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Abstract

We study discrete-time stochastic processes (Xt) on [0,∞) with asymptotically
zero mean drifts. Specifically, we consider the critical (Lamperti-type) situation in
which the mean drift at x is about c/x. Our focus is the recurrent case (when c is
not too large). We give sharp asymptotics for various functionals associated with
the process and its excursions, including results on maxima and return times. These
results include improvements on existing results in the literature in several respects,
and also include new results on excursion sums and additive functionals of the form∑

s≤tX
α
s , α > 0. We make minimal moments assumptions on the increments of

the process. Recently there has been renewed interest in Lamperti-type process
in the context of random polymers and interfaces, particularly nearest-neighbour
random walks on the integers; some of our results are new even in that setting.
We give applications of our results to processes on the whole of R and to a class of
multidimensional ‘centrally biased’ random walks on Rd; we also apply our results
to the simple harmonic urn, allowing us to sharpen existing results and to verify a
conjecture of Crane et al.

Keywords: Path functional; excursion; maximum; passage-time; additive functional; path
integral; Lamperti’s problem; centre of mass; centrally biased random walk.
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1 Introduction

The study of functionals defined on paths of stochastic processes is a topic with classi-
cal foundations and extensive applications in modern probability; such functionals give
a quantitative encapsulation of both probabilistic information about the recurrence be-
haviour of the process and geometrical information about the way in which the process
explores the state-space. A substantial body of work is devoted to additive functionals of
the form

∑t
s=1 Φ(Xs), where X1, X2, . . . is a discrete-time stochastic process on Rd and

Φ : Rd → R is a given measurable function. The most basic choice, in which Φ(x) is taken
to be the indicator function 1{x ∈ A} of a Borel set A ⊆ Rd, leads to occupation time for
A. In the most well-studied case, Xt is a sum of i.i.d. random variables; the monograph

∗Department of Mathematical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK.
†Corresponding author. E-mail: andrew.wade@durham.ac.uk. Tel: +44 (0)191 334 4151

1



by Borodin and Ibragimov [6] is devoted to limit theory in the i.i.d. setting. There is also
much work devoted to the case in which Xt is an ergodic Markov process. Classical work
goes back to Markov and Bernstein (cf. [28, p. 2299]). If Φ is integrable with respect to
the stationary distribution of the process, then a large collection of ‘ergodic theorems’
and distributional limit theorems (after suitable scaling and under various conditions) are
known, and represent an active area of research: see e.g. [10,24,27,28,33] and references
therein for an indication of the extensive literature.

In the present paper, we study stochastic processes on Rd of a more general type
(assuming a regenerative property only, rather than the Markov property) and in the
near-critical situation from the point of view of the asymptotic behaviour of the process.
Near-criticality entails that the one-step mean drift of Xt is asymptotically zero in a sense
that we describe more precisely later on. Processes with asymptotically zero drifts are
of interest in their own right for exploring phase transitions in asymptotic behaviour,
as first described in the general setting in fundamental work of Lamperti [30, 31]. A
consequence of near-criticality is that many important distributions associated with such
processes display heavy-tailed behaviour; these include passage times [5, 31] and, if they
exist, stationary distributions [35]. In many cases of interest, these and other quantities
have natural scaling exponents that depend on the details of the process.

Moreover, such processes are important from the point of view of applications for two
main reasons: first, they serve as prototypical near-critical stochastic systems and hence
for the development of new techniques, and second, they can often be extracted from
more complex near-critical systems via the method of Lyapunov functions, to powerful
analytic effect. One classical but important illustration of the latter point is provided
by the Lyapunov function approach to Pólya’s theorem on the recurrence/transience of
symmetric simple random walk St on Zd: Pólya’s theorem can be understood in an
entirely one-dimensional setting by taking Xt = ‖St‖, in which case the process Xt has
asymptotically zero drift in the sense that

E[Xt+1 −Xt | St = x] = cd‖x‖−1 +O(‖x‖−2),

for some constant cd > 0 that depends only on d. Lamperti’s recurrence classification for
such processes [30] implies Pólya’s theorem. Importantly, the same technique works for
a very large class of random walks; in particular, the Markov property is not essential.

For these asymptotically zero drift processes, we study a class of additive functionals
(or path integrals) of the form

∑t
s=1X

α
s , α ≥ 0. Moreover, we study the maximum

functional max1≤s≤tXs (which corresponds in a certain sense to the α→∞ limit of the
additive functional). We are interested in the large-t asymptotics of such functionals, in
the case where Xt is recurrent. Our primary interest is not in the case where the process
has sufficient ‘ergodicity’ properties that t−1

∑t
s=1X

α
s converges, but rather in the case

where
∑t

s=1X
α
s grows faster than linearly, including the case where Xt is null-recurrent.

This is rather different to the emphasis of the classical work cited above, and accords
with our focus on systems that are near-critical in some sense.

We make some further remarks on applications and related results. Borovkov et al. [7]
consider analogues for queueing models of the path integrals that we study. As far as
the authors are aware, there has been little work specifically concerned with additive
functionals of processes with asymptotically zero drift. For a particular (null-recurrent)
example of a nearest-neighbour random walk on the nonnegative integers, Fal’ [15] proved
distributional limits for functionals such as

∑t
s=1(1+Xs)

−γ, γ > 0 sufficiently large. Our
interest is in functionals of the opposite nature.
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A (normalization of a) particularly important path integral is the center-of-mass pro-
cess associated with Xt defined by Gt = t−1

∑t
s=1Xs. The behaviour of Gt for Markov

processes is only partially understood beyond the case in which sufficient ergodicity en-
sures that Gt converges to a limit. For the centre-of-mass associated with simple random
walk on Zd, Grill [21] proves the interesting result that (compact-set) recurrence is present
if and only if d = 1. The desire to understand Grill’s result more generally was one of the
original motivations for the work of the present paper; by analogy with Lamperti [30,31],
it is natural to begin in the setting of processes with asymptotically zero drifts.

Our approach is via a detailed study of the excursions of the process Xt, in which,
once again, the heavy-tailed nature of the characteristics of the processes becomes evident.
Thus, if η denotes the duration of an excursion, we are led to the study of excursion func-
tionals such as

∑η
s=1X

α
s (including the special case α = 0 of η itself) and max1≤s≤ηXs.

As well as being key ingredients in the proofs of our large-t asymptotics, these quantities
are of interest in their own right in various theoretical and applied contexts. For example,
to apply Theorem 2.1 of [10] one needs to understand tail properties of an analogue of∑η

s=1X
α
s ; sums over excursions for processes with asymptotically zero drift turn out to

be central to the analysis of the ‘simple harmonic urn’ [9] (see also Section 3.3 below).
In the last decade or so, significant interest in processes with asymptotically zero drifts

has come from a community of probabilists and statistical physicists from the point of
view of modelling the configurations of polymers and interfaces. A now standard approach
in this field is to take as an underlying model a nearest-neighbour random walk with an
asymptotically zero drift: see for example [1, 12, 23]. Such nearest-neighbour models are
amenable to explicit calculation, often via intricate algebraic methods such as Karlin–
McGregor spectral theory and orthogonal polynomials [26]; other recent work on these
models, not directly motivated by polymer models, includes for example [11, 18, 29, 40].
This continued interest in asymptotically zero drift processes in the nearest-neighbour
case is another motivation for the present paper, in which we present related results for
a much more general class of models. We discuss the relation of our results to some of
this recent work in more detail in Section 3.4.

The outline of the remainder of the paper is as follows. In Section 2 we give a formal
statement of our half-line model and state our results on excursions and functionals in a
series of subsections. In Section 3 we give applications of our half-line results to processes
on the whole line (Section 3.1) and to multidimensional processes including centrally
biased random walks on Rd (Section 3.2) and the simple harmonic urn (Section 3.3).
Also, in Section 3.4, we make some remarks on how our model and results complement
recent results, restricted to nearest-neighbour random walks, in the context of models of
random polymers and interfaces. The proofs of the results in Sections 2 and 3 are given
in Sections 4 and 5 respectively.

2 Main results on path functionals

2.1 Description of the model

We formally describe our process X := (Xt)t∈N (N := {1, 2, . . .}) and our structural
assumptions on its state-space S. Recall that a subset R of Rd is locally finite if R ∩H
is finite for all bounded H ⊂ Rd. Our basic assumption is the following.

(A0) (a) Let S be a locally finite, unbounded subset of [0,∞) with 0 ∈ S.
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(b) Suppose that (Xt)t∈N is an S-valued process adapted to a filtration (Ft)t∈N, and
P[X1 = 0] = 1.

We also assume the following form of ‘irreducibility’.

(A1) Suppose that for each x, y ∈ S there exist m(x, y) ∈ N and ϕ(x, y) > 0 such that

P[Xt+m(Xt,y) = y | Ft] ≥ ϕ(Xt, y), a.s., for all t ∈ N. (2.1)

If X is a time-homogeneous Markov process, (2.1) reduces to the usual sense of irreducibil-
ity that, for any x, y ∈ S, there exists m(x, y) ∈ N such that P[Xm(x,y) = y | X1 = x] > 0.
The assumption (2.1) allows us to work with more general processes, such as functions of
Markov process: see the discussion at the end of this subsection. A consequence of (A0)
and (A1) is that lim supt→∞Xt =∞, a.s.; see Proposition 2.1 below.

We make some ‘Lamperti-style’ assumptions on the increments of X. Throughout we
use the notation ∆t := Xt+1 −Xt. We will typically need to assume that for some p > 2
(at least), some δ > 0, and some constant C ∈ (0,∞), for all t ∈ N,

E[|∆t|p | Ft] ≤ C(1 +Xt)
p−2−δ, a.s. (2.2)

Given that (2.2) holds for some p > 2, E[∆k
t | Ft] is a.s. finite for k ∈ {1, 2}. We make

some further assumptions on the moments of the increments, as follows. For notational
convenience, throughout the paper we write logq x for (log x)q, q ∈ R.

(A2) Suppose that for some c ∈ R and s2 ∈ (0,∞), as Xt →∞,

E[∆t | Ft] = cX−1
t + o(X−1

t log−1Xt), a.s., (2.3)

E[∆2
t | Ft] = s2 + o(log−1Xt), a.s. (2.4)

We make an important note on notation: our usage assumes that implicit constants in
Landau O( · ), o( · ) symbols are non-random and independent of t, so that asymptotic
expressions such as (2.3) and (2.4) are understood to hold uniformly in t and sample
points ω (on a set of probability 1). So, for example, (2.4) means that for any ε > 0 we
can choose x <∞ so that |E[∆2

t | Ft]− s2| ≤ ε/ logXt, a.s., on {Xt > x}, for any t ∈ N.
We study X via its excursions from 0. Set τ0 := 1 and for n ∈ N define

τn := min{t > τn−1 : Xt = 0},

with the usual convention that min ∅ =∞. That is, τ0, τ1, τ2, . . . are the successive times
of visit to the origin by X; if X visits 0 only finitely often then τn = ∞ for all n large
enough. When τn < ∞ we denote, for n ∈ N, ηn := τn − τn−1, the duration of the nth
excursion; also set η0 := 1. Provided that τn <∞, we denote the nth excursion (n ∈ N)
by En := (Xt)τn−1≤t≤τn−1. Let N := min{n ∈ N : τn =∞}.

(A3) (a) Suppose that, for all n ∈ N, P[ηn+1 <∞ | τn <∞] = P[η1 <∞].

(b) Suppose that, on {N =∞}, (En)n∈N is an i.i.d. sequence.

Part (b) of (A3) assumes a full regenerative structure in the case of an infinite number
of returns to 0. Part (a) makes a weaker assumption, needed to deal with the event
{N <∞}. A useful reference for regenerative processes is [2, Chapter VI].

Our irreducibility and regenerative assumptions have the following basic consequence.
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Proposition 2.1. Suppose that (A0) and (A1) hold. Then lim supt→∞Xt =∞, a.s. If,
in addition, part (a) of (A3) also holds, then either:

(i) (transience) P[η1 <∞] < 1 and limt→∞Xt =∞ a.s.; or

(ii) (recurrence) P[η1 <∞] = 1 and lim inft→∞Xt = 0 a.s.

We give the proof of Proposition 2.1 in Section 4.3, along with the proofs of the other
results that we state in the present section.

