Transactions on Modeling and Computer Simulation

@ Transactions on
Modeling and Computer Simulation

Synchronised Range-Queries in Distributed Simulations of
Multi-Agent Systems

Journal: | Transactions on Modeling and Computer Simulation

Manuscript ID: | TOMACS-2012-0032

Manuscript Type: | Regular Article

Date Submitted by the e
Author: | 22-Feb-2012

Complete List of Authors: | Theodoropoulos, Georgios; IBM Research,

Keywords: Types of Simulation: Parallel, Types of Simulation: Distributed,
Y | Simulation Support Systems, Types of Simulation: Discrete Event

SCHOLARONE™
Manuscripts

Page 1 of 28

P OO~NOUILAWNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed Simulations of
Multi-Agent Systems

VINOTH SURYANARAYANAN, University of Birmingham, UK
GEORGIOS THEODOROPOULOQOS, IBM Research, Ireland

Range-Queries are an increasingly important associative form of data access encountered in different com-
putational environments including Peer to Peer systems, Wireless communications, Database systems, Dis-
tributed Virtual Environments and, more recently, distributed simulations. In this paper, we present and
evaluate a system for performing logical-time synchronised Range-Queries over data in the context of dis-
tributed simulations of Multi-Agent Systems (MAS). The paper presents algorithms performing instanta-
neous Queries within an optimistic synchronisation framework and in the presence of dynamic migration
of the simulation state. A quantitative evaluation of the effectiveness of the proposed algorithms under
different conditions is also presented.

Categories and Subject Descriptors: 1.6.5 [Simulation and Modeling]: Model Development; 1.6.8 [Simu-
lation and Modeling]: Types of Simulation—Distributed; Parallel; 1.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Intelligent Agents; Multi-Agent Systems

General Terms: Design, Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Range-Queries, Data Management, Distributed Simulation, Multi-
Agent Systems, Load Balancing, Distributed Virtual Environments

ACM Reference Format:

Suryanarayanan, V., and Theodoropoulos, G. 2012. Synchronised Range-Queries in Distributed Simulations
of Multi-Agent Systems. ACM Trans. Mod Comp. Simul.. V, N, Article A (January YYYY), 25 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Very large distributed data structures are used more than ever before in the deploy-
ment of distributed applications such as sensor networks, interactive media, Voice-
over-IP services, Content Distribution Networks, Peer-to-Peer systems, Distributed
Virtual Environments, massively multiplayer online games and distributed simula-
tions. As these applications become larger, more data-intensive and latency-sensitive,
scalability becomes a crucial element for their successful deployment. A particular
problem that calls for scalable solutions is accessing data. An approach to address the
scalability issue in this context is to build systems in a way that the flow of data is
optimised to reflect the interests of the user population - a paradigm generally referred
to as Interest Management (IM), though the precise meaning of ‘interest’ is gener-
ally specific to a particular application area. Data access comes in two different forms,
namely access via ID-Queries and access via Range-Queries.

Author’s addresses: Vinoth Suryanarayanan, School of Computer Science, University of Birmingham, UK;
Georgios Theodoropoulos, IBM Research, Ireland.

This work was initiated while Georgios Theodoropoulos was a faculty member at the University of Birming-
ham, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A2 V. Suryanarayanan et al.

An ID-Query is taken to mean a read operation which obtains the current value of
a data item given its identifier, assumed to be unique in the system. The IM prob-
lem in these systems is essentially one of placing and/or replicating shared variables
to minimise traffic in the context of concurrent read and write operations from the
nodes in the system. An example is cache coherent NUMA approaches which have
attempted to reduce the communication load by switching between write-update and
write-invalidate consistency models according to access patterns (e.g. [Eggers and
Katz 1989]).

A Range-Query is an operation obtaining a set of data items each of whose current
value matches a given predicate, expressed as a contiguous range between two values.
The semantics of a Range-Query are not formally defined and are different for different
systems and applications but in general two different forms may be distinguished:

—instantaneous Queries of the set of currently extant data items whose value
matches some predicate, and

— persistent Subscriptions to all possible future values data items may take which
match some predicate.

Range-Queries, with different terminology and semantics, can be encountered in
several areas and at different levels in computer systems research. from hardware (e.g.
Content Addressable Memories [Pagiamtzis and Sheikholeslami 2006]), to operating
systems (e.g. Linda [Gelernter 1985]) and application level (e.g. relational databases
research [Pagel et al. 1993]). In the area of Peer-to-Peer systems, a significant body
of recent work has looked at ways to extend the fundamentally ID-Query oriented
nature of DHTSs to efficiently support Range-Query operations utilising hash-based
and hash-free approaches. Most work in this area is geared towards Instantaneous
Queries (e.g. [Bharambe et al. 2004]).

In traditional distributed simulations, which are based on message passing, the
problem of ID-Queries has been addressed through the development of Distributed
Shared Memory (DSM) mechanisms [Mehl and Hammes 1993]. More recently, an ex-
plosion of application of the PDES paradigm to more non-traditional simulation tasks
with Range-Query functional requirements, such as complex system or multi-agent
system models, has led to efforts to bridge the gap between traditional PDES and this
increasingly relevant, form of simulation model [Logan and Theodoropoulos 2001;
Lees et al. 2003]. These agent-based systems may consist of billions of agents [Macal
and North 2008] which operate in a complex shared environment wherewith they in-
teract in highly dynamic and unpredictable patterns. This interaction is performed
via a recurring cycle of ‘sense-think-act’ operations [Logan and Theodoropoulos 2001],
wherein a sense is semantically a Range-Query. Most of the relevant work in this direc-
tion has been conducted in the fields of large scale distributed simulation (HLA) and
more generally Distributed Virtual Environments (DVEs). Though DVEs do use ID-
Queries for many operations, they are more commonly characterised as systems which
interact with the world primarily via Range-Queries.In this context the Subscriptions
query model is adopted. HLA’s DDM service provides the ability to associate individual
simulation nodes (‘federates’) with subscription regions (equivalent to Range-Queries)
and individual updates with update regions (equivalent to writes). In HLA, Cell-based
architectures map queries to multicast groups that correspond to discrete cells in a
grid overlay [Hook et al. 1994; Boukerche and Roy 2002; Macedonia et al. 1995; Morse
2000; Berrached et al. 1998] while Region-based approaches calculate explicitly the
overlaps between regions themselves [Morse and Zyda 2002]. Similarly, several cell-
based [Knutsson et al. 2004; Yu and Vuong 2005; Minson and Theodoropoulos 2007],
zone-based [Barrus et al. 1996] and aura-based [Morgan et al. 2004; Hu and Liao

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 2 of 28

Page 3 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A3

2004] IM approaches have been proposed to support Range-Queries in the context of
DVEs and Massively-Multiplayer Online games.

This paper discusses the problem of realising instantaneous Range-Queries in the
context of PDES-MAS [Logan and Theodoropoulos 2001], a framework and a system
for the distributed simulation of multi-agent models. Different aspects of PDES-MAS
have been previously reported in a number of publications: issues related to data dis-
tribution and load balancing are discussed in [Ewald et al. 2006; Oguara et al. 2005],
synchronisation algorithms have been proposed in [Lees et al. 2009; 2008; 2003], while
the utilisation of PDES-MAS to address real-world large scale modelling problems is
discussed in [Craenen et al. 2011; Craenen et al. 2010]. The algorithms discussed in
this paper were first outlined in [Suryanarayanan et al. 2009] and [Suryanarayanan
et al. 2010] where an initial evaluation was also presented. This paper presents a
detailed and comprehensive description of the algorithms and a complete set of perfor-
mance results.

The rest of the paper is organised as follows: Section 2 provides a short description
of the PDES-MAS system. Section 3 discusses the design of logical-time synchronised
Range-Queries in PDES-MAS while section 4 extends this design to accomodate dy-
namic load balancing. Section 5 provides a experimental analysis of the proposed algo-
rithms. Finally, Section 6 summarises the main conclusions and outlines future work
to be carried out in this area.

2. PDES-MAS

The PDES-MAS framework is implemented based on PDES paradigm, where a simula-
tion model is divided into a network of concurrently executing Logical Processes (LLPs),
each maintaining and processing disjoint state spaces of the system. Two types of LP
exist in a PDES-MAS simulation. Agent Logical Processes (ALPs) are responsible for
modeling the behaviour of the agents in the MAS. This includes the processing of sense
data, the modeling of behavioural processes (such as planning or ruleset evaluation)
and the generation of the new actions. ALPs store only private state variables while
the shared state (public variables, including publicly accessible attributes of agents)
are distributed over and managed by a a tree-like network of server LPs known as
Communication Logical Processes (CLPs) as depicted in figure la. CLPs essentially
implement a DSM model whereby public variables are represented by Shared-State
Variable (SSV) data-structures which store the history of values taken by a particular
variable over time [Lees et al. 2003].

In response to the sensing and acting of agents in the simulation, ALPs perform
reads and writes on SSVs in the system. The primary philosophy of PDES-MAS is to
provide multiple ALPs concurrent access to the set of SSVs in a scalable manner by a
balanced distribution of SSVs. Accesses to SSVs held by remote CLPs are forwarded
until they reach their destination. Communication between the LPs in the system is
realised by ports, which are complex data-structures maintaining routing information.
The CLP tree is reconfigured dynamically and automatically (see section 4) to reflect
the interaction patterns between the agents and their environment so that SSVs which
are accessed most frequently by a given ALP are as close as possible to that ALP in
the tree. The aim is to concurrently minimise the overall cost for accessing SSVs in the
system.

