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ABSTRACT
We report the detection of a significant excess in the surfacedensity of far-infrared sources
from theHerschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) within ∼ 1Mpc
of the centres of 66 optically-selected clusters of galaxies in the SDSS with〈z〉 ∼ 0.25. From
the analysis of the multiwavelength properties of their counterparts we conclude that the far-
infrared emission is associated with dust-obscured star formation and/or active galactic nuclei
within galaxies in the clusters themselves. The excess reaches a maximum at a radius of
∼ 0.8Mpc, where we find1.0± 0.3 S250 >34 mJy sources on average per cluster above what
would be expected for random field locations. If the far-infrared emission is dominated by
star formation (as opposed to AGN) then this corresponds to an average star formation rate of
∼7 M⊙ yr−1 per cluster in sources withLIR > 5× 10

10 L⊙. Although lensed sources make a
negligible contribution to the excess signal, a fraction ofthe sources around the clusters could
be gravitationally lensed, and we have identified a sample ofpotential cases of cluster-lensed
Herschelsources that could be targeted in follow-up studies.

Key words: galaxies: clusters: general – galaxies: starburst – gravitational lensing – galax-
ies:evolution – submillimetre

⋆ Herschelis an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important partic-
ipation from NASA.

http://arxiv.org/abs/1105.3199v1
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1 INTRODUCTION

The intimate connection between galaxies’ environments and their
star formation histories is evident in the evolution of the cluster
galaxy stellar mass function (e.g. Vulcani et al. 2011). Themost
massive galaxies in rich clusters today appear to have been in place
in progenitor environments since at leastz ∼ 1 (de Propris et al.
1999; Kodama & Bower 2003; Neistein, van den Bosch & Dekel
2006), and there has been little evolution in the number density
of the most massive elliptical galaxies in the intervening 8Gyr
(Balogh et al. 2001). However, significant stellar mass evolution is
still required in the remainder of the cluster population during this
period (Balogh et al. 2001). The key features of this evolution are:
(a) a steepening of the faint-end towardsz = 0, that is, low-mass
end of the luminosity function (Stott et al. 2007); and (b) the ap-
pearance of a population of passive, massive lenticular (S0) galax-
ies in the cores of clusters sincez ∼ 0.5 (Dressler et al. 1997).

The increase in the fraction of low-mass galaxies can be ex-
plained by the continuous accretion of satellite galaxies (with sub-
sequent gas stripping and the cessation of further cooling pre-
venting further growth). The formation of S0s can only be ac-
counted for in an evolutionary sequence connecting distantgas-
rich discs undergoing a period of additional star formationto build
up the total stellar mass and enhancement of bulge-to-disc ra-
tios (Poggianti et al. 1999; Kodama & Smail 2001). Until relatively
recently, evidence for the large star formation rates (SFRs) re-
quired for such a transformation in the spiral populations of in-
termediate redshift clusters was lacking. However, since the ad-
vent of sensitive mid- and (now) far-infrared panoramic surveys,
several studies have now revealed a population of hitherto op-
tically hidden star-forming galaxies in rich clusters over0.3 .

z . 1.5 (e.g. Geach et al. 2006; Duc et al. 2000, 2004; Fadda et al.
2000; Metcalfe et al. 2003; Finn et al. 2010; Kocevski et al. 2010;
Braglia et al. 2011).

It has become clear that these obscured star-forming galax-
ies could be responsible for strong evolution in the stellarmass
function of even rich clusters sincez ∼ 0.5. Thus, not only does
this population provide a key insight into various environmental
effects on the star formation histories of relatively ‘normal’ galax-
ies, but it also represents an important stage in the overallshaping
of the galaxy population today. The globally-averaged total SFR
in rich clusters as well as the average field has been in strongde-
cline sincez ∼ 0.5, although it is unclear how the strength of the
evolution is tied to galaxies’ environments. Indeed infrared studies
have revealed significant variation in the SFRs of individual clus-
ters (Geach et al. 2006). It is thought that the origin of thisvariation
could be rooted in the different environmental conditions specific
to different clusters, such as sub-structure, dynamical state, thermo-
dynamic properties of the intracluster medium (ICM), etc. The next
step in understanding this variation, and building up a morestatis-
tical picture of the evolution of the obscured star-formingpopula-
tions of clusters sincez ∼ 0.5, is to turn to wide-field panoramic
infrared surveys of a much larger sample of clusters and groups
covering a large dynamic range of environment.