Before describing our main results, we indicate why we have chosen our particular
assumptions. It is too restrictive for the applications that we have in mind to assume
that X is itself a Markov process; our more general framework enables us to work with,
for example, Xt = ‖Yt‖ where Yt is a Markov process on Rd. More generally, suppose that
(Yt)t∈N is an irreducible time-homogeneous Markov process on an arbitrary countable set
Σ, and let f : Σ → [0,∞) be measurable such that f−1(x) is finite for each x. Let
Ft = σ(Y1, . . . , Yt) and take Xt = f(Yt). Then Xt is Ft-adapted and has the countable
state-space S = f(Σ). Moreover, by irreducibility, given u and v such that f(u) = x
and f(v) = y, there exist ϕ(x, y) > 0 and m(x, y) ∈ N such that P[Yt+m(x,y) = v | Yt =
u] ≥ ϕ(x, y), using the fact that, by our assumption on Σ and f , there are only finitely
many possible u, v pairs for a given x, y. Hence (2.1) holds. If f−1(0) = 0 is unique, (A3)
follows from the strong Markov property. This generality is very useful for applications:
we describe one such example in detail in Section 3.2 below.

The remaining parts of this section are devoted to our results. Our excursion-based
approach is only applicable in the recurrent case, so first we give a recurrence classifica-
tion. Then we move on to detailed properties of excursions and the tails of associated
random variables, and finally to t → ∞ asymptotics of functionals defined on paths of
the process up to some given time t. We exhibit various tail or scaling exponents for the
quantities that we study.

2.2 Recurrence classification

We say X is transient if P[η1 <∞] < 1; otherwise it is recurrent. If recurrent, we say that
X is positive-recurrent if E[η1] < ∞ and null-recurrent if E[η1] = ∞. Under (A2), the
quantity −2c/s2 will play a central role in all that follows, and we introduce the notation

r := −2c/s2. (2.5)

The recurrence classification for X is as follows.

Theorem 2.2. Suppose that (A0)–(A3) hold, and (2.2) holds with p > 2. Then X is

(i) transient if r < −1;

(ii) null-recurrent if −1 ≤ r ≤ 1;

(iii) positive-recurrent if r > 1.

Theorem 2.2 is essentially due to Lamperti [30,31] (in the case |r| 6= 1) and Menshikov
et al. [34] (in the case |r| = 1) under somewhat different conditions. We do not give a
detailed proof of Theorem 2.2 here, but sketch in Section 4.3 how these existing results
may be adapted to our setting.
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2.3 The maximum of an excursion

Let Mn := maxτn−1≤t<τn Xt, the maximum attained by En. The next result gives tail
bounds, in the recurrent case, for the (Mn)n∈N, which are i.i.d. under our assumptions.

Theorem 2.3. Suppose that (A0)–(A3) hold. Suppose that r > −1 and (2.2) holds with
p > max{2, 1 + r}. Then for any ε > 0, for all x sufficiently large,

x−1−r(log x)−ε ≤ P[M1 ≥ x] ≤ x−1−r(log x)1+ε. (2.6)

In particular, E
[
M1+r

1

]
=∞ but, for any ε > 0, E

[
M1+r−ε

1

]
<∞.

Remarks 2.1. (a) Symmetric simple random walk on the half-line with reflection at 0
(and, indeed, any of a host of more general zero-drift models) has r = 0, and is thus
right on the boundary of having a finite expectation for M1. (b) In the tail bound (2.6)
and similar results in the sequel, the polynomial term is sharp but we do not necessarily
strive for the best possible exponent for the logarithmic term. Our results are all sharp
enough, however, to classify completely which moments do or do not exist for the random
variable in question.

2.4 The duration of an excursion

The following result is a sharpening in our context of [5, Propositions 1 and 2], which
themselves extended work of Lamperti [31].

Theorem 2.4. Suppose that (A0)–(A3) hold. Suppose that r > −1 and (2.2) holds with
p > max{2, 1 + r}. Then for any ε > 0, for all t sufficiently large,

t−
1+r
2 (log t)−ε ≤ P[η1 ≥ t] ≤ t−

1+r
2 (log t)2+r+ε. (2.7)

In particular, E
[
η

1+r
2

1

]
=∞ but, for any ε > 0, E

[
η

1+r
2
−ε

1

]
<∞.

The proof of the upper tail bound in (2.7) is based on general results of [4]. The lower
bound in (2.7) is new in the generality given here; under more restrictive assumptions
(including uniformly bounded increments for Xt) it can be derived from [3, Corollary 1].
Our proof of the lower bound is based on the intuitively appealing Lemma 4.11 below.
Lamperti [31] was the first to systematically study the problem of the existence or non-
existence of moments E[ηq1]: his results covered only integer q. Subsequently Aspandiiarov
et al. extended Lamperti’s results to all q > 0 (see the Appendix of [5]), but neither [31]

nor the results of [5] determine whether the boundary case E[η
(1+r)/2
1 ] is finite or infinite;

as mentioned above, results of [3] can be used to settle the boundary case, but under
more restrictive conditions on the increments than we use in Theorem 2.4. (The results
of [5,31] related to Theorem 2.4 are stated in the Markovian setting, but their methods,
similar to ours, work more generally.)

2.5 Number of excursions

Let Nt denote the number of excursions up until time t, i.e., Nt := max{n ∈ N : τn ≤ t}.

Theorem 2.5. Suppose that (A0)–(A3) hold.
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(i) Suppose that −1 < r ≤ 1 and (2.2) holds with p > 2. Then for any ε > 0, a.s., for
all but finitely many t,

t
1+r
2 (log t)−3−r−ε ≤ Nt ≤ t

1+r
2 (log t)1+ε. (2.8)

(ii) Suppose that r > 1 and (2.2) holds with p > 1 + r. Then a.s., as t→∞, t−1Nt →
1

E[η1]
∈ (0,∞).

2.6 Occupation times and stationary distribution

In this section E[η1] < ∞. Define for t ∈ N and x ∈ S the occupation times Lt(x) :=∑t
s=1 1{Xs = x}. Also define the occupation times during the nth excursion by

`n(x) :=
τn−1∑
t=τn−1

1{Xt = x}. (2.9)

The next result is essentially a consequence of ‘ergodic theory’ for regenerative processes.
The limiting distribution π that appears in Theorem 2.6 is the usual (unique) stationary
distribution if X is an irreducible positive-recurrent Markov process.

Theorem 2.6. Suppose that (A0)–(A3) hold, r > 1, and (2.2) holds with p > 1 + r.
Then setting

π(x) :=
E[`1(x)]

E[η1]
, (2.10)

we have that π(x) > 0,
∑

x∈S π(x) = 1, and, for any x ∈ S, t−1Lt(x)→ π(x) a.s. and in
Lq for any q ≥ 1. Finally, if, in addition, the distribution of η1 is not supported on kN
for any k > 1, we have that, for any x ∈ S, limt→∞ P[Xt = x] = π(x).

Remark 2.2. In the case of a Markov process with uniformly bounded increments, under
assumptions otherwise similar to ours, results of Menshikov and Popov [35] show that,
for r > 1, π(x) = x−r+o(1) as x→∞. The asymptotics of π(x) are not of direct interest
to the topic of the present paper, and so we do not discuss this further here, but our
methods can be used to extend such results to the present more general setting.

2.7 Running maximum process

In this section we consider the process of maxima of X, i.e., max1≤s≤tXs.

Theorem 2.7. Suppose that (A0)–(A3) hold.

(i) Suppose that −1 < r ≤ 1 and (2.2) holds with p > 2. Then for any ε > 0, a.s., for
all but finitely many t,

t
1
2 (log t)−

4+r
1+r
−ε ≤ max

1≤s≤t
Xs ≤ t

1
2 (log t)

3
1+r

+ε.

(ii) Suppose that r > 1 and (2.2) holds with p > 1 + r. Then for any ε > 0, a.s., for all
but finitely many t,

t
1

1+r (log t)−
1

1+r
−ε ≤ max

1≤s≤t
Xs ≤ t

1
1+r (log t)

2
1+r

+ε.
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Remarks 2.3. (a) Related bounds in a general Lamperti-type setting are given in [36, Sec-
tion 4]; the excursion-based approach adopted here has both advantages and disadvan-
tages compared to the method of [36]. The upper bounds in Section 4 of [36] essentially
apply in the present setting (concretely, use [36, Theorem 3.2] with Lemma 4.1 here), and
lead to slightly sharper upper bounds than those in our Theorem 2.7. (See also Section
6 of [8] for some variations on these upper bounds.) However, the lower bounds in [36]
cannot readily be applied here, even assuming a uniform bound on the increments of Xt.
Thus our lower bounds in Theorem 2.7 represent progress over previous results.

(b) Our excursion-based approach sheds no light on the transient case r < −1. For
r < −1, under several additional assumptions, [36, Theorem 4.2] shows that there exists
D ∈ (0,∞) such that a.s., for all but finitely many t, Xt ≥ t1/2(log t)−D. This result can
be viewed as a generalization of the classical Dvoretzky–Erdős theorem on rate of escape
of transient simple symmetric random walk in Zd (d ≥ 3) [13].

(c) In various special cases of certain nearest-neighbour random walks on Z+ :=
{0, 1, 2, . . .}, using methods restricted to the nearest-neighbour case, sharper versions of
one or other of the bounds in Theorem 2.7(i) are given in [16, 18, 23, 37, 38, 40]; of these,
only [23] also has a version of Theorem 2.7(ii).

2.8 Single-excursion sums

For α ≥ 0 and n ∈ N set

ξ(α)
n :=

τn−1∑
t=τn−1

Xα
t =

∑
x∈S

xα`n(x), (2.11)

with the occupation time notation of (2.9); note that ξ
(0)
n = η1. Our next result gives

tail bounds for ξ
(α)
1 . Theorem 2.8 has applications in its own right: for example in [10,

Theorem 2.1, p. 908] one is required to verify a condition similar to E[(ξ
(α)
1 )2+δ] <∞.

Theorem 2.8. Suppose that (A0)–(A3) hold. Suppose that r > −1 and (2.2) holds with
p > max{2, 1 + r}. Let α ≥ 0. Then for any ε > 0, for all x sufficiently large,

x−
1+r
α+2 (log x)−ε ≤ P[ξ

(α)
1 ≥ x] ≤ x−

1+r
α+2 (log x)

2+2r
α+2

+1+ε. (2.12)

In particular, E
[
(ξ

(α)
1 )

1+r
α+2

]
=∞ but, for any ε > 0, E

[
(ξ

(α)
1 )

1+r
α+2
−ε] <∞.

Remarks 2.4. (a) The α = 0 case of Theorem 2.8 reduces to Theorem 2.4. Theorem 2.8

can also be seen as a generalization of Theorem 2.3, since here limα→∞(ξ
(α)
1 )1/α = M1,

a.s., so for any x, P[ξ
(α)
1 ≥ xα]→ P[M1 ≥ x] as α→∞.

(b) For simplicity we have stated our results for functionals based on x 7→ xα, but our
methods apply to any nonnegative nondecreasing function (cf Lemma 4.11 below).

2.9 Path integrals

Fix α ≥ 0 and define S
(α)
t :=

∑t
s=1X

α
s . We have the following asymptotic results on S

(α)
t .

Theorem 2.9. Suppose (A0)–(A3) hold, r > −1, and (2.2) holds with p > max{2, 1+r}.
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(i) Suppose that −1 < r ≤ 1. Then for any ε > 0, a.s., for all but finitely many t,

t
α+2

2 (log t)−
(α+2)(4+r)

1+r
−ε ≤ S

(α)
t ≤ t

α+2
2 (log t)

3α+6
1+r

+2+ε.

(ii) Suppose that 1 < r ≤ 1 + α. Then for any ε > 0, a.s., for all but finitely many t,

t
α+2
1+r (log t)−

α+2
1+r
−ε ≤ S

(α)
t ≤ t

α+2
1+r (log t)

2α+4
1+r

+2+ε.

(iii) Suppose that r > 1 + α. Then, with π as defined at (2.10), as t→∞, a.s.,

t−1S
(α)
t → E[ξ

(α)
1 ]

E[η1]
=
∑
x∈S

xαπ(x) =: να ∈ (0,∞). (2.13)

Theorem 2.9(iii) is essentially a consequence of ‘ergodic theory’ for regenerative pro-
cesses (see e.g. [2, Theorem VI.3.1, p. 178]) but our proof of Theorem 2.9(i)–(ii) yields
part (iii) at little additional effort, so we give the self-contained proof in Section 4.3.

