of the auxiliary problem, that implies that the solution
z of the auxiliary problem depends on the definition of J(·). In conclusion, the
mechanism that makes DWR very flexible and able to target easily different
quantities of interest is the fact that the residual is computed using z, which
is linked to the definition of J(·). So a different choice of J(·) will lead to a
different solution z to be used in the residuals and a different behavior of the
adaptive strategy.

Let us introduce the variational formulation of problem (1):

A(u, v) :=

∫

Ω

A∇u · ∇v − (ω/c)2 uv dx =

∫

Ω

fv dx =: Fc(v) , (14)

where the test functions v ∈ H1
Γ (Ω), which is the subspace of H1(Ω) of func-

tions with null trace along Γ . Moreover u should be found in H1
g (Ω), which is

the subspace of H1(Ω) of functions with trace equal to g along Γ . Similarly
we define the dual problem of (1) as

A(w, z) = J(w) , (15)

with w ∈ H1
g (Ω) and z ∈ H1

Γ (Ω).
For the moment we work with a general J(·) which is assumed to be linear.

We write the error in the quantity of interest relative to the computed solution
un as:

J(u− un) = J(u)− J(un) .

Then using the definition of the dual problem (15) and (14) we have

J(u − un) = Fc(z)−A(un, z) .

This shows that the error in the quantity of interest is equal to the residual
Fc(z)−A(un, z) of the discrete primal problem. This result holds for any defini-
tion of the functional J(·) to which a different true dual solution z corresponds
and so a different residual.

The residual Fc(z) − A(un, z) is not computable in practice because it
involves the true dual solution z. What is possible to do is to substitute z with
a DG approximation zn. Then, if zn is a “good” approximation of z we have
that

Fc(z)−A(un, z) ≈ F (zn)−An(un, zn) ,

and consequently

J(u − un) ≈ F (zn)−An(un, zn) .
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In order to use this error estimator, due to the fact that F (vn)−An(un, vn) = 0
for all vn ∈ Sn, it is necessary to compute zn in a DG space finer than Sn.
In all our experiments we see that increasing by 1 the polynomial degree in
all elements of the finite element space Sn, which was used to compute un, is
enough to guarantee that zn is a “good” approximation of z. Furthermore, the
residual F (zn)−An(un, zn) can be split in elementwise contributions η̃K and
so the DWR a posteriori error estimator can be defined as:

η̃ :=
∑

K∈Tn

η̃K ,

which satisfies

J(u − un) ≈ η̃ . (16)

So (16) implies that the value η̃ is very close to the measurement of the
error J(u−un) of interest and it is computable also when the true solutions u
and z are unknown. Also using the DWR a posteriori error estimator η̃, it is
possible to construct a sequence of meshes automatically designed to minimize
the measurement of the error of interest.

Moreover, the error estimator η̃ can be also used to compute an enhanced
approximation of the quantity of interest J(u) applying the formula:

J(u) ≈ J(un) + η̃ . (17)

5 Adaptivity

The hp-adaptive algorithm used for the numerical experiments in Section 6 is
expressed below in Algorithm 1.

Algorithm 1 Adaptive algorithm
(un, Tn, Sn) := AdaptDG(T1, S1, θ, tol)
n = 1
repeat

Compute the solution un on Tn

Compute ηK for all K ∈ Tn

if
∑

K∈Tn
η2
K

< tol2 then
exit

else
(Tn+1, Sn+1) := Refine(Tn, Sn, θ, η)
n = n+ 1

end if
until

This algorithm takes as input: an initial mesh T1, an initial DG space
S1, a real value 0 ≤ θ ≤ 1 to tune the marking strategy, a real and positive
value tol which prescribes the required tolerance. The function Refine applies a
simple fixed-fraction strategy to mark a minimal subset of elements containing
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a portion of the error proportional to θ. Then the choice for each marked
element between splitting the element into smaller elements (h-refinement)
or increasing the polynomial order (p-refinement) is made by testing the local
analyticity of the computed solution in the interior of the element as described
in [25,26]. In the case that we are only interested in using h-refinement the
local analyticity test can be avoided. When the DWR error estimator is used,
the residuals η̃K are computed instead of ηK .

6 Numerical experiments

In this section we present five examples. For all examples we show the conver-
gence of the error.

6.1 Acoustic cavity problem

The first problem which we examine comes from [27] and it is posed on a
rectangular domain of measurements 2× 1:

{

−∆u − (ω/c)2 u = 0 in Ω,
u = p on ∂Ω,

(18)

this problem has no source term and inhomogeneous Dirichlet boundary con-
ditions everywhere on the boundary ∂Ω. For this problem the frequency ω =
30000, the speed of sound is c = 331.3. Also the solution u of (18) is known
analytically in this case:

u(x, y) = ic

(

cos(2ω/c)

sin(2ω/c)
cos(ω/c x) + sin(ω/c x)

)

.
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Fig. 1 Convergence of the error in the L2 and DG norm and convergence of the
error estimator expressed in degrees of freedom (DOFs).



12 Stefano Giani

In Figure 1 we plot the convergence curves for the DG norm, the L2 norm
and the error estimator η related to a sequence of adaptively refined meshes
generated using our hp-adaptive algorithm. As can be seen all curves reassem-
ble straight lines which suggests exponential convergence rates.

