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ABSTRACT
We present the angular correlation function measured from photometric samples comprising
1562 800 luminous red galaxies (LRGs). Three LRG samples were extracted from the Sloan
Digital Sky Survey (SDSS) imaging data, based on colour-cut selections at redshifts, z ≈ 0.35,
0.55 and 0.7 as calibrated by the spectroscopic surveys, SDSS-LRG, 2dF-SDSS LRG and
QSO (quasi-stellar object) (2SLAQ) and the AA�-LRG survey. The galaxy samples cover
≈7600 deg2 of sky, probing a total cosmic volume of ≈5.5 h−3 Gpc3.

The small- and intermediate-scale correlation functions generally show significant devia-
tions from a single power-law fit with a well-detected break at ≈1 h−1 Mpc, consistent with the
transition scale between the one- and two-halo terms in halo occupation models. For galaxy
separations 1–20 h−1 Mpc and at fixed luminosity, we see virtually no evolution of the clus-
tering with redshift and the data are consistent with a simple high peaks biasing model where
the comoving LRG space density is constant with z. At fixed z, the LRG clustering amplitude
increases with luminosity in accordance with the simple high peaks model, with a typical
LRG dark matter halo mass 1013–1014 h−1 M�. For r < 1 h−1 Mpc, the evolution is slightly
faster and the clustering decreases towards high redshift consistent with a virialized clustering
model. However, assuming the halo occupation distribution (HOD) and � cold dark matter
(�CDM) halo merger frameworks, ∼2–3 per cent/Gyr of the LRGs are required to merge in
order to explain the small scales clustering evolution, consistent with previous results.

At large scales, our result shows good agreement with the SDSS-LRG result of Eisenstein
et al. but we find an apparent excess clustering signal beyond the baryon acoustic oscillations
(BAO) scale. Angular power spectrum analyses of similar LRG samples also detect a similar
apparent large-scale clustering excess but more data are required to check for this feature in
independent galaxy data sets. Certainly, if the �CDM model were correct then we would have
to conclude that this excess was caused by systematics at the level of �w ≈ 0.001–0.0015 in
the photometric AA�-LRG sample.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: haloes –
cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The galaxy two-point function whether in its correlation function
or power spectrum form has long been recognized as a powerful

�E-mail: utane.sawangwit@durham.ac.uk

statistical tool for studying large-scale structure (LSS) of the Uni-
verse (Peebles 1980). In an isotropic and homogeneous Universe, if
the density fluctuation arises from a Gaussian random process, the
two-point correlation function, ξ (r), and its Fourier transform, P(k),
contain a complete description of such fluctuations. It has been used
to measure the clustering strength of galaxies in numerous galaxy
surveys (see e.g. Groth & Peebles 1977; Shanks et al. 1989; Baugh
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& Efstathiou 1993; Ratcliffe et al. 1998) and the observed ξ (r) is
reasonably well represented by a power law of the form ξ (r) =
(r/r0)−1.8 over a large range of scales, ≈100 h−1 kpc–10 h−1 Mpc,
where r0 is approximately 5 h−1 Mpc.

More recently, large galaxy redshift surveys have become avail-
able [Sloan Digital Sky Survey (SDSS): York et al. 2000, Two-
degree-Field Galaxy Redshift Survey (2dFGRS) : Colless et al.
2001] and these surveys provide a perfect opportunity to exploit
the two-point function as a tool to constrain cosmological parame-
ters (Hawkins et al. 2003; Cole et al. 2005; Eisenstein et al. 2005;
Tegmark et al. 2006; Percival et al. 2007) which in turn provides an
excellent test for our current understanding of the Universe and the
processes by which the LSS were formed.

In the past, when galaxy redshift surveys were less available,
the angular correlation function, w(θ ), was heavily utilized in the
analysis of imaging galaxy samples. The spatial correlation func-
tion, ξ (r), can be related to w(θ ) via Limber’s equation (Limber
1953), alternatively w(θ ) can be inverted to ξ (r) using Lucy’s it-
erative technique (Lucy 1974), both approaches providing a means
to recover the 3D clustering information numerically. Even today,
galaxy imaging surveys still tend to cover a bigger area of the sky
and occupy a larger volume than redshift surveys and therefore
could offer a route to a more accurate estimation of the correlation
function and power spectrum (see e.g. Baugh & Efstathiou 1993).
One of the disadvantages of using w(θ ) is the dilution of the cluster-
ing signal from projection and hence any small-scale/sharp feature
which might exist in the 3D clustering may not be observable in
w(θ ).

As mentioned above, the correlation function at small to interme-
diate scales can be approximately described by a single power law
which also results in a power-law w(θ ) but with a slope of 1 − γ .
However with larger sample sizes, recent analyses of galaxy distri-
butions start to show a deviation from a simple power law (Zehavi
et al. 2005b; Phleps et al. 2006; Ross et al. 2007; Blake, Collister &
Lahav 2008, see also Shanks et al. 1983). This poses a challenge for
a physical explanation and understanding of non-linear evolution of
structure formation. Several authors attempted to fit such correlation
function using a description of halo model framework (e.g. Cooray
& Sheth 2002) invoking a transition between one- and two-halo
terms which occurs at ≈1 h−1 Mpc where the feature is observed.
This distance scale could potentially be used as a ‘standard ruler’
in tracking the expansion history of the Universe, provided that its
physical origin is well understood and the scale can be accurately
calibrated.

Another feature in the correlation function predicted by the stan-
dard �cold dark matter (�CDM) model is the ‘baryon acoustic
oscillations’ (BAO). BAO arise from sound waves that propagated
in the hot plasma of tightly coupled photons and baryons in the
early Universe. As the Universe expands and temperature drops be-
low 3000 K, and photons decouple from the baryons at the so-called
‘epoch of recombination’. The sound speed drops dramatically and
oscillatory pattern imprinted on the baryon distribution as well as
the temperature distribution of the photons which approximately
13 billions years after the big bang revealed as the acoustic os-
cillations in the temperature anisotropies of the cosmic microwave
background. The equivalent but attenuated feature exists in the clus-
tering of matter, as baryons fall into dark matter potential wells after
the recombination. In recent years, the acoustic peak scale in the
LSS has been proposed as a potential ‘standard ruler’ (e.g. Blake &
Glazebrook 2003; Glazebrook et al. 2007; McDonald & Eisenstein
2007) for constraining the dark energy equation of state (w = p/ρc2)
and its evolution.

For the BAO approach to the study of dark energy to yield a
competitive result, a large survey of several million galaxies is gen-
erally required (Blake & Glazebrook 2003; Seo & Eisenstein 2003;
Parkinson et al. 2007; Angulo et al. 2008). A galaxy spectroscopic
redshift survey would require a substantial amount of time and re-
sources. An alternative route which will enable a quicker and larger
area covered is through the use of photometric redshift (hereafter
photo-z) at the expense of the ability to probe the radial component
directly. The photo-z errors are usually worse than spectroscopic
redshift errors, but this can be compensated by a larger survey and
deeper imaging.

The potential of the distribution of luminous red galaxies (LRGs)
as a powerful cosmological probe has long been appreciated (Glad-
ders & Yee 2000; Eisenstein et al. 2001, hereafter E01). Their intrin-
sically high luminosities provide us with at least two advantages,
one being the ability to observe such a population out to a greater
distance whilst the other is the possibility of detecting the small
overdensity of the BAO in matter distribution at ≈100 h−1 Mpc ow-
ing to their high linear bias.1 In addition, their typically uniform
spectral energy distributions (SEDs) allow a homogeneous sample
to be selected over the volume of interest. Moreover, the strong
4000 Å break in their SEDs makes them an ideal candidate for
the photometric redshift route or even a colour–magnitude cut as
demonstrated by the success of the target selection algorithm of
three LRG spectroscopic follow-ups using SDSS imaging. In fact,
the first clear detection of the BAO in the galaxy distribution came
from the analysis of LRG clustering at low redshift (Eisenstein et al.
2005).

Here, we shall present new measurements of the angular correla-
tion functions determined from colour-selected LRG samples. We
shall show that this route provides redshift distribution, n(z), widths
that are close to the current photo-z accuracy, with none of the as-
sociated systematic problems. Indeed, one of our aims is to assess
the efficiency of this route to BAO measurement compared to a full
3D redshift correlation function. This possibility arises because the
n(z) width that we obtain is comparable to the ≈100 h−1 Mpc scale
of the expected acoustic peak.

A similar clustering analysis measuring w(θ ) of LRGs with
photo-zs has been carried out by Blake et al. (2008). Equipped with
a higher-redshift LRG selection algorithm whose effectiveness has
been tested with the new LRG spectroscopic redshift survey, the
VST-AA� ATLAS pilot run (Ross et al. 2008a), our approach is an
improvement over Blake et al. (2008) as it probes an almost four
times larger cosmic volume and we extend the analysis to large
scales to search for the BAO peak.

The layout of this paper is as follows. An overview of the galaxy
samples used here is given in Section 2. Section 3 describes the
techniques for estimating the angular correlation functions and their
statistical uncertainties. We then present the correlation results in
Section 4. In Section 5, the clustering evolution of these LRGs are
discussed. We then investigate a possibility of the acoustic peak
detection in the w(θ ) from the combined sample in Section 6. Fi-
nally, the summary and conclusions of our study are presented in
Section 7.

1 This is the well-known luminosity-dependent bias as shown observation-
ally by e.g. Norberg et al. (2002) and Zehavi et al. (2005b) and is expected
in hierarchical clustering CDM universe (Benson et al. 2001).
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Table 1. Summary of the properties of LRG samples used in
this study.

Sample z̄ Number Density Magnitude (AB)
(deg−2)

SDSS 0.35 106 699 ≈13 17.5 ≤ rpetro < 19.5
2SLAQ 0.55 655 775 ≈85 17.5 < ideV < 19.8
AA� 0.68 800 346 ≈105 19.8 < ideV ≤ 20.5

2 DATA

The galaxy samples used in this study were selected photometrically
from SDSS DR5 (Adelman-McCarthy et al. 2007) imaging data
based on three LRG spectroscopic redshift surveys with z̄ ≈ 0.35,
0.55 and 0.7 (E01; Cannon et al. 2006, hereafter C06; Ross et al.
2008a). In summary, these surveys utilized a crude but effective
determination of photometric redshift as the strong 4000 Å feature
of a typical LRG SED moves through SDSS g, r, i and z bandpasses
(Fukugita et al. 1996; Smith et al. 2002). In each survey, a two-colour
system (either g − r versus r − i or r − i versus i − z) suitable for
the desired redshift range was used in conjunction with r- or i-band
magnitude to select luminous intrinsically red galaxies. The method
employed by these surveys has been proven to be highly effective
in selecting LRGs in the target redshift range. The full selection
criteria will not be repeated here but a summary of the algorithms
and any additional criteria will be highlighted below (see E01; C06;
Ross et al. 2008a for further details). Redshift distributions, n(z),
of the LRGs from the spectroscopic surveys utilized in this work
are shown in Fig. 1. The LRG samples corresponding to the above
n(z) have been carefully selected to match our selection criteria
hence these n(z) will be assumed in determining the 3D correlation
functions, ξ (r), from their projected counterparts, w(θ ), via the
Limber (1953) equation.

All magnitudes and colours are given in SDSS AB system and
are corrected for extinction using the Galactic dust map of Schlegel,
Finkbeiner & Davis (1998). In this analysis, we only used the galaxy
samples in the most contiguous part of the survey, i.e. the northern
Galactic cap (NGC). All colours described below refer to the differ-
ences in ‘model’ magnitudes (see Lupton et al. 2001, for a review
on model magnitudes) unless otherwise stated.

Figure 1. Normalized redshift distributions, n(z), of the three LRG spec-
troscopic surveys used as the basis for selection criteria in this study.

Hereafter, we shall refer to the photometrically selected sample
(not to be confused with the spectroscopic sample from which they
are associated) at average redshift of 0.35, 0.55 and 0.7 as the ‘SDSS
LRG’, ‘2SLAQ LRG’ and ‘AA� LRG’, respectively.