A case of special interest is when α = 1, in which case it is natural to study the
normalized sum t−1S

(1)
t which is just the centre of mass of (X1, . . . , Xt). Denote

Gt := t−1S
(1)
t = t−1

t∑
s=1

Xs. (2.14)

Theorem 2.7 yields the following immediate corollary for Gt. For simplicity of presenta-
tion, we suppress the logarithmic factors in Theorem 2.7 by stating Corollary 2.10 parts
(i) and (ii) on the logarithmic scale.

Corollary 2.10. Suppose (A0)–(A3) hold, r > −1, and (2.2) holds with p > max{2, 1 +
r}.

(i) Suppose that −1 < r ≤ 1. Then limt→∞
logGt
log t

= 1
2
, a.s.

(ii) Suppose that 1 < r ≤ 2. Then limt→∞
logGt
log t

= 2−r
1+r
∈ [0, 1/2), a.s.

(iii) Suppose that r > 2. Then for ν1 ∈ (0,∞) given by (2.13), limt→∞Gt = ν1, a.s.

Remark 2.5. Comparing the scaling exponents in Corollary 2.10 to those in Theorem 2.7,
we see that they coincide (taking value 1

2
) in the null-recurrent case, but differ in the

positive-recurrent case (2−r
1+r

< 1
1+r

for r > 1). The intuition here is that in the positive-
recurrent case, the process rarely visits the scale of the maximum, so Gt � max1≤s≤tXs.

3 Applications

3.1 Processes on the whole real line

In this section we give applications of our results from Section 2 on half-line processes to
models defined on the whole line, for which new phenomena emerge. We restrict to the
Markovian case for simplicity of statement. The R-valued processes that we study are,
loosely speaking, two half-line processes sewn together at 0.

9



(B0) Let (Xt)t∈N be an irreducible, time-homogeneous Markov chain on S, a locally finite
subset of R with 0 ∈ S, inf S = −∞, and supS = +∞. Take X1 = 0.

(B1) Suppose that P[Xt+1 = y | Xt = x] = 0 if x and y are separated by 0. Suppose also
that P[Xt+1 < 0 | Xt = 0] ∈ (0, 1) and P[Xt+1 > 0 | Xt = 0] ∈ (0, 1).

Under (B1), Xt cannot jump over the origin, and from the origin jumps left or right
each with positive probability. As above, write ∆t := Xt+1−Xt for the increments of Xt.

(B2) Suppose that for some p > 2 and δ > 0, E[|∆t|p | Xt = x] = O(|x|p−2−δ) as |x| → ∞.
Suppose also that for some c+, c− ∈ R and s2

+, s
2
− ∈ (0,∞),

E[∆t | Xt = x] = |x|−1 (c+1{x > 0} − c−1{x < 0}) + o(|x|−1 log−1 |x|), (3.1)

E[∆2
t | Xt = x] =

(
s2
+1{x > 0}+ s2

−1{x < 0}
)

+ o(log−1 |x|). (3.2)

Analogously to the definition of r at (2.5), set r± := −2c±/s
2
±. In this section we

restrict to the setting in which r−, r+ ∈ (−1, 1], i.e., corresponding to null-recurrence
of each of the half-line processes. Cases where one or more of r−, r+ is greater than 1
can be dealt with using similar methods. We assume that −1 < r+ < r− ≤ 1, so that
the positive half-line is ‘less recurrent’. The following result demonstrates the interesting
phenomenon of a separation of scales for the two sides of the process.

Theorem 3.1. Suppose that (B0)–(B2) hold, and that −1 < r+ < r− ≤ 1. Then Xt is
null-recurrent, and, a.s.,

lim
t→∞

log max1≤s≤tXs

log t
=

1

2
, and

lim
t→∞

log |min1≤s≤tXs|
log t

=
1

2
· 1 + r+

1 + r−
∈ (0, 1/2).

As a concrete example, consider a nearest-neighbour random walk on Z which jumps
as a symmetric simple random walk when on the nonnegative integers, but from x < 0
jumps to x ± 1 with probabilities 1

2
± 1

4x
. Then r+ = 0 and r− = 1; viewed separately

the two half-line process are null-recurrent and have the same (diffusive) scale, but the
‘combined’ process has scales t1/2 on [0,∞) and t1/4 on (−∞, 0].

The intuition behind Theorem 3.1 is that the walk makes a comparable number of
positive and negative excursions, but the positive ones have heavier-tailed durations, so
occupy a dominant proportion of time. The same intuition is behind the next result,
which shows that the positive sojourns dominate the path-integral asymptotics. Again
we use the notation (2.14), now for Xs taking values in R.

Theorem 3.2. Suppose that (B0)–(B2) hold, and −1 < r+ < r− ≤ 1. Then, a.s.,
Gt → +∞ and

lim
t→∞

logGt

log t
=

1

2
.

Remarks 3.1. (a) We leave largely open the case r+ = r−, but see the d = 1 case of
the model in Section 3.2. (b) Similar results to those in this section can be obtained for
processes on a state space that consists of multiple copies of [0,∞), joined at a common
origin, and embedded in Rd.
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3.2 Centrally biased random walks on Rd

In this section we work in Rd, d ∈ N. For x ∈ Rd, write x = (x1, . . . , xd) in Cartesian
coordinates. Let ‖ · ‖ denote the Euclidean norm on Rd. For a non-zero vector x ∈ Rd we
write x̂ := x/‖x‖ for the corresponding unit vector. Write 0 := (0, . . . , 0) for the origin.

(C0) Let Ξ = (ξt)t∈N be an irreducible, time-homogeneous Markov process whose state
space Σ is an unbounded, locally finite subset of Rd containing 0. Let ξ1 = 0.

We use the notation θt := ξt+1 − ξt for the increments of the walk. The assumption
(C0) implies that the distribution of θt depends only on the position ξt ∈ Σ and not on
t. We assume that for some p > 2, δ > 0, and C <∞,

E[‖θt‖p | ξt = x] ≤ C(1 + ‖x‖)p−2−δ. (3.3)

Denote the one-step mean drift vector µ(x) := E[θt | ξt = x] for x ∈ Σ, and denote
the covariance matrix at x ∈ Σ by M(x) := (Mij(x))i,j := E[θt

>θt | ξt = x], for x ∈ Σ,
where θt is viewed as a row-vector. In vector equations such as the equation for µ(x) in
the following assumption, an expression of the form o(h(‖x‖)) is to be interpreted as a
vector whose components are each o(h(‖x‖)) as ‖x‖ → ∞, uniformly in x given ‖x‖.

(C1) Suppose that there exist ρ ∈ R and σ2 ∈ (0,∞) for which, as ‖x‖ → ∞,

µ(x) = ρx̂‖x‖−1 + o(‖x‖−1 log−1 ‖x‖),
Mij(x) = σ21{i = j}+ o(log−1 ‖x‖).

The assumption on M in (C1) implies that ξt has an asymptotically diagonal covari-
ance structure. Processes satisfying (C0) and (C1) were studied by Lamperti [30, 31]
under the name centrally biased random walks, due to the nature of the drift field; the
name had been used earlier by Gillis [20] for a different model. Our main result on such
models is the following, which will enable us to apply the results of Section 2 to generalize
and sharpen Lamperti’s results, among other things.

Theorem 3.3. Suppose that (C0) and (C1) hold, and (3.3) holds for some p > 2. Let
Xt = ‖ξt‖. Then Xt satisfies the conditions (A0)–(A3), with

c = ρ+ (d− 1)(σ2/2), s2 = σ2;

hence r = 1− d− (2ρ/σ2). Moreover, (2.2) holds for the given p > 2.

From Theorem 3.3, we immediately deduce a series of results for Ξ from the theorems
in Section 2. We state two such corollaries. Note that if we set η := min{t ∈ N : ξt = 0},
we have from (C0) that η = η1 for Xt = ‖ξt‖ in our previous notation, since Xt = 0 if
and only if ξt = 0. Theorem 3.3 with Theorems 2.2 and 2.4 gives the following result.

Corollary 3.4. Suppose that (C0) and (C1) hold, and (3.3) holds with p > 2. Then Ξ is

(i) transient if 2ρ/σ2 > 2− d;

(ii) null-recurrent if −d ≤ 2ρ/σ2 ≤ 2− d;

(iii) positive-recurrent if 2ρ/σ2 < −d.

11



Moreover, in the recurrent cases, E[ηq] <∞ if and only if q < q0 := 1− (d/2)− (ρ/σ2).

Corollary 3.4 extends results of Lamperti [30, 31], who assumed uniformly bounded
increments for ξt and a stronger version of (B1) with the error term log−1 ‖x‖ replaced
by ‖x‖−δ for δ > 0: see Theorem 4.1 of [30, p. 324] and Theorem 5.1 of [31, p. 142]. Also,
Lamperti’s result only covers integer q, and is not sharp enough to determine whether
E[ηq0 ] is finite or infinite, and so cannot decide on null- or positive-recurrence at the
boundary case 2ρ/σ2 = −d.

The next result follows from Theorem 3.3 with Theorem 2.7, and gives almost-sure
scaling behaviour for the maximum of ‖ξt‖ in the recurrent cases.

Corollary 3.5. Suppose that (C0) and (C1) hold.

(i) Suppose that −d ≤ 2ρ/σ2 < 2− d and (3.3) holds with p > 2. Then

lim
t→∞

log max1≤s≤t ‖ξs‖
log t

=
1

2
, a.s.

(ii) Suppose that 2ρ/σ2 < −d and (3.3) holds with p > 2− d− (2ρ/σ2). Then

lim
t→∞

log max1≤s≤t ‖ξs‖
log t

=
1

2− d− (2ρ/σ2)
, a.s.

Upper bounds similar to those in Corollary 3.5 can be derived from [36, Section 3]: see
Theorem 2.4 of [8] for a similar application of such results, albeit under more restrictive
assumptions. As far as the authors are aware, the lower bounds in Corollary 3.5 are new.

3.3 The simple harmonic urn

In this section we study a particular Markov chain (At, Bt) on Z2 \ {(0, 0)}, with discrete
time t ∈ N. The model was introduced in [9], motivated by an urn model. The model
takes as input the distribution of a Z-valued random variable κ. We assume that, for
some λ > 0, E[eλ|κ|] < ∞. Let κ0, κ1, . . . be a sequence of independent copies of κ. The
transition law of the chain is as follows. If AtBt 6= 0, i.e., the chain is not on one of the
coordinate axes, it takes jumps of unit size according to the following:

P [(At+1, Bt+1) = (a, b+ sgn(a)) | (At, Bt) = (a, b)] =
|a|

|a|+ |b|
, (ab 6= 0);

P [(At+1, Bt+1) = (a− sgn(b), b) | (At, Bt) = (a, b)] =
|b|

|a|+ |b|
, (ab 6= 0),

where sgn(x) := x/|x| for x ∈ R\{0}. From one of the axes, the process jumps as follows:

(At+1, Bt+1) = (sgn(At) max{1, |At| − κt}, sgn(At)), (At 6= 0, Bt = 0);

(At+1, Bt+1) = (− sgn(Bt), sgn(Bt) max{1, |Bt| − κt}), (At = 0, Bt 6= 0).

In words, the process has an approximately anti-clockwise trajectory, traversing each
quadrant in sequence. When not on an axis, the process traverses the current quadrant
using unit steps in two possible directions, while from an axis, the process moves one
step away from the axis (in the anti-clockwise direction) and makes a special jump of size
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distributed as κ towards the next destination axis, truncating so as to ensure it does not
actually reach the next axis in this jump.

So defined, (At, Bt) is an irreducible Markov chain on Z2 \ {(0, 0)}.
The basic case has κ = 0 a.s., in which case the process is the simple harmonic urn;

another particular case has κ = 1 a.s., which is known as the leaky urn [9]. The general
κ model is known as the noisy urn [9]. In fact, the leaky urn in [9] was defined slightly
differently, with an absorbing state when |At|+ |Bt| = 1, but the two definitions coincide
up until the time of absorption.

Let ν0 := 0 and, for n ∈ N, νn := min{t > νn−1 : AtBt = 0}, so that ν1, ν2, . . . are
the successive times of visits to the axis by the process (At, Bt). Define the embedded
process Zt := |Aνt|+ |Bνt| for t ∈ N; by construction, exactly one of |Aνt | and |Bνt| is 0.
Then Zt is an irreducible Markov chain on N, representing the distance of the original
Markov chain from the origin at those times when it visits an axis. For definiteness, we
take (A1, B1) = (1, 0), so Z1 = 1.