While previous surveys undertaken withSpitzerand theIn-
frared Space Observatory (ISO)have mapped the mid-infrared
emission (e.g. 15–24µm) of clusters, panoramic far-infrared sur-
veys have so far been challenging. Both ground- and space-based
surveys have lacked the field-of-view, sensitivity and resolution to
cover large areas down to the required depths to pin-point the ob-
scured star-forming galaxy population (e.g. Wardlow et al.2010).

TheHerschelspace telescope (Pilbratt et al. 2010) has enabled us
to move beyond these limitations (e.g. Rawle et al. 2010).

TheHerschel-Astrophysical Terahertz Large Area Survey (H-
ATLAS; Eales et al. 2010a) is the widest-area submillimetreHer-
schel-SPIRE (Griffin et al. 2010) and PACS (Poglitsch et al. 2010)
survey, and – when complete – will cover an area of∼ 550 deg2

from 100–500µm. The large volume probed will contain a large
number of galaxy clusters, and the sensitivity of the far-infrared
observations will allow us to systematically search for obscured
star-forming galaxies in their vicinity. This letter presents a sta-
tistical analysis of theHerschel SPIRE sources in the core of
0.07 < z < 0.43 clusters as mapped by the Science Demonstration
Phase (SDP) H-ATLAS observations, covering a∼ 14.4 deg2 field
at 9h (Pascale et al. 2010; Ibar et al. 2010). Our goals are twofold:
(a) to search forstatisticalevidence of dust-obscured star formation
activity in this cluster population; and (b) to identify anycandidate
cluster-lensed sources for further study and follow-up.

This paper is organised as follows: we describe our unique
cluster detection algorithm and the H-ATLAS SDP SPIRE cata-
logue in§ 2, the statistical analysis and results of the H-ATLAS and
cluster catalogue cross-correlation in§ 3, and summarise our find-
ings in§ 4. Throughout we assume cosmological parameters from
theWMAPfits in Spergel et al. (2003):ΩΛ = 0.73, Ωm = 0.27,
andH0 = 71 km s−1 Mpc−1.

2 CLUSTER AND H-ATLAS CATALOGUES

2.1 Cluster detection

We have used the technique presented in Murphy, Geach & Bower
(2010) to identify clusters of galaxies from panoramic optical imag-
ing. Briefly, the method uses a series of colour selections tofirst
isolate ‘red-sequence’ cluster members (those where the 4000Å
break is bracketed by two filters), followed by the construction
of a Voronoi diagram of the projected galaxy distribution. Clus-
ters and groups are identified as associations of Voronoi cells, shar-
ing at least one vertex between cells, with areas significantly lower
(i.e. higher galaxy surface densities) than would be expected if the
galaxies were randomly distributed on the sky. In this case we used
photometry from the Sloan Digital Sky Survey (York et al. 2000)
7th Data Release (SDSS DR7; Abazajian et al. 2009). For the se-
lection, we employed Galactic extinction correctedmodelMag in
the(g−r), (r−i) and(i−z) bands; see Gunn et al. (1998) for a de-
scription of the SDSS photometric system. The minimum number
of ‘connected’ galaxies that qualify as a cluster is five. Theposition
of the cluster core is defined as the average of the positions of the
member galaxies’ Voronoi cells, however we also define a ‘bright-
est cluster galaxy (BCG) centre’ as the location of the brightest
cluster member in ther-band. Apertures placed on the cluster core
defined by the geometric mean provide the most complete coverage
of the member galaxies. We find 66 clusters within the H-ATLAS
SDP coverage of≃ 14.4 deg2. The redshifts of the clusters have
been estimated from the photometric (and in some cases spectro-
scopic) redshifts of the cluster members (Abazajian et al. 2009).
We note that 36 members out of a total of 549 galaxies across
all clusters have spectroscopic redshifts from SDSS (6.5%). For
sources with spectroscopic redshifts, the mean spectroscopic-to-
photometric redshift offset is -0.0018, with a standard deviation of
0.017. Further details can be found in Geach et al. (2011). The clus-
ters span a redshift of 0.07–0.43 85% of the sample are at0.15 ≤
z ≤ 0.35), and have a median redshift of〈z〉 = 0.25 at which
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Figure 1. The redshift distribution of our 66-member cluster sample within
the H-ATLAS SDP coverage of≃ 14.4 deg2. We have estimated the cluster
redshifts using the photometric (and for 6.5% of the time spectroscopic)
redshifts of the 549 cluster member galaxies (Abazajian et al. 2009). The
clusters span a redshift of 0.07–0.43 85% of the sample are at0.15 ≤ z ≤
0.35), and have a median redshift of〈z〉 = 0.25 (which we have indicated
with a vertical dotted line) at which the angular scale is 240kpc arcmin−1 .