A CLP is responsible for synchronising the events it receives from ALPs. Synchro-
nisation algorithms that have been developed for PDES-MAS are reported in [Lees
et al. 2009; 2008; 2003]. In general, each SSV is associated with a list of Write Periods
representing the values taken by the variable at different logical times through the
simulation, as illustrated in figure 1b. If a write period is subsequently invalidated by
a straggler write, any ALPs which read that period must by rolled back. ALP reads in

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A4 V. Suryanarayanan et al.
Shared State
Write Periods
Start time:1 End time :4 | Start time: 4 End time :
V. Value :31 « Value :38
d ReadList {(Ag1,2), ReadList {(Ag1,4),
CLPg __(Ag23} (Ag2,4}
Start time :1 End time : ©
Value :38
v 2 V2| ReadList {(Ag1,21),
4 3| (Ag2,24}
<& oY S| Starttime -1 Endfime : 5 Start fime :5 End time : [Start time :15 End fime : =
31 v Value : 41 15 Value : 44 Value : 45
% 2 ReadList {(Ag4,3), ReadList {(Ag4,11), ReadList {(Ag5,21),
é ﬁ 1] (Ag5,4} (Ag5,14} (Ag1,24}
CLP; CLP, -
vi |
Vi| V2 v /|
< £ g
o
B
é é é @ e
| ALP4 ALP, ALP3 ALP; |

e
(a) (b)
Fig. 1: A tree of 3 CLPs and 4 ALPs. SSVs within a CLP

PDES-MAS come in two forms: ID-Queries and Range-Queries (sense). The rest of the
paper focus on the latter.

3. RANGE-QUERIES IN PDES-MAS

A standard ID-Query read operation in PDES-MAS requests the value of an SSV by
specifying the id of the SSV. The kernel handles this by forwarding the message to the
CLP hosting the specified SSV. This in turn relies on each CLP maintaining a map
from SSV id to forwarding port. In the case of a Range-Query operation, this map is of
no use since it records only the ids of SSVs, not their values. Without additional infor-
mation CLPs would need to flood a Range-Query message to ensure all SSVs are eval-
uated against it. Different design options for implementing this operation in a more
efficient manner were explored in [Ewald et al. 2006]. This paper adopts a logical-time
synchronised Range-Based approach.

3.1. Design Outline

The essential idea of the Range-Based system of routing Range-Queries is that each
CLP port records the complete value range of all SSVs that can be found beyond it.
When a Range-Query is issued it is flooded down all ports such that the port’s range
overlaps the query’s range.

For a given Range-Query this creates a horizon describing the extent of the query’s
propagation. All CLPs inside the horizon have had all their SSVs scanned by the query,
all CLPs outside the horizon claimed to have no SSVs of interest to the query and were
therefore not scanned. The horizon itself consists of a set of ports, each of which records
the fact that the query was blocked at that point and did not progress. This simple idea
is depicted in Figure 4a where the horizon created by a single Range-Query (here, an
ALP issuing a Range-Query 2,5) is depicted.

The Range-Query’s existence is recorded explicitly at every CLP inside a propaga-
tion horizon. Due to this, any changes to SSV values which change the query’s results
will be detected at the CLP directly. Conversely, CLPs outside the horizon have no
record of the query’s existence and therefore cannot directly determine if changes to
SSV values need to rollback the query or not. Instead, CLPs outside the horizon have

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 4 of 28

Page 5 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A5

SSV changes outside

the horizon which
should not have been
included in the result
and wasn't

SSV changes outside
the horizon which I
should have been e R
included in the RQ
result but wasn’t

SSV changes inside
the horizon which
should not have been
included in the RQ
and wasn't

N, %changes inside TN
\ the horizon which
\ should not have been
! included in the RQ
but was

Fig. 2: Reactions to SSV changes inside and outside of a propagation-horizon. Changes
inside are directly detected by the SSVs the query accessed. Changes outside are de-
tected by range-updates to ports lying on the horizon.

the responsibility to update the port ranges of neighbouring CLPs. In turn, if a port
lies on a horizon, it has the task of detecting whether a range update invalidates the
earlier decision not to propagate the query and, if so, rollback the entire Range-Query
operation.

These two rollback conditions (an SSV change inside and horizon and an SSV change
outside the horizon causing a port-range change on the horizon) are shown being eval-
uated and committed in Figure 2.

3.2. Logical-Time Range Updates

The system described in the above section is relatively simple. Each CLP simply needs
to maintain the range covered by its own SSVs and, whenever they change, determine

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:6 V. Suryanarayanan et al.

whether port updates need to be sent to neighbouring CLPs. This requires a simple
test: is the (min,max) of the SSV set the same as old (min,max)? In turn these changes
will be propagated by neighbouring CLPs if they lead to further ports being invali-
dated.

However, this simple picture is complicated by the fact that an SSV is not a single
value, it is a list of time periods during which the SSV took different values. Corre-
spondingly, the set of SSVs maintained by a CLP describe a sequence of ranges over
time. It is therefore not correct to think of a port as having information about a range
covered by the SSVs beyond the port, but actually a sequence of Range Periods.

In order to maintain the Range Periods of a neighbouring CLP’s port we require a
more complex algorithm than the simple (min,max) comparison. Before defining this
algorithm we first define some data structures and terminology:

— A RangePeriod (RP) describes a period, starting at a given Logical Time (LT) during
which a given set of SSVs fall within the specified range.

— A RangelList is a list of RPs which together describe the coverage of the set of SSVs
as it evolves over time.

— Each CLP contains a single RangeList H (denoting ‘here’) for its own local SSVs and
has the responsibility of maintaining this data structure.

— In addition, each port to a neighbouring CLP is labeled with a RangeList covering the
set of SSVs in all CLPs beyond this port. These three port RangeLists are termed U,
R and L (‘up’, ‘left’ and ‘right’) respectively. It is the responsibility of the neighbouring
CLP to which a port connects to keep this data structure updated.

Given these definitions the tasks of the system break down in to three concurrent
processes:

(1) As write and anti-write messages are received by the CLP, the RangeList H must
be maintained. When H changes, the port RangeLists U, R and L must also be
checked and, if necessary, updated with these updated propagated to further CLPs.

(2) As Range-Queries arrive, the RangeLists of the CLP must be used to propagate the
query to CLPs with matching SSVs, block it from CLPs without matching SSVs and
determine whether the query needs to read local SSVs.

(3) As RangelLists are updated (either via Range Updates from neighbouring CLPs,
or by write/anti-write messages bound for the local SSV set) Range-Queries which
were blocked at the time they arrived must be checked to determine whether this
decision was correct or not. In the event that it was not, the query must be rolled
back.

There are three main CLP components involved handling Range-Queries, updates
and rollbacks in a time synchronised manner namely, Range Routing Table (RRT),
RQTracker and SharedStateListener(figure 3). The remainder of the section discusses
these processes in more detail.

3.2.1. Maintaining Range Period List. The Range Routing Table (RRT) maintains a list
of range periods at each port (H, U, L, R) and sends updates to neighbouring CLPs
(triggered indirectly by neighbouring CLPs or by the shared state of a CLP (H)). A
Range period list at a port (H, U, L, R) represents a list of Range Periods evolved over
time. A Range Period is similar to a Write Period which defines the validity of a value
of an SSV within a time period (a start and end time). In case of a Range Period, it
represents a range of values of a set of SSVs covered during a time period. A simple
example of a Range Period List maintained in a CLP is depicted in the figure 4b.

Any change in the value of an SSV is indicated to RRT maintaining Range Period
List at port H using the Shared State Listener module. This is an event listener on

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 6 of 28

Page 7 of 28

0
1
2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

PRPRPOO~NOOUOPRAWDNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A7

\ Network Communication |

Shared State

A set of SSVs.

SSV updates (write/
anti-write) are
recorded along
with any rollbacks.

The RRT for this
CLP (H) is then
notified.

Shared State
Listener

Maintains a list of
listeners to shared
state.

Events on SSVs (ID/
Range Query, write)The
event (write/anti-write)
are notified to all
listeners.

A ¥
= !
Send Thread o - Recv Thread
Send Recv
Queue 1 CLP Queue
| = !

State Migrator

Populates SSV List
for migration.

Initiate GVT to
garbage collect
shared state.

Migrate SSV, update
ports and sends

Access Monitor

Events (ID read/
write/Range Query)
on a SSV/SSVs are
recorded at each
port.

Periodically checks|
cost for the CLP.

rollback, if required.

Range Routing Table RQ Tracker

Maintains a list of Range Periods. Each port (H,U,L,R) is Keeps track of all RQs
associated with a RRT and describes the list of values of routed though this CLP
SSVs that can be found beyond a port for a given time. which have not yet returned

This list is required to block or propagate Range Queries. to ALP.

Any change in range (sent by neighbouring CLP or by Aggregates return values as
shared state of a CLP (H)) is updated to the table and rolls they come in and sent back
back RQs, if required. through ALP port.

Fig. 3: An overview of CLP components relevant to handling Range-Queries.

\
§ oo N [err]
N | mmmm Blocked
T L BN NotBlocked | Range Period List
Y N Yy K erRIR AR ATE TR ATE AN Lol 6 AR INE S I A I AR T &
/ 307 O Y \
i | I 10,5]
! ! / 110 3 H RQ{0,2} [0,10] [3,10]
\ / 1efs
\) gag RQ{1015) | RQ{0.2} |RAl1015)
- 15,20] RQ{10,15 19,251
/7 - 2 | 2 10 u | 15201 RQ{10,15}, RQ{0,2},RQ{10,
y RQ{0,2} e
!
| 2 3 6 8 1
\ 3|5 L [[21,25] [21,27] RQ{10,15},RQ{0,2}
\
AN
e, 41 4 R [50,55] RQ{10,15},RQ{0,2}
Ra2S)
(a) (b)

Fig. 4: (a) The propagation-horizon created by a Range-Query traversing a tree of
CLPs. (b) An example of a Range Period List (at the right) of a CLP at ports (H, L,
U, R) evolved over time.

the shared state of a CLP at port H. All events are indicated automatically to objects
registered with this module such as Range Period List at port H and Access Monitor
(which monitors the access patterns on SSVs, see section 4). In the case of maintain-
ing the Range Period List, only write/anti-write events are indicated. The process for

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation
A8 V. Suryanarayanan et al.