The following result shows the connection between this model and our present setting.

Proposition 3.6. Let Xt =
√
Zt − 1. Then (A0)–(A3) hold with S = {

√
x− 1 : x ∈ N},

c = 1−2E[κ]
4

, and s2 = 1
6
; hence r = 6E[κ]− 3. In addition, (2.2) holds for any p > 0.

Proposition 3.6 is closely related to Lemma 7.7 in [9], but differs slightly as our
embedded process Zt is not quite the same as the one used in [9], so we sketch the proof
in Section 5.3 below. For the original process, we are interested in τ := min{t ∈ N :
|At| + |Bt| = 1}. For our embedded process, define τq := min{t ∈ N : Zt = 1} (where
the ‘q’ indicates ‘quadrant time’). The key relationship between the two processes is that
τ = ντq , since |At|+ |Bt| = 1 if and only if t = νk for some k and Zk = 1. In [9], a slightly

different version of the embedded process Zt (namely, Z̃k defined on p. 2125 of [9]) was
used; for that version the analogous claim to ‘τ = ντq ’ made just below equation (6) in [9]
is not correct as stated, although this has no impact on the results in [9]. It is not hard
to fix this small gap in the argument in [9], and the variation given in the present paper
is just one way of doing so. More importantly, the results of the present paper enable us
to sharpen the results in [9] and to settle a conjecture made in that paper.

Proposition 3.6 enables us to determine the tails of τq; some additional work is needed
to account for the change of time between (At, Bt) and Xt and hence study the tails of
τ = ντq . Due to the special structure of the paths of the simple harmonic urn process, it

turns out that exactly relevant to this point is an excursion sum of the type ξ
(2)
1 defined by

(2.11). We prove the following result in Section 5.3. The condition E[κ] > 1
3

corresponds
to r > −1, in which case the process is recurrent.

Theorem 3.7. Suppose that E[κ] > 1
3
. Let p ≥ 0. Then E[τ p] < ∞ if and only if

p < 3E[κ]−1
2

. In particular, the Markov chain (At, Bt) is null-recurrent when E[κ] = 1.

This result shows that E[τ p] = ∞ for p = 3E[κ]−1
2

, the boundary case not covered by
Theorem 2.6 of [9]; the fact that the process is null-recurrent when E[κ] = 1 confirms the
conjecture after Corollary 2.7 in [9]. Theorem 3.7 has the following immediate corollary,
which plugs the gap in leaky urn result Theorem 2.3 of [9].

Corollary 3.8. For the leaky urn, the time to absorption is non-integrable.
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3.4 Random walk models of polymers and interfaces

The last decade or so has seen renewed interest in one-dimensional random walks with
asymptotically zero drifts from a statistical physics perspective, concerning models of
random polymers and interfaces, their structure, and their interactions with a medium
or boundary. In the context of random polymers, the path of the process models the
physical polymer chain; the asymptotically zero drift indicates the presence of long-range
interaction with a boundary, which can be either attractive or repulsive. For a random
interface, the walk models the behaviour of a liquid interface on a solid substrate (includ-
ing wetting and pinning phenomena); in this context the drift may represent affinity for
the boundary. We refer to [19,22,39] for recent surveys.

Much of the existing work is restricted to nearest-neighbour random walks on Z+,
where explicit calculations are facilitated by reversibility and associated algebraic struc-
ture (such as Karlin–McGregor theory [26]); see e.g. [1,12,23] for models inspired directly
by random polymers, and e.g. [11,18,40] for related work. In this section we make some
brief remarks emphasizing how the present paper adds to this literature, and in particu-
lar how our results can be used to study quantities of interest in this context for a much
more general class of processes; our results not only do not require the nearest-neighbour
assumption, but do not need bounded jumps or even the Markov property per se.

A typical family of nearest-neighbour random walks Xt on Z+ that has been exten-
sively studied has P[Xt+1 = Xt±1 | Xt = x] = 1

2
∓ δ

4x+2δ
for x > 0 and a parameter δ; here

(A2) holds with c = −δ/2 and s2 = 1, so r = δ. This and closely related models were
considered by Karlin and McGregor [26], and by many subsequent authors, including
for instance [14–16, 18, 37, 38, 40] and, most recently, [12] and [23]. In these very special
cases, Fal’ [14] gives asymptotics for excursion times and the number of excursions (cf our
Theorem 2.5), while several authors [16,18,37,38,40] give iterated-logarithm type upper
bounds in the diffusive case (cf our Theorem 2.7(i)). Huillet [23] gives sharper versions
of our Theorems 2.3, 2.4, and 2.7 in this special case: see Propositions 2, 9, 10, and 11
of [23]. The main result of [12] (see also Proposition 15 of [23]) is that, for δ ∈ (1, 2),

E[Xt] ∼ Kδt
1− δ

2 , being one possible measure of the spatial extent of the polymer. Per-
haps more natural (certainly more readily interpreted in terms of path properties) are the
quantities max1≤s≤tXs and t−1

∑t
s=1Xs that we study in the present paper; their scaling

exponents for the case δ ∈ (1, 2) are 1
1+δ

(our Theorem 2.7, or Proposition 10 of [23])

and 2−δ
1+δ

(our Corollary 2.10) respectively. Note that for δ ∈ (1, 2), 1
1+δ

> 1 − δ
2
> 2−δ

1+δ
.

Alexander [1] calls such nearest-neighbour random walks with drift O(1/x) at x ‘Bessel-
like’, and gives sharp results on the asymptotics of return times, among other things.
There seems to have as yet been no success in applying the methods of [1,12,23] beyond
the nearest-neighbour setting.

4 Proofs of main results

4.1 Lyapunov functions

For γ, ν ∈ R we define the function fγ,ν : [0,∞)→ [0,∞) by

fγ,ν(x) := (e + x)γ logν(e + x).

Our basic analytical method will be built on the fact that fγ,ν(Xt) is a submartingale
or supermartingale, for Xt outside some bounded set, for appropriate γ and ν. The
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following result is fundamental. The idea here is not new, although the particular form
of the result is a little different from previous versions in the literature. Recall that in
expressions such as (4.1), the o(1) term is uniform in t and ω.

Lemma 4.1. Suppose that (A0) and (A2) hold, r > −1, and (2.2) holds for some
p > max{2, 1 + r}. Then for any ν ∈ R, as Xt →∞, a.s.,

E[f1+r,ν(Xt+1)− f1+r,ν(Xt) | Ft] =
(
ν(1 + r)(s2/2) + o(1)

)
Xr−1
t logν−1Xt. (4.1)

In particular, for any ν > 0, there exists A <∞ such that, on {Xt ≥ A}, a.s.,

E[f1+r,ν(Xt+1)− f1+r,ν(Xt) | Ft] ≥ 0;

E[f1+r,−ν(Xt+1)− f1+r,−ν(Xt) | Ft] ≤ 0.

Before proving Lemma 4.1, we state a technical result. For ε ∈ (0, 1), let Eε(t) denote
the event {|∆t| ≤ (1 +Xt)

1−ε}. Denote the complementary event by Ec
ε(t).

Lemma 4.2. Suppose that (2.2) holds with p > 2 and δ > 0. Then for some C ∈ (0,∞)
and any ε ∈ (0, δ

1+p
), for any q ∈ [0, p], E[|∆t|q1Ec

ε(t) | Ft] ≤ C(1 +Xt)
q−2−ε, a.s.

Proof. For q ∈ [0, p], |∆t|q1Ec
ε(t) = |∆t|p|∆t|q−p1Ec

ε(t) ≤ |∆t|p(1 + Xt)
(1−ε)(q−p), by defini-

tion of Eε(t). Taking expectations and using (2.2) we obtain

E[|∆t|q1Ec
ε(t) | Ft] ≤ C(1 +Xt)

p−2−δ+(1−ε)(q−p),

and the result follows.

Proof of Lemma 4.1. Let γ ≥ 0 and ν ∈ R. Take ε ∈ (0, 1). We estimate the expected
increment of fγ,ν(Xt) using a Taylor expansion on Eε(t), while we use Lemma 4.2 to
control the expectation on Ec

ε(t). Differentiation of fγ,ν with respect to x gives

f ′γ,ν(x) = γfγ−1,ν(x) + νfγ−1,ν−1(x);

f ′′γ,ν(x) = γ(γ − 1)fγ−2,ν(x) + ν(2γ − 1)fγ−2,ν−1(x) + ν(ν − 1)fγ−2,ν−2(x);

and f ′′′γ,ν(x) = O(xγ−3 logν x). Thus Taylor’s formula implies that

(fγ,ν(Xt + ∆t)− fγ,ν(Xt)) 1Eε(t)

= ∆t1Eε(t)fγ−1,ν−1(Xt)(γ log(e +Xt) + ν)

+
∆2
t1Eε(t)

2
fγ−2,ν−2(Xt)

(
γ(γ − 1) log2(e +Xt) + ν(2γ − 1) log(e +Xt) + ν(ν − 1)

)
+O(|∆t|31Eε(t)X

γ−3
t logν Xt), (4.2)

as Xt →∞. Since |∆t|1Eε(t) = O(X1−ε
t ), here we have that

E[|∆t|31Eε(t)X
γ−3
t logν Xt | Ft] ≤ E[|∆t|2 | Ft]O(Xγ−2−ε

t logν Xt) = O(X
γ−2−(ε/2)
t ), a.s.,

by (2.4). On the other hand, since (2.2) holds for some p > 2, we have from the q ∈ {1, 2}
cases of Lemma 4.2 that, for ε > 0 small enough, a.s.,

E[∆t1Eε(t) | Ft] = E[∆t | Ft] +O(X−1−ε
t );

E[∆2
t1Eε(t) | Ft] = E[∆2

t | Ft] +O(X−εt ).
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Taking expectations in (4.2) and using (2.3) and (2.4) we obtain, for ε > 0 small enough,

E[(fγ,ν(Xt + ∆t)− fγ,ν(Xt)) 1Eε(t) | Ft]

= γ

(
c+

(γ − 1)s2

2

)
Xγ−2
t logν Xt + ν

(
c+

(2γ − 1)s2

2
+ o(1)

)
Xγ−2
t logν−1Xt, (4.3)

as Xt →∞. On the other hand, for any ε′ > 0 there exists C <∞ for which

|fγ,ν(Xt + ∆t)− fγ,ν(Xt)| ≤ C(1 +Xt)
γ+ε′ + C|∆t|γ+ε

′
.

Hence E[|fγ,ν(Xt + ∆t)− fγ,ν(Xt)|1Ec
ε(t) | Ft] is bounded above by

C(1 +Xt)
γ+ε′P[Ec

ε(t) | Ft] + CE[|∆t|γ+ε
′
1Ec

ε(t) | Ft].

For ε > 0 small enough, both terms on the right-hand side here are O(Xγ+ε′−2−ε
t ), by the

q = 0 and q = γ + ε′ cases of Lemma 4.2 respectively, the latter case being applicable
provided (2.2) holds for p > γ and taking ε′ ∈ (0, p−γ). Taking ε′ small enough (ε′ < ε/2,
say) and combining this last estimate with (4.3) we obtain, as Xt →∞,

E[fγ,ν(Xt + ∆t)− fγ,ν(Xt) | Ft]

= γ

(
c+

(γ − 1)s2

2

)
Xγ−2
t logν Xt + ν

(
c+

(2γ − 1)s2

2
+ o(1)

)
Xγ−2
t logν−1Xt, (4.4)

provided (2.2) holds for p > γ. With the choice γ = 1 + r = 1 − (2c/s2), (4.4) implies
(4.1) since (c + (2γ − 1)(s2/2)) = (1 + r)s2/2 for this choice of γ. Since r > −1 and
s2 > 0, the right-hand side of (4.1) has the same sign as ν, for all Xt large enough, and
the conclusion of the lemma follows.

4.2 Technical lemmas

We need some results on maxima and sums of i.i.d. random variables.

Lemma 4.3. Let ζ1, ζ2, . . . be i.i.d. R-valued random variables.

(i) Suppose that, for some θ ∈ (0,∞) and φ ∈ R,

lim sup
x→∞

(xθ(log x)−φP[ζ1 ≥ x]) <∞. (4.5)

For any ε > 0, a.s., for all but finitely many n, max1≤i≤n ζi ≤ n
1
θ (log n)

φ+1
θ

+ε.