the angular scale is 240 kpc arcmin−1 (see Fig. 1). Based on tests
performed on mock catalogues, the cluster catalogue is>90% com-
plete at a halo mass of1014 M⊙ (Murphy, Geach & Bower 2010).
The number of false positives can be estimated by randomly shuf-
fling the colours of galaxies (while keeping the positions fixed) and
re-running the detection algorithm. At the lower membership limit,
the number of false detections is expected to be 0.06 deg−2 or < 1
of the 66 clusters. Further details of the cluster algorithm, selection
and completeness can be found in Murphy, Geach & Bower (2010).
We estimate the cluster richness using the commonly usedBgc

statistic, an approximation of the amplitude of the real-space corre-
lation function (Longair & Seldner 1979). Yee & Ellingson (2003)
show that this statistical measure is reasonably well correlated with
the physical properties of the clusters, and we apply these scal-
ings to find the typical cluster scaleR200

1≃ (1.2 ± 0.4)Mpc and
logM200/M⊙

2≃ (14.7 ± 0.5), although the errors on individual
Bgc measurements are large.

2.2 The H-ATLAS SDP catalogue

The H-ATLAS SDP catalogue consists of 6876 sources detectedat
> 5σ in either of the 250, 350 or 500µm bands over a≃ 14.4 deg2

region (Rigby et al. 2011). The 5-σ point source sensitivity limits
(including confusion noise) are 34, 38, and 44 mJy at 250, 350, and
500µm, respectively. Smith et al. (2011) have employed a likeli-
hood ratio (LR) method to perform the optical cross-identifications

1 R200 is the equivalent radius enclosing a density≥ 200× the critical
density.
2 M200 is the mass withinR200 .

of the 6621 250µm-detected sources with the SDSS DR7 cata-
logue with a limitingr-band magnitude of 22.4 (Abazajian et al.
2009). The LR technique assigns a reliability,R, to each match and
indicates the probability that the counterpart is the correct identifi-
cation. Of the 6876 H-ATLAS sources, 2423 are thus classifiedas
having a reliable (R ≥ 0.8) optical counterpart, and the remaining
4453 as optically unidentified (R < 0.8 or no optical counterparts).

3 ANALYSIS AND RESULTS

3.1 Measurement of far-infrared emission around the
clusters

The first step of our analysis is to simply measure the surfaceden-
sity of H-ATLAS sources (both optically identified and unidenti-
fied) as a function of projected clusto-centric radius around the 66
clusters (Fig. 2). As a field control sample, we repeat this exer-
cise 1000 times for a set of 66 random positions across the field.
As expected, at large radii the surface density around the clus-
ters is indistinguishable from the average ‘field’ estimate, however
there is a clear positive excess of far-infrared sources within ∼ 5′

(1.2 Mpc forz = 0.25) of the clusters, the significance of which
peaks at∼ 3.5′. There is an average excess of∼ 1 source per
cluster over the background, although note that by definition the
cluster environments are characterised by an excess surface density
of galaxies. The total number of H-ATLAS sources detected within
3.5′ of the 66 clusters is 401, representing a≃ 3.5 σ excess of
67± 20 sources (the error is Poisson) above the background signal
of 332± 1 sources on average (the error is the standard error of the
mean). At a radius of5′ from the 66 clusters, we find 719 sources
(a less significant excess of41± 27 sources over our Monte Carlo
estimated background signal of678 ± 1 at the same clustocentric
radius). For comparison, we have also repeated the above analy-
sis using the projected radius from the BCG as the cluster centre,
and the signal in ther < 0.5′ bin clearly increases (see Fig. 2)
– with six H-ATLAS sources lying within 8 arcsec of BCGs (note
that the 250µm PSF is 19 arcsec). This suggests that several H-
ATLAS sources are associated with the BCGs, either by lensing
a background far-infrared source or that the far-infrared emission
is from the BCG itself, e.g. Edge et al. (2010). We have quantified
the likelihood of finding this excess signal by chance by using our
Monte Carlo simulations and find that for radii. 3.5′ (where the
maximum excess signal occurs) we would expect to see our av-
erage detected surface density< 0.1% of the time in randomly
sampled apertures of equivalent size in the field. The simulations
also reveal that at radii larger than about5′ the random chance of
detecting our measured surface density (or greater) near the clus-
ters above the background becomes> 1% and increases rapidly
beyond5′. Thus, for the following statistical analyses we use the
719 H-ATLAS sources found within5′ of the 66 clusters, which
strikes a good balance of identifying the majority of the sources re-
sponsible for the excess signal while keeping the background field
contribution to the signal to a minimum.