SSV values Range Info

SSV | LT, | LT, | LTy | LT, | LTs [LT:]=[0,5]

alw N

ssV [LT, | LT, | LTy [LTy [LT [LT1=[0,5]
[LTs] =[1,5]

0
2 SSV; has WP with period [5,:2] added.
5
1

Calculate SSV range at LTs (= [1,5])

If range is different to old range for LTs, Insert RP
with LTs and new range ([1,5])

For each RP with LT > 5, recalculate range (none
get recalculated in this example)

slw(n|a

SSV | LT, | LT, \ LT, \ LT, | LTs | & [LT]=[0,5]
n
1 0 3
= [LT:] = [0,10]
2 2 >
3 | 5 n [LTs] = [1,10]
4 1 SSV; has WP with period [3,] added.
Calculate SSV range at LT3 (= [0,10])
If range is different to old range for LT;, Insert RP
with LT3 and range [0,10]
For each RP with LT > 3, recalculate range
ssV LTy [T, [LT [LTy [LT [LT]=[0,5]
! 0 3 LT 0,10,
2 2 10 [LTs] =[0,10]
3 5 [LTs] =[3,10]
4 |1 n SSV, has WP with period [2,-] added.

Calculate SSV range at LT, (= [0,5])

If range is different to old range for LT....it's
not so just continue

For each RP with LT > 2, recalculate range

Fig. 5: A sequence of updates occurring to a set of SSVs in real time (top to bottom) and
the updates made to the RangePeriodList in response. For each update the algorithm
execution is detailed.

maintaining the Range Period List data structure is illustrated for a sequence of up-
dates to an example SSV set in figure 5. This process in detailed in algorithm 1 in the
appendix. This algorithm can be optimised using heuristics but for clarity is presented
in its brute-force form. It has the effect of recalculating the entire RangePeriodList
beyond the write/anti-write logical time.

3.2.2. Range Update Propagation. Whenever an invocation of the algorithm 1 results in
a change to the RangePeriodList H of a CLP, this information may effect the RangePe-
riodLists associated with ports with neighbouring CLPs. Therefore, whenever a change
to H occurs, this information is checked for correctness, and updated if necessary. Of
course, the ports U,R and L are not simply maintained with the range of H, rather
each is maintained with the union of H and the other two ports (e.g. the range of L is
equal to [min(Uminv Rmin; Hrnin)a max(Urna;w Rmawa H’max)])-

Write and anti-write messages may cause changes to H, leading all ports to be re-
calculated for correctness with the logic above. Consequently Range Update messages
may be sent, leading to the modification of RangePeriodLists at neighbouring CLPs,
this in turn will lead to the recalculation of the other ports at that CLP. This rela-
tionship between list modifications and checks is depicted in the matrix in figure 6a.
The algorithm to handle synchronised range updates arriving at any port (H,U, L, R)
is illustrated in the appendix (algorithm 2).

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 8 of 28

Page 9 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A9
| RQTracker |
RQId Agent | Origin Range Received Response
List Modified Lists Recalculated (using)]| L P I I
H L(URH) R(HLU) U(RHL) 1 Ag1 u [1:1,2:3] Y | NA | N | N
L R(HLU) U(RHL) 4 | Ag3 u [4:4,6:6] vy | na| v | v
R L(URH) U(RHL) 5 Ag7 R [2:2,3:3] Y N v | NA
U L(URH) R(HLU) 8 | Agi0 L (7:7.8:8] ‘ Y ‘ Y | na | N ‘

(a) (b)

Fig. 6: (a) The relationship between RangePeriodList modification and recalculation.
(b) A snapshot of RQTracker table.

3.2.3. Range-Query Processing. This section presents mechanisms for a synchronised
Range-Query to propagate, record its existence and return responses from other CLPs
back to the originating port. A simple example of a Range Period List with a list of
Range-Queries processed at each port of a CLP is depicted in figure 4b. When a Range-
Query arrives it is processed by determining which, if any, of the 4 potential sets of
SSVs it is required to read: the local set, bounded by H and each of the sets past the
port Range Period Lists {U, R, L}.

Each of the Range Period Lists are read in turn for the given logical time of the query.
If the Range Period at that logical time has a non-empty intersection with the query
then the query is forwarded to this SSV set (in the case of H this involves reading all
local SSVs, in the case of U,R and L this involves the CLP forwarding the message
to the neighbours on those ports). In this case, the Range-Query is marked as ‘Not
Blocked’ at each port recording its propagation. If conversely the Range Period has
an empty intersection with the query then the query is recorded in the period and is
not forwarded to the SSV set. In this case, the Range-Query is marked as ‘Blocked’
recording its end of propagation extent. This pattern of port traversal, blocking and
SSV reading creates the propagation horizon depicted previously in figure 4a.

Each CLP is also responsible to aggregate responses of a Range-Query from ports
through which it has been propagated. RQTracker table maintains a record of each
Range-Query with its unique identifier, originated port (the port the query came from)
and status of responses received from ports it has been propagated. A snapshot of
RQTracker table is depicted in figure 6b. Once results from all ports are aggregated
they are sent back to the originated port and the entry is deleted.

3.2.4. Rollback Control. In PDES-MAS a rollback must be triggered when an ALP is
found to have read in incorrect value. This occurs, in the case of ID-queries, when
a WritePeriod containing a read with logical time Tk is modified with a new write
occuring at time Ty < Tg. But in the case of Range-Queries, it is more complicated for
two reasons,

— A Range-Query adds a second predicate to the rollback condition. As before a roll-
back condition will only occur if the new write time Ty is less than the Range-Query
time Trg. However, because an ALP does not need to be rolled back if it did not re-
ceive incorrect data, we must also determine if a Range-Query actually returned
erroneous data from the WritePeriod or not. This will be true in all cases with the
exception of when the WritePeriod value at Trg was outside the query’s range and
the value of the write Vjy is also outside the query’s range. In this case (as depicted

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:10 V. Suryanarayanan et al.

in the right hand side of Figure 2) the query was answered correctly despite the new
write and does not need to be rolled back.

— A Range-Query will be rolled back in response to straggler/late range updates from
neighbouring CLPs using Range Period List. Range Period List records the existence
of Range-Queries at all ports, as shown in section 3.2.3, which in turn evaluates the
range updates arriving at a port against Range-Queries blocked at that port. Sup-
pose a range update arriving at time Try less than any of the blocked Range-Queries
time Tro and with range value intersecting any of the blocked Range-Queries’ win-
dow, then it will be rolled back. This is turn invalidates the query answer because a
blocked Range-Query should now be propagated to get new set of SSVs.

Although a Range Period List and a list of Write Periods are conceptually and func-
tionally different entities in the system, algorithmically they share a common approach
to storing Range-Queries and processing rollback predicates in response to updates.
This process is shown in algorithm 3 in the appendix. .

4. RANGE-QUERIES IN THE PRESENCE OF STATE MIGRATION

The algorithm presented so far assumed fixed locations of SSVs in the tree and did not
consider the dynamic reconfiguration of the tree. In this section we focus on the latter.
The hypothesis is that the reconfiguration of the tree results at the dynamic reduction
of the horizon size of the Range-Queries travelling over the CLP tree.

There are different ways to reconfigure the CLP tree, from splitting and merging
CLPs, to migrating ALPs and/or SSVs through the tree [Logan and Theodoropoulos
2001]. Here, we assume a fixed tree of CLPs with ALPs as leaves in fixed locations and
SSVs migrating through the tree closer to the ALPs that access them. SSV migration is
achieved by means of a competitive optimisation algorithm reported at [Oguara et al.
2005]. Following this approach, a CLP monitors the access patterns of its SSVs at each
port maintaining access cost information for each SSV it hosts. The total access cost of
an SSV is a function of the number of accesses and the number of hops for each access.
SSVs are migrated through the port with the highest access cost over a period. Several
threshold parameters are utilised to avoid thrashing and ensure a balanced load across
CLPs (see figure 3). This basic algorithm is extended to support Range-Queries.

Migration of an SSV as achieved by deleting the SSV from one CLP and adding to
another CLP together with its entire history of Write Periods. The ports of both CLPs
may be easily updated with the SSV’s new location. This does not affect processing any
transient simulation messages such as ID Query/write operations.

To support Range-Queries however, migrating an SSV with its Write Period history
also means changing the Range Period history at both CLPs (namely the validity pe-
riods of range information of SSVs within a CLP). To achieve this, each Range Period
has to be evaluated against the list of SSVs selected for migration, again with its entire
history. This is because each write period of an SSV could contribute to one or more
Range Periods (depending on the validity period of the value). The migration algorithm
within each CLP is outlined in the following steps:

(1) Populate SSV List: Generate lists of SSVs and the ports to which they have to be
migrated.

(2) Initiate Global Virtual Time: Whenever the migration algorithm selects an SSV,
it first initiates Global Virtual Time (GVT) to garbage collect the shared state
from the simulation. The objective of this operation is to reduce the overhead of
evaluating the Range Periods. Since every action is timestamped and recorded for
rollbacks, it has to be ensured that the SSVs are no longer required for any LP
in future. For the work presented in this paper, Mattern’s GVT algorithm [Mat-

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 10 of 28

Page 11 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A1

tern 1993] is used in PDES-MAS to calculate the global minimum time of all send,
receive and transient events over all LPs.