(ii) Suppose that, for some θ ∈ (0,∞) and φ ∈ R,

lim inf
x→∞

(xθ(log x)−φP[ζ1 ≥ x]) > 0. (4.6)

For any ε > 0, a.s., for all but finitely many n, max1≤i≤n ζi ≥ n
1
θ (log n)

φ−1
θ
−ε.

Proof. First we prove part (i). From (4.5), for some C ∈ (0,∞) and all x large enough,

P
[

max
1≤i≤n

ζi ≤ x
]

=
n∏
i=1

P [ζi ≤ x] ≥
(
1− Cx−θ(log x)φ

)n
.
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Set x = n1/θ(log n)q for some q ∈ R. Then, for C ′ ∈ (0,∞),

p(n) := P
[

max
1≤i≤n

ζi ≥ n1/θ(log n)q
]
≤ 1−

(
1− C ′n−1(log n)φ−θq(1 + o(1))

)n
= O(1 ∧ (log n)φ−θq).

Take q > (φ + 1)/θ. Then
∑

k∈N p(2
k) < ∞. Hence the Borel–Cantelli lemma implies

that a.s., for all but finitely many k ∈ N, max1≤i≤2k ζi ≤ (2k)1/θ(log 2k)q. For any n ≥ 2,
2kn ≤ n < 2kn+1 for some kn ∈ N; hence, a.s., for all but finitely many n ∈ N,

max
1≤i≤n

ζi ≤ max
1≤i≤2kn+1

ζi ≤ (2kn+1)1/θ(log 2kn+1)q ≤ Cn1/θ(log n)q,

where C <∞ does not depend on n. Thus we obtain part (i).
Now we prove part (ii). We have from (4.6) that for some c > 0 and all x large

enough, P[ζ1 ≥ x] ≥ cx−θ(log x)φ, so that P [max1≤i≤n ζi < x] ≤
(
1− cx−θ(log x)φ

)n
.

Taking x = n1/θ(log n)q we obtain

P
[

max
1≤i≤n

ζi < n1/θ(log n)q
]
≤
(
1− cn−1(log n)φ−θq(1 + o(1))

)n
≤ exp

(
−c(log n)φ−θq(1 + o(1))

)
,

which is summable over n ≥ 2 if q < (φ− 1)/θ; now use the Borel–Cantelli lemma.

The next result deals with sums of i.i.d. nonnegative random variables.

Lemma 4.4. Let ζ1, ζ2, . . . be i.i.d. [0,∞)-valued random variables.

(i) If for some θ ∈ (0, 1) and φ ∈ R, (4.5) holds, then, for any ε > 0, a.s., for all but

finitely many n,
∑n

i=1 ζi ≤ n
1
θ (log n)

φ+1
θ

+ε.

(ii) If for some θ ∈ (0,∞) and φ ∈ R, (4.6) holds, then, for any ε > 0, a.s., for all but

finitely many n,
∑n

i=1 ζi ≥ n
1
θ (log n)

φ−1
θ
−ε.

Proof. Part (i) is part of a family of classical results related to the Marcinkiewicz–
Zygmund strong laws of large numbers (see e.g. [25, p. 73]): it follows from a result
of Feller [17, Theorem 2] (see also [32, p. 253] for a more general result). Part (ii) is a
consequence of Lemma 4.3(ii) and the elementary bound

∑n
i=1 ζi ≥ max1≤i≤n ζi.

Next we move on to some basic consequences of (A0) and (A1). Here ‘i.o.’ and ‘f.o.’
stand for ‘infinitely often’ and ‘finitely often’, respectively.

Lemma 4.5. Suppose that (A0) and (A1) hold. Let R, S ⊂ S be finite and non-empty.
Then {Xt ∈ R i.o.} = {Xt ∈ S i.o.} up to sets of probability 0. Moreover, for any (hence
every) finite, non-empty R ⊂ S, the following equalities hold up to sets of probability 0:

{Xt ∈ R i.o.} =
{

lim inf
t→∞

Xt = 0, lim sup
t→∞

Xt =∞
}
,

{Xt ∈ R f.o.} =
{

lim
t→∞

Xt =∞
}
.

In particular, P
[
{Xt →∞} ∪

{
lim inft→∞Xt = 0, lim supt→∞Xt =∞

}]
= 1.
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Proof. Let R, S ⊂ S be finite and non-empty. Suppose that Xt ∈ R i.o. Then, since R is
finite, there exist x ∈ R, y ∈ S (any such x, y will do) and stopping times t1 < t2 < · · ·
with ti+1 > ti + m(x, y) such that Xti = x and P[Xti+m(x,y) = y | Fti ] ≥ ϕ(x, y) > 0 for
all i, by (2.1). Then Lévy’s extension of the Borel–Cantelli lemma (see e.g. [25, p. 131])
implies that Xt = y i.o., a.s., giving the first statement in the lemma. Hence, a.s., either
Xt ∈ R i.o. for all finite non-empty R ⊂ S (including R = {0}), or for none. It follows
that lim inft→∞Xt ∈ {0,∞} a.s., and the same fact also implies that lim supt→∞Xt =∞
a.s.

The next result says, roughly speaking, that uniformly for sites x in some interval,
there is positive probability that, starting from that interval, the process hits x before
leaving some larger interval. We use the notation Sx := S ∩ [0, x] for x ≥ 0,

τx,t := min{s ≥ 0 : Xt+s = x}, and σx,t := min{s ≥ 0 : Xt+s > x}.

Lemma 4.6. Suppose that (A0) and (A1) hold and that for some C <∞, E[∆t | Ft] ≤ C,
a.s., for all t ∈ N. Let A < ∞. There exist ϕ = ϕ(A) > 0 and B = B(A,C) > A such
that for any x ∈ SA, on {Xt ≤ A}, P[τx,t < σB,t | Ft] ≥ ϕ, a.s., for all t ∈ N.

Proof. From (2.1), writing m = maxx,y∈SAm(x, y) and ϕ = minx,y∈SA ϕ(x, y) we have by
(A0) and (A1) that m <∞ and ϕ > 0 (depending on A), and, moreover, on {Xt ≤ A},
for any x ∈ SA, P[τx,t ≤ m | Ft] ≥ ϕ, a.s. In addition, by an appropriate maximal
inequality [36, Lemma 3.1] and the first moment bound in the lemma, on {Xt ≤ A},

P[σhm,t ≤ m | Ft] = P
[

max
0≤s≤m

Xt+s > hm | Ft
]
≤ Cm+ A

hm
≤ ϕ

2
,

choosing h sufficiently large (depending on A and C). Combining the two probability
bounds we obtain the statement in the lemma, after a relabelling of ϕ/2 as ϕ.

Recall that τn is the time of the nth return to 0 by X, and recall that N , as defined
just before (A3), is the first n for which τn =∞.

Lemma 4.7. Suppose that (A0), (A1), and (A3) hold, and N = ∞ a.s. Then for any
y ∈ S \ {0}, there exists c(y) > 0 such that, for any n,

P [(Xt)t≥τnvisits y before time τn+1 | Fτn ] = c(y), a.s.

Proof. The irreducibility assumption (2.1) implies that for any n, on {τn <∞},

P[Xτn+m(0,y) = y | Fτn ] ≥ ϕ(0, y), a.s. (4.7)

By the regenerative assumption (A3), P [hit y before returning to 0 | Fτn ], on {τn <∞},
does not depend on n; call this probability c(y). Then, since N =∞ a.s.,

P[eventually hit y] = P
[ ∞⋃
i=1

{hit y between τi and τi+1}
]
≤

∞∑
i=1

c(y).

Thus if c(y) = 0, the probability of eventually hitting y is also 0, which contradicts (4.7)
(cf Lemma 4.5). Hence c(y) > 0.
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A recurring technical component of our proofs will be controlling the process X in
finite intervals such as [0, x], and the exits (and overshoots) of X from such intervals.
The following two lemmas give basic results in this direction.

Lemma 4.8. Suppose that (A0) and (A1) hold. For any x ≥ 0, there exists ε > 0 such
that, for all t and for all s sufficiently large, P[σx,t > s | Ft] ≤ e−εs a.s. In particular,
there exists K <∞, depending on x, for which E[σx,t | Ft] ≤ K a.s. for all t.

Proof. Let x ≥ 0 and z ∈ S, z > x. By (A0) and (A1), taking m = maxy∈Sxm(y, z) and
δ = miny∈Sx ϕ(y, z) we have m ∈ N and δ > 0, depending on x, such that, for any s ≥ t,

P[σx,t ≤ (s− t) +m | Fs] ≥ δ1{σx,t > s− t}+ 1{σx,t ≤ s− t}, a.s.

Taking s = t + `m for ` ∈ N yields P[σx,t > (` + 1)m | Ft+`m] ≤ (1 − δ)1{σx,t > `m},
and a telescoping conditioning argument at times t, t+m, . . . , t+ `m gives P[σx,t > `m |
Ft] ≤ (1− δ)`. For any s ≥ 0, there is some ` = `(s) for which `m ≤ s ≤ (`+ 1)m, so

P[σx,t > s | Ft] ≤ P[σx,t > `m | Ft] ≤ (1− δ)` ≤ (1− δ)(s/m)−1,

which implies the result, recalling that m and δ depend on x but not on s or t.

Lemma 4.9. Suppose that (A0)–(A3) hold, r > −1, and (2.2) holds with p > max{2, 1+
r}. Let x ≥ 0. Then for any ν ∈ R, there exists K <∞ (depending on x) such that, on
{Xt ≤ x}, E[f1+r,ν(Xt+σx,t) | Ft] ≤ K, a.s.

Proof. Under the stated conditions, Lemma 4.1 applies. In particular, (4.1) shows that
for any ε > 0 there is C <∞, not depending on x, such that for s ≥ t,

E[f1+r,ν(X(s+1)∧(t+σx,t))− f1+r,ν(Xs∧(t+σx,t)) | Fs] ≤ C(1 +Xs)
r−1+ε1{s− t < σx,t}.

Suppose that Xt ≤ x. For t ≤ s < t + σx,t, Xs ∈ [0, x], so writing b(x) = C maxy∈Sx(1 +
y)r−1+ε <∞, conditioning on Ft and taking expectations we obtain, on {Xt ≤ x}, a.s.,

E[f1+r,ν(X(s+1)∧(t+σx,t)) | Ft]− E[f1+r,ν(Xs∧(t+σx,t)) | Ft] ≤ b(x)P[σx,t > s− t | Ft].

Let u > t be an integer. Summing from s = t to u− 1 we have, on {Xt ≤ x}, a.s.,

E[f1+r,ν(Xu∧(t+σx,t)) | Ft] ≤ E[f1+r,ν(Xt) | Ft] + b(x)
∞∑
s=0

P[σx,t > s | Ft]

≤ a(x) + b(x)E[σx,t | Ft],

writing a(x) = maxy∈Sx f1+r,ν(y) < ∞. The final part of Lemma 4.8 then shows that
there is K <∞, depending on x, for which, for all u > t, E[f1+r,ν(Xu∧(t+σx,t)) | Ft] ≤ K
a.s.; letting u→∞, Fatou’s lemma completes the proof.

4.3 Proofs of main results from Section 2

Proof of Proposition 2.1. The first statement of the proposition follows from Lemma 4.5.
Now from part (a) of (A3) with a repeated conditioning argument,

P[N > k]

= P[ηk <∞, ηk−1 <∞, . . . , η1 <∞]

= P[ηk <∞ | τk−1 <∞]P[ηk−1 <∞ | τk−2 <∞] · · ·P[η2 <∞ | τ1 <∞]P[η1 <∞]

= (P[η1 <∞])k.
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If P[η1 < ∞] < 1, this implies that N < ∞ a.s., so that Xt = 0 f.o., and Lemma 4.5
shows that Xt →∞. On the other hand, if P[η1 <∞] = 1 we have that P[N > k] = 1 for
any k, so N =∞ a.s. and hence Xt = 0 i.o., i.e., lim inft→∞Xt = 0, a.s., as claimed.

We now sketch the proof of Theorem 2.2.