2.1 SDSS LRG

The sample used here is similar to the target sample of the re-
cently completed SDSS-LRG spectroscopic survey which contains
≈100 000 spectra and cover over 1 h−3 Gpc3. These objects are
classified as LRGs on the basis of their colours and magnitudes fol-
lowing E01. The sample is approximately volume-limited up to z ≈
0.38 and spans out to z ≈ 0.5. The selection is done using (g − r)
and (r − i) colours coupled with r-band (Petrosian 1976) magnitude
system. The algorithm is designed to extract LRGs in two different
(but slightly overlapped) regions of the gri colour space and hence
using two selection criteria (Cut I and Cut II in E01) as naturally
suggested by the locus of early-type galaxy on this colour plane
(see Fig. 2). The tracks shown in Fig. 2 were constructed using a
spectral evolution model of stellar populations (Bruzual & Charlot
2003) with output spectra mimicking a typical SED of the LRGs.
The stellar populations were formed at z ≈ 10 and then evolve with
two different scenarios, namely (i) passive evolution of an instanta-
neous star formation (single burst), and (ii) exponentially decayed
star formation rate (SFR) with e-folding time of 1 Gyr. Solar metal-
licity and Salpeter (1955) initial mass function (IMF) were assumed
in both evolutionary models.

We used the same colour–magnitude selection as that described
by E01 but with additional restriction on the r-band apparent mag-
nitudes of the objects, i.e. rpetro ≥ 17.5. This is due mainly to two
reasons, (i) to separate out the objects with z < 0.2 because Cut
I is too permissive and allows under-luminous objects to enter the
sample below redshift 0.2 as also emphasized by E01, and (ii) to
tighten the redshift distribution of our sample while maintaining the
number of objects and its average redshift (see Fig. 3).

The selection criteria mentioned above also have another star–
galaxy separation algorithm apart from the pipeline PHOTO classi-
fication (Lupton et al. 2001). This was done by setting a lower limit

Figure 2. The colour–colour plot of SDSS LRG Cut I and II showing their
positions on the gri colour plane compared to the predicted colour–colour
locus (observer frame) of typical early-type galaxies as a function of redshift
(see text for more details). Each solid circle denotes the redshift evolution
of the colour–colour tracks at the interval of 0.1 beginning with z = 0.1
(bottom left).
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Figure 3. The number of objects as a function of redshift from SDSS-LRG
spectroscopic redshift survey, also shown is the subset of Cut I and II with
additional magnitude cut, rpetro ≥ 17.5, applied.

on the differences in r-band point spread function (PSF) magnitudes
and model magnitudes as most galaxies populate the upper part of
rPSF − rmodel space compare to the foreground star of similar appar-
ent magnitude. The algorithm has been proven to be quite effective
(less than 1 per cent stellar contamination) for this range of redshift
and magnitude although Cut II needs a more restrictive threshold,
rPSF − rmodel > 0.5 as compared to 0.3 for Cut I.

In practice, the LRG sample described here can be extracted
from the SDSS DR5 imaging data base using the Structured
Query Language (SQL) query by setting the flag PRIMTARGET to
GALAXY_RED. This yields a catalogue of approximately 200 000
objects which after applying the additional magnitude cut men-
tioned above becomes 106 699 objects and results in the sky surface
density of about 13 objects per square degree.

2.2 2SLAQ LRG

The 2dF-SDSS LRG and Quasar Survey (2SLAQ) is the spectro-
scopic follow-up of intermediate- to high-redshift (z > 0.4) LRGs
from photometric data of SDSS DR4 (Adelman-McCarthy et al.
2006) using the two-degree Field (2dF) instrument on the Anglo-
Australian Telescope (AAT). This survey is now completed and con-
tains approximately 13 000 bona fide LRGs with over 90 per cent at
0.45 < z < 0.8 in two narrow equatorial strips covering 180 deg2.
The primary sample of the survey (Sample 8; C06) was selected
using (g − r) versus (r − i) colours and ‘de Vaucouleurs’ i-band
magnitude (17.5 < ideV < 19.8). The colour selection of Sample 8
is similar to that of Cut II which utilizes the upturn of the early-type
galaxy locus in gri colour plane and hence is immune against the
confusion with the late-type galaxy locus at higher redshift (see
fig. 2 in E01) but the scattering up in colour of interlopers from
lower redshift and contamination of M-stars can also affect the ac-
curacy of the selection. The latter could be prevented by using a
similar method for star–galaxy separation as described in the last
section but in this case we used the i-band magnitude rather than
the r band. Following C06, two criteria were used,

ipsf − imodel > 0.2(21 − ideV) (1)

and

radiusdeV(i) > 0.2, (2)

where radiusdeV(i) is de Vaucouleurs radius fit of the i-band pho-
tometry. As reported by C06, approximately 5 per cent of the cool

dwarf M-stars are still present in their sample and we shall assume
this value when correcting for the dilution of the correlation signal
due to the uncorrelated nature of foreground stars and the LRGs. In
this work, we only use Sample 8 as this provides us with a narrower
n(z) and higher average redshift than the whole 2SLAQ sample.

A sample of 655 775 photometrically selected LRG candidates
(≈5 per cent stellar contamination) is returned by the SDSS DR5
‘Best Imaging’ data base when the Sample 8 selection criteria are
used in the SQL query from table GALAXY. Objects with BRIGHT
or SATURATED or BLENDED but not DEBLENDED flags are not
included in our sample.

2.3 AA� LRG

The AA�-AAT LRG Pilot observing run was carried out in 2006
March by Ross et al. (2008a, and references therein) as a ‘Proof
of Concept’ for a large spectroscopic redshift survey, VST-AA�

ATLAS, using the new AA� instrument on the AAT. The survey
was designed to target photometrically selected LRGs out to z ≈
1.0 with the average redshift of 0.7. The target sample was observed
in three 2dF including the COSMOS field (Scoville et al. 2007), the
COMBO-17 S11 field (Wolf et al. 2001), and 2SLAQ d05 field
(C06).

We follow the survey main selection criteria, 19.8 < ideV ≤ 20.5,
together with the riz colour cuts as described by Ross et al. (2008a).
In summary, the cut utilizes the upturn of the early-type galaxy
colour–colour locus similar to that used by 2SLAQ and SDSS-LRG
surveys. The turning point of the track on the riz colour plane occurs
at z = 0.6–0.7 as the 4000 Å feature moves from the SDSS r to i
band whilst this happens at z ≈ 0.4 in the gri case. The selection
technique has been proven to work reasonably well by the observed
redshift distribution. This is further confirmed by the ongoing AAT-
AA� LRG project, the down-sized version of the VST-AA� ATLAS
survey, designed to observe several thousands of LRG redshifts for
photo-z calibration and a clustering evolution study. The n(z) (Fig. 1)
used in inferring the 3D clustering information also includes ≈2000
AA� LRG redshifts taken during the run in June 2008.

As emphasized by Ross et al. (2008a), the stellar contamination
in the sample can be readily reduced to ≈16 per cent by imposing
star–galaxy separation in the z-band without any significant loss
of genuine galaxies. Although the level of contamination could
be further reduced by using near-infrared photometry, we do not
attempt it here as there is no infrared survey that covers the entire
SDSS DR5 NGC sky with similar depth. Therefore, we shall use the
quoted contamination fraction when correcting the measured w(θ )
for the same reason mentioned in Section 2.2. Since no expression
for star–galaxy separation is given in Ross et al. (2008a), here such
a procedure is performed using an equation defining the dashed line
in their fig. 3,

zpsf − zmodel > 0.53 + 0.53(19.0 − zmodel). (3)

Applying the above selection rules on the ‘Best Imaging’ data
of the SDSS DR5 yields a photometric sample of 800 346 high-
redshift LRG candidates with the sky surface density of approx-
imately 110 objects per square degree. As with the 2SLAQ-LRG
sample, objects with BRIGHT or SATURATED or BLENDED but
not DEBLENDED flags are discarded from our sample.
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3 ESTIMATING w(θ ) A N D I T S E R RO R

3.1 Optimal estimator and techniques

The two-point correlation function, ξ (r), measures the excess prob-
ability of finding a pair of objects separated by distance r relative to
that expected from a randomly distributed process. The joint prob-
ability of finding two objects of interest (in this case the LRGs) in
the volume elements δV1 and δV2 separated by a distance r is given
by

δP (r) = n2 [1 + ξ (r)] δV1δV2, (4)

where n is the number space density of the sample. In practice,
redshift of individual object is required to estimate the separation
between a given pair. However if such redshift information is not
available as in this study, the sky projected version, w(θ ), can be
used to analyse the clustering property of the sample instead. The
2D equivalent of equation (4) is

δP (θ ) = ℵ2 [1 + w(θ )] δ�1δ�2 (5)

where ℵ is the surface density of the objects and δP(θ ) is now the
joint probability of finding two objects in solid angle δ�1 and δ�2

separated by angle θ .
Two possible routes for estimating w(θ ) are the pixelization of

galaxy number overdensity, δg = δn/n̄ and pair counting. The pix-
elization approach usually requires less computation time but its
smallest scale probed is limited by the pixel size. We choose to
follow the latter. To calculate w(θ ) using the pair counting method,
one usually generates a random catalogue whose angular selection
function is described by the survey. The number of random points
are generally required to be 10 times the number of objects or more.
This is necessary to reduce the shot noise. Our random catalogue
for each sample has ≈20 times the number of LRGs in SDSS and
10 times for 2SLAQ and AA�-pilot (see the next section for details
on how this was achieved).

We compute w(θ ) using the minimum variance estimator of
Landy & Szalay (1993). It is also an unbiased estimator (Martı́nez
& Saar 2002) for the two-point correlation function (2PCF) as it can
be reduced to the exact theoretical definition of 2PCF, i.e. a variance
of density fluctuation in Gaussian field, ξ (r) = 〈δ(x)δ(x + r)〉. The
form of this estimator is

wLS(θ ) = 1 +
(

Nrd

N

)2
DD(θ )

RR(θ )
− 2

(
Nrd

N

)
DR(θ )

RR(θ )
(6)

where DD(θ ) is the number of LRG–LRG pairs with angular sep-
aration within the angular bin centres at θ . DR(θ ) and RR(θ ) are
the numbers of LRG–random and random–random pairs, respec-
tively. The Nrd/N ratio is required for normalization. Nrd is the total
number of random points and N is the total number of LRGs. We
use a logarithmic binwidth of �log (θ /arcmin) = 0.176 for θ = 0.1
to 50 arcmin and a linear binwidth of 20 arcmin at scales larger
than 50 arcmin.

The uncertainty in the number density of the sample could lead
to a bias in the estimation of w(θ ) when using the Landy–Szalay
estimator especially at large scales where the amplitude is small and
hence we also utilize the Hamilton (1993) estimator, given by

wHM(θ ) = DD(θ ) · RR(θ )

DR(θ )2
− 1 (7)

which requires no normalization. We used the Hamilton estimator
to cross-check our wLS for each sample and found the difference
given by the two estimators to be negligible in all three samples.

For the purpose of determining statistical uncertainty in our mea-
surement, three methods of estimating the errors are considered.
The first method is the simple Poisson error given by

σPoi(θ ) = 1 + w(θ )√
DD(θ )

. (8)

For the second method, field-to-field error, we split the sample into
24 subfields of approximately equal size. These subfields are large
enough for estimating the correlation function up to the scale of
interest. This is simply a standard deviation of the measurement in
each subfield from the best estimate and is calculated using

σ 2
FtF(θ ) = 1

N − 1

N∑
i=1

DRi(θ )

DR(θ )
[wi(θ ) − w(θ )]2 (9)

where N is the total number of subfields, wi(θ ) is a measurement
from the ith subfield and w(θ ) is measured using the whole sample.
The deviation of the angular correlation function computed in each
subfield is weighted by DRi(θ )/DR(θ ) to account for their relative
sizes.

The third method is the jackknife (JK) resampling. This is a
method of preference in a number of correlation studies (see e.g.
Scranton et al. 2002; Zehavi et al. 2005a; Ross et al. 2007). The JK
errors are computed using the deviation of w(θ ) measured from the
combined 23 subfields out of the 24 subfields. The subfields are the
same as used for the estimation of field-to-field error above. w(θ ) is
calculated repeatedly, each time leaving out a different subfield and
hence results in a total of 24 measurements. The JK error is then

σ 2
JK(θ ) =

N∑
i′=1

DRi′ (θ )

DR(θ )
[wi′ (θ ) − w(θ )]2 (10)

where wi′ (θ ) is now an angular correlation function estimated using
the whole sample except the ith subfield and DRi′ (θ )/DR(θ ) is
approximately 23/24 with slight variation depending on the size of
the resampling field.