We have calculated the surface density of H-ATLAS sources
in angular bins, regardless of the individual cluster redshift. An al-
ternative approach would be to calculate the surface density as a
function of physical projected radius, which would be important
for broad redshift distributions. We conducted such an analysis as a
check, by counting H-ATLAS sources within variable angularradii
corresponding to a particular physical scale around the clusters. We
calculate the field estimate using the same Monte Carlo technique
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Figure 2.Cumulative number density of the average background-subtracted
(points; axis on the LHS) and number (curve; axis on the RHS) of all
(top panel), optically identified (middle panel), and optically unidentified
(bottom panel) H-ATLAS sources as a function of clusto-centric radius.
For comparison, we have also plotted the average (background-subtracted)
cumulative surface density as a function of radius from the central BCG
(stars). The standard error of the mean has been used to calculate the er-
ror bars. This plot shows that we have measured an excess of H-ATLAS
sources (with the significance varying with radius) within aprojected clus-
tocentric radius of 5′ (which corresponds to 1.2 Mpc atz = 0.25) over that
of the background field H-ATLAS sources, with optically identified sources
(presumably far-infrared-bright cluster members, see text) making the most
significant contribution to the measured excess. For reference, the average
area of a single cluster is 7.5 arcmin2 , where the area is defined to contain
80% of the cluster members originally assigned by the Voronoi tessellation
detection.

as above, but using 66 apertures randomly drawn from a distribu-
tion function matching the cluster redshift distribution,repeating
this 1000 times (see e.g. Temporin et al. 2009). The resulting sur-
face density profile closely matches that found for angular bins,
which is not surprising given our narrow redshift distribution (see
Fig. 1), with the excess signal arising within≃ 1Mpc of the clus-
ter cores, in agreement with the ‘average’ physical scale shown in
Fig. 2.

There are two distinct physical origins for the excess signal:
(a) obscured star formation or active galactic nuclei (AGN)in clus-
ter members; and (b) gravitational lensing of background sources.
The majority of the H-ATLAS sources in low redshift clustersare
expected to have optical counterparts, whereas H-ATLAS sources
with no robust counterpart are most likely to be at higher redshift
(except in the case of galaxy-galaxy lensing, where the foreground
lensing galaxy is identified as the counterpart). Splittingthe sam-
ple into optically identified and unidentified sub-samples therefore
provides a crude method of determining if the excess signal seen
around clusters comes from the cluster members themselves,or
from strongly lensed background sources. From the 719 H-ATLAS
sources found within 5′ of the 66 clusters, we find that 268 (37%)
have optical counterparts with the remaining 451 (63%) having no

optical counterpart. To examine the relative contributionto the far-
infrared excess signal, we repeat the radial surface density anal-
ysis described above for these two sub-samples separately.Fig. 2
shows that the majority of the excess signal seen in the full sam-
ple is due to theoptically identifiedH-ATLAS sources; while the
surface density of optically unidentified H-ATLAS sources around
clusters is essentially statistically indistinguishablefrom the ran-
dom field. We thus now focus our attention on the optically identi-
fied sources around the clusters and defer a discussion of thenature
of the optically unidentified sources to Section 3.4.

3.2 Is the far-infrared excess physically associated with the
clusters?

We have determined that the excess signal of far-infrared emis-
sion around the low-redshift cluster sample comes from H-
ATLAS sources with robust optical counterparts. These could be
cases where a foreground galaxy is lensing a background source
(Negrello et al. 2010) (where the lensing galaxy is the optical coun-
terpart of the H-ATLAS source), or the far-infrared emission is
from the galaxy itself. Is there any evidence to suggest thatthe ma-
jority of the optically identified H-ATLAS sources have redshifts
consistent with the clusters?