Proof of Theorem 2.2. Under slightly different conditions, this result follows from results
of [30, 31, 34]. The results in [30] apply to a more general class of processes than we
consider here, with a slightly stronger version of (2.2), while [31] and [34] state their
results in the Markovian setting, although their methods work (as in [30]) in the more
general setting; concretely, one can use our Lemma 4.1 (and a variant thereof for |r| = 1,
provided by calculations similar to those in [34]) together with the results from [30] or [5],
for instance. These papers use a slightly different definition of recurrence to ours, but
Lemma 4.5 shows that the definitions are equivalent under (A1).

Next we give the proof of Theorem 2.3 on the tail of M1 = max1≤s≤η1 Xs.

Proof of Theorem 2.3. Throughout the proof fix r > −1. First we prove the lower bound
in (2.6). Fix ν > 0. We ease notation by writing f for f1+r,ν as defined in Section
4.1; for r > −1 and ν > 0, f is nondecreasing on [0,∞) and f(z) → ∞ as z → ∞.
Lemma 4.1 implies that f(Xt) satisfies a local submartingale property; to achieve uniform
integrability, we work with a truncated version of f , namely hx(z) := min{f(z), f(2x)},
for fixed x > 0. Recall the definition of Eε(t) from immediately above Lemma 4.2. For
any ε ∈ (0, 1), on {Xt ≤ x}, for all x sufficiently large, Eε(t) implies that Xt+1 < 2x.
Hence, for any ε ∈ (0, 1), on {Xt ≤ x},

hx(Xt+1)− hx(Xt) ≥ (f(Xt+1)− f(Xt)) 1Eε(t) − f(Xt)1{∆t > (1 +Xt)
1−ε},

so that

E[hx(Xt+1)− hx(Xt) | Ft] ≥ E
[
(f(Xt+1)− f(Xt)) 1Eε(t) | Ft

]
− f(Xt)P[Ec

ε(t) | Ft].

By Lemma 4.2 with q = 0, for ε > 0 small enough, f(Xt)P[Ec
ε(t) | Ft] = O(X

r−1−(ε/2)
t ),

a.s.; with the γ = 1+r case of (4.3) this shows, as in the proof of Lemma 4.1, on {Xt ≤ x},

E[hx(Xt+1)− hx(Xt) | Ft] ≥ (ν(1 + r)(s2/2) + o(1))Xr−1
t logν−1Xt,

which is positive for all Xt sufficiently large, since ν > 0, r > −1, and s2 > 0. Thus there
exists A ∈ (0,∞) such that, for all x > A,

E[hx(Xt+1)− hx(Xt) | Ft] ≥ 0, on {A ≤ Xt ≤ x}, a.s. (4.8)

Choose λ ∈ (0,∞) with λ > maxz∈SA hx(z). Since f(y) → ∞ as y → ∞, we can (and
do) choose y ∈ S ∩ (A,∞) such that f(y) > 2λ. Take x > y. Define the stopping times

κ1 := min{t ∈ N : Xt = y},
κ2 := min{t > κ1 : Xt ≥ x},
κ3 := min{t > κ1 : Xt ≤ A}.

By Lemma 4.5 and the fact that for r > −1, X is recurrent (by Theorem 2.2), κi < ∞
a.s., for each i ∈ {1, 2, 3}. We consider (hx(Xt∧κ2∧κ3))t≥κ1 , which is a submartingale

20



by (4.8). Also, (hx(Xt∧κ2∧κ3))t≥κ1 is uniformly integrable (since it is bounded above by
f(2x) <∞), so hx(Xt∧κ2∧κ3) converges a.s. and in L1 to hx(Xκ2∧κ3) as t→∞. Hence,

2λ ≤ E[hx(Xκ2∧κ3) | Fκ1 ]

= E[hx(Xκ2)1{κ2 < κ3} | Fκ1 ] + E[hx(Xκ3)1{κ3 < κ2} | Fκ1 ]

≤ f(2x)P[κ2 < κ3 | Fκ1 ] + λP[κ3 < κ2 | Fκ1 ],

since hx(Xκ3) ≤ f(Xκ3) ≤ λ and hx(Xκ2) ≤ f(2x) a.s.; re-arranging we obtain

P[κ2 < κ3 | Fκ1 ] ≥
λ

f(2x)− λ
, a.s. (4.9)

Hence, by (4.9), there is a constant C1 ∈ (0,∞) such that P[κ2 < κ3 | Fκ1 ] ≥ 1/f(C1x)
for all x large enough. Finally,

P[κ2 < η1] ≥ E [1{κ1 < η1}P[κ2 < κ3 | Fκ1 ]] ≥
P[κ1 < η1]

f(C1x)
≥ 1

f(C2x)
,

for some constant C2 ∈ (0,∞) and all x sufficiently large, by Lemma 4.7. On {κ2 < η1},
we have M1 = max1≤s≤η1 Xs ≥ x. Thus we obtain the lower bound in (2.6), since ν > 0
was arbitrary.

We now prove the upper bound in (2.6). Fix ε > 0 and now write f for f1+r,−ε. By
Lemma 4.1, there is A ∈ (0,∞) such that E[f(Xt+1)− f(Xt) | Ft] ≤ 0 on {Xt ≥ A}, a.s.
Since r > −1, there exists x0 ≥ A such that f is increasing on [x0,∞). Take x > x1 > x0;
x1 will be fixed later. Define stopping times recursively by β0 := 1 and for n ∈ N,

αn := min{t > βn−1 : Xt > x1},
βn := min{t > αn : Xt ≤ x0},
γn := min{t > αn : Xt > x}.

By Lemma 4.5 and the fact that X is recurrent, αn, βn and γn are a.s. finite for all n.
By Lemma 4.1, (f(Xt∧βn∧γn))t≥αn is a nonnegative supermartingale, and as t→∞ it

converges a.s. to f(Xβn∧γn). By Fatou’s lemma, E[f(Xβn∧γn) | Fαn ] ≤ f(Xαn). Moreover,
E[f(Xβn∧γn) | Fαn ] ≥ P[γn < βn | Fαn ]f(x), since x > x0. It follows that for all x > x1,

P[γn < βn | Fαn ] ≤ f(Xαn)

f(x)
. (4.10)

Lemma 4.9 shows that E[f(Xαn)] ≤ K for some K < ∞ depending on x1 but not on x.
Thus taking expectations in (4.10) we obtain, for some K <∞ and all x > x0,

P[γn < βn] ≤ K/f(x).

Moreover, it follows from Lemma 4.6 that we may choose x1 > x0 large enough such
that, for some δ > 0, P[η1 < αn+1 | Fβn ] ≥ δ, a.s., for all n. Thus we fix such an x1. In
particular, we then have that P[η1 < βn+1 | Fβn ] ≥ δ, a.s. Let J := min{n ∈ N : η1 < βn}.
Then J is stochastically dominated by a geometric random variable with parameter δ,
and in particular P[J > n] ≤ (1− δ)n ≤ e−δn. Hence

P[M1 ≥ x] ≤ P
[ J⋃
n=1

{γn < βn}
]
≤ P[J ≥ bk log xc] +

k log x∑
n=1

P[γn < βn].

Now we choose k large enough so that P[J ≥ bk log xc] = O(1/f(x)), say, for which
k > 2+r

δ
suffices. It then follows that there is a constant C ∈ (0,∞) such that P[M1 ≥

x] ≤ C log x
f(x)

for all x > x1, and the upper bound in (2.6) follows.
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We can now state a result on the ‘maximum of the maxima’ in the first n excursions.

Lemma 4.10. Suppose that (A0)–(A3) hold. Suppose that r > −1 and (2.2) holds with
p > max{2, 1 + r}. For any ε > 0, a.s., for all but finitely many n,

n
1

1+r (log n)−
1

1+r
−ε ≤ max

1≤i≤n
Mi ≤ n

1
1+r (log n)

2
1+r

+ε.

Proof. Apply the tail bounds in Theorem 2.3 together with Lemma 4.3.

A key result for several of our remaining theorems is Lemma 4.11. It provides lower
bounds on excursion functionals, and in particular gives a new approach to a lower tail
bound for η1, which has advantages over previous approaches: the results in [5] are not
as sharp, while the results in [3] require uniformly bounded increments for the process.

Lemma 4.11. Suppose that (A0) and (A1) hold, and there exists B < ∞ such that
E[∆2

t | Ft] ≤ B, a.s., for all t ∈ N, and there exist x0, c ∈ (0,∞) such that, on {Xt ≥ x0},
E[∆t | Ft] ≥ −c/Xt, a.s., for all t ∈ N. Let Φ : S → [0,∞) be a nondecreasing function.
Then there exists ε > 0 such that for all y sufficiently large,

P[M1 ≥ y] ≤ 2P

[
η1∑
t=1

Φ(Xt) ≥ εy2Φ(y/2)

]
.

In particular, P[η1 ≥ x] ≥ 1
2
P[M1 ≥ (x/ε)1/2] for some ε > 0 and all x sufficiently large.

Proof. Let y > 2x0. Define stopping times

κ1 = min{t ∈ N : Xt ≥ y}; κ2 = min{t ≥ κ1 : Xt ≤ y/2}.

Note that κ1 < ∞ a.s., by Lemma 4.5, and {κ1 < η1}, the event that X reaches [y,∞)
before returning to 0, is Fκ1 measurable. Then, for any ε > 0,

P
[
{κ1 < η1} ∩ {κ2 ≥ κ1 + εy2}

]
= E

[
1{κ1 < η1}P[κ2 ≥ κ1 + εy2 | Fκ1 ]

]
. (4.11)

We claim that we may choose ε > 0 for which, for all y sufficiently large,

P[κ2 ≥ κ1 + εy2 | Fκ1 ] ≥
1

2
, a.s. (4.12)

To verify (4.12), let Wt = (y −Xt)
21{Xt < y}. Then on {Xt ≥ y}, Wt+1 −Wt ≤ ∆2

t , so
that E[Wt+1 −Wt | Ft] ≤ B, a.s., on {Xt ≥ y}. On the other hand, on {Xt < y},

Wt+1 −Wt ≤ (Wt+1 −Wt)1{Xt+1 < y}
≤ −2(y −Xt)∆t1{∆t < y −Xt}+ ∆2

t .

Here we have that

−2(y −Xt)∆t1{∆t < y −Xt} = −2(y −Xt)∆t + 2(y −Xt)∆t1{∆t > y −Xt}
≤ −2(y −Xt)∆t + 2∆2

t .

Taking expectations we see that, on {x0 ≤ Xt < y}, a.s.,

E[Wt+1 −Wt | Ft] ≤ −2(y −Xt)E[∆t | Ft] + 3E[∆2
t | Ft] ≤

2cy

Xt

+ 3B.
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In particular, there exists C < ∞ such that, on {Xt > y/2}, E[Wt+1 −Wt | Ft] ≤ C,
a.s. Hence we conclude that, for any t ≥ 0, E[W(κ1+t+1)∧κ2 −W(κ1+t)∧κ2 | Fκ1+t] ≤ C, a.s.
Then an appropriate maximal inequality (Lemma 3.1 of [36]) implies that

P
[

max
0≤s≤t

W(κ1+s)∧κ2 ≥ w | Fκ1

]
≤ Ct/w, a.s.,

using the fact that Wκ1 = 0. But Wκ2 = (y −Xκ2)
2 ≥ y2/4, so

P[κ2 ≤ κ1 + t | Fκ1 ] ≤ P
[

max
0≤s≤t

W(κ1+s)∧κ2 ≥ (y2/4) | Fκ1

]
≤ 4Ct

y2
, a.s.,

and choosing t = εy2 for ε > 0 sufficiently small (not depending on y), the claim (4.12)
follows. Combining (4.11) and (4.12) we get

P
[
{κ1 < η1} ∩ {κ2 ≥ κ1 + εy2}

]
≥ 1

2
P[κ1 < η1] =

1

2
P[M1 ≥ y].

On {κ1 < η1}∩{κ2 ≥ κ1 + εy2}, Xs ≥ y/2 for all κ1 ≤ s < κ2, of which there are at least
εy2 values, all before time η1; since Φ is nondecreasing we obtain the result.

To obtain an upper tail bound on η1, one of the technical ingredients that we need is
the following consequence of Theorem 2′ of [4], which extended results in [5].