The w(θ ) measured from a restricted area are known to suffer
from a negative offset called ‘integral constraint’, ic, which tends
to force the fluctuation on the scales of the survey to zero (Groth
& Peebles 1977), i.e. west(θ ) = w(θ ) − ic. The integral constraint
can be estimated from the random pair counts drawn from the same
angular selection function (Section 3.2) as the data (see e.g. Roche
& Eales 1999);

ic = �RR(θ )wmodel(θ )

�RR(θ )
, (11)

where we assume our fiducial �CDM model (see Section 4.2) for
wmodel. The ic for the SDSS, 2SLAQ and AA�-LRG samples are
4 × 10−4, 1.5 × 10−4 and 8 × 10−5, respectively. These are much
smaller than the w(θ )’s amplitudes in the angular ranges being
considered in this paper, as expected given the large sky coverage
of the SDSS data.

It is well known that the correlation function bins are correlated
which could affect the confidence limit on the parameter estimation
performed under the assumption that each data point is independent.
Comparison of the estimated error using the field-to-field and JK
techniques to the simple Poisson error can give a rough estimate
of the deviation from the independent point assumption. This is
plotted in Fig. 4 which shows that the assumption is valid on small
scales where Poisson error is a fair estimate of the statistical uncer-
tainty. However the same cannot be said on large scales where the
data points are correlated and the independent point assumption no
longer holds. At these scales, such statistical uncertainty is likely to
be dominated by edge-effects and cosmic variance.
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Figure 4. The ratio of JK to Poisson and field-to-field errors on the measure-
ments of w(θ ). The open diamonds, triangles and solid circles give the error
ratios of w(θ ) estimated from SDSS, 2SLAQ and AA� LRG, respectively.

Fig. 4 also shows that the errors estimated using field-to-field and
JK methods are in good agreement at all angular scales except for
2SLAQ and AA� samples where the JK errors are slightly smaller
towards the large scales but still agree within 10 per cent. The er-
rors quoted in later sections are estimated using the JK resampling
method.

The covariance matrix allows the correlation between each bin to
be quantified and can be used in the fitting procedure to de-correlate
the separation bins. We calculate the covariance matrix from the JK
resampling using

Cij = (N − 1)〈[w(θi) − w(θi)] · [w(θj ) − w(θj )]〉, (12)

where w(θj ) is the mean angular correlation function of all the JK
subsamples in the jth bin. Note that the difference between w(θj )
and w(θ ) estimated using the whole sample is negligible. We then
proceed to compute the ‘correlation coefficient’, rij , defined by

rij = Cij√
Cii · Cjj

. (13)

Fig. 5 shows the correlation coefficients for the three samples which
are strongly correlated at the largest scale considered and less at
small scales confirming the simple correlation test using Poisson

Figure 6. An equal area Aitoff projection of a random catalogue described
in Section 3.2. The red/grey highlighted regions indicate the areas where
adjacent stripes are overlapped. Note that the shading is purely diagrammatic
to show the overlap regions and is unrelated to galaxy density.

errors. Note that for the purpose of model fittings in the large-scale
sections (Sections 4.2, 4.3 and 6) where a more stable covariance
matrix is required, we increase the number of resampling fields
to 96 subregions with approximately equal area. The size of these
subregions is also big enough for the largest scale being considered
in this paper. The correlation coefficients constructed from these 96
JK resampling are shown in Fig. A1 for the three LRG samples.

We use the kd-trees code (Moore et al. 2001) to minimize the
computation time required in the pair counting procedure. The an-
gular correlation function is estimated using the method described
above and then corrected for stellar contamination which reduce the
amplitude by a factor (1 − f )2, where f is the contamination fraction
for each sample given in Section 2.

3.2 Constructing random catalogues

In order to calculate the angular correlation function accurately, a
random catalogue is required. This catalogue consists of randomly
distributed points with the total number at least 10 times that of the
data. Each random point is assigned a position in Right Ascension
(RA) and Declination (DEC). Since our sample spans a wide range
in DEC (see Fig. 6 for the SDSS DR5 sky coverage), care must
be taken to keep the surface number density constant assuming
the survey completeness is constant and uniform throughout. Only
the random points that satisfy the angular selection function of the
survey as defined by the mask are selected.

Figure 5. The correlation coefficients, rij , showing the level of correlation between each angular separation bin for SDSS, 2SLAQ and AA� LRG (left to
right). Note that for each sample we only show rij up to the angular separation which corresponds to ≈20 h−1 Mpc where later we shall attempt to fit power-law
forms to the measured w(θ )s.
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The mask is constructed from ‘BEST’ DR5 imaging sky coverage
given2 in the survey coordinate (λ, η) and stripe number. The sky is
drift scanned in a strip parallel to η and two strips are required to fill
a stripe (York et al. 2000). Each stripe is 2.◦5 wide and their centres
are separated by 2.◦5. In addition to the ‘BEST’ sky coverage mask,
we also exclude regions in the quality ‘holes’ and regions defined
as ‘BLEEDING’, ‘BRIGHT_STAR’, ‘TRAIL’ and ‘HOLE’ in the
‘mask’ table given by the SDSS data base. The final mask is applied
to both our data and random catalogues.

Note that further away from the survey equator (RA2000 = 185◦),
the adjacent stripes become overlapped which account for almost
20 per cent of the sky coverage. The ‘BEST’ imaging data base only
keep the best photometry of the objects which have been detected
more than once in the overlap regions. At the faint magnitude limit
of our sample, this could lead to a higher completeness in the overlap
region and introduces bias in the estimated correlation function. This
issue has also been addressed by Blake et al. (2007). They compared
the measurement from the sample which omits the overlap region
against their best estimate and found no significant difference. We
follow their approach by excluding the overlap regions and re-
calculating the angular correlation function of our faintest apparent
magnitude sample, AA�-LRG, where the issue is expected to be
the most severe. We found no significant change compared to our
best estimate using the whole sample.

3.3 Inferring 3D clustering

The angular correlation function estimated from the same popula-
tion with the same clustering strength will have a different amplitude
at a given angular scale if they are at different depths (redshifts) or
have different redshift selection functions, φ(z). Therefore in order
to accurately compare the clustering strengths of different samples
inferred from w(θ ), one needs to know the sample φ(z). Even if
the redshifts of individual galaxies are not available, their 3D clus-
tering information can be recovered if the sample redshift distribu-
tion, n(z), is known. The equation that relates the spatial coherence
length, r0, to the amplitude of w(θ ) is usually referred to as Limber’s
equation.

Recently, the accuracy of Limber’s equation has been called into
question. This is due to the assumption made for Limber’s approx-
imation that the selection function, φ(z), varies much more slowly
than ξ (r) in addition to the flat-sky (small angle) approximation. It
was shown by Simon (2007) that such an assumption would lead
to w(θ ) being overestimated at large angle where the breakdown
scale becomes smaller for narrower φ(z) (see Fig. 7). Here, we shall
use the relativistic generalization of Limber’s equation suggested
by Phillipps et al. (1978) but without the approximation mentioned
above. Following Phillipps et al. (1978) for the comoving case,

w(θ ) =
∫ ∞

0 dz1f (z1)
∫ ∞

0 dz2f (z2)ξ (r)[∫ ∞
0 dzf (z)

]2 . (14)

The source’s radial distribution, f (z), is simply given by the galaxy
selection function, φ(z), as

f (z) ≡ χ 2(z)
dχ (z)

dz
nc(z)φ(z), (15)

where χ is the radial comoving distance, nc(z) is the comoving
number density of the sources and r = r(θ , z1, z2) is a comov-
ing separation of the galaxy pair. We shall assume a spatially flat

2 http://www.sdss.org/dr5

Figure 7. The angular correlation function computed using the full (dashed-
lines) and approximate (solid-lines) Limber equation, derived using a power
law, ξ (r) = (r/r0)−γ where r0 = 10 h−1 Mpc and γ = 1.8 with the SDSS
LRG n(z) for the thin lines and much narrower n(z) (±0.01 centred at z =
0.35) for the thick lines.

cosmology (see Section 4.2) hence

r ≡
√

χ 2(z1) + χ 2(z2) − 2χ (z1)χ (z2) cos θ. (16)

Note that equation (14) can also be used to relate a non-power-law
spatial correlation function to w(θ ) unlike the conventional power-
law approximation of Limber’s equation (Phillipps et al. 1978).

Fig. 7 shows w(θ ) computed using equation (14) (dashed lines)
compared to the conventional Limber’s approximation (solid lines)
for a power-law ξ (r) with clustering length 10 h−1 Mpc and γ = 1.8.
The effect of a much narrower redshift distribution (thick lines) is
also shown where the break scale becomes smaller and the power-
law slope of w(θ ) asymptotically approaches that of ξ (r), agreeing
with the finding of Simon (2007). We shall use equation (14) to-
gether with the known n(z) to infer the 3D spatial clustering of the
LRGs.

4 R ESULTS

4.1 Power-law fits

We first look at the angular correlation function measured from the
LRG sample at scales less than 1◦ corresponding to approximately
20 h−1 Mpc where previous studies suggested that the spatial 2PCF
can be described by a single power law of the form ξ (r) = (r/r0)−γ

(typically γ = 1.8) and a single power-law w(θ ) with slope 1 − γ

is expected (see Fig. 7). However in this study, we find a deviation
from a single power law with a break in the slope at ≈1 h−1 Mpc
in all three samples (less significant for the SDSS LRG). The mea-
surement has a steeper slope at small scales (<1 h−1 Mpc) and is
slightly flatter on scales up to ≈20 h−1 Mpc where it begins to drop
sharply (see Figs 8 and 9). The inflexion feature at ≈1 h−1 Mpc has
also been reported in the spatial and semi-projected, wp(σ ), corre-
lation function by many authors (e.g. Zehavi et al. 2005a; Phleps
et al. 2006; Ross et al. 2007; Blake et al. 2008) and detections go
back as far as Shanks et al. (1983). We shall return to discuss these
features in the halo model framework (Section 4.3).

If we first consider w(θ ) at scales smaller and larger than the
break point separately, each can be approximately described by
a power law with a slope of ≈−1.15 (γ = 2.15), and ≈−0.83
(γ = 1.83), respectively. A more detailed analysis is performed by
fitting a set of models to the measured w(θ ) using a chi-squared
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Figure 8. The angular correlation function measured from the three LRG
samples. The solid lines are the projection of best-fitting double power-law
ξ (r) with r0 and γ given in Table 2 for each sample. The break scales
occur at approximately a few arcmin depending on the average redshift of
the sample. This corresponds to a comoving separation of ≈1 h−1 Mpc (see
Fig. 9).

minimization method with the full covariance matrix constructed
from the JK resampling (see Section 3.1). This allows us to quantify
the significance of the deviation from the single power law by
comparing its goodness of fit to a double power law. We proceed by
calculating

χ 2 =
N∑

i,j=1

�w(θi)C
−1
ij �w(θj ), (17)

where N is the number of angular bins, �w(θ i) is the difference
between the measured angular correlation function and the model
for the ith bin, and C−1

ij is the inverse of covariance matrix.

The single power-law fit is of the form w(θ ) = (θ /θ 0)(1−γ ). We
also recover the spatial clustering length, r0, and its slope through
the fitting via equation (14). For a double power law, the fitting
procedure is performed separately at the scales smaller and larger
than θ b, corresponding to ≈1 h−1 Mpc for all three samples (see
Fig. 9). The largest scale considered in the fitting for all cases is
≈20 h−1 Mpc where a steeper drop-off of w(θ ) is observed.

In Fig. 9, the best-fitting power laws for all three samples are
shown. The summary of the best-fitting parameters is given in
Table 2. Equations (14) and (17) are then used to find the spa-
tial clustering lengths and slopes that best describe our w(θ ) results.
The best-fitting clustering slopes from r0 − γ analysis using Lim-
ber’s equation are in good agreement with that from θ 0 − γ and
hence we only report the latter in Table 2. If we require continu-
ity in the double power-law ξ (r) at the break scale, such a scale
can be constrained by the pair of best-fitting r0-γ for each sample.
From Table 2, the double power-law break for the SDSS, 2SLAQ
and AA� samples is then at 2.2, 1.9 and 1.3 h−1 Mpc, respectively
[see Section 5.2 for further discussion of the possible small-scale
evolution of ξ (r)]. By assuming the 1 h−1 Mpc break instead of
aforementioned values, the w(θ ) is underestimated by ≈10 per cent
for the SDSS case (less for the other two samples) which is only
localized to around θ b. The clustering length (single power law),
r0, ranges from 7.5 to 8.7 h−1 Mpc, consistent with highly biased
luminous galaxies. Single power-law fits to the data can be ruled out
at high statistical significance. While the double power law gives
better fits to the data than the single power law, their χ 2

red values
indicate that such a model is still not a good fit to the data, given
the small statistical errors. Nevertheless, to the first order, the dou-
ble power-law fits provide a good way of quantifying the spatial
clustering strength of the samples via the use of Limber’s equation.