We now perform a test to search for evidence that the far-
infrared colours of H-ATLAS sources around the clusters arecon-
sistent with the redshift of the clusters. The optical photometric red-
shifts of the optical counterparts of the H-ATLAS sources are not
useful for reliably distinguishing galaxy-galaxy lensingfrom the
cluster members, since it is likely that in the case of galaxy-galaxy
lensing, a far-infrared source would be identified with the lensing
galaxy instead of the true background lensed source (which would
be too faint/obscured to be seen in the optical). Follow-up millime-
tre studies that can positively identify the molecular gas emission
of the high-redshift source, unambiguously separating it in redshift
space from the foreground galaxy, is arguably the best technique.
In lieu of those data, we can crudely use the far-infrared colours
as a rough redshift discriminator, since the 250, 350, and 500µm
bands sample near the dusty spectral energy distribution (SED)
peak. Thus, following e.g. Amblard et al. (2010) we compare the
S250/S350 andS500/S350 SPIRE colours of the optically identified
versus unidentified H-ATLAS cluster-matched sources to test if the
optically identified sources are more consistent with beinglower
redshift cluster members and the optically unidentified sources
more consistent with being background or cluster-lensed higher
redshift sources. We note that not of all the H-ATLAS sourceshave
direct detections in all three SPIRE bands (and thus errors on the
colours of those individual sources will be large). Additionally, we
note that∼ 27% of the 500µm sources are likely blends of mul-
tiple sources (within a relatively large beamsize of∼ 35′′), with
their flux boosted by up to a factor of∼ 2 (Rigby et al. 2011). We
thus place more emphasis on the results involving the 250µm flux
densities, which should suffer less from these effects due to the rel-
atively smaller beamsize (∼ 18′′), but use the 500µm flux densities
as a consistency check.

We use a Kolmogorov-Smirnov (KS) test to compare the
S250/S350 andS500/S350 colours of the optically identified sub-
set of 268 cluster-matched H-ATLAS sources with the 451 opti-
cally unidentified cluster-matched H-ATLAS sources to search for
evidence of any differences between the colour distributions that
would hint at an overall redshift difference between the twosam-
ples. The KS test reveals that there is a< 1 × 10−8 chance that
they are drawn from the same distribution. The optically identi-
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fied cluster-matched H-ATLAS sources have bluer〈S250/S350〉 =
1.88±0.06 colours and bluer〈S500/S350〉 = 0.4±0.02 colours on
average than the optically unidentified cluster-matched H-ATLAS
sources (〈S250/S350〉 = 1.3 ± 0.03; 〈S500/S350〉 = 0.5 ± 0.01).
If we assume the median3 × 1010 L⊙ < Ldust < 1011 L⊙ UV-
submm template from Smith et al. (in preparation) for a ‘typical’
H-ATLAS galaxy SED, then these mean colours roughly indicate
that the optically identified cluster-matched H-ATLAS sources, on
average, lie at redshifts ofz ∼ 0.25 (consistent with the cluster
redshifts) and that the optically unidentified sources are at typically
higher redshifts ofz ∼ 1.

We thus conclude that the origin of the far-infrared excess sig-
nal around the clusters originates from sources within the clusters
themselves. These galaxies are likely to be obscured star-forming
galaxies or AGN. We note that although the actual AGN contentof
clusters as a function of time is still fairly poorly constrained, there
is evidence that the infrared emission of the general cluster popu-
lation (i.e. galaxies on the outskirts of clusters) is generated by star
formation (Geach et al. 2009).

We do expect some instances of galaxy-galaxy lensing in the
optically identified sample. Cases of galaxy-galaxy lensing could
potentially be enhanced around clusters simply due to the increased
surface density of foreground galaxies, and the increased mass den-
sity cross-section in cluster regions can boost amplification fur-
ther3. Therefore, a lensing galaxy may have a clear optical identi-
fication as a background source, but could be lensed further due to
the presence of the cluster along the line of sight. We note that out
of five instances of strongly lensed optically identified H-ATLAS
sources identified by Negrello et al. (2010), one of these lies within
5′ of a cluster core. This is strictly a lower limit on the occurrences
of galaxy-galaxy lensing in our sample, however, the actualnum-
ber of such cases is not expected to dominate the optically identified
SPIRE sources in our sample, given their typical 500µm fluxes and
far-infrared colours described above.