(3) Delete SSVs from the CLP: Upon completion of the GVT operation, the SSVs se-
lected for migration are deleted. Deletion of a SSV with a list of write periods from
a CLP is implemented as a list of anti-writes/rollbacks. An anti-write/rollback op-
eration also handles evaluating the Range Periods generating rollbacks and range
updates to neighbouring CLPs.

(4) Add SSVs to the destination CLP: The SSVs are migrated to the appropriate des-
tination/neighbouring CLP. The receiving CLP accepts the SSV and adds it and
its list of write periods. Adding an SSV to a CLP is implemented as a list of write
operations. The write operation also handles evaluating the Range Periods and
generating rollbacks and range updates to neighbouring CLPs.

The migration process is depicted in algorithm 4 in the appendix while figure 7
illustrates the operation of the algorithm, showing the state of a CLP after the GVT
operation, and the deletion and addition of an SSV

The advantage of coinciding GVT calculation with SSV migration is that the migra-
tion process will not affect any transient messages in the simulation and that Range-
Queries over the CLPs and Range Updates are synchronised correctly. However, an
increased overhead is generated in the form of additional rollbacks and range updates.

5. EXPERIMENTAL INVESTIGATION

In this section we present an analysis of the proposed algorithms using traces gener-
ated from different agent-based simulations. The experiments have been designed to
analyse the behaviour and performance of the algorithms over various metrics and un-
der different conditions. Two sets of experiments were performed. The first set (section
5.2) is meant to isolate and analyse the behaviour of the Range-Query system with-
out the added complexity of tree reconfiguration. The second set then performs a more
comprehensive analysis of the system taking into account dynamic reconfiguration of
the system (section 5.3).

5.1. Experimental Setup

The experiments were carried out on a working implementation of the PDES-MAS ker-
nel written in C++ using simulation traces to control the read, write and Range-Query
operations issued by ALPs. The traces used were generated by varying the two exper-
imental parameters: the size of the query (RQ size) and the range of values covered by
each CLP (SSV range), both both proportional to the size of 2-dimensional area covered
by the simulation. Figure 8 shows a logical view of the simulation setup for different
values of the experimental parameters. Varying the two experimental parameters will
have an effect on the experimental behaviour of PDES-MAS. The experimental setup
used for analysis presented in section 5.2 is given below.

— A tree of 7 CLPs are initialised, each maintaining 10 SSVs whose values (z,y) lie
in a 2-Dimensional radius around a randomly selected central point. The size of the
radius corresponds to the SSV range parameter.

— 8 ALPs (two attached to each leaf CLP) each issue a 2-Dimensional Range-Query
once per tick with a static position and radius. The radius corresponds to the R@
size parameter.

A similar setup has been used for the analysis presented in 5.3 but with the root
CLP containing initially 7 clusters of 50 SSVs. All SSVs residing at the root CLP rep-
resents the average case. Simulations are run for 1000 ticks.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Transactions on Modeling and Computer Simulation

A:12 V. Suryanarayanan et al.

——Step-2: Deletion of SSV2 in CLPy

. .. Rollbacks are generated to synchronise Range Queries and
Step-1: GVT Calculation in CLPy. updates are propagated (wherever necessary
Cl \
CLPy - - LPx :
Write Periods Range Periods Write Periods === }i\ange Periods
SSV[LT, [LT, [LTs | [Ports [LT, [[175 | ssv [LT, | LT, Ports | LT; LT,
1] 0 3 H [051 | 10,101 [[3,10] 1 3 H
2 | 2|10 1] 1520] [[1525] U [15,25]
3|5 L [R125]] [21.27] B 5 N [21,27]
4 |1 4 R 50,55] 4 [4 | | R [50,55] |
{ GVT Deletion of SSV2
CLP CLP
N N === N X
Write Periods Range Periods Write Periods = Range Periods
| 1
ssv | LT; | LT, Ports LT [LT | ssvv | in | Ports M | n
1 3 H [3,10] : s H B3]
2 10 v [15,25] | U [15,25]
3 5 L [21,27] 3 5 L [21,27]

4 4 R 50,55] 4 4 ‘ R 50,55]
(a) Step-1: GVT Calculation in CLPx (b) Step-2: Deleting SSV2 in CLPx
Step-3: Addition of SSV2 in CLPy.

CLPy
Write Periods == Range Periods
ssv | LT, | LT, Ports | LT, [LT. |
A v H [21,27)
u [3,5]
5 25 L 10,0]
6 27 R [0,0]
. Rollbacks are generated to!
Addmg SSv2 synchronise Range Queries,
and updates are propagated.
CLPy
Write Periods — Range Periods
[
ssv | in [| [Ports [Ty | T,
4 21 H [10,27]
5 25 u 13,5]
6 27 L [0.0]
2 10 R [0,0]

(c) Step-3: Adding SSV2 in CL Py

Fig. 7: State changes in Write Periods and Range Periods table during the migration
of an SSV (S5V3).

The relationship between the SSV range and RQ size experimental parameters is
determined by the area polled by the Range-Queries and the amount of clustering of
the SSVs in the 2-dimensional experimental area. When the area polled by the Range-
Queries is small (RQ size small), and the SSVs are clustered tightly around the ran-
domly chosen centre-points (SSV range small), there is a high probability of the Range-
Queries only accessing few if any SSVs everytime they are issued. When the R@ size
parameter is increased while the SSV range remains small, the probability of access-
ing SSVs increases, and if one SSV is accessed, the probability of accessing the other
SSVs in the cluster is also high. Given that the R@ size parameter adjusts the radius
of the Range-Query, the probability increase is likely to be quadratic, although dimin-
ished by overlapping areas. If the SSV range parameter is increased while the RQ size
remain small, the probability of accessing the SSVs increases as well, as they are more
spread out over the simulation area but the probability of accessing more SSVs in a
cluster decreases proportionally. When both the SSV range and R size parameters
are increased in unison a certain average behaviour can be expected. Note that for

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 12 of 28

Page 13 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:13
® e
[] []
w
.0 ° ®
@
>
a
[0
(=)}
c
©
14
o [] o
[}
N
‘U_) [[J
L] ®

Range of SSV values in a CLP——p»

Fig. 8: The logical view of the traces used to investigate the extent of Range-Query
propagation under different conditions. The SSVs maintained by each CLP share the
same colour.

both parameters a phase transition can be expected when they are increased. For both
parameters, each increase of the parameter value will also increase the probability of
accessing more SSVs with the rate of increase flattening out and eventually levelling
off. The rate of increase will be smaller for the SSV range parameter than it is for RQ
size parameter.

The computational infrastructure used was the Midlands eScience Center (MeSC)
cluster environment!. Each worker node of the cluster comprises 2 GBytes of mem-
ory and 2 Intel Xeon 3GHz processors. All worker nodes are accessible from the clus-
ter§ master node connected through a 100M Bps fast ethernet running Red Hat En-
terprise Linux AS release 3.2, kernel version 2.4.21. For communication, LAM / MPI
(7.1.3) [Squyres and Lumsdaine 2003] libraries were utilised.

5.2. Static Tree Analysis

The experiments presented in this section are designed to analyse the performance
and interrelationship of three concurrent operations: Range-Query propagation; Syn-
chronisation via Range-Query Rollback; and Range Update propagation in response to
write/anti-write patterns.

5.2.1. Range-Query Propagation. This experiment aims to analyse the extent of prop-
agation of a Range-Query (how far a query travels through the tree) as a function
of SSV range and R size. The propagation extent of a Range-Query is determined
by how quickly the query reaches a port that holds no relevant values beyond it. We
therefore hypothesised that, on average, larger queries will propagate further through
the CLP graph, and that the larger the range of values CLPs hold, the further the
average Range-Query will propagate. We measured propagation extent using the av-
erage number of hops a Range-Query performs (since processing occurs in parallel at

Thttp://www.ep.ph.bham.ac.uk/general/escience-cluster/

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:14 V. Suryanarayanan et al.

45 24

SSV Range=0.1 —v— SSV Range=011 —4—
SSV Range=0.2 —v— 22 | SSV Range=0.2 —v»—
SSV Range=0.3 —_ SSV Range=0.3
4 r SSV Range=0.4 —e— o SSV Range=0.4
SSV Range=0.5 5 g 20 SSsvRange=0.5 —&—
(o 2 <
4 [0
18
5 35t €
o <
2 S 16
o 3}
=
> 3 :%‘/ S
< ©
2
S 12Ff
25 ;
10
2 8
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
RQ Size (as prop. of world) RQ Size (as prop. of world)
(a) (b)
[" Rollback Rate —&— T
— 0.14 Wallclock Time —o— 140
i’y
o —
g o1zt {120 @
-~ Q
n oA
2 01 {1100 o
£ E
= =
5 0.08 1 80 ¥
by]
g 006 - 160 2
o4
x 2
S 004 | 140 B
2 2
€ 002 {20

0.1 0.2 0.3 0.4 0.5
RQ Size (as prop. of world)

(c)

Fig. 9: (a) Average Hops per Range-Query for Different Query Size and SSV Range
values (b) Average Walltime per Range-Query for Different Query Size and SSV Range
values (c) Relationship Between Range-Query Size and the Incidence of Rollback, and
its Effect on Execution Time.

several CLPs, this is taken to be the size of the set of CLPs visited by the query). We
also measured the corresponding overall effect on system performance by also record-
ing the average wallclock time between an ALP issuing a Range-Query and obtaining
the response.