The best-fitting slopes at small scales show a slight decrease with
increasing redshift, similar to that found by Wake et al. (2008).
The SDSS-LRG sample is more strongly clustered than the rest as
expected. This is simply because the SDSS-LRG sample is intrinsi-
cally more luminous than the 2SLAQ and AA�-LRG samples, and
is not an indication of evolution.

Figure 9. The angular correlation function with the best-fitting single (red dashed line) and double (blue solid line) power law for the SDSS, 2SLAQ and
AA� LRGs. Lower panels show the fitting residuals for the single (circles) and double (triangles) power law.
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Table 2. Parameters for the power-law fits to the angular correlation function derived from three LRG samples. The best-fitting parameters given are defined
such that w(θ ) = (θ /θ0)1−γ and ξ (r) = (r/r0)−γ . The parameters for the best-fitting double power law are given in two rows whereas the θ < θb result is given
in the top row. Also given are the corresponding 1σ error for each parameter.

Sample z̄ ng Single power law Double power law
(h3 Mpc−3) θ0(arcmin) γ r0(h−1 Mpc) χ2

red θ0(arcmin) γ r0(h−1 Mpc) χ2
red

SDSS 0.35 1.1 × 10−4 1.69 ± 0.03 2.07 ± 0.01 8.70 ± 0.09 16.2 1.57 ± 0.05 2.19 ± 0.03 7.35 ± 0.08 2.2
1.05 ± 0.09 1.85 ± 0.04 9.15 ± 0.16

2SLAQ 0.55 3.2 × 10−4 0.87 ± 0.01 2.01 ± 0.01 7.50 ± 0.04 57.5 0.83 ± 0.01 2.16 ± 0.01 6.32 ± 0.03 3.9
0.60 ± 0.03 1.84 ± 0.02 7.78 ± 0.05

AA� 0.68 2.7 × 10−4 0.57 ± 0.01 1.96 ± 0.01 7.56 ± 0.03 42.8 0.56 ± 0.01 2.14 ± 0.01 5.96 ± 0.03 3.4
0.38 ± 0.02 1.81 ± 0.02 7.84 ± 0.04

The galaxy number density (see Table 2) is calculated from the
unnormalized n(z), assuming the redshift distribution from the spec-
troscopic surveys as described in Section 2. This is galaxy pair-
weighted by n2(z) (see e.g. Ross & Brunner 2009)

ng =
∫

dz
H (z)n(z)

�obscχ 2(z)
× n2(z)

/ ∫
dz n2(z) (18)

where �obs is the observed area of the sky, χ (z) is the comoving
distance to redshift z and c is the speed of light. The samples’ pair-
weighted average redshifts determined in the similar manner as ng

are consistent with their median redshifts and are given in Table 2.
To this end, we cut back the faint magnitude limit of 2SLAQ

and AA� LRGs to ideV < 19.32 and 20.25, respectively. These
cuts are imposed in order to select the samples of galaxies whose
comoving number densities are approximately matched to that of
the SDSS LRG. The K + e corrected i-band absolute magnitudes
of these samples are presented in Fig. 10. We see that their absolute
magnitudes are also approximately matched. We note that we do
not attempt to match the LRGs’ colour of different samples here.
This would then allow us to roughly constrain the evolution of
LRG clustering up to z ≈ 0.68 (see Section 5). A summary of the
properties of these samples and the best-fitting parameters is given
in Table 3. The measured w(θ )s are shown in Fig. 11(a).

As expected, the amplitudes of the brighter cut 2SLAQ and AA�

samples (denoted by 2SLAQ∗ and AA�∗ hereafter) are higher than
the original sample. In its raw form, w(θ ) measured from 2SLAQ∗

increases relative to 2SLAQ more than AA� relative to AA�*,
due to the narrower redshift distribution of the 2SLAQ∗ sample.
However, if we perform a double power-law fit to these results,
the large-scale, �1 h−1 Mpc, clustering lengths are very similar and
agree within ≈1σ statistical error. To the first order these large-scale
clustering lengths are also consistent with that of the SDSS LRGs.
We shall investigate the clustering evolution of these LRG samples
further in Section 5.

4.2 Comparison of the clustering form to the standard
�CDM model

We shall compare our w(θ ) measurements to the predictions of
the standard �CDM model in the linear perturbation theory of
structure growth framework along with the non-linear correction.
For the theoretical models, we first generate matter power spectra,
using the ‘CAMB’ software (Lewis, Challinor & Lasenby 2000).
In the case of non-linear correction, the software has the ‘HALOFIT’
routine (Smith et al. 2003) implemented. Such matter power spectra,
Pm(k, z), are then output at the average redshift of each sample.
The matter correlation function, ξm(r), is then obtained by Fourier

Figure 10. Top: the i-band absolute magnitude distribution of the spec-
troscopic LRG catalogues. All photometry is galactic-extinction corrected
using dust map of Schlegel et al. (1998) and K + e corrected to z = 0 using
the early-type galaxy templates from Bruzual & Charlot (2003). Bottom:
the distribution of the absolute magnitude after applying a faint limit cut to
2SLAQ and AA� LRG in order to match the comoving number density of
the SDSS LRG.

transforming these matter power spectra using

ξm(r) = 1

2π2

∫ ∞

0
Pm(k)k2 sin kr

kr
dk. (19)

Under the assumption that galaxies trace dark matter haloes, the
galaxy correlation function, ξ g(r), is related to the underlying dark
matter by the bias factor, bg, via

b2
g = ξg(r)

ξm(r)
. (20)

Therefore, the bias factor is expected to be a function of scale unless
galaxies cluster in exactly the same manner as the dark matter does
at all scales. However, at large scales, i.e. the linear regime, the bias
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Table 3. Properties and the best-fitting parameters for double power law of w(θ ) measured from the SDSS-
density matched samples.

Sample Number Magnitude z̄ ng Double power law
(h3 Mpc−3) γ r0(h−1 Mpc) χ2

red

2SLAQ∗ 182 841 17.5 < ideV < 19.32 0.53 1.2 × 10−4 2.25 ± 0.02 6.33 ± 0.04 2.1
1.80 ± 0.02 8.88 ± 0.08

AA�∗ 374 198 19.8 < ideV < 20.25 0.67 1.1 × 10−4 2.20 ± 0.02 6.25 ± 0.03 1.7
1.76 ± 0.03 9.08 ± 0.06

Figure 11. (a) The angular correlation function measured from the SDSS LRG and the brighter magnitude limit samples drawn from 2SLAQ and AA� sample
(symbols). The solid lines are the projection of the best-fitting double power-law ξ (r) with the parameters shown in Table 3. For comparison, the dot–dashed
and dashed lines are w(θ ) measured from the whole 2SLAQ and AA� samples, respectively. (b) Same as (a) but now scaled to AA� depth and taking into
account the relative amplitude due to the different n(z) widths (see text for more details).

factor is approximately scale-independent over almost a decade of
scales (Verde et al. 2002; Ross, Brunner & Myers 2008b).

Although we found the clustering lengths and hence the ampli-
tude of ξ (r) to be very similar for the SDSS, 2SLAQ∗ and AA�∗

samples, the evolution in the dark matter clustering means that the
linear bias could be a strong function of redshift as we shall see
in the next section where we investigate the clustering evolution in
more detail. The evolution of structures in linear theory framework
is described by the linear growth factor, D(z) (e.g. Peebles 1984;
Carroll, Press & Turner 1992) such that

δ(r, z) = D(z)δ(r, z = 0), (21)

recall that ξ (r) = 〈δ(r1) δ(r2)〉, where r = |r1 − r2|, then

ξm(r, z) = D2(z)ξm(r, 0). (22)

The linear growth factor is unity at the present epoch, by defini-
tion, and decreases as a function of redshift. The ξm(r, z) therefore
decreases as the redshift increases hence given that the number-
density/luminosity-matched samples have similar ξ g(r) amplitudes
suggests that the bias increases as a function of redshift.

We proceed by projecting the predicted ξm(r) using equation (14).
Our fiducial models assume a �CDM Universe with �� = 0.73,
�m = 0.27, f baryon = 0.167, σ 8 = 0.8, h = 0.7 and ns = 0.95. The
linear bias factor is then estimated by fitting the matter w(θ ) to
our measurements for the comoving separation of ≈ 6–60 h−1 Mpc,
using the full covariance matrices. The best-fitting linear bias (χ 2

red)

for SDSS, 2SLAQ∗, AA�∗, 2SLAQ and AA� samples are 2.09 ±
0.05(1.2), 2.20 ± 0.04(0.65), 2.33 ± 0.03(0.66), 1.98 ± 0.03(0.53)
and 2.07 ± 0.02(1.2), respectively. The measured biases are con-
sistent with the results from other authors. For example, Tegmark
et al. (2006) analysed P(k) of SDSS LRG and found b(z = 0.35) =
2.25 ± 0.08 for the best-fitting σ 8 = 0.756 ± 0.035 and for our
fiducial σ 8 this becomes b = 2.12 ± 0.12. Ross et al. (2007) found
2SLAQ LRG b = 1.66 ± 0.35 using the redshift-space distortion
analysis. Padmanabhan et al. (2007), using C(l) of SDSS+2SLAQ
photo-z sample, found that b(z = 0.376) = 1.94 ± 0.06 and b(z =
0.55) = 1.8 ± 0.04 (assumed σ 8 = 0.9), for our fiducial σ 8 these
are b = 2.18 ± 0.07 and b = 2.02 ± 0.05, respectively.

Fig. 11(b) shows the full scaling of the w(θ )s, accounting for
their survey differences. First, the w(θ ) of the SDSS, and 2SLAQ∗

samples scaled in the angular direction according to their average
redshifts and relative to the AA�∗ sample. The amplitudes are then
scaled to obtain a fair comparison for samples with different redshift
distributions. This is done by taking the relative amplitudes of the
projections of a power-law ξ (r) of the same clustering strength but
projected through different n(z) widths. Since the observed large-
scale clustering lengths are very similar, ≈9 h−1 Mpc, the scaled
w(θ )s in these ranges agree reasonably well. The figure also shows
the best-fitting biased non-linear model for the AA�∗ sample. Our
w(θ ) shapes in the ranges 6 � r � 60 h−1 Mpc can be described
very well by the perturbation theory in the standard flat �CDM
Universe (see the χ 2

red for the best-fitting bias factor given above).
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However, at smaller scales the theory underestimates the clustering
amplitude, as expected for early-type galaxies. As we shall see in
Section 4.3, the reason for this may lie in the details of how the
LRGs populate their dark matter halo hosts.

4.3 Halo model fits

We fit a halo model (e.g. Peacock & Smith 2000; Berlind &
Weinberg 2002; Cooray & Sheth 2002) to our angular correlation
function results. One of the key ingredients of the halo model is the
halo occupation distribution (HOD) which tells us how the galaxies
populate dark matter haloes as a function of halo mass. Recently, the
model has been used to fit various data sets as a means to physically
interpret the galaxy correlation function and gain insight into their
evolution (e.g. White et al. 2007; Blake et al. 2008; Brown et al.
2008; Wake et al. 2008; Ross & Brunner 2009; Zheng et al. 2009).

Here, we use a three-parameter HOD model (e.g. Seo, Eisenstein
& Zehavi 2008; Wake et al. 2008) which distinguishes between the
central and satellite galaxies in a halo (Kravtsov et al. 2004). The
mean number of galaxies residing in a halo of mass M is

〈N (M)〉 = 〈Nc(M)〉 × (1 + 〈Ns(M)〉), (23)

where the number of central galaxy is either zero or one with the
mean given by

〈Nc(M)〉 = exp

(−Mmin

M

)
. (24)

We assume that only haloes with a central galaxy are allowed to host
satellite galaxies. In such a halo, the satellite galaxies are distributed
following an NFW profile (Navarro, Frenk & White 1997) around
a central galaxy at the centre of the halo. We also assume that their
numbers follow a Poisson distribution (Kravtsov et al. 2004) with a
mean

〈Ns(M)〉 =
(

M

M1

)α

. (25)

The NFW profile is parametrized by the concentration parameter
c ≡ rvir/rs where rvir is the virial radius and rs is the characteristic
scale radius. We assume Bullock et al. (2001) parametrization of
the halo concentration as a function of mass and redshift,

c(M, z) ≈ 9

(1 + z)

(
M

M∗

)−0.13

, (26)

where M∗ is the typical collapsing mass and is determined by solving
equation (42) with σ (M∗) = δc(0).