6.2 Green function in a box

For our second example we consider the problem:

{

−∆u − (ω/c)2 u = δs in Ω,
u = Gs,ω on ∂Ω,

whereΩ = [0, 1]2, the frequency ω = 30000, δs is the delta of Dirac distribution
centered in s = (0.51, 0.51) ∈ Ω and Gs,ω is the Green function centered in
s and for frequency ω. So, it is clear from the setup of the problem that the
true solution is u = Gs,ω . Also in this case we used the error estimator η.
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||u
−
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h

Fig. 2 Convergence in the L2 norm for the h- and hp-adaptive method.

In Figure 2 we plot the convergence curves for the L2 norm using either
h- or hp-adaptivity, as can be seen the the gap between the two is quite
remarkable. The plot seems to suggests that the hp-adaptive method converges
exponentially.
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Fig. 3 Adapted mesh after 16 iterations.

In Figure 3 we plot the mesh generated after 16 iterations by the hp-
adaptive method. As can be seen the mesh is particularly refined around the
position of the source which indicates that the method automatically recog-
nizes a lack of regularity due to the pointwise source.

Fig. 4 Solution.
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In Figure 4 we plot the computed solution.

6.3 Green function in a box with goal-oriented adaptivity

For our third example we consider the same problem as in the previous exam-
ple. But in this example we use the goal-oriented error estimator η̃ with point
of interest r = (0.21, 0.21), so in this example the error estimator drives the
adaptive procedure to minimize the error at the point r.

Fig. 5 Convergence of the error and of the error estimator in degrees of freedom
(DOFs) versus the error at r.

In Figure 5 we plot the convergence curves for the true error |u(r)−un(r)|
and for the estimator η̃. The fact that the curves look like straight lines, sug-
gests exponential convergence also for this example. Comparing these results
with Figure 1, it is clear that the error estimator η̃ is sharper than η because
there is almost no gap between the estimated values of the error and the true
error.
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Fig. 6 Effectivity of the error estimator η̃ with hp-adaptivity.

In Figure 6 we plot the effectivity index computed using the formula
|η̃|/|J(u)−J(un)|. As can be seen the index is almost everywhere very close to
1 which implies that the error estimator is sharp in respect to the true error.
The effectivity index for the DWR error estimator can also be interpreted as
a way to check if the dual finite element space is fine enough compared to Sn.
When the dual finite element space is fine enough, the effectivity index is close
to 1, when it is not fine enough, the effectivity index is far from 1.

Fig. 7 Adapted mesh after 10 iterations.
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In Figure 7 we plot the mesh generated after 10 iterations by the hp-
adaptive method. Comparing it with Figure 3 it is clear that the two error
estimators work very differently. In order to reduce the norm of the error, the
error estimator η refines quite heavily around the source. Instead in order to
reduce the error at the point of interest, the error estimator η̃ refines more
around r.

6.4 Complex Green function in a box with goal-oriented adaptivity

For our fourth example we consider the problem:

{

−∆u − (ω/c)2 u = δs in Ω,
u = Gs,ω on ∂Ω,

where Ω = [0, 1]2, the frequency ω = 6000 + i66.26, δs is the delta of Dirac
distribution centered in s = (0.51, 0.51) ∈ Ω. Because ω has an imaginary part
different from zero, we have damping in this example.

Also in this example we use the goal-oriented error estimator η̃ with point
of interest r = (0.21, 0.21).

Fig. 8 Convergence rate expressed in degrees of freedom (DOFs) versus the
error at r.

In Figure 8 we plot the convergence curves for the true error |u(r)−un(r)|
and for the estimator η̃. The red curve is the error relative to the enhanced
estimation (17), as can be seen the improvement is about of at least one
order. The fact that the curves look like straight lines, suggests exponential
convergence also for this example.
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6.5 Two plates problem with different materials

For our last example we consider the problem:

{

−∇ · (A∇u) − (ω/c)2 u = δs in Ω,
u = 0 on ∂Ω,

where Ω is formed by two polygonal plates (see Figure 10), the frequency
ω = 30000, δs is the delta of Dirac distribution centered in s = (−0.4, 0.5) ∈ Ω
and A is equal to 1 on the left plate and 2 on the right plate.

In this example we use the goal-oriented error estimator η̃ with point of
interest r = (0.51, 0.51).

Fig. 9 Convergence rate expressed in degrees of freedom (DOFs) versus the
error at r.

In Figure 9 we plot the convergence curves for the true error |u(r)−un(r)|,
for the estimator η̃ and for the improved estimation in (17). The fact that the
curves look like straight lines, suggests exponential convergence also for this
example.
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Fig. 10 solution.

In Figure 10 we plot the computed solution. As can be seen the different
materials have a clear effect on the wave length.

Fig. 11 Order of polynomials for the adapted mesh.

In Figure 11 we plot the distribution of the different orders of polynomials.
Clearly the two regions mostly refined are the location of the point of interest
r and the interface between the two plates where the material changes.
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23. S. Giani, L. Grubǐsić, and J. S. Ovall. Benchmark results for testing adaptive finite
element eigenvalue procedures. Applied Numerical Mathematics, 62(2):121–140, 2012.

24. A. Cliffe, E. Hall, P. Houston, E. T. Phipps, and A. G. Salinger. Adaptivity and a
posteriori error control for bifurcation problems II: Incompressible fluid flow in open
systems with z2 symmetry. Journal of Scientific Computing, 47(3):389–418, 2011.



20 Stefano Giani

25. T. Eibner and J. M. Melenk. An adaptive strategy for hp-FEM based on testing for
analyticity. Computational Mechanics, 39(5):575–595, 2006.
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