As figures 9a and 9b both the average hops and wallclock time per query confirm this
linear relationship of both Range-Query size and SSV value range to the propagation
extent of Range-Queries. The average hops varies from 2.875 (with RQ size= 0.1 and
SSV range = 0.1) to 3.8743 (with RQ size= 0.5 and SSV range = 0.3), whereas wallclock
time per Range-Query ranges from 9.6 msec (with RQ size= 0.1 and SSV range = 0.1)
to 22.77 msec (with R@ size= 0.4 and SSV range = 0.5).

5.2.2. Range Update Rate. The second experiment analyses the relationship between
Write operations and the consequent rate at which Range Updates occur. For this ex-
periment ALPs perform no Range-Queries and simply issue a single Write operation
at each logical time step to one of the SSVs in the simulation. The initial distribution
of SSVs to CLPs is random and the choice of which SSV to write at each step is also
random. To variables parameterise the traces for this experiment:

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 14 of 28

Page 15 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:15
Write SSVs/CLP 2 | SSVs/CLP 4 | SSVs/CLP 8 | SSVs/CLP 16 | SSVs/CLP 32
Delta
0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.2655 0.1422 0.0536 0.0495 0.0253
2 0.4023 0.2226 0.0998 0.0736 0.0374
4 0.4690 0.2539 0.1170 0.0854 0.0435
8 0.5165 0.2924 0.1293 0.0916 0.0503

Table I: The Range Update Rate for Different Combinations of Write Delta and SSVs
per CLP.

— SSV per CLP: the number of variables stored by each CLP and

— Write Delta: when a write is performed the ALP must choose a new value. The write
delta is the metric distance between the SSVs current value and the new value that
is written.

Range Updates by a CLP whenever the range covered by the local set of SSVs
changes. Accordingly, the hypothesis for this experiment is that Range Updates will be
generated more frequently when the SSV set is smaller and when consecutive writes
change the value of an SSV by a larger amount. The actual metric used to quantify the
frequency of Range Updates is ratio of Range Updates to Write Operations, hereafter
termed the ‘Range Update Rate’.

The results are presented in table I. As predicted, both parameters are strongly
correlated to the Range Update Rate. In the extreme case of a 0-value Write Delta,
no Range Updates occur, since the Ranges covered by CLPs never change. As Write
Delta rises, each write has a higher chance of causing a Range Update. In the opposite
extreme of Write Delta = 8 and SSVs per CLP = 2, every write will cause the local set
of the host CLP to change?. The rate varies from 0 (with SSV per CLP= 2 and Write
Delta = 0) to 0.5 (with SSV per CLP= 2 and Write Delta = 8). One can notice as SSV
per CLP increases, the rate decreases linearly as there is a lower chance to send range
updates.

5.2.3. Rollback Rate. The final experiment of this set considers a more complete trace
which contains both Range-Query and Write operations, creating the potential for Roll-
back. For this experiment both the Write Delta Size and the SSVs per CLP were set
statically at the values 1 and 8 respectively and the Range-Query size varied between
0.1 and 0.5 as a proportion of the size of the simulated world. In these conditions the
Range Updates which occur will remain relatively static between consecutive runs. At
the same time, the extent of Range-Query propagation is expected to increase in pro-
portion to its size, as will the average wallclock time required to complete them (as
observed in Section 5.2.1 above). Correspondingly, we predict Range-Queries with a
large propagation extent through the tree to be more likely to be rolled back and, con-
sequently, increase the overall wallclock time of the simulation. For a given simulation
execution the actual probability of a Range-Query being rolled back can be estimated
as the ratio of Anti-Messages to Range-Queries, hereafter termed the Rollback Rate.
In the absence of other variables we expect this property to be proportional to wallclock
time.

The correlation between Query Size and Rollback Rate and the corresponding impact
on total Execution Time is shown in figure 9¢ and strongly agrees with the predictions
given above.

2Note that the local set changing will not necessarily cause the propagation of a Range Update message to
a neighbouring CLP, see section 3.2.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:16 V. Suryanarayanan et al.

5.3. Dynamic Tree Analysis

The overall objective of state migration is to improve the performance of the system by
moving SSVs closer to the accessing ALPs, thus reducing the number of hops needed
to access the SSVs resulting in a reduction in the average access cost of the SSVs. But
state migration also comes with a cost; as described in section 4, each state migration
initiated also initiates a rollback and moving SSVs means an increase in the number
of updates when they are moved from one CLP to another. In this section we present
an experimental investigation into both effects in order to evaluate whether the ac-
cess cost reduction of state migration outweights its inherent cost. The aim of this
investigation is twofold: (a) analyse the impact of Range-Query propagation and State
Migration on the access cost of the system; and (b) analyse the impact of increased
rollback volatility and State Migration cost on average simulation time.

Experimental results both with and without state migration are presented to allow
for a clear comparison between the two configurations.

5.3.1. Range-Query Propagation. In this experiment we want to quantify the effect
Range-Query propagation and state migration has on the access cost of the SSVs.
To isolate this effect, the traces generated for this experiment did not include any
write-events. As such, any rollbacks initiated will be caused by state migration alone
without further dilution from non-deterministically caused rollbacks by write-events
in the traces themselves. With the simulations run for 1000 ticks, the ALPs will issue
1000 range queries as well.

Range-Query propagation is measured by the number of hops it takes to fetch the
SSVs in the CLP tree. Without state migration the number of hops required would be
7; 3 hops from the leaf CLP to the root, 3 return hops, and an extra hop to the ALP.
The same hop counting method is used for both experiments. The number of SSVs
accesses, and thus the total number of hops for an experiment, is determined by the
combination of the experimental parameters: SSV range and R@Q size.

40

State M igrations -
Range Queries —o—

Deviation -4

Avg. Range Query Propagation 35

Deviation of hops

Average number of hops
Avg. Number of State Migrations initiated

Avg. Number of Range Queries Regenerated

.
0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 05
RQ Size RQ Size

(a) (b)

Fig. 10: Average number of hops (with its deviation from the mean) and average num-
ber of State Migrations initiated and Range-Queries regenerated for varying RQ size.

Figure 10a shows the average number of hops required to access SSVs and their
deviation from the mean for varying R@ size values. The results were averaged over
the various SSV range values without loss of accuracy. The results suggest a linear
relationship between the average number of hops and the RQ size parameter, with the

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 16 of 28

Page 17 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:17

average number of hops ranging from 1.4 to almost 3 for R® size from 0.1 to 0.5. In
this range, the standard deviation from the average number of hops indicates a linear
increase from 0.4 to 0.7. The results suggest that the increase in variance is caused
by a higher probability for SSVs to be localised with minimum or no overlap with
range queries issued from different ALPs for smaller RQ size values. With minimum
or no overlap, SSVs will eventually be migrated to the leaf CLPs. When the SSV range
and/or R size parameter is increased, a correspondingly higher likelihood of having
Range-Query overlapping each other means an increased likelihood of SSVs remaining
at intermediate CLPs so as to be more efficiently available for several ALPs. This
increases the spread of the average number of hops required to access these SSVs with
the corresponding increase in the variance and standard deviation of this measure.
Overall, the experimental results show a clear reduction of the average number of
hops required to access the SSVs from the constant 7 hops required to access them in
the root CLP. With an average of around 3 hops required in the worst case, this shows
that state migration has a substantial effect on Range-Query propagation.

Range-Query propagation on its own only shows one aspect of overall picture though.
State Migration’s extra cost has to be taken into account. We express the extra cost
incurred by state migration by measuring the number of state migrations initiated
and the number of Range-Queries regenerated with the underlying assumption that
the number of State Migrations initiated is directly correlated with the number of
range queries regenerated.

Figure 10b shows the average number of state migrations initiated and Range-
Queries regenerated for varying R@ size values. The figure supports our expectation
that the average number of State Migrations initiated increases with increased RQ size
values. The average number of Range-Queries regenerated follows this trend closely
with the maximum number of state migrations initiated reaching almost 4 and the
number of Range-Queries regenerated almost 35 for RQ size 0.5. Although the number
of Range-Queries regenerated is almost a factor of 8 times the number of state mi-
grations initiated, compared to the total number Range-Queries generated (1000 per
ALP), this should still be considered to a low number.

Thusfar, the results show that including state migration decreases the number of
hops, but also increases the number of Range-Queries regenerated, in turn increasing
the number of accesses. What remains is to see how this contributes to the overall
access cost of the simulation. The access cost of a simulation is the sum of the cost
of accessing SSVs in the CLP tree. The cost of accessing a SSV in the CLP in turn is
subject to the number of Range-Queries (the number of accesses) and the number of
hops needed to reach them in the CLP tree.

The access cost of the simulation without and with state migration is compared
by calculating the difference ratio in percentages called the Cost Reduction: C,. Cost
Reduction (C,) is calculated as follows:

~ C_sy —Cism

C, -100 1)

C_sm

With C_g); the access cost of the simulation without state migration and C, g, the
total access cost of the simulation with state migration.

Figure 11a shows the Cost Reduction for different SSV range and RQ size values.
The C, with state migration averaged over both SSV range and RQ size is 47.12 but the
figure suggests a lot of variance for different SSV range and RQ size combinations with
a decrease in C, when SSV range and R@ size increase. The highest Cost Reduction
was achieved with SSV range 0.3 and R@ size 0.1 for a reduction of almost 70%, while
the lowest Cost Reduction was found to be with SSV range 0.5 and R size 0.5.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:18 V. Suryanarayanan et al.