3.3 Integrated far-infrared emission from clusters at
z ∼ 0.25

If we now assume that the detected far-infrared emission is due
to obscured star formation (as opposed to AGN) within the clus-
ters then we can use the background-subtracted luminosity func-
tion to estimate the average level of star formation in thez ∼ 0.25
clusters. We integrate a background-subtracted histogramof the
250µm flux density of the optically identified cluster-matched H-
ATLAS sources (see Fig. 3) to yield a total flux contribution of
1.6 Jy over the 66 clusters, or∼24 mJy per cluster. Assuming this is
a proxy for dusty star formation we can convert this to a totalSFR
by estimating the integrated total (8–1000µm) infrared luminos-
ity of the median H-ATLAS galaxy template with3 × 1010 L⊙ <
Ldust < 1011 L⊙ from Smith et al. (in preparation) redshifted
to z = 0.25 (which is well-matched to our sample far-infrared
colours; see Section 3.2) and normalised to the relevant 250µm flux
density. We find an average SFR per cluster of∼ 7 ± 3M⊙ yr−1,
applying the SFR calibration of 8–1000µm integrated luminosity
of Kennicutt (1998). The error range on the estimate represents the
inferred difference in total luminosity within the redshift range of

3 For example, although rare, the Cosmic Eye (Smail et al. 2007) is az ∼
3 galaxy lensed in a near-perfect Einstein ring by az = 0.7 elliptical that
meets the threshold for strong lensingonlybecause we are viewing thez =

0.7 galaxy through a foregroundz = 0.3 cluster∼ 1′ away.

0.2 < z < 0.3. We note that a systematic uncertainty in the SFR
estimate comes from our assumed SED, although this should not
be a significant effect, since we have used an SED template based
on the H-ATLAS galaxies themselves within this redshift range.
Nevertheless, for example if an Arp 220 or M82 SED is assumed
(which have been shown to be inappropriate for our sample; see
Smith et al. in preparation) we find an SFR systematically higher
by a factor of∼ 6 or ∼ 10, respectively. The total SFR of the clus-
ters should also be considered a lower limit, given the 250µm sen-
sitivity; since we only probe down toLIR ∼ 5× 1010 L⊙, we also
expect a contribution from dust-obscured galaxies below this limit.
For example, assuming the shape of the HerMES 250µm luminos-
ity function (Eales et al. 2010b; see Fig. 3), if we could probe to a
flux limit of ∼ 10mJy we would expect an additional∼ 90 sources
down to∼ 3 × 1010 L⊙, contributing anadditional∼ 7M⊙ yr−1

per cluster.
How does this compare to the total cluster-integrated SFR de-

rived from the UV alone? To estimate the UV integrated SFR for
the clusters, we evaluate the total SDSSu-band flux density within
5′ of each cluster (corrected for Galactic extinction), and perform a
field correction based on the total flux within randomly placed aper-
tures across the field. We only sum the excess in galaxies not on the
red-sequence (as these are not present in the field), and derive an
average total cluster integrated SFR of∼20 M⊙ yr−1, assuming the
Kennicutt (1998) SFR calibration. Thus, the total UV-derived rate
appears to be comparable to the total far-infrared-derivedrate, but
of course with the caveats that (a) the UV-derived value is likely in-
tegrated further down the cluster luminosity function due to higher
sensitivity to star formation in lower mass systems, and indeed in-
cludes many galaxies with low activity missed by the far-infrared
survey, and (b) there is a large uncertainty in a simple conversion
between the monochromaticu-band to SFR, and (c) we have not
corrected for potentially non-negligibleu-band emission from stars
not associated with new star formation in red galaxies in theclus-
ters (although we excluded the main red sequence).

With these caveats in mind, it is clear that the far-infrared-
derived integrated SFR provides a superior estimate of the total
level of star formation activity in the clusters, with the main uncer-
tainty being the calibration of total far-infrared luminosity to SFR.
However, it is also evident that the current limits of this H-ATLAS
survey are missing part of the low-level activity in the clusters, as
revealed by our simple UV estimates and extrapolation of theHer-
MES luminosity function. Our measurements should therefore be
taken as lower limits to the integrated SFRs of these clusters, as
mentioned previously.

If the total far-infrared-derived SFR of the clusters is nor-
malised by total (luminous+dark) mass, we have a simple method
to compare the activity in different environments, and the evolu-
tion of the cluster SFR budget over time (e.g. Geach et al. 2006).
The mass estimates for these clusters are indirectly inferred from
their optical richnesses (see Section 2.1), which gives therange
∼1.5–16×1014 M⊙ – however, the conversion between optical
richness and mass is highly uncertain, and the true masses are
likely to be at the lower end of this range. Even this might be an
over-estimate of the total cluster mass. For example, to achieve a
similar surface density of clusters in the Millennium Simulation
(Springel et al. 2005), requires us to be probing to a mass limit of
log(Mhalo/M⊙) & 13.5.