The galaxy number density predicted by a given HOD is then

ng =
∫

dM n(M) 〈N (M)〉 , (27)

where n(M) is the halo mass function; here we use the model given
by Sheth & Lemson (1999). The effective galaxy linear bias can be
determined from the HOD;

blin = 1

ng

∫
dM n(M)b(M) 〈N (M)〉 , (28)

where b(M) is the halo bias as a function of mass, for which we
use the model of Sheth, Mo & Tormen (2001) plus the improved
parameters of Tinker et al. (2005) (see Section 5.1.2, equation 41).
The average mass of haloes hosting such a galaxy population is then

Meff = 1

ng

∫
dM n(M)M〈N (M)〉. (29)

Moreover, the satellite fraction of the galaxy population is given by

Fsat = 1

ng

∫
dM n(M)〈Nc(M)〉〈Ns(M)〉. (30)

The galaxy power spectrum/correlation function can then be mod-
elled as having a contribution at small scales that arises from galaxy
pairs in the same dark matter halo (one-halo term). On the other
hand, the galaxy pairs in two separate haloes (two-halo term) dom-
inate at larger scales,

P (k) = P1h + P2h. (31)

The one-halo term can be distinguished into central–satellite, Pcs(k),
and satellite–satellite, Pss(k), contributions (see e.g. Skibba & Sheth
2009);

Pcs(k) = 1

n2
g

∫
dM n(M)2〈Nc(M)〉〈Ns(M)〉u(k,M) (32)

and

Pss(k) = 1

n2
g

∫
dM n(M)〈Nc(M)〉〈Ns(M)〉2u(k,M)2, (33)

where u(k, M) is the Fourier transform of the NFW profile, and we
have simplified the number of satellite–satellite pairs 〈Ns(Ns − 1)〉
to 〈Ns(M)〉2, i.e. Poisson distribution.

For two-halo term, we implement the halo exclusion, ‘n′
g-

matched’, and scale-dependent halo bias, b(M, r), of Tinker et al.
(2005);

P2h(k, r) = Pm(k) × 1

n′2
g

×
[∫ Mlim(r)

0
dM n(M)b(M, r)〈N (M)〉u(k,M)

]2

,

(34)

where Pm(k) is a non-linear matter power spectrum (see Section 4.2),
Mlim(r) is the mass limit at separation r due to halo exclusion and
n′

g is the restricted galaxy number density (equation B13 of Tinker
et al. 2005). The scale-dependent halo bias is given by (Tinker et al.
2005)

b2(M, r) = b2(M)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09 , (35)

where ξm is the non-linear correlation function (see Section 4.2).
The galaxy correlation function is then the Fourier transform of

the power spectrum which can be calculated separately for one-
and two-halo terms. For the two-halo term, we need to correct the
galaxy pairs from the restricted galaxy density to the entire galaxy
population. This is done by

1 + ξ2h(r) =
(

n′
g

ng

)2 [
1 + ξ ′

2h(r)
]
, (36)

where ξ ′
2h(r) is the Fourier transform of equation (34).

We then project the predicted galaxy correlation function to w(θ )
using equation (14) for a range of HOD parameters. The best-fitting
model for each of our sample is then determined from chi-square
minimization using the full covariance matrix. Note that we exclude
angular bins corresponding to scales smaller than 0.1 h−1 Mpc be-
cause any uncertainty in the ξ (r) model at very small scales, r �
0.01 h−1 Mpc, can have a strong effect on w(θ ) even at these scales
due to the projection. The best-fitting Mmin, M1 and α and the as-
sociated values for ng, Meff , Fsat and blin are given in Table 4. The
1σ uncertainties on the best-fitting Mmin, M1 and α are determined
from the parameter space where �χ 2 ≤ 1. For ng, Meff , Fsat and
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Table 4. Best-fitting HOD parameters.

Sample z̄ Mmin M1 α ng Meff Fsat blin χ2
red

(1013h−1 M�) (1013h−1 M�) (10−4h3 Mpc−3) (1013h−1 M�) (per cent)

SDSS 0.35 2.5 ± 0.2 29.5 ± 2.5 1.58 ± 0.04 1.3 ± 0.4 6.4 ± 0.5 8.1 ± 1.8 2.08 ± 0.05 3.1
2SLAQ* 0.53 2.2 ± 0.1 27.3 ± 2.0 1.49 ± 0.03 1.3 ± 0.3 4.7 ± 0.2 7.0 ± 0.8 2.21 ± 0.04 7.7
AA�* 0.67 2.1 ± 0.1 23.8 ± 2.0 1.76 ± 0.04 1.2 ± 0.2 4.3 ± 0.2 5.7 ± 0.7 2.36 ± 0.04 10.1
2SLAQ 0.55 1.10 ± 0.07 13.6 ± 1.1 1.42 ± 0.02 3.2 ± 0.5 3.4 ± 0.2 10.0 ± 1.1 1.97 ± 0.03 14.2
AA� 0.68 1.02 ± 0.03 12.6 ± 1.0 1.50 ± 0.03 3.1 ± 0.4 3.0 ± 0.1 9.0 ± 0.09 2.08 ± 0.03 13.6

Figure 12. The mean number of LRGs per halo as a function of mass
(solid lines) from the best-fitting HOD for the SDSS, 2SLAQ*, AA�*
samples (top) and 2SLAQ, AA� samples (bottom). The central and satellite
contributions for each sample are shown as the dashed and dotted lines.

blin which depend on the three main HOD parameters, this becomes
�χ 2 ≤ 3.53. Fig. 12 shows the best-fitting HOD for each sample;
the coloured solid lines are the mean number of LRGs per halo
with the central and satellite contributions shown separately as the
dashed and dotted lines, respectively.

As expected, the LRGs populate rather massive dark matter
haloes with the masses ≈1013–1014 h−1 M�. At approximately the
same redshift, the more luminous samples, 2SLAQ* and AA�*, are
hosted by more massive haloes than fainter samples. Most of the
LRGs, >90 per cent, are central galaxies in their dark matter haloes;
the satellite fraction is only 10 per cent or less with the increasing
trend towards low redshift. This can be explained in the framework
of halo mergers at lower redshift (see Section 5.2.2). The best-fitting
linear bias factors for all samples are in excellent agreement with
the values derived in Section 4.2. Also the galaxy number density
from the best-fitting halo model is consistent with that derived from
equation (18) (see Tables 2 and 3).

Note that, to the first order, our best-fitting HODs are compatible
with the measurements from other authors although a direct com-
parison with samples selected differently may not be simple. For
example, our SDSS sample has similar space density (although at
higher redshift, z = 0.35 versus 0.3) as the sample studied by Seo

et al. (2008). Our M1/Mmin and satellite fraction are in excellent
agreement with their model 11 (their best-fitting N-body evolved
HOD). But their α is somewhat lower which is caused by the higher
σ 8 = 0.9 value (Wake et al. 2008) and the lower average redshift.
Their M1 and Mmin are also somewhat higher than our best-fitting
values for the same reason as for α. Another example, our best-fitting
M1, Mmin, blin and Fsat for 2SLAQ* sample are in good agreement
with Wake et al. (2008) z = 0.55 2SLAQ selection, although our
values are somewhat higher which may be due to our lower galaxy
number density, implying that our sample contains rarer and more
biased objects.

The best-fitting models for w(θ ) are shown in Fig. 13, comparing
to the data. Both the models and data are scaled to account for the
projection effect (see Section 4.2) and are plotted at the depth of
AA�*/AA� sample. We immediately see that while the fits at the
large scales (r � 3 h−1 Mpc) are good, the fits at the small scales and
at r ≈ 1 − 2 h−1 Mpc are rather poor especially for the higher redshift
samples. This is evident in the high best-fitting reduced chi-square
values in Table 4. Given our small error bars, this may indicate
that a more complicated halo model may be needed, e.g. five/six
parameters HOD, an improved halo-exclusion model (see fig. 11 of
Tinker et al. 2005), or different halo concentration parametrization.
Another important point to note is that the HOD formalism assumes
a volume-limited sample, which we do not have here. This means
that our observed galaxy number density corresponds to a cut-off
which evolves with redshift rather than a cut-off in halo mass or LRG
luminosity. Nevertheless, to the first order the HOD fits generally
describe the shape and amplitude of our measured w(θ ), and we
believe that the derived blin and Meff are reasonably robust despite
the statistically poor fits.

5 EVO LUTI ON O F LRG CLUSTERI NG
AND DA RK MATTER HALO MASSES

5.1 Intermediate scales

We study the LRGs clustering and dark matter halo mass evolution
by employing the methods used by Croom et al. (2005) and da
Ângela et al. (2008) to analyse their quasi-stellar object (QSO)
samples. We then proceed by considering the small-scale clustering
evolution in the framework of the halo model.

5.1.1 Clustering evolution

In this section, we make an attempt to quantify the clustering evo-
lution of the LRGs via the use of the w(θ )’s measured from the
number-density (roughly luminosity) matched samples as presented
in the last section. We shall first compare the result at the interme-
diate scales, 1 � r � 20 h−1 Mpc, to the simple long-lived model of
Fry (1996). The model assumes that galaxies are formed at a par-
ticular time in the past and their clustering evolution is determined
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Figure 13. The best-fitting HOD models for the SDSS, 2SLAQ*, AA�* samples (left) and 2SLAQ, AA� samples (right). These are scaled to the AA�*/AA�

depth similar to that shown in Fig. 11(b). The bottom panels show the ratios between the best-fitting HOD models and the measured correlation functions.

by the influence of gravitational potential where no galaxies are
destroyed/merged or new population created, hence preserving the
comoving number density. In such a model the galaxy linear bias is
given by

b(z) = 1 + b(0) − 1

D(z)
(37)

and as we saw in Section 4.2 that ξm(r, z) = D2(z)ξm(r, 0), the
clustering evolution is such that

ξg(r, z) =
[

b(0) + D(z) − 1

b(0)

]2

ξg(r, 0), (38)

We shall also compare the data directly to the linear theory pre-
diction for dark matter evolution in the �CDM model, ξ (r, z) ∝
D2(z). In addition, we shall also check the stable clustering and no-
evolution (comoving) clustering models of Phillipps et al. (1978).
The stable model refers to clustering that is virialized and therefore
stable in proper coordinates. For a ξ (r) with r measured in comov-
ing coordinates, the stable model has evolution ξ (r) ∝ (1 + z)γ−3

and the no-evolution model has ξ (r) independent of redshift. At
these intermediate scales, the clustering is unlikely to be virialized
so the stable model is shown mainly as a reference point. From
equation (38), the no-evolution model represents the high bias limit
of the long-lived model of Fry (1996). The stable and comoving
models are similar to the long-lived model in that they both assume
that the comoving galaxy density remains constant with redshift.

In order to quantify the clustering amplitude of each sample, we
shall use the integrated correlation function in a 20 h−1 Mpc sphere
as also utilized by several authors (e.g. Croom et al. 2005; da Ângela
et al. 2008; Ross et al. 2008a). The volume normalization of this
quantity is then given by

ξ20 = 3

203

∫ 20

0
ξ (r)r2dr. (39)

The 20 h−1 Mpc radius is chosen to ensure a large enough scale for
linear theory to be valid and in our case the power law with γ ≈ 1.8
remains a good approximation up to ≈20 h−1 Mpc. Furthermore,
the non-linearity at small scales does not significantly affect the
clustering measurements, when averaged over this range of scales.

The integrated correlation function, ξ 20, approach also provides
another means of measuring the linear bias of the sample. For
this, we again assume scale-independent bias which is a reasonable
assumption in the linear regime. The bias measured in this way is
given by

bg(z) =
√

ξ20,g

ξ20,m

. (40)

The mass-integrated correlation functions are again computed
assuming our fiducial cosmological model using the matter power
spectra output from CAMB. The values for ξ 20,m used here are 0.153,
0.126 and 0.112 for z = 0.35, 0.55 and 0.68, respectively.

The ξ 20,g is calculated using the best-fitting double power-law
parameters for each sample. The results are plotted in Fig. 14(a)
along with the best-fitting linear theory evolution (long-dashed
line), stable clustering (dotted line), long-lived (dashed line) and
no-evolution models (dot-dot–dashed line). The linear bias fac-
tors measured using the ξ 20 approach are given in Table 5 and are
also presented in Fig. 14(b). The bias factors determined here are
in good agreement with the large-scale �CDM (Section 4.2) and
HOD (Section 4.3) best-fitting models.