100

35

SSV Range = 0.1 —— SSV Range = 0.1 ——
SSV Range = 0.2 === SSV Range = 0.2 ----o---
SSV Range = 0.3 30 - SSVRange =0.3
80 - SSV Range = 0.4« , SSV Range = 0.4
= SSV Range = B 5| SSVRange=05 --x--
3 ;
S | I e <]
§ 60l ‘ id
% é 20 t
3 °
g 40 + o 151
% o
Q o -
o 2 07 -
20 | -
5 -
i
0 é ‘ ‘ ‘ o L g ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
RQ Size RQ Size

(a) (b)

Fig. 11: (a) Cost reduction C.. in percentages for different SSV range and RQ size com-
binations with their standard deviations (b) Average SSVs fetched by a Range-Query
for different SSV range and RQ size combinations

Figure 11a also shows the standard deviations from the averages Cost Reduction.
The trend shown in the figure suggests that the variance decreases when the SSV
range and RQ size values increase.

For a few SSV range RQ size combinations, no observable Cost Reduction was ob-
served, meaning that the access cost both without and with state migration remained
the same. To investigate this we present the average number of SSVs fetched by the
Range-Queries for different SSV range and RQ size combination in figure 11b.

The figure shows that when the SSV range and R@ size parameters are small, on
average no SSVs were fetched. For these SSV range and R@Q size values, the area cov-
ered by the range queries is so small, or, alternatively, the area in which the SSVs
are concentrated is so small, that no SSVs matched the Range-Queries issued by the
ALPs. Since state migration only updates access cost with SSVs that match the range
query predicate, in these instances, no state migrations were ever initiated, and with-
out these no cost reduction was affected. In conclusion, the results show that for state
migration to effect the greatest cost reduction, the SSV range and RQ size parameters
should be large enough to at least fetch some SSVs while keeping them small enough so
that SSVs access is localised enough for SSVs to migrate closest to the ALPs that will
access them. In these circumstances, state migration will reduce Range-Query propa-
gation significantly with a enough positive effect on the access cost of the simulation
to off-set the extra cost incurred by state migration.

5.3.2. Rollback volatility. Thusfar we have considered experimental traces without any
write-events in order to clearly expose the effect state migration has on access cost.
Experimental traces without write-events do no initiate any rollbacks from straggler
writes, and do not expose the effects of the interactions between rollbacks initiated
from different sources. In the following experiment we do include write-events in the
experimental traces so that we can fully assess the impact of rollbacks on overall sim-
ulation time. The same experimental setup as used in the first experiment is used here
with write-events increasing the value of the SSVs by 1. Write-events are issued by all
ALPs to SSVs randomly selected from all SSVs. As before, all SSVs are placed at the
root CLP in the CLP tree, with the SSV range and RQ size parameters varied.

Figure 12 shows the rollbacks committed per ALP for varying SSV range and R@ size
combinations. Four graphs are shown with the first two graphs show the results when

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 18 of 28

Page 19 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:19

1200 1200

SSV Range = 0.1 —— SSV Range = 0.1 ——

3 SSV Range = 0.2 === B SSV Range = 0.2 =-=-w==-

£ 1000 - SSV Range =0.3 & 1000 I SSvRange=0.3

€ SSV Range = 0.4 e € SSV Range = 0.4 =

g goo | SSV Range =05 g goo | SSVRange=0.5

> @)

9} %)

E 600 | E 600 |

DOC 400 - &.: 400 |

S 5

g 2007 $ 200 f

E £

S ot S 0r

z z

200 200
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
RQ Size RQ Size

(a) Avg. Rollbacks Committed without State Migra- (b) Avg. Rollbacks Committed with State Migration
tion

1200 1200

RQ Size =01 —— RQ Size =01 —— |
RQ Size =0.2 - RQ Size = 0.2 -
E 1000 F RQSize=0.3 E 1000 F RQSize=0.3
g RQ Size = 0.4 = g RQ Size = Q.4 = H
g 800 RQ Size =0.5 g 800 | RQ Size =0.5 . H
O O
4]]
S 600 S 600
8 8
F=! =
DO: 400 DO: 400 -
< 200 j 200
£ £
z or z or
200 -200
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
SSV Range SSV Range

(c) Avg. Rollbacks Committed without State Migra- (d) Avg. Rollbacks Committed with State Migration
tion

Fig. 12: Rollbacks committed per ALP for varying R size and SSV range with their
standard deviations.

the RQ size parameter was varied plotted for different SSV range parameter values
(with and Without SM). The last two graphs show the results with the SSV range
parameter was varied plotted for different R@ size parameter values (with and Without
SM). As the results were averaged over 3 runs with different pseudo random number
generator seeds, the standard deviation for each result in the graphs is depicted using
error-bars.

The order in which the events, both reads and writes, are processed by PDES-MAS
is important in that an ALP commits a rollback if it arrives with a timestamp ear-
lier that its local time (straggler-events), committing the event otherwise [Logan and
Theodoropoulos 2001; Lees et al. 2008]. A committed rollback also has the potential to
regenerate Range-Queries. As such, we expect an increase in the number of rollbacks
committed by the ALPs for increasing SSV range and RQ size parameter values. In
addition, with state migration moving SSVs around the CLP tree, we also expect more
rollbacks regenerating Range-Queries.

The result presented in figure 12 bear out this expectation. The number of rollbacks
increase almost linearly with larger SSV range and RQ size parameter values. With
RQ@ size 0.1, the number of committed rollbacks is close to 0, both with and without

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:20 V. Suryanarayanan et al.

state migration. Without state migration, the maximum number of rollbacks reaches
800, with state migration it reaches 1000, for both SSV range and RQ size 0.5. Although
there is substantial variance in the standard deviation values, the overall trend is that
it is relatively small upto SSV range and RQ size 0.3 suggesting few Range-Queries
regenerated. Beyond that there is a large amount of Range-Query regeneration. Be-
yond that the deviation increases to 170 (without state migration) and 250 (with state
migration), suggesting a large amount of Range-Query regeneration. In general, as ex-
pected, the number of rollbacks committed with State Migration is higher than with
state migration.

400 400

SSV Range = 0.1 —— SSV Range = 0.1 ——
SSV Range = 0.2 === SSV Range = 0.2 ===
350 SSV Range = 0.3 1 350 SSv Range = 0.3
SSV Range = 0.4 e SSV Range = 0.4 e
300 | SSVRange=0.5 1 300 | SSVRange=0.5
8250 b 8250 b
c c
Q Q
& 200t & 200t
150 150
100 + 100
50, 50 . , . .
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
RQ Size RQ Size

(a) Average Simulation Time without State Migration (b) Average Simulation Time with State Migration

400 400

RQSize=01 —— RQ Size =01 —— |
RQ Size = 0.2 RQ Size = 0.2
350 1 RQSize=03 1 350 1 RQSize=0.3
RQ Size=0.4 - RQ Size=0.4
300 | RQSize=05 J 300 | RQSize=05 .
8 250 t 8 250 + i :
= = °
8 8
& 200t & 200 ¢ !
150 150
100 ¢ 100
50, X X . . 50 X X . .
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
SSV Range SSV Range

(c) Average Simulation Time without State Migration (d) Average Simulation Time with State Migration

Fig. 13: Average Simulation Time for varying R@ size and SSV range with their stan-
dard deviations.

Based on these results we expect that as the SSV range and RQ size parameters
increase, the simulation time required to finish the experimental traces will also in-
crease. Figure 13 show the average simulation time for varying SSV range and R@ size
parameter values with their standard deviations. The layout of the graphs is the same
as described above for the number of rollbacks committed.

Figure 13 suggests that the average simulation time increases with increases in both
the SSV range and R size parameters. Without state migration the average simula-
tion time ranges from 60 seconds for SSV range 0.2 and RQ size 0.2 to 176 seconds for

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 20 of 28

Page 21 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:21

SSV range and R@ size 0.5. Again standard deviations over the averaged simulation
time varies but suggest a minimum for SSV range and RQ size 0.3 beyond which the
standard deviation reaches 20. This correlates strongly with the trend shown for the
number of rollbacks committed as presented in figure 12.

With state migration the average simulation time increases linearly upto RQ size
0.3, increasing exponentially beyond that. The average simulation time ranges from 60
seconds for SSV range 0.2 and RQ size 0.1 to reach 302 seconds for SSV range 0.1 and
RQ@ size 0.5. Comparing the average simulation time without state migration with the
average simulation time with state migration we see a small reduction of the average
simulation time until SSV range and R@ size reach 0.3, after which the average simu-
lation time with state migration exceeds that of the average simulation time without
state migration.

This does not correlate exactly with the trend shown in figure 12. With the query
propagation trend with state migration as shown in figure 10a we would expect more
localised access patterns to effect a reduction of the number of rollbacks and conse-
quently the simulation time. What should be noted though is that the writes in the
simulation time are issued to random SSVs in the CLP tree without consideration of
where these SSVs are localised in relation to the Range-Queries. This has two effects
on the simulation based on the location of the SSV in the CLP tree.

Firstly, as the RQ size and SSV range increase, the overlaps of the range queries
between different ALPS also increase. Though query propagation is reduced signifi-
cantly by state migration (see figure 10a), writes to random SSVs in this scenario also
increase the overlaps between ALPs. The reasoning behind this is that as the random
writes change the value of a SSV, the possibility of the SSV overlapping Range-Queries
of different ALPS also increases as the SSV range and R@ size parameters increase. To
further quantify this effect we measured the Query Response Time over a simulation
run. With state migration, changes in the Query Response Time should be minimal but
with state migration the Query Response Time depends on Range-Query propagation
in the CLP tree, and variances could be large.

0.8

Query Response Time with State Migratiorg --------
A Query Response Time without State Migratior; —— |

0.6
05

04

Seconds

03t
0.2+

01 .

0

Fig. 14: Figure depicts Query Response Time with and without State Migration for a
typical simulation run using random traces.