Lemma 4.12. Suppose that (Yt)t∈N is an (Ft)t∈N-adapted stochastic process on an un-
bounded subset of [0,∞). Let TA := min{t ∈ N : Yt ≤ A}. Suppose that there exist p > 0,
ν ∈ R, and δ > 0 such that

E[Y 2p
t+1 logν Yt+1 − Y 2p

t logν Yt | Ft] ≤ −δY 2p−2
t logν−1 Yt, on {TA > t}. (4.13)

Then for some C <∞, P[TA ≥ t | Y1 = x0] ≤ Ct−p(log t)p−νx2p
0 (log x0)

ν.

Proof. We apply Theorem 2′ of [4] with, in the notation there (but with time denoted
by t rather than n) Xt = Yt, h(x) = x2p(log x)ν , Ut = h(Yt), g(x) = x2p−2(log x)ν−1, and
f(x) = xp(log x)q, where p > 0 and ν ∈ R are as in the statement of the lemma and
q ∈ R is to be chosen later. It follows from Theorem 2′ of [4] that, under the conditions
of the lemma, for some C <∞, for any x0 > A,

E[f(TA) | Y1 = x0] ≤ Ch(x0) = Cx2p
0 (log x0)

ν , (4.14)

provided that, writing f−1 here for the inverse function of f ,

lim inf
x→∞

(
g(x)

f ′(f−1(h(x)))

)
> 0. (4.15)

We verify (4.15) for the stated f, g, h. We claim there exists c ∈ (0,∞) such that

f−1(x) = (c+ o(1))x1/p(log x)−q/p. (4.16)

Since f is eventually increasing, to verify (4.16) it suffices to show that, for an appropriate
c ∈ (0,∞), f((c + ε)x1/p(log x)−q/p) is eventually greater than x if ε > 0 but eventually
less than x if ε < 0. But we have, for α > 0,

f(αx1/p(log x)−q/p) = αpx(log x)−q
[
logα + p−1 log x− (q/p) log log x

]q
= (αpp−q + o(1))x,
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which satisfies the desired properties with α = c provided cpp−q = 1, i.e., c = pq/p. Thus
we obtain (4.16). It follows that, for some c′ ∈ (0,∞),

f−1(h(x)) = (c′ + o(1))x2(log x)
ν−q
p .

Now f ′(x) = (p+ o(1))xp−1(log x)q, so we get, for some c′′ ∈ (0,∞),

f ′(f−1(h(x))) = (c′′ + o(1))x2p−2(log x)ν+
q−ν
p .

Then (4.15) holds provided that ν − 1 − (ν + q−ν
p

) ≥ 0, that is, q ≤ ν − p. This shows

that (4.14) holds, and then the result of the lemma follows by Markov’s inequality.

Now we can complete the proof of our main result on the duration of an excursion.

Proof of Theorem 2.4. First we prove the upper bound in (2.7). Our starting point will be
Lemma 4.12, which deals with the hitting time of a suitably large interval [0, A] starting
from outside that interval. Some additional work, based on the irreducibility assumption,
is needed to relate this to the return time η1 to 0. Fix A > 0 and B > A (to be specified
later). Define stopping times αi and βi recursively by β0 := 1 and for n ∈ N,

αn := min{t ≥ βn−1 : Xt ≤ A}, βn := min{t ≥ αn : Xt ≥ B};

by Lemma 4.5 and the fact that X is recurrent, αn ≤ βn <∞ for all n, a.s.
We have from the 2p = 1 + r > 0 case of (4.4) that with Yt = Xt, f2p,ν(Xt) satisfies

(4.13) taking ν < 0, provided the A in (4.13) is large enough. Thus take A to be
sufficiently large. Hence we can apply Lemma 4.12 to show that, for any ε > 0,

P[αn+1 − βn ≥ t | Fβn ] ≤ t−
1+r
2 (log t)

1+r
2

+ε(1 +Xβn)1+r,

for all t large enough. Here the ν = 0 case of Lemma 4.9 shows that E[(1 + Xβn)1+r] ≤
C <∞ for C not depending on t. So taking expectations in the last display, we obtain

P[αn+1 − βn ≥ t] ≤ Ct−
1+r
2 (log t)

1+r
2

+ε, (4.17)

for all t sufficiently large. On the other hand, for B = B(A) as in Lemma 4.6, we have
that for ϕ > 0, for all n, P[η1 < βn | Fαn ] ≥ ϕ, a.s. Let K := min{n : βn > η1}. Then
K is stochastically dominated by a geometric random variable with parameter ϕ, and in
particular P[K > n] ≤ (1− ϕ)n ≤ e−ϕn. Moreover, η1 ≤

∑K
n=1(αn+1 − αn). So

P[η1 ≥ t] ≤ P[K ≥ bk log tc] + P
[ k log t∑
n=1

(αn+1 − αn) ≥ t

]
≤ t−(1+r) + k(log t) sup

n
P
[
αn+1 − αn ≥

t

k log t

]
, (4.18)

choosing k sufficiently large. A similar argument to Lemma 4.8 shows that P[βn − αn ≥
t] ≤ e−ct for c > 0 depending on B (and hence on A). Then since

P[αn+1 − αn ≥ t] ≤ P[αn+1 − βn ≥ t/2] + P[βn − αn ≥ t/2],

it follows that αn+1 − αn satisfies the same tail bound (4.17) as αn+1 − βn. The upper
bound in (2.7) then follows from (4.18).

The lower bound in (2.7) follows from the final statement in Lemma 4.11 together
with the lower bound in Theorem 2.3.

24



Now we can give a result on the total duration of the first n excursions.

Lemma 4.13. Suppose that (A0), (A1), (A2), and (A3) hold.

(i) Suppose that −1 < r ≤ 1 and (2.2) holds with p > 2. Then for any ε > 0, a.s., for
all but finitely many n,

n
2

1+r (log n)−
2

1+r
−ε ≤

n∑
i=1

ηi ≤ n
2

1+r (log n)
6+2r
1+r

+ε.

(ii) Suppose that r > 1 and (2.2) holds with p > 1 + r. Then as n → ∞, a.s.,
n−1

∑n
i=1 ηi → E[η1] ∈ (0,∞).

Proof. Part (ii) follows from the strong law of large numbers since E[η1] <∞ for r > 1,
by Theorem 2.4, while E[η1] 6= 0 since η1 is nondegenerate. Now suppose that r ∈ (−1, 1].
The lower bound in (i) follows from the lower bound in (2.7) with Lemma 4.4(ii), while
the upper bound in (i) follows from the upper bound in (2.7) with Lemma 4.4(i).

An inversion of the previous result enables us to complete the proof of our theorem
on the number of excursions. Recall that Nt = max {n ∈ N :

∑n
i=1 ηi ≤ t}.

Proof of Theorem 2.5. For part (i), fix ε > 0. From the lower bound in Lemma 4.13(i),
we may choose ε′ > 0 small enough for which, a.s., for all t large enough

dt
1+r
2 (log t)1+εe∑

i=1

ηi ≥ t(log t)
2ε

1+r
−ε′ > t,

giving the upper bound in (2.8). The lower bound in (2.8) follows similarly from the
upper bound in Lemma 4.13(i). Part (ii) follows from Lemma 4.13(ii).

Next we turn to our results on stationary distributions.

Proof of Theorem 2.6. We verify the claimed properties of π defined at (2.10). When
r > 1, we have from Theorem 2.4 that E[η1] ∈ (0,∞). Since, for any x, 0 ≤ `1(x) ≤ η1 a.s.,
it follows that E[`1(x)] <∞ for all x ∈ S. It is clear that π(x) ≥ 0 and

∑
x∈S π(x) = 1.

To show that π(x) > 0, it suffices to show that E[`1(x)] > 0. Suppose that, for some
x ∈ S, `1(x) = 0 a.s. Then by (A3), Lt(x) = 0 a.s. for all t. But this contradicts Lemma
4.5. So P[`1(x) > 0] > 0, which implies E[`1(x)] > 0.

Next, note that for any x ∈ S, a.s.,
∑Nt

n=1 `n(x) ≤ Lt(x) ≤
∑Nt+1

n=1 `n(x). Here
(`n(x))n∈N are i.i.d. random variables with finite means, and so it follows from the strong
law of large numbers that N−1

t Lt(x) → E[`1(x)] a.s. for Nt → ∞, which with Theorem

2.5(ii) implies that t−1Lt(x) → E[`1(x)]
E[η1]

a.s., and the Lq convergence follows from the

bounded convergence theorem. Finally the convergence of P[Xt = x] to π(x) follows from
e.g. [2, Corollary VI.1.5, p. 171] under the additional ‘aperiodicity’ condition.

The proofs of our remaining theorems now involve combining our previous results.

Proof of Theorem 2.7. We have that for any t ∈ N,

max
1≤i≤Nt

Mi ≤ max
1≤s≤t

Xs ≤ max
1≤i≤Nt+1

Mi. (4.19)

The result follows from Theorem 2.5 and Lemma 4.10 together with (4.19).
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Proof of Theorem 2.8. Fix α ≥ 0 and r > −1. First we prove the upper bound in (2.12).

Clearly ξ
(α)
1 ≤ η1M

α
1 . It follows that, for any x > 1,

P[ξ
(α)
1 ≥ x] ≤ P[{η1 ≥ x

2
α+2 (log x)

2α
α+2} ∪ {M1 ≥ x

1
α+2 (log x)−

2
α+2}]

≤ P[η1 ≥ x
2

α+2 (log x)
2α
α+2 ] + P[M1 ≥ x

1
α+2 (log x)−

2
α+2 ].

Now applying the upper bounds from (2.7) and (2.6) we obtain the desired upper bound.
Next we prove the lower bound in (2.12). It follows from the Φ(x) = xα case of

Lemma 4.11 that there exists C ∈ (0,∞) such that, for all x large enough,

P[ξ
(α)
1 ≥ x] ≥ 1

2
P[M1 ≥ Cx

1
α+2 ]. (4.20)

The lower bound in (2.12) now follows from (4.20) and the lower bound in (2.6).

Recall that S
(α)
t =

∑t
s=1X

α
s , so S

(α)
τn =

∑n
i=1 ξ

(α)
i .

Lemma 4.14. Suppose that (A0)–(A3) hold. Suppose that r > −1 and (2.2) holds with
p > max{2, 1 + r}. Let α ≥ 0.

(i) Suppose that −1 < r ≤ 1 +α. Then for any ε > 0, a.s., for all but finitely many n,

n
α+2
1+r (log n)−

α+2
1+r
−ε ≤ S(α)

τn ≤ n
α+2
1+r (log n)

2α+4
1+r

+2+ε.

(ii) Suppose that r > 1 + α. Then as n→∞, a.s.,

n−1S(α)
τn → E[ξ

(α)
1 ] = E[η1]

∑
x∈S

xαπ(x) ∈ (0,∞), (4.21)

where π is given by (2.10).

Proof. First we prove part (ii). For r > 1 + α, E[ξ
(α)
1 ] < ∞ by Theorem 2.8. Then, by

(2.11), E[ξ
(α)
1 ] =

∑
x∈S x

αE[`1(x)], so, by (2.10), the two expressions for limiting constant

in (4.21) are indeed equivalent. Also, E[ξ
(α)
1 ] > 0 since, by Theorem 2.6, π(x) > 0 for all

x ∈ S. The convergence in (4.21) follows from the strong law of large numbers.
Now for part (i), suppose that r ∈ (−1, α + 1]. Then the lower bound in part (i)

follows from the lower bound in (2.12) and Lemma 4.4(ii). The upper bound in part (i)
follows from the upper bound in (2.12) and Lemma 4.4(i).

Proof of Theorem 2.9. By definition of S
(α)
t and Nt, for any t ∈ N,

S(α)
τNt
≤ S

(α)
t ≤ S(α)

τNt+1
. (4.22)

For −1 < r ≤ 1 +α, we have from Lemma 4.14(i) with (4.22) that for any ε > 0, a.s.,
for all but finitely many t,

N
α+2
1+r

t (log t)−
α+2
1+r
−ε ≤ S

(α)
t ≤ (Nt + 1)

α+2
1+r (log t)

2α+4
1+r

+2+ε, (4.23)

using the fact that Nt ≤ t a.s. to obtain the logarithmic terms. Now from (4.23) we
obtain part (i) of the theorem by applying the bounds for Nt in Theorem 2.5(i) and we
obtain part (ii) of the theorem from Theorem 2.5(ii).
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Finally, suppose that r > 1 + α. We have from (4.22) that

(t−1Nt)N
−1
t S(α)

τNt
≤ t−1S

(α)
t ≤ (t−1(Nt + 1))(Nt + 1)−1S(α)

τNt+1
.