To extend the redshift range, we shall compare our results to the
clustering of early-type galaxies in 2dFGRS studied by Norberg
et al. (2002) that roughly match the absolute magnitude of our sam-
ples after the K + e-correction. These are the samples with −21.0 >

Mbj
− 5 log10 h > −22.0 and −20.5 > Mbj

− 5 log10 h > −21.5,
being compared to the SDSS/2SLAQ*/AA�* and 2SLAQ/AA�

data and denoted as N02E1 and N02E2 in Table 5, respectively. We
proceed in a similar fashion to the procedure described above and
use the author’s best-fitting power law to estimate the ξ 20,gs and
hence the bias values (see Table 5).

Both luminosity bins can be reasonably fitted by the long-lived
model. The best-fitting models for the Mi − 5log10 h = −22.7 and
−22.4 samples have b(0) = 1.93 ± 0.02 and 1.74 ± 0.02 with χ 2 =
7.34 [3 degrees of freedom (d.o.f.)] and 4.11 (2 d.o.f.), respectively,
i.e. 1.5 − 1.9σ deviation. This is interesting given the lack of number
density evolution seen in the LRG luminosity function by Wake et al.
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Figure 14. (a): The LRG ξ20 measurements as a function of redshift and
luminosity. The data at z ≈ 0.1 (stars) are taken from the correlation functions
of early-type galaxies in 2dFGRS (Norberg et al. 2002). Open and solid
symbols correspond to the samples with median absolute magnitude, Mi −
5log10 h = −22.7 (SDSS/2SLAQ*/AA�*) and −22.4 (2SLAQ/AA�). The
best fits for various models are also shown (see text for more details). The
lower luminosity data have been lowered by 0.2 for clarity. (b) The LRG
linear biases as a function of redshift and luminosity, comparing to the best-
fitting long-lived model. (c) The typical mass of dark matter haloes occupied
by the LRGs as estimated from the halo bias function. The dot–dashed lines
are the best-fitting evolution model of dark matter halo mass via the merger
framework (Lacey & Cole 1993).

(2006). Nevertheless, it is intriguing that such a simple model gets
so close to fitting data over the wide redshift range analysed here.

The stable model and the linear theory (with constant bias) model
rise too quickly as the redshift decreases, excluded at >99.99 per
cent confidence. However, the comoving model also gives a good fit
to the SDSS/2SLAQ*/AA�* data in Fig. 14(a), as expected from
the lack of evolution shown in Fig. 11(b). For this model to be
exactly correct it would suggest that there was an inconsistency in
these results with the underlying �CDM halo mass function. More
certainly, we conclude that the evolution of the LRG clustering
seems very slow. This general conclusion agrees with previous work
(White et al. 2007; Wake et al. 2008). The latter author also only
found a marginal rejection of the long-lived model from the large-
scale clustering signal (1.8σ ) compared to 1.9σ here. They found
a much stronger rejection of a ‘passive’ evolution model from the

Table 5. Summary of the estimated LRG and 2dFGRS early-type galaxy
bias factor and MDMH as a function of redshift and luminosity.

Sample z Mi b MDMH

−5log10h (1013 h−1 M�)

SDSS 0.35 −22.67 2.02 ± 0.04 4.1 ± 0.3
2SLAQ* 0.53 −22.69 2.16 ± 0.04 3.3 ± 0.2
AA�* 0.67 −22.60 2.33 ± 0.03 3.1 ± 0.1
2SLAQ 0.55 −22.40 1.91 ± 0.03 2.1 ± 0.1
AA� 0.68 −22.37 2.04 ± 0.02 1.9 ± 0.1
N02E1 ≈0.1 −22.68 1.90 ± 0.23 6.2 ± 2.2
N02E2 ≈0.1 −22.40 1.66 ± 0.20 3.9 ± 1.5

small-scale LRG clustering and we shall return to this issue in
Section 5.2.

5.1.2 LRG dark matter halo masses

The large-scale galaxy bias is roughly the same as that of the dark
matter haloes which is a known function of mass threshold. Thus
by measuring the clustering of the LRGs one can infer the typical
mass of the haloes they reside in. The procedure employed here is
similar to that used by Croom et al. (2005) and da Ângela et al.
(2008) to estimate the dark matter halo masses of QSOs.

An ellipsoidal collapse model relating a halo bias factor to its
mass was developed by Sheth et al. (2001) as an improvement over
an earlier spherical collapse model of Mo & White (1996). In this
analysis, we shall use the expression given in Sheth et al. (2001) and
the revised parameters of Tinker et al. (2005) which were calibrated
to give better fits to a wide range of σ 8 values for variants of �CDM
model;

b(MDMH, z) = 1 + 1√
aδc(z)

[ √
a(aν2) + √

ab(aν2)1−c

− (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]
, (41)

where a = 0.707, b = 0.35 and c = 0.80. ν is defined as ν =
δc(z)/σ (MDMH, z). δc is the critical density for collapse, and is given
by δc = 0.15(12π)2/3�m(z)0.0055 (Navarro et al. 1997). The rms
fluctuation of the density field as a function of mass MDMH at redshift
z is σ (MDMH, z) = σ (MDMH)D(z) where σ (MDMH) is given by

σ (MDMH)2 = 1

2π2

∫ ∞

0
k2P (k)w(kr)2dk. (42)

P(k) is the linear power spectrum of density perturbations and w(kr)
is the window function, given by (Peebles 1980)

w(kr) = 3
sin(kr) − kr cos(kr)

(kr)3
, (43)

for a spherical top-hat function. The radius r can be related to mass
via

r =
(

3MDMH

4πρ0

)1/3

, (44)

where ρ0 = �0
mρ0

crit is the present mean density of the Universe,
given by ρ0 = 2.78 × 1011�0

m h2 M� Mpc−3. Here, we use the
transfer function, T(k), fitting formula given by Eisenstein & Hu
(1998) to construct P(k), assuming our fiducial cosmology (see
Section 4.2).

The estimated dark matter halo masses of the LRG samples are
given in Table 5 and plotted in Fig. 14(c). Note that the formalism
of estimating dark matter halo masses from the galaxy biases used
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here assumes one galaxy per halo and can overestimate the thresh-
old mass for a given value of bias (Zheng, Coil & Zehavi 2007).
This is particularly true when we consider the mass estimated from
equation (41) as the threshold mass, minimum mass required for a
halo to host at least one galaxy and compare the results derived here
to Mmin from the best-fitting HOD (Section 4.3). However, if it is
used as an estimate for the average mass of the host halo then it is
underestimated by ≈40 per cent compared to the value given by the
HOD due to the one galaxy per halo assumption.

Next, we attempt to fit the derived dark matter halo masses of
these LRGs to the halo merger framework in hierarchical models of
galaxy formation. We use the formalism discussed by Lacey & Cole
(1993) to predict the median MDMH of the descendants of virialized
haloes at z = 1 for a given halo mass and fit this to our data. In
essence, the model gives the probability distribution of the haloes
with mass M1 at time t1 evolving into a halo of mass M2 at time t2

via merging. Fig. 14(c) shows the best-fitting models for the MDMH

evolution estimated in this way. These models appear to be good fits
to both luminosity bins with the best-fitting MDMH(z = 1) = 2.32 ±
0.07 × 1013 h−1 M� and 1.47 ± 0.05 × 1013 h−1 M� for the L �
3L* and � 2L* samples, respectively.

The most massive haloes hosting these luminous early-type
galaxies appear to have tripled their masses over the past 7 Gyr
(i.e. half cosmic time) in stark contrast to the little evolution ob-
served in the LRG stellar masses over the same period (see e.g.
Wake et al. 2006; Cool et al. 2008). This lack of evolution contra-
dicts the predictions in the standard hierarchical models of galaxy
formation where one expects the most massive galaxies to form
late via ‘dry’ merging of many less massive galaxies. However, this
comes with a caveat that the MDMH at z ∼ 0 is an extrapolation
[assuming Lacey & Cole (1993) halo merging model] of the z =
0.35–0.7 measurements and the constraint on the MDMH(z = 0.1) is
much weaker than the higher redshift results.

5.2 Small-scale clustering evolution

Finally, we discuss the evolution of the correlation function at scales
corresponding to r < 1 h−1 Mpc. We concentrate on comparing the
number density matched AA�* and 2SLAQ* samples to the SDSS
sample. As can be seen in Fig. 11(b), while at larger scales the
w(θ ) show amplitudes that are remarkably independent of redshift,
at smaller scales the high redshift AA�* sample appears to have
a lower amplitude than the lower redshift surveys. Here, we com-
pare the clustering in non-linear regime to two clustering evolution
models, namely stable clustering and HOD evolution models.

5.2.1 Stable clustering model

The stable model describes the clustering in the virialized regime
and hence stable (unchanged) in proper coordinates (e.g. Phillipps
et al. 1978). Therefore, assuming this model one expect the spatial
correlation function to evolve as ξ (r)∝(1 + z)γ−3, where r is mea-
sured in comoving coordinates and γ is the power-law slope of the
correlation function. Fig. 15 shows the small-scale, r � 1 h−1 Mpc,
w(θ ) of the SDSS sample plus its best-fitting double power-law
model, comparing to the evolved w(θ ) from the z1 = 0.53 and 0.67
best-fitting models. Their ratios to the z = 0.35 best-fitting model
are shown in the bottom panel with the shaded regions representing
1σ uncertainties in the best-fitting models. We see that the evolved
z1 = 0.67 stable model underpredicts the z = 0.35 w(θ ) somewhat
but otherwise is within the 1σ regions of each other with the prob-
ability of acceptance P(<χ 2) = 0.827. The agreement between the

Figure 15. The small-scale w(θ ) at z = 0.35 evolved from the best-fitting
double power law of AA�* (green dashed line) and 2SLAQ* (red dot–
dashed line) samples, assuming stable clustering model. The ratios of the
evolved w(θ )s to the best-fitting double power law of SDSS sample are
shown in the bottom panel. The shaded regions signify 1σ uncertainties in
the best-fitting models.

evolved z1 = 0.53 and the z = 0.35 is better, P(<χ 2) = 0.999, given
that the redshift difference is smaller. Note that the stable cluster-
ing model overpredicts the clustering amplitude at r � 1 h−1 Mpc
which is also observed in Fig. 14(a) as expected.

The physical picture that is suggested is that the inflexion in the
correlation function may represent the boundary between a virial-
ized regime at small scales and a comoving or passively evolving
biased regime at larger scales. As noted by Hamilton et al. (1991)
and Peacock & Dodds (1996), the small-scale, non-linear, DM clus-
tering is clearly expected from N-body simulations to follow the
evolution of the virialized clustering model. However, for galaxies
in a �CDM context, the picture may be more complicated.

For example, by comparing the 2SLAQ and SDSS-LRG redshift
surveys using the semi-projected correlation function, Wake et al.
(2008) have suggested that a passively evolving model is rejected,
weakly from the large-scale evolution but more strongly from the
evolution at small scales. Wake et al. (2008) interpret the clustering
evolution using an HOD description based on the �CDM halo
mass function. Their ‘passive’ model predicts a far faster evolution
at small scales than is given by our stable clustering (see Fig. 16).
Our stable model is certainly passive in that it is based on the idea
that the comoving number density of galaxies is independent of
redshift. However, the passive HOD model of Wake et al. (2008)
requires only 7.5 per cent of LRGs to merge between z = 0.55 and
0.19 to reconcile the slow LRG density and clustering evolution in
the �CDM model. We shall see in the next section if this model can
also accommodate our z = 0.68 clustering result while maintaining
such a low merger rate.

5.2.2 HOD evolution

In Section 5.1.1, we found using the large-scale linear bias that
the long-lived model (Fry 1996) is only marginally rejected at 1.5–
1.9σ . This is in good agreement with the similar analysis of Wake
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Figure 16. The predicted SDSS LRG w(θ ) from passively (f no−merge =
1) evolving the best-fitting HODs of 2SLAQ* (z1 = 0.53, red dot–dashed
line) and AA�* (z1 = 0.67, green dashed line) samples. The results when
central galaxies from high-redshift samples are allowed to merge (see text
for more detail) are also shown, blue dotted and magenta long-dashed lines.
The bottom panel shows the ratios of the evolved w(θ )s to the SDSS best
fit, and the shaded regions signify the 1σ uncertainties.

et al. (2008). However, they argued that if the small-scale clustering
signal was also taken into consideration, the long-lived model can
be ruled out at much higher significance (>99.9 per cent).