Figure 14 illustrates this pattern by showing Query Response Time during a typical
simulation run both with and without state migration. As expected, figure 14 shows
that Query Response Time for simulation without state migration hardly alters dur-
ing the run. Query Response Time with state migration however shows an initial in-
crease but a subsequent reduction, suggesting more localised access patterns. But as

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

A:22 V. Suryanarayanan et al.

the simulation progresses we see peeks of dramatic increases in Query Response Time
followed by equally dramatic decreases. This suggests an interaction between the ran-
dom writes and the State Migration with a dramatic decrease in efficiency by a con-
fluence of random writes followed by state migration reacting on this. State migration
is always reacting on these instances and in the end, averaged over the run Query
Response Time is negatively affected.

Secondly, Rollback depth is increased with localised access patterns. Rollback depth
is measured as the difference between the local time of a rollback and the ALP commit-
ting the rollback. All Range-Queries and writes generated in this time period will be
rolled back and regenerated. When R@ size is small, the SSVs are moved much closer
to the ALPs accessing them (see figure 10a) and as such we should observe a signifi-
cant reduction in simulation time. However, as the SSVs move closer to the leaf CLPs,
a random write from a remote ALP will need more hops to update the SSV while hav-
ing a higher probability of triggering a rollback because of the increased time needed
to traverse the CLP tree as well as increasing the Rollback Depth.

. SSV range
RQ@size 0.2 0.3 0.4 0.5
0.1 0 0 145 19.52 15.91
0.2 0 13.85 1.01 12.93 6.10
0.3 3.49 9.09 9.94 468 416
0.4 7.19 8.57 435 3.34 9.94
0.5 9.93 9.48 2.46 3.34 3.37

Table II: Average Rollback Depth for different SSV range and RQ size combinations

This effect is illustrated by the average rollback depths found for different SSV range
and RQ size parameter values as shown in table II. Although no linear trend can be
distinguished for all SSV range and R size combinations, we note that for RQ size 0.1
this depth is almost 10 whereas for R size 0.5 it is just 4.3. This suggests that as the
RQ@ size increases, the rollback depth decreases with more SSVs remaining at inter-
mediate nodes where rollbacks are reached faster. Overall this suggests that although
the number of rollbacks committed are fewer (see figure 12), the depth of these roll-
backs is higher, making them more expensive to perform and thus negatively affecting
simulation time.

The scenario of random writes investigated so far represents the worse case, wherein
lack of locality results to poor SSV distribution in the tree. The philosophy behind
PDES-MAS is the exploitation of locality expected in agent-based models. Figure 15
presents Query response times from a well known agent-based model exhibiting local-
ity, namely Boids [Reynolds 1987]. Boids is widely used to simulate flocking behaviour
(of birds or herds of animals). Agents (boids) are collaborative in nature, flock together
and share common interest rather than individual planning behaviour. Figure 15 de-
picts query response times for a typical Boids simulation run with two different exper-
iment parameters: RQ size and Velocity, the speed in which a Boid moves.

As boids move towards each other they tend to form initially small clusters. As the
simulation progresses in time, these small clusters merge together in a smaller num-
ber of larger clusters. When R size and Velocity values are small, the cluster forma-
tion is slow and predictable, as illustrated in figure 15 where more subtle variations in
response times are observed due to a more even distribution of SSVs in the tree and
smaller rollback costs.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 22 of 28

Page 23 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:23
0.04 - - — 0.7 " - P
Query Response Time without State Migration -------- Query Response Time with State Migration ----<----
0,035 Query Response Time with State Migration —— Query Response Time without State Migration —«—
. r 1 06 - 1

0.03 -
05

0.025 |

8 4 04r
o c
S 0.02 | S
3 & osf
0015 | Paas
4
{ 02+
001 |
4
0.005 | s 1 01r
N e ol
= - 0

(a) Query Response Time with experimental parame- (b) Query Response Time with experimental parame-
ters RQ size = 0.1 and Velocity = 2 ters RQ size = 0.5 and Velocity = 10

Fig. 15: Query Response Time for a typical simulation run using Boids.

As these parameters increase, the formation is fast and more volatile, resulting to
more centralised placement of SSVs in the CLP tree increasing CLP loads and rollback
costs, as illustrated by more violent fluctuations in (figure 15b). In all these cases,
query response times are clearly reduced with the introduction of state migration.

6. CONCLUSIONS

Range-Queries are key operations in MAS models, representing the spatial perceptive
abilities of the agents in the MAS. Their implementation in a distributed environment
has been acknowledged as a challenging endeavour while their efficient realisation is
crucial for the performance of the distributed simulation system.

This paper has presented a detailed design for logical-time synchronised instanta-
neous Range-Queries in the context of PDES-MAS, a framework for the distributed
simulation of MAS models. This design is based on a paradigm of routing Queries
around a distributed data structure by matching the Query’s range predicate against
explicitly maintained information about state variables that lie beyond a given edge in
the graph (Range-Based routing). The effectiveness of the proposed algorithms have
been evaluated under different conditions.

Our analysis has indicated that the paradigm of handling synchronised Range-
Queries via Range-Based routing ties performance closely to Query and Update pat-
terns. The more dynamic write patterns are - and the more violently these can change
the ranges covered by CLPs - the more frequently Range Updates will occur. Con-
currently, the larger a proportion of the world a given Range-Query covers, the more
likely a given Query will be at risk of rollback due to straggler updates in the data
structure. The introduction of state migration reduces the propagation extent of the
Queries but in principle, introduces extra overhead in the system. Our analysis has
shown however that the extra cost of migration process does not necessarily compro-
mise the performance of the system. A significant reduction in the access latency and
cost of the simulation for varying Range-Query Sizes and SSV Range Values has been
demonstrated. The volatility of rollbacks has been shown to have a direct relation with
varying Range-Query sizes and SSV Range values and an adverse effect with State
Migration with minimum gain.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

P OO~NOUILAWNPE

Transactions on Modeling and Computer Simulation

A:24 V. Suryanarayanan et al.

As part of the MWGrid? project, PDES-MAS is being utilised to support large scale
agent-based simulations designed to investigate medieval military logistics. Future
work will evaluate the proposed Range-Query algorithms in the context of MWGrid
simulations.

MAS simulations are increasingly recognised as a key paradigm for deep Big Data
Analytics [Wallis 2011; FuturICT-Proposal]. As we are moving to the exascale comput-
ing era, there is a pressing need to support exteme-scale MAS simulations which will
be accessing exascale historical and streaming data [Macal and North 2008; Kennedy
et al. 2011]. Efficient realisation of synchronised Range-Queries will be the key factor
to meet the performance and scalability requirements of this new generation of data-
intensive analytics approaches. The work presented in this paper aspires to contribute
to this challenging endeavour.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

BARRUS, J. W., WATERS, R. C., AND ANDERSON, D. B. 1996. Locales: Supporting large multiuser virtual
environments. IEEE Computer Graphics and Applications 16, 50-57.

BERRACHED, A., BEHESHTI, M., SIRISAENGTAKSIN, O., AND DEKORVIN, A. 1998. Approaches to multicast
group allocation in hla data distribution management. In In Proceedings of the 1998 Spring Simulation
Interoperability Workshop.

BHARAMBE, A. R., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: supporting scalable multi-attribute
range queries. SIGCOMM Comput. Commun. Rev. 34, 4, 353-366.

BOUKERCHE, A. AND ROY, A. 2002. Dynamic grid-based approach to data distribution management. /.
Parallel Distrib. Comput. 62, 3, 366—392.

CRAENEN, B., SURYANARAYANAN, V., AND THEODOROPOULOS, G. March, 2011. A middleware for interfac-
ing with simulation systems of multi-agent models. 2nd Workshop on Distributed Simulation & Online
gaming (DISIO 2011). Barcelona, Spain.

CRAENEN, B., THEODOROPOULOS, G., SURYANARAYANAN, V., GAFFNEY, V., MURGATROYD, P., AND HAL-
DON, J. March 21, 2010. Medieval military logistics: a case for distributed agent-based simulation. In
Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques. SIMUTools
’10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
Torremolinos, Malaga, Spain, 6:1-6:8.

EGGERS, S. J. AND KATZ, R. H. 1989. Evaluating the performance of four snooping cache coherency proto-
cols. SIGARCH Comput. Archit. News 17, 3, 2-15.

EWALD, R., DAN, C., OGUARA, T., THEODOROPOULOS, G., LEES, M., LOGAN, B., OGUARA, T., AND
UHRMACHER, A. M. 2006. Performance analysis of shared data access algorithms for distributed sim-
ulation of MAS. In Proceedings of the 20th ACM [IEEE | SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS 2006), S. J. Turner and J. Liithi, Eds. IEEE Press, Singapore, 29-36.

FUTURICT-PROPOSAL. Global earth simulator. http://www.futurict.eu/.

GELERNTER, D. 1985. Generative communication in linda. ACM Trans. Program. Lang. Syst. 7, 1, 80-112.

HOOK, D. V., RAK, S. J., AND CALVIN, J. O. 1994. Approaches to relevance filtering. In In Eleventh Workshop
on Standards for the Interoperability of Distributed Simulations. 26-30.

Hu, S.-Y. AND L1A0, G.-M. 2004. Scalable peer-to-peer networked virtual environment. In NetGames *04:
Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games. ACM, New
York, NY, USA, 129-133.

KENNEDY, C., THEODOROPOULOS, G., SORGE, V., FERRARI, E., LEE, P., AND SKELCHER, C. November 07,
2011. Data driven simulation to support model building in the social sciences. Journal of Algorithms &
Computational Technology (JACT) Volume 5/ Number 4, 561-582. Special Issue on DDAS.

KNUTSSON, B., GAMES, M. M., Lu, H., XU, W., AND HOPKINS, B. 2004. Peer-to-peer support for massively
multiplayer games. In In Proceedings of INFOCOMM 2004.