Fig. 4 shows the average total SFR in our clusters compared to
other infrared-derived rates in other clusters over0 < z < 0.6, al-
though we note that given the large uncertainties on the H-ATLAS
cluster masses and the cool SED we have adopted, we consider
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Figure 3. Background-subtracted cumulative number counts of optically
identified and unidentified H-ATLAS sources within5′ of the 66 cluster
cores. The 250µm 5σ flux limit of the H-ATLAS catalogue is shown by
the dotted vertical line. Based on the far-infrared colours, we expect most
of the signal from the optically identified sources here to becluster members
(see text). As a guide, the upper scale corresponds to the total 8–1000µm
integrated luminosity, evaluated from the median3×1010 L⊙ < Ldust <
1011 L⊙ UV-submm template from Smith et al. (in preparation) for a ‘typ-
ical’ H-ATLAS galaxy SED, redshifted to the median redshiftof the cluster
sample (z = 0.25), and normalised to the 250µm flux. The0.2 < z < 0.4
Herschel Multi-tiered Extragalactic Survey (HerMES) submm luminos-
ity function (square symbols connected with a dot-dash curve; Eales et al.
2010b) is overplotted for comparison and has been scaled arbitrarily to the
bin at our survey flux limit.

our point to be a lower limit. We note that if other infrared studies
at similar redshifts and depths assume M82- or Arp 220-like tem-
plates for their cluster member galaxies when cooler H-ATLAS-
type SEDs are more appropriate, then they may well be over-
estimating the level of star formation activity in those clusters.
Although there is significant cluster-to-cluster scatter,in general
there has been strong evolution of the cluster SFR (see Geachet al.
2006). This is consistent with the scenario that there has been a
sharper drop-off in the star formation activity of clusterssince
z ∼ 1 than occurs in the field, probably related to the build up
of virialised structures hostile to on-going activity and gas cooling
over this period.

3.4 The nature of the optically unidentified far-infrared
sources around the clusters

Although the optically unidentified sources within5′ of the clus-
ters do not contribute significantly to the excess signal seen in Sec-
tion 3.1 and appear to lie at typically higher redshifts (z ∼ 1) on av-
erage than the optically identified H-ATLAS sources (Section 3.2)
– these results suggest that strong gravitational lensing by the clus-
ter potential is not a major contributor to the detected excess signal.
Still, they represent an interesting sample, since they could contain
strongly lensed galaxies. They thus provide potential opportunities
to study the properties of intrinsically fainter far-infrared sources at
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Figure 4. Measures of the mass-normalised SFRs in galaxy clusters
out to z ∼ 0.6, adapted from fig. 6 of Geach et al. (2006). The
SFRs are derived from the mid- or far-infrared populations within
∼2 Mpc and are normalised to the best estimate of the total (lu-
minous+dark) cluster mass. Listed in order of increasing redshift,
they are: Perseus (Meusinger et al. 2000), A3112 (Braglia etal. 2011),
A2218 (Biviano et al. 2004), A1689 (Fadda et al. 2000; Duc et al. 2002),
H-ATLAS (this work), A1758 (Haines et al. 2009), the Bullet clus-
ter (Rawle et al. 2010; Clowe, Gonzalez & Markevitch 2004; Markevitch
2006), A370 (Metcalfe, Fadda & Biviano 2005), Cl 0024+16 andMS0451–
03 (Geach et al. 2006), and J1888.16LC (Duc et al. 2004). An evolutionary
model for the counts of star-forming ULIRGs from Cowie et al.(2004) is
overlaid as a guide only, and has been normalised arbitrarily to the mean star
formation rate in Cl 0024+16 and MS 0451−03 from Geach et al. (2006).
This plot shows an increasing rate of activity in more distant clusters as
traced through their mid- or far-infrared populations, albeit with a large
scatter, suggestive that the infrared is a sensitive tracerof environmental
changes within the clusters. Note that there are large systematic effects on
the points in this plot, with the inferred SFR dependent on the assumed form
of the SED, and estimate of the total cluster mass. Given the large uncertain-
ties on the H-ATLAS cluster masses and the cool SED we have adopted, we
consider our point a lower limit (as indicated by the arrow).We also show
how our result changes if we instead assume an M82 or Apr220 SED (open
symbols), to facilitate a comparison with the literature results.