Recall that our goodness of fit (based on the minimum χ 2) for the
halo models is rather poor (see Table 4). This may be an indication
that a more complicated model may be needed, e.g. five-parameters
HOD and/or a better two-halo-exclusion prescription, etc., given
our small error bars. Nevertheless, the HOD fit generally describes
the shape and amplitude of our measured w(θ ) between 0.1 and
40 h−1 Mpc. Therefore, at the risk of overinterpreting these HOD
fits, we make a further test of the long-lived model by evolving the
best-fitting HODs of the higher redshift samples to the SDSS-LRG
average redshift.

Following the methods described in Wake et al. (2008, and ref-
erences therein), the mean number of galaxies hosted by haloes of
mass M at later time, z0, is related to the mean number of galaxies
in haloes of mass m, 〈N(m)〉, at earlier time, z1, via

〈N (M)〉 =
∫ M

0
dmN (m, M)〈N (m)〉

=
∫ M

0
dmN (m, M)〈Nc(m)〉 [1 + 〈Ns(m)〉]

= C(M) + S(M),
(45)

where N(m, M) is the conditional halo mass function of Sheth &
Tormen (2002) which is the generalization of Lacey & Cole (1993)
results, and C(M) and S(M) are the number of objects which used
to be central and satellite galaxies.

We then model the central galaxy counts in the low-redshift haloes
assuming that the progenitor counts in these haloes is ‘sub-Poisson’
(Sheth & Lemson 1999; Seo et al. 2008; Wake et al. 2008) such

that

〈Nc(M)〉 = 1 −
[

1 − C(M)

Nmax

]Nmax

, (46)

where Nmax = int(M/Mmin). This model is favoured by the Wake
et al. (2008) analysis and is also seen in the numerical models of
Seo et al. (2008). The mean number of satellite galaxies in the
low-redshift haloes is then given by

〈Nc(M)〉〈Ns(M)〉 = S(M) + fno-merge [C(M) − 〈Nc(M)〉] , (47)

where f no−merge is the fraction of unmerged low-z satellite galaxies
which were high-z central galaxies. This model is called ‘central–
central mergers’ in Wake et al. (2008), where the more massive
high-z central galaxies are more likely to merge with one another
or the new central galaxy rather than satellite–satellite mergers.

For the long-lived model, we set f no−merge = 1. The results of
passively evolving the best-fitting HODs from z1 = 0.67 (AA�*)
and z1 = 0.53 (2SLAQ*) to z0 = 0.35 are shown in Fig. 16 along
with the SDSS best-fitting model. At large scales (r ≥ 5 h−1 Mpc),
the long-lived model can only be marginally rejected at no more
than 2σ for the AA�* case and is consistent within 1σ in the
case of 2SLAQ*. However, if we now consider the small-scale, r <

1 h−1 Mpc, clustering signal we see from the bottom panel of Fig. 16
that the long-lived model becomes increasingly inconsistent with the
best-fitting model at z = 0.35. For r ≥ 0.5 h−1 Mpc, the long-lived
model can be rejected at 99.88 and >99.99 per cent significance
using the evolved 2SLAQ* and AA�* HODs, respectively. The
much higher clustering signal at small scales is caused by far too
many satellite galaxies in the low-redshift haloes being predicted
by the long-lived model. This also results in the higher satellite
fractions than observed; both evolved 2SLAQ* and AA�* give
Fsat = 18 ± 1 per cent at z = 0.35 compared to 8.1 ± 1.8 seen in
the SDSS best fit.

Next, we assume the central–central mergers model (Wake et al.
2008) and attempt to match the large-scale clustering signal of the
evolved HOD from high-z to the z = 0.35 best-fitting model. As
argued by Wake et al. (2008) and here, this is more likely to happen
than the satellite–satellite merging case. The f no−merge parameters in
equation (47) required to give the best matches to the large-scale
clustering amplitude of the SDSS best fit are 0.2 and 0.1 for the
2SLAQ* and AA�* case, respectively. The new w(θ )s determined
from these models are plotted in Fig. 16 as the blue dotted and
magenta long-dashed lines. We can see that the z1 = 0.67 evolved
w(θ ) at small scales is in excellent agreement with the SDSS best-
fitting model. The predicted satellite fraction, Fsat = 7.8 ± 0.9, is
also consistent with the SDSS best-fitting value. For the z1 = 0.53
case, the small-scale clustering signal is still somewhat stronger than
the SDSS best-fitting model but otherwise are within 1σ confidence
regions of each other, and the predicted Fsat = 10.5 ± 1.3 is also
somewhat higher than the best-fitting value. The galaxy number
density is reduced due to these central–central merger by ≈6 and
11 per cent for the z1 = 0.53 and 0.67, respectively. However, note
that this is two to three times smaller than the fractional errors of
our best-fitting ng, ≈20 per cent.

In order to get a handle on the merger rates which can then
be compared to the previous results of White et al. (2007) and
Wake et al. (2008), we follow their method of adjusting the galaxy
number density. This is because for this type of analysis the galaxy
samples at different redshifts are usually designed to have the same
space density. Merging means that the space density of the low-z
sample must be reduced unless there are new galaxies created via
merging of the fainter objects which fail to be in the high-z sample
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but become bright enough to be in the low-z sample. To account
for such an effect by physically removing galaxies in a sample is
rather difficult to do in practice as argued by Wake et al. (2008).
White et al. (2007) and Wake et al. (2008) adjusted the mass-scale
of the low-z HOD fit by several per cent which reduce the space
density and increase the clustering signal and hence require lower
amount of merging of the high-z population needed to match the
low-z measurement. Increasing the f no−merge factor in equation (47)
results in a higher galaxy number density and clustering signal.
Therefore, there is only one unique solution of mass-scaling and
merging fraction that will simultaneously match the galaxy number
density and the clustering signal (at large scales) of the evolved and
best-fitting HODs at low z.

We increase the mass-scale of z = 0.35 HOD fit by 12 (7) per cent
and allow 60 (50) per cent of the z1 = 0.67 (0.53) central galaxies
to merge in order to get the matched large-scale bias of 2.12 (2.10)
and ng = 1.12(1.19) × 10−4 h3 Mpc−3. This yields the merger rate
between z = 0.67 (0.53) and z = 0.35 of ≈6.6 (5) per cent, i.e. ≈2.8
(3.4) per cent Gyr−1. The evolved w(θ ) divided by the model at z =
0.35 with increased mass-scaled HOD fit is shown in Fig. 17. As
noted earlier, the reduction in the galaxy number density is small
compared to its best-fitting fractional error which means that our
constraints on these merger rates are rather weak. However, to the
first order the merger rates derived here appear to be consistent with
the value of 2.4 ± 0.7 and 3.4 per cent Gyr−1 found by Wake et al.
(2008) and White et al. (2007), respectively.

In summary, the combination of the stable clustering and passive
evolution model is remarkably close to explaining the clustering
evolution of the LRGs at small and large scales. These models
are much simpler than the HOD framework which require an un-
derstanding of how galaxies populate dark matter haloes and how
they and their host haloes merge. The galaxy long-lived model in
the context of halo framework is significantly incompatible with
the small-scale clustering data and requires that ≈2–3 per cent/Gyr
LRGs to merge in order to explain their slow clustering evolution. In
contrast, the stable model requires the comoving number density to
be constant with redshift. This may suggest that the simple virialized
model may only provide a phenomenological fit to the small-scale
clustering evolution in the context of the �CDM model.

Figure 17. The ratio of the evolved w(θ ) to the SDSS best-fitting model
with the HOD mass-scale increased by 12 per cent.

6 SE A R C H I N G F O R TH E BAO PE A K

Next, we inspect the correlation functions at larger scales to make
a search for the BAO feature. We first present the raw correlation
functions in Fig. 18(a). Note that the integral constraints (see Sec-
tion 3.1) are subdominant compared to w(θ )’s amplitudes at these
scales. Each correlation function shows a feature at large scales, the
most significant detection comes from the AA� sample where the
clustering signal at 120 < θ < 500 arcmin is detected (above zero)
at more than 4σ significance, P(<χ 2) = 1 × 10−6 (with covariance
matrix) and 3.5σ significance for 200 < θ < 500 arcmin.

The question is that are these features real or simply due to
systematic error (see Section 6.1 for a series of systematic tests)?
Here, we perform a classic scaling test to see if any feature is
reproduced at the different depths of the three LRG samples. Given
that the samples have intrinsically different r0 (see Table 2), we
choose simply to scale in the angular direction only. The SDSS
and 2SLAQ LRG correlation functions are scaled in the angular
direction to the AA�’s depth using the average radial comoving
distance of each sample.

In Fig. 18(b), we see that the scaling agreement of the large-
scale, θ ≈ 300 arcmin, features is poor. Although SDSS shows a
moderately strong peak feature, this is not reproduced at the same
comoving physical scale in the other two data sets.

Despite this failure of the scaling test, we now attempt to in-
crease the signal-to-noise ratio by combining the measurements
from the three samples using inverse quadrature error weighting.
First, the SDSS and 2SLAQ w(θ )s are scaled in the angular di-
rection to the depth of the AA� LRGs (radial comoving distance,
χ ≈ 1737 h−1 Mpc as opposed to ≈1451 h−1 Mpc for 2SLAQ and
≈970 h−1 Mpc for SDSS) where their amplitudes and errors are then
interpolated to the AA�’s angular bins (i.e. Fig. 18b). The ampli-
tudes of the scaled SDSS and 2SLAQ w(θ )s are then normalized
to that of the AA� sample’s at 10 arcmin. This involves lowering
SDSS and 2SLAQ amplitudes by 25 and 15 per cent, respectively.
The resulting correlation function is presented in Fig. 19 with the
arrow showing the expected position of the BAO peak. Note that due
to the relatively small statistical errors of the AA� LRG compared
to other samples, the w(θ ) result is dominated by the AA� sample;
therefore the possible SDSS peak at ≈100 h−1 Mpc is not evident
in the combined sample. There also seems to be an indication of an
excess out to possibly 200 h−1 Mpc (see Section 6.1 for a robustness
test of this excess clustering signal).

Using the uber-calibration (Padmanabhan et al. 2008) instead
of the standard calibration, we find similar results at small and
intermediate scales but somewhat lower amplitude at ≈100 h−1 Mpc
although the results agree within the 1σ error (see Fig. 19). This
means the correlation functions at small and intermediate scales
including the parameters derived (e.g. power-law fits, linear biases,
dark matter halo masses) in the earlier parts are not affected by
which calibration we use. The biggest difference, although less
than 1.5σ , is observed at scales larger than 120 h−1 Mpc and up to
150 h−1 Mpc where the correlation signal is small and hence more
prone to possible systematics. The weak dependence of w(θ ) at
very large scales on the different calibrations may be an indication
that this apparent extra peak at θ ≈ 300 arcmin could indeed be a
systematics effect. We shall return to this in Section 6.1.

We also tested whether the 200 h−1 Mpc excess can be elimi-
nated by taking the average w(θ ) from 15 × 20 deg2 subfields.
The result, after integral constraint correction, is shown in Fig. 19.
The 200 h−1 Mpc excess persists even though there is some change
at smaller scales. Given the model dependence introduced by the
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Figure 18. (a) The angular correlation function of the three LRG samples at large scales. The shaded regions are 1σ JK errors. The arrow indicates the
expected BAO angular separation in each sample, assuming our fiducial cosmology. (b) Same as (a) but now scaled in the angular direction to the depth of the
AA�-LRG sample.

Figure 19. The combined angular correlation function of the three LRG
samples scaled to the AA� depth, comparing the results when the SDSS
standard (diamonds) and uber (circles) calibration are used. Also shown is
the average field-to-field w(θ ) (asterisks) which represents an attempt to
filter out any large-scale gradients in the SDSS data.

integral constraint correction (equation 11), hereafter we shall use
the correlation function of the uber-cal sample measured using our
normal method.

6.1 Testing for systematic effects

We have performed a series of tests to check our results against
possible systematic effects. The tests include exclusions of high
dust extinction and ‘poor’ astronomical seeing regions, an improved
star–galaxy separation for the AA� sample and effects of possible
contamination by clustered stars.