Shttp://www.ahessc.ac.uk/manzikert

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 24 of 28

Page 25 of 28

P OO~NOUILAWNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations A:25

LEES, M., LOGAN, B., AND THEODOROPOULOS, G. 2003. Adaptive optimistic synchronisation for multi-
agent simulation. In Proceedings of the 17th European Simulation Multiconference (ESM 2003), D. Al-
Dabass, Ed. Society for Modelling and Simulation International and Arbeitsgemeinschaft Simulation,
Society for Modelling and Simulation International, Delft, 77-82.

LEES, M., LOGAN, B., AND THEODOROPOULOS, G. 2008. Using access patterns to analyze the performance
of optimistic synchronization algorithms in simulations of mas. Simulation 84, 10/11 (October), 481—
492.

LEES, M., LOGAN, B., AND THEODOROPOULOS, G. 2009. Analysing probabilistically constrained optimism.
Concurrency and Computation: Practice and Experience 21, 11 (August), 1467-1482.

LOGAN, B. AND THEODOROPOULOS, G. 2001. The distributed simulation of multi-agent systems. Proceed-
ings of the IEEE 89, 2 (Feb), 174-186.

MAcAL, C. M. AND NORTH, M. J. 2008. Agent-based modeling and simulation for exascale computing.
SciDac Review, 34—41. http://www.scidacreview.org/0802/html/abms.htm]l.

MACEDONIA, M. R., ZYDA, M. J., PRATT, D. R., BRUTZMAN, D. P., AND BARHAM, P. T. 1995. Exploiting
reality with multicast groups. IEEE Comput. Graph. Appl. 15, 5, 38—45.

MATTERN, F. 1993. Efficient algorithms for distributed snapshots and global virtual time approximation.
Journal of Parallel Distributed Computing 18, 4, 423-434.

MEHL, H. AND HAMMES, S. 1993. Shared variables in distributed simulation. In PADS ’93: Proceedings of
the seventh workshop on Parallel and distributed simulation. ACM, New York, NY, USA, 68-75.

MINSON, R. AND THEODOROPOULOS, G. 2007. Adaptive support of range queries via push-pull algorithms.
In PADS °07: Proceedings of the 21st International Workshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, Washington, DC, USA, 53-60.

MORGAN, G., STOREY, K., AND LU, F. 2004. Expanding spheres: A collision detection algorithm for interest
management in networked games. In In Proceedings of the Entertainment Computing ICEC 2004: Third
International Conference. 435.

MORSE, K. L. 2000. An adaptive, distributed algorithm for interest management. Ph.D. thesis, Information
and Computer Science. Chair-Bic, Lubomir and Chair-Dillencourt, Michael.

MORSE, K. L. AND ZYDA, M. 2002. Multicast grouping for data distribution management. Simul. Pr. The-
ory 9, 3-5, 121-141.

OGUARA, T., CHEN, D., THEODOROPOULOS, G., LOGAN, B., AND LEES, M. 2005. An adaptive load manage-
ment mechanism for distributed simulation of multi-agent systems. In Proceedings of the 9th IEEE In-
ternational Symposium on Distributed Simulation and Real Time Applications (DS-RT 2005), A. Bouk-
erche, S. J. Turner, D. Roberts, and G. Theodoropoulos, Eds. IEEE Press, Montreal, Quebec, Canada,
179-186.

PAGEL, B.-U,, Six, H.-W., TOBEN, H., AND WIDMAYER, P. 1993. Towards an analysis of range query per-
formance in spatial data structures. In PODS ’93: Proceedings of the twelfth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. ACM, New York, NY, USA, 214-221.

PAGIAMTZIS, K. AND SHEIKHOLESLAMI, A. 2006. Content-addressable memory (CAM) circuits and archi-
tectures: A tutorial and survey. IEEE Journal of Solid-State Circuits 41, 3 (March), 712-727.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the
14th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’87. ACM, New
York, NY, USA, 25-34.

SQUYRES, J. M. AND LUMSDAINE, A. 2003. A Component Architecture for LAM/MPI. In Proceedings,
10th European PVM | MPI Users’ Group Meeting. Number 2840 in Lecture Notes in Computer Science.
Springer-Verlag, Venice, Italy, 379-387.

SURYANARAYANAN, V., CRAENEN, B. G. W., AND THEODOROPOULOS, G. K. 2010. Synchronised range
queries in distributed simulations of multi-agent systems. In Proceedings of the 2010 IEEE |ACM 14th
International Symposium on Distributed Simulation and Real Time Applications. DS-RT ’10. IEEE
Computer Society, Washington, DC, USA, 79-86.

SURYANARAYANAN, V., MINSON, R., AND THEODOROPOULUS, G. K. 2009. Synchronised range queries. In
Proceedings of the 2009 13th IEEE | ACM International Symposium on Distributed Simulation and Real
Time Applications. DS-RT ’09. IEEE Computer Society, Washington, DC, USA, 41-47.

WALLIS, L. March 01, 2011. Big data, analytics, and storytelling. Causalities: Applied Systems Science,
Dynamics and Simulation. http://blog.cause-alities.com.

YU, A. P. AND VUONG, S. T. 2005. Mopar: a mobile peer-to-peer overlay rrchitecture for interest manage-
ment of massively multiplayer online games. In NOSSDAV “05: Proceedings of the international work-
shop on Network and operating systems support for digital audio and video. ACM, New York, NY, USA,
99-104.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Transactions on Modeling and Computer Simulation Page 26 of 28

Online Appendix to:
Synchronised Range-Queries in Distributed Simulations of
Multi-Agent Systems

VINOTH SURYANARAYANAN, University of Birmingham, UK
GEORGIOS THEODOROPOULOQOS, IBM Research, Ireland

The algorithms implemented in the PDES-MAS system to support Range-Queries are outlined in this appendix. There are four algorithms presented in this paper:

— Algorithm 1 is used to maintain the RangePeriodList data structure in the case of Range Update operations
— Algorithm 2 is used to propagate synchronised range updates through ports

— Algorithm 3 is employed to rollback a Range-Query on receiving a straggler write

— Algorithm 4 is utilised to migrate SSVs across CLPs.

The rest of the appendix describes these algorithms in more detail.

ALGORITHM 1: The algorithm for correct maintenance of a RangePeriodList data structure
over a set of SSVs

Input: The logical time at which Range Period List is modified.
Result: The Range Period list at time is updated.

Function : update_ range_ list(time);
rp- split = find_ rp(time) /* Find range period split by the write/anti-write */;
if rp_split = NULL then
new_range = get_range(ssv_set, time) /* Calculate the range now covered by the SSVs at
this time */;
if new_range != old_range then
insert_ rp(rp_split + 1, time, new_range) /* Insert a new RangePeriod for this time */;
/* For all RangePeriods > time, recalculate their ranges */ for rp in range_
periods(time) do
if rp.range != get_range(ssv_set, rp.time) then
update_ rp(rp, get_range(ssv_set, rp.time));
end
end
end
end
else
insert_ rp(start_ of_ list, time, new_ range);
end

© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 27 of 28

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

App—2 V. Suryanarayanan et al.

ALGORITHM 2: The algorithm to propagate synchronised range updates

Input: A List of Range Updates with originating port
Result: The Range Updates are disseminated to other ports.

Function : send_ range_ update(range_update_list, origin_port);
for ru in range_update_list do
[* Iterate through the list of range updates.Each range update has a range associated with a
time period.*/;
for port in CLP.rem_ports do
old._ range = find_ range(port, ru.time);
new_ range = calculate_ range(origin_port, ru.range, C LP.ports) |/ * Recalculate the new
range using the logic mentioned above. */;
if old_range != new_range then
send_ range_ update(port, time, new_range);
end
end
end

ALGORITHM 3: The algorithm for calculating whether to rollback a Range-Query in response
to a Write Period update. The algorithm for a Range Period update is identical, the only excep-
tion being the intersection test is between two ranges rather than a range and a single value.

Input: The logical time at which new value is updated.
Result: Rollbacks may be generated in response to Write Period Update.

Function : update_ ssv(time, value);
old_ wp = find_ wp(time) /* Find the write period split by this write */;
if old_wp /= NULL then
new_ wp = insert_ wp(old_wp, time, value);
/* for all RQs > time, evaluate rollback conditions */;
for RQ in old_ wp.queries do
if RQ.time > time then
old_ wp.remove(RQ);
/* Either rollback query or place in new write period */;
if /RQ.contains(old_wp.value) & !RQ.contains(value) then
new_ wp.add(RQ)
end
else
rollback(RQ)
end
end
end
end
else
insert_ wp(start_of list, time, value)
end

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

©CoO~NOUTA,WNPE

Transactions on Modeling and Computer Simulation

Synchronised Range-Queries in Distributed MAS Simulations App-3

ALGORITHM 4: SSV Migration algorithm in PDES-MAS.

Input: SSV migration is initiated at time.
Result: Selected SSVs are migrated with their entire history.

Function : SelectSSVForMigration(time);
for all ssvs do
for all directions do
/* Get access cost and port cost for each SSV at each port */ if ssv.portcost >
PORT.THRESHOLD then
if ssv.portcost > cost.remainingports then
MigrateList.add(ssv);
end
end
end
end
Function : MigrateStateVariables(time);
[* Iterate through migration state variables */;
for each dir in directions do
/* ssus selected for migration at each port */ for ssvs in MigrateList do
MigrateSSVfromCLP (ssv) /* delete ssv from the CLP and updates its new port */;
DeleteWritePeriods (ssv) /* delete write periods of the migrating ssv */;
UpdateRangePeriods (ssv) /* update range periods accordingly */;
SendRangeUpdates (time) /* send range updates accordingly */;
end
end

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 28 of 28