Both t−1Nt and t−1(Nt + 1) converge a.s. to E[η1]
−1 by Theorem 2.5(ii), while Lemma

4.14(ii) and the fact that Nt → ∞ a.s. as t → ∞ imply that both N−1
t S

(α)
τNt

and (Nt +

1)−1S
(α)
τNt+1 converge a.s. to E[ξ

(α)
1 ]. Hence we obtain the first limit statement in (2.13);

for the subsequent equality in (2.13) we use the expression for E[ξ
(α)
1 ] given in (4.21).

5 Proofs for Section 3

5.1 Proofs for Section 3.1

In this section we prove our results on processes on the whole real line. The proofs use
the same ideas as those for our results from Section 2, so we do not dwell on the details.
We will use the notation oω(t) for a (random) sequence that satisfies oω(t) → 0, a.s., as
t → ∞ (in other words, oω(t) is an extension of the Landau o(1) notation in which the
implicit constants are allowed to depend on the sample point ω).

Proof of Theorem 3.1. We again use τ0, τ1, . . . to denote the times at which Xt = 0,
and ηn := τn − τn−1. Conditions (B0) and (B1) ensure that η1, η2, . . . are i.i.d., and η1

has the same distribution as θ+η+ + θ−η− + (1 − θ+ − θ−), where θ+ := 1{X2 > 0},
θ− := 1{X2 < 0} and (by (B2)) η± is the return time for a half-line model of Section
2 with r = r±, independent of θ+ and θ−. Since −1 < r+ < r− ≤ 1, and E[θ±] > 0,

it follows from Theorem 2.4 that P[η1 ≥ x] = x−
1+r+

2
+o(1); hence the process is null-

recurrent. By a similar argument to Theorem 2.5, since each excursion takes either sign

with uniformly positive probability, there are t
1+r+

2
+oω(1) excursions of each sign by time

t. The result then follows as in the proof of Theorem 2.7, using Lemma 4.10.

Proof of Theorem 3.2. Again, we use the fact that the numbers of positive or negative

excursions up until time t are both t
1+r+

2
+oω(1), a.s. Then Lemma 4.14 and an argument

similar to the proof of Theorem 2.9 applied separately to the positive and negative parts∑t
s=1X

+
s and

∑t
s=1X

−
s shows that, a.s., the latter is t

3
2

1+r+
1+r−

+oω(1)
while the former is

t
3
2
+oω(1), which therefore dominates the asymptotics, yielding the result.

5.2 Proofs for Section 3.2

We write e1, . . . , ed for the standard orthonormal basis of Rd, and for vectors u,v ∈ Rd

we use u · v to denote their scalar product.

Proof of Theorem 3.3. Suppose that (C0) holds. Take Ft = σ(ξ1, ξ2, . . . , ξt), Xt = ‖ξt‖,
and S = {‖x‖ : x ∈ Σ} ⊂ [0,∞). Then 0 ∈ S since 0 ∈ Σ, and, by local finiteness of Σ,
{x ∈ Σ : ‖x‖ = x} is finite for any x ∈ S. Hence (A0) follows. Next we verify (A1). By
irreducibility of Ξ, for any x,y ∈ Σ, there exist k(x,y) ∈ N and κ(x,y) > 0 such that
P[ξt+k(x,y) = y | ξt = x] = κ(x,y) > 0. Let x = ‖x‖ and y = ‖y‖, so x, y ∈ S. Then, a.s.,

P[Xt+k(ξt,y) = y | Ft] = κ(ξt,y)

≥ min{κ(x,y) : x ∈ Σ, ‖x‖ = ‖ξt‖, y ∈ Σ, ‖y‖ = y};
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denote this last quantity ϕ(‖ξt‖, y). Then ϕ(‖ξt‖, y) > 0 by the finiteness of the sets over
which x and y run. We choose y with ‖y‖ = y, and for that y take m(‖ξt‖, y) = k(ξt,y) <
∞. This shows that (A1) holds. Moreover, (A3) follows from the fact that Ξ is an
irreducible Markov chain. Also, by the triangle inequality, |Xt+1−Xt| = |‖ξt+1‖−‖ξt‖| ≤
‖ξt+1 − ξt‖, so if (3.3) holds for some p > 0, then so does (2.2).

It remains to show that (C1) implies (A2). Let γ ∈ (0, 1), to be chosen later. We will
estimate the increment ‖ξt + θt‖ − ‖ξt‖ by Taylor’s theorem in Rd. First observe that

∂

∂xi
‖x‖ =

xi
‖x‖

;
∂2

∂xi∂xj
‖x‖ =

1{i = j}
‖x‖

− xixj
‖x‖3

;

∣∣∣∣ ∂3

∂xi∂xj∂xk
‖x‖

∣∣∣∣ = O(‖x‖−2).

Then by Taylor’s formula, for any x ∈ Rd,

(‖x + θt‖ − ‖x‖) 1{‖θt‖ ≤ ‖x‖γ} =
d∑
i=1

xi
‖x‖

(θt · ei)1{‖θt‖ ≤ ‖x‖γ}

+
1

2

d∑
i=1

(
1

‖x‖
− x2

i

‖x‖3

)
(θt · ei)21{‖θt‖ ≤ ‖x‖γ}

−
d∑
i=2

i−1∑
j=1

xixj
‖x‖3

(θt · ei)(θt · ej)1{‖θt‖ ≤ ‖x‖γ}

+O
(
‖θt‖3‖x‖−21{‖θt‖ ≤ ‖x‖γ}

)
. (5.1)

We will condition on ξt = x and take expectations in (5.1). To this end, note that

E[‖θt‖3‖x‖−21{‖θt‖ ≤ ‖x‖γ} | ξt = x] ≤ ‖x‖γ−2E[‖θt‖2 | ξt = x] = O(‖x‖γ−2),

since, by (C1), E[‖θt‖2 | ξt = x] =
∑d

i=1Mii(x) <∞, uniformly in x. Also, for q ∈ [0, 2]
a similar argument to Lemma 4.2 shows that, for some ε > 0 and γ close enough to 1,

E[(θt · ei)q1{‖θt‖ > ‖x‖γ} | ξt = x] = O(‖x‖q−2−ε). (5.2)

The q = 2 case of (5.2), with the Cauchy–Schwarz inequality, shows that

E[(θt · ei)(θt · ej)1{‖θt‖ > ‖x‖γ} | ξt = x] = O(‖x‖−ε).

Also, we have from (C1) that

E[θt · ei | ξt = x] = ei · µ(x) =
ρxi
‖x‖2

+ o(‖x‖−1 log−1 ‖x‖);

E[(θt · ei)(θt · ej) | ξt = x] = Mij(x) = σ21{i = j}+ o(log−1 ‖x‖).

Combining these estimates, taking expectations in (5.1) yields

E [(‖x + θt‖ − ‖x‖) 1{‖θt‖ ≤ ‖x‖γ} | ξt = x]

=
d∑
i=1

ρx2
i

‖x‖3
+

1

2

d∑
i=1

(
1

‖x‖
− x2

i

‖x‖3

)
σ2 + o(‖x‖−1 log−1 ‖x‖)

=

(
ρ+

σ2

2
(d− 1)

)
‖x‖−1 + o(‖x‖−1 log−1 ‖x‖).
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On the other hand, by the triangle inequality,

E [|‖x + θt‖ − ‖x‖|1{‖θt‖ > ‖x‖γ} | ξt = x] ≤ E [‖θt‖1{‖θt‖ > ‖x‖γ}] ,

which, for γ close enough to 1, is also o(‖x‖−1 log−1 ‖x‖) by another application of (5.2).
Thus we have shown that

E[Xt+1 −Xt | ξt = x] =

(
ρ+

σ2

2
(d− 1)

)
‖x‖−1 + o(‖x‖−1 log−1 ‖x‖), (5.3)

which implies that (2.3) holds with c = ρ+ (d− 1)(σ2/2).
For the second moment estimate, observe that, given ξt = x,

(Xt+1 −Xt)
2 = ‖x + θt‖2 − ‖x‖2 − 2‖x‖(‖x + θt‖ − ‖x‖)

= ‖θt‖2 + 2x · θt − 2‖x‖(Xt+1 −Xt). (5.4)

Here we have that

E[‖θt‖2 + 2x · θt | ξt = x] =
d∑
i=1

Mii(x) + 2x · µ(x) = dσ2 + 2ρ+ o(log−1 ‖x‖). (5.5)

Taking expectations in (5.4), using (5.5) and (5.3), we obtain

E[(Xt+1 −Xt)
2 | ξt = x] = dσ2 + 2ρ− 2(ρ+ (d− 1)(σ2/2)) + o(log−1 ‖x‖),

which, after simplification, shows that (2.4) holds with s2 = σ2.

5.3 Proofs for Section 3.3

First we prove the following analogue of Lemma 7.6 of [9]. As in [9], we relate the general
version of Zt to the special case in which κ = 0 a.s., which we denote here by Z ′t. By
construction, for x, y ∈ N,

P[Zt+1 = y | Zt = x] = E
[
P[Z ′t+1 = y | Z ′t = x−min{κ, x− 1}]

]
. (5.6)

Write Dt := Zt+1 − Zt.

Lemma 5.1. For any ε > 0, as x→∞,

P[|Dt| > x(1/2)+ε | Zt = x] = O(exp{−xε/3}). (5.7)

Also, for any r ∈ N there exists C <∞ for which, for all x ∈ N,

E[|Dt|r | Zt = x] ≤ Cxr/2.

Moreover, as x→∞,

E[Dt | Zt = x] =
2

3
− E[κ] + o(log−1 x), (5.8)

E[D2
t | Zt = x] =

2

3
x+ o(x log−1 x). (5.9)

29



Proof. The proof is similar to that of Lemma 7.6 in [9]; we sketch the differences, which
are due to the fact that we use (5.6) in place of the final statement of Lemma 7.5 in [9].
Write D′t := Z ′t+1 − Z ′t. Lemma 6.4 in [9] says that, for a given α > 0,

E[D′t | Z ′t = x] =
2

3
+O(e−αx). (5.10)

We also note that, by Markov’s inequality and our tail assumption on κ, there is C <∞
for which, for all r ≥ 1,

P[|κ| > r] ≤ Ce−λr. (5.11)

We prove (5.7). By (5.6), for any ε > 0, and any x > 1,

P[|Dt| > r | Zt = x] ≤ P[|κ| > xε] + sup
y:|x−y|≤xε

P[|D′t| > r − xε | Z ′t = x].

Taking r = x(1/2)+ε, using (5.11) and the tail bound for D′t given in Lemma 6.3 of [9], we
verify (5.7). For (5.8), it follows from (5.6) that

E[Dt | Zt = x] = −E[min{κ, x− 1}] + E [E[D′t | Z ′t = x− κ]] .

Here, as in the proof of Lemma 7.6 in [9], E[min{κ, x − 1}] = E[κ] + O(exp{−λx/2}).
Also, using the fact that supx E[D′t | Z ′t = x] < C <∞ by (5.10), we have

E [E[D′t | Z ′t = x− κ]] ≤ CP[|κ| >
√
x] + sup

y:|y−x|≤
√
x

E[D′t | Z ′t = y],

which with (5.10) and (5.11) gives the upper bound in (5.8), a similar argument yielding
the lower bound. Similar variations of the arguments in the proof of Lemma 7.6 of [9]
give the remaining parts of the lemma.

Proof of Proposition 3.6. Proposition 3.6 follows from Lemma 5.1 in exactly the same
way as Lemma 7.7 in [9] follows from Lemma 7.6 there.

Proof of Theorem 3.7. We proceed as in the proof of Theorem 2.6 of [9], but instead
of Lemma 8.3 in [9], we apply our sharper Theorem 2.8. The details involve minor

modifications to the arguments in [9]. Here we merely give some intuition as to why ξ
(2)
1

appears. The key fact is that, ignoring the jumps driven by κ, the original process takes
Zt +Zt+1 steps to traverse the quadrant between times νt and νt+1; the correction to this
due to the jump of size κt is small. Hence over one excursion of the embedded process
Xt =

√
Zt − 1, the original process accumulates time τ ≈

∑τq
t=1X

2
t , which is exactly of

the form of the excursion sum ξ
(2)
1 .
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[38] G.J. Székely, On the asymptotic properties of diffusion processes, Ann. Univ. Sci.
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