high-z than would otherwise be possible. It is possible that some
of these galaxies could be galaxies at or below the cluster redshift,
but are very highly obscured, although we note that Dunne et al.
(2011) do not see evidence for a significant population of optically-
faint low-z sources. As a simple test for this, we consider a proto-
typical ultraluminous infrared galaxy (ULIRG) with extreme red-
dening at UV-optical wavelengths: Arp 220 (AV > 15mag, with
AV = 15mag in the most central 300 pc and much higher in the
nuclei; Vermaas & Van der Werf in preparation). By redshifting
this template to the cluster redshifts, and normalising it to the ob-
served 250µm flux (the most sensitive band with the best angu-
lar resolution) we can assess whether we would have detectedits
optical counterpart by convolving the optical portion of the SED
with, say, anr-band filter. If the predicted optical flux is above the
limit of the observations of this field, then the galaxy wouldre-
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quire even further extinction on top of the Arp 220 template or a
different k-correction, implying a different (higher) redshift to the
cluster. We find that all of the galaxies without current optical iden-
tifications are classified as high-z sources using this method, with
predictedrSDSS at least one magnitude brighter than the 22.4 mag
SDSS limit. The 451 optically unidentified H-ATLAS sources are
thus candidate lensed sources. Although the amplification factor
falls off rapidly with radius for all sensible mass profiles,it is worth
noting that the Einstein radius for these clusters is expected to be
∼20–40′′ for a mass range of 1–5 × 1014 M⊙. Therefore, only a
fraction of the 451 optically unidentified H-ATLAS sources are ex-
pected to be highly magnified.

Thus, from the 451 candidate lensed sources, we have singled
out those sources lying within 1′ (≃ 0.2Mpc) of the cluster centres
for further study, amounting to 14 strong lens candidates (see Ta-
ble 1). The mean colours of the 14 lens candidates are typicalof the
colours of the optically unidentified H-ATLAS sources and are con-
sistent with being high-redshift sources:〈S250/S350〉 = 1.3± 0.1;
〈S500/S350〉 = 0.5±0.1. In Fig. 5 we present co-addedgri images
of the sources, with 250µm flux density contours overlaid.

4 SUMMARY & CONCLUSIONS

We have detected a significant excess of optically identifiedfar-
infrared sources within∼ 1.2Mpc of the centres of optically-
selected clusters of galaxies with〈z〉 ∼ 0.25 in the SDP H-ATLAS
field. Assuming that the excess signal is completely dominated by
star formation (rather than AGN), the far-infrared excess corre-
sponds to an average SFR of≈ 7M⊙ yr−1 per cluster.

The average cluster far-infrared SFR is consistent with mass-
normalised SFRs from previous work. If the observed SFR in these
clusters is maintained over the 3 Gyr sincez = 0.25, then the
activity could contribute∼ 2 × 1010 M⊙ of new stellar mass in
the clusters – enough to construct a typical S0 bulge. Our aver-
age integrated SFR for the clusters can be considered a lower-limit,
since we expect additional contribution from obscured sources be-
low the sensitivity limit of the H-ATLAS observations. Thisevolu-
tion is necessary for the observed increase in the fraction of massive
(bulge dominated) lenticular galaxies in the cores of clusters over
the same time period.

Finally, we have determined that the optically unidentified
H-ATLAS sources within 5′ (≃ 1.2Mpc) of the cluster cores
are higher-redshift background sources, some of which could be
strongly lensed by the cluster, and we have compiled a list oflensed
candidates for further study. The future full H-ATLAS coverage
will be sufficiently large that this analysis can be repeatedand ex-
tended as a function of cluster redshift and mass. In addition, this
analysis could be applied to targetted SPIRE observations of galaxy
clusters.
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Table 1. A list of H-ATLAS strong lens candidates within1′ of cluster cores, ranked in order of decreasing 250µm flux density (note that these particular
sources are all detected at>

∼ 5σ at 250µm). The mean colours of the lens candidates are typical of thecolours of the optically unidentified H-ATLAS sources
and are consistent with being high-redshift sources:〈S250/S350〉 = 1.3± 0.1; 〈S500/S350〉 = 0.5± 0.1 (errors represent the error on the mean).

IAU identifier SDP ID RA Dec. rc S250 S250/S350 S500/S350

[h m s] [◦ ′ ′′] [ ′] [mJy]

HATLAS J091354.6–004539 SDP.219 09:13:54.7−00:45:39.6 0.93 91.8± 6.7 1.1± 0.1 0.6± 0.1
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Figure 5.Co-added40′′×40′′ gri images of the 14 strong lens candidate H-ATLAS sources for further study and follow-up (centred on the 250µm positions,
with 250µm contours starting at 3σ and increasing in steps of 1σ) within 1′ (≃ 0.2Mpc) of the cluster centres in order of decreasing 250µm flux density
(Left-Right, Top-Bottom).
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