First, we exclude the regions where the i-band extinction is greater
than 0.1 mag which discards ≈20 per cent of the data. The results
are shown in the top row of Fig. 20. For 2SLAQ and AA� samples,

the results appear to be lower than the main measurements but
otherwise remain within 1σ statistical errors of each other. Although
the amplitudes at θ ≥ 220 arcmin are somewhat lower than the
default AA� result, the excess at θ � 300 arcmin still persists.
We then investigate the effect of excluding the regions with ‘poor’
astronomical seeing; the limit of 1.7 arcsec is used following the
SDSS ‘poor’ seeing definition which discards ≈30 per cent of the
data. The results here are in good agreement with the main results
with the exception of a few angular bins around 320 arcmin of the
2SLAQ sample where they are somewhat (non-significantly) lower
than the default measurements.

Next, we attempt to reduce the stellar contamination fraction
in the AA� sample. As a reminder, our default (optimized) star–
galaxy separation algorithm (see Section 2) leaves ≈16 per cent
stellar contamination in the sample while losing genuine LRGs
only at a sub-per-cent level. Here, we impose a more aggressive
star–galaxy separation cut which reduces the contamination level
to ≈9 per cent at the expense of nearly halving the number of
genuine AA� LRGs. The cut is a combination of the fitted ‘de
Vaucouleurs’ radius as a function of zdeV magnitude and the cor-
relation between the ‘de Vaucouleurs’ and fibre magnitudes in z
band. The w(θ ) measurement for this new AA� sample after cor-
rection by a factor of 1/(1 − f )2, where f = 0.09, is shown in the
top-right panel of Fig. 20. This is in good agreement with the main
results.

We test our earlier assumption (Section 3; see also Blake et al.
2008) that the effect of the stellar contamination is simply a dilution
of δg by (1 − f ) and hence the amplitude of galaxy–galaxy correla-
tion function by (1 − f )2, where f is the contamination fraction. We
add a sample of red stars to the 2SLAQ sample at the 16 per cent
level, similar to what we expect in the AA� sample. The stars
are selected from SDSS photometric objects which are classified
as ‘star’. The colour selections have been matched to that of the
AA�-LRG sample. The sample is then randomly selected to have
the number of objects at 16 per cent of the 2SLAQ sample. They
therefore follow the stellar distribution with galactic latitude. The
w(θ ) result after correction by 1/(1 − f )2 is shown in the top-middle
panel of Fig. 20 and is found to be in excellent agreement with
the main 2SLAQ result. We do not see any evidence of a slope
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Figure 20. The angular correlation functions for SDSS, 2SLAQ and AA� samples (left to right), measured with varying dust extinction limit, astronomical
seeing and different star–galaxy separation (top row), compared to our ‘Default’ results. Also shown is the effect of low galactic latitude region exclusion for
each sample (bottom row). Note that for the b > 60◦, the sample size is reduced by 60 per cent. In each case, an arrow indicates the expected position of the
BAO peak assuming our fiducial cosmology.

change which may arise from a possible clustering of the stellar
contaminants at large scales, at least for the contamination level
expected in our sample.

We apply various minimum galactic latitude cuts on the data in
order to test for any systematic error. Such systematics (if they exist)
could be due to the gradient caused by galactic dust extinction and/or
different stellar contamination fractions which one might expect to
be worse in the lower galactic latitude regions. Note that in our
default data sets ≈95 per cent of the data are at b ≥ 30◦. The results
of applying the galactic latitude cuts of b ≥ 40◦, 50◦ and 60◦ are
shown in the bottom row of Fig. 20. Note that with the b ≥ 60◦

limit, ≈60 per cent of the data are discarded. The 2SLAQ results
appear to be marginally dependent on the galactic latitude limits. In
the AA� sample the results are in good agreement with the main
measurement although the b ≥ 60◦ limit appears to be ≈1σ lower
in some angular bins.

Finally, we cross-correlate the SDSS and AA� samples. The
redshift distributions of the two samples are well separated with
only slight overlap (see Fig. 1). Therefore, any residual signal in
their cross-correlation function (CCF) at large scales can be used
as evidence for systematic errors. The CCF is shown in Fig. 21,
comparing to the auto-correlation functions of the SDSS and AA�

samples in the top and bottom panels, respectively. The CCF has
much lower signal than the auto-correlation function at θ < 120
arcmin and is consistent with zero, P(<χ 2) = 0.997, between
120 < θ < 500 arcmin whereas the AA� w(θ ) signal is de-
tected at more than 4σ significance (see above) in the same angular
ranges.

We note that Ross et al. (2011) have suggested that there is a
systematic effect associated with the area effectively masked by

foreground stars which may be important in terms of a systematic
that may produce excess clustering at large scales. However, such
an effect would predict a decrease in galaxy density at low galactic
latitudes and this is not seen in our samples (see fig. 9 of Sawangwit
et al. 2010). If anything, the opposite effect is seen in our data
with an increase in density towards lower galactic latitude which
may be caused by stellar contamination. Here, we have tested our
w(θ ) measurements by successively cutting out data at low galactic
latitudes. Although the 2SLAQ results may show some marginal
dependence on the galactic latitude cut, the AA� results seem
reasonably unaffected (see Fig. 20f). This may be due to the higher
stellar contamination fraction in AA� sample which means that the
effect seen by Ross et al. (2011) may not be directly applicable to
the AA� sample.

We conclude that the apparent clustering excess at ≈300 arcmin
in the AA� sample appears to be reasonably robust against most
of the systematic tests we performed here. However, one might
argue that the weakening of the excess signal when iextinc > 0.1
regions (≈20 per cent) is excluded and the marginal dependence
on the galactic latitude cuts of the 2SLAQ results may be taken as
some evidence for systematic effects. On the other hand, the SDSS–
AA� cross-correlation test also tends to limit the size of possible
systematic errors.

6.2 Model comparisons

6.2.1 Standard �CDM model

First, we compare the measured angular correlation function to the
perturbation theory prediction in the standard �CDM Universe. To

C© 2011 The Authors, MNRAS 416, 3033–3056
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 20, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


3052 U. Sawangwit et al.

Figure 21. The auto-correlation functions for SDSS (top panel) and AA�

(bottom panel) samples, comparing to the CCF between the two samples
(blue solid lines).

compute the theoretical prediction, we proceed in the same manner
as described in Section 4.2, calculating w(θ ) by projecting ξ (r)
which is a Fourier transform of a non-linear P(k). However, here we
assume the best-fitting cosmological parameters from Eisenstein
et al. (2005), a flat �CDM model with �m h2 = 0.13, �b h2 =
0.024, h = 0.7 and n = 0.98. Unlike in Section 4.2, the non-linear
modelling of the BAO peak using only HALOFIT is not adequate.
The BAO peak in the correlation function can also be broadened
(and perhaps slightly shifted) by the non-linear gravity suppression
of the higher harmonics in the power spectrum via mode coupling
(Meiksin, White & Peacock 1999). To model such an effect, we
follow Eisenstein et al. (2005) and smoothly interpolate between
the linear power spectrum and the ‘no-wiggle’ spectrum with the
same overall shape but with the acoustic oscillations erased. This is
done mathematically by

P (k) = Plin

[
x + Tnw(k) × (1 − x)

Tlin(k)

]2

, (48)

where Plin is linear matter power spectrum, Tnw(k) and T lin(k) are
‘no-wiggle’ and linear transfer functions computed from Eisenstein
& Hu (1998) and x = exp (−k2a2) with a = 7 h−1 Mpc chosen to fit
the BAO suppression seen in their N-body simulations.

The P(k) is then corrected for non-linear gravitational collapse
using the HALOFIT software. The final P(k) is then transformed to
ξ (r) using equation (19). Although the scale-dependent redshift-
distortion and halo bias correction is weak at these scales, we follow
Eisenstein et al. (2005) and multiply the correlation function by
the square of 1 + 0.06/[1 + (0.06r)6] (solid line in their fig. 5),
again chosen to fit what is seen in the N-body simulations. Such
a correction is small at the BAO scale, only sub-per cent at r �
25 h−1 Mpc and increases to ≈10 per cent at 10 h−1 Mpc. We then
correct for the linear redshift-space distortion; the ξ (s) amplitude is
enhanced relative to the real-space correlation function, ξ (r), such

that (Kaiser 1987)

ξ (s) =
(

1 + 2β

3
+ β2

5

)
ξ (r). (49)

Here, we assume β = 0.45 for these LRG samples (see Ross et al.
2007). The final ξ (s) model prediction with galaxy bias b = 2.09
for SDSS-LRG (see Section 4.2) is shown (cyan solid line) in the
inset of Fig. 22. Eisenstein et al. (2005) find this model to be a
good fit to their ξ (s) data with the best fit χ 2 = 16.1 on 17 d.o.f.
for a particular set of cosmological parameters given above. We
then computed w(θ ) from the ξ (r) derived above via equation (14).
Although the model (cyan solid line in Fig. 22) was found to be
consistent with the LRG ξ (s), it is inconsistent with our w(θ ) mea-
surement, especially at r � 60 h−1 Mpc or θ � 120 arcmin. The
uber-cal AA� w(θ ) between 40 and 400 arcmin (corresponding to
20 � r � 200 h−1 Mpc) are incompatible with the model at 99.8
per cent level (χ 2 = 39.3 over 18 − 1 d.o.f. with covariance ma-
trix). We note that this rejection may be associated with the apparent
clustering excess at θ � 200 arcmin, which still could be subject to
systematics.

Next, we compare our w(θ ) to the best estimate of ξ (s) at the
BAO scale as measured by Eisenstein et al. (2005). Although these
measurements may have been superseded by DR7 spectroscopic
LRG clustering analyses based on larger samples, these more recent
estimates are usually in reasonable agreement with the results of
Eisenstein et al. (2005), whether they are in correlation function
(Martı́nez et al. 2009; Kazin et al. 2010) or power spectrum (Percival
et al. 2010) form. For our comparison, we thus simply make a
polynomial fit to the best estimate ξ (s) of Eisenstein et al. (2005)
(blue dashed line in the inset of Fig. 22). The polynomial-fit ξ (s) is
Kaiser de-boosted (equation 49) to give ξ (r) by assuming β = 0.45.
The ξ (r) is then corrected for the linear growth between z = 0.35 and
z = 0.68 which reduces the amplitude by ≈30 per cent. The resulting
model has similar amplitude with the expected AA�-LRG ξ (r)
because the SDSS and AA�-LRG linear biases are coincidentally
the same (see Section 4.2). The model is then projected to w(θ )
using equation (14) and is shown as a blue dashed line in Fig. 22.
Our result appears to be in good agreement with the model up to
≈120 h−1 Mpc given statistical uncertainties in our measurement
and the ξ (s) data. Beyond ≈120 h−1 Mpc, our w(θ ) shows a higher
clustering amplitude as noted above.

Summarizing, the wcom result appears consistent with the w(θ )
prediction based on the Eisenstein et al. (2005) best estimate of ξ (s)
(at least out to ≈120 h−1 Mpc) but not with the prediction based
on the flat �CDM model due to the apparent large-scale clustering
excess in the w(θ ). This means that given the size of error bars of
the Eisenstein et al. (2005) result, the �CDM model is quite com-
patible with the ξ (s) data but given the much smaller statistical error
on w(θ ), in this case our measurements are inconsistent with the
�CDM model. While the feature observed at ≈300 arcmin persists
in most of the systematic tests we performed on the AA� samples
(Section 6.1), a few of these tests, e.g. dust extinction, indicate there
is still the possibility that systematic errors are affecting the w(θ ).
Therefore, if we now assume that the excess signal at ≈150 h−1 Mpc
is an indication of a systematic and subtract 0.001 to 0.0015, the
level of the excess amplitude at this point in wcom (see Fig. 22), we
obtain the w(θ ) results as shown by the dash–dot-dotted and dotted
lines. These two lines now bracket the flat �CDM result. Thus, the
issue of the disagreement between the w(θ ) result and the �CDM
model seems to rest on the reality of the apparent clustering excess
at large scales.
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Figure 22. The combined w(θ ) (open circles) compared to the projections of non-linear �CDM model plus mode coupling, scale-dependent redshift-space
distortion and halo bias correction (cyan solid line) and the Eisenstein et al. (2005) ξ (s) (blue dashed line). The red dot–dashed line is the �CDM model plus
low-l power excess (Section 6.2.2). The dash-dot–dotted and dotted lines show the effect of subtracting the data by 0.001 and 0.0015, respectively. The ξ (r)
models used in the w(θ ) projection are given as an inset together with the Eisenstein et al. (2005) measurement (diamonds). Here, the same symbols are used
for the Eisenstein et al. (2005) and non-linear �CDM ξ (s) models as for the w(θ ) models above.

6.2.2 low-� power excess?

Recently, Thomas, Abdalla & Lahav (2011a) (see also Padmanab-
han et al. 2007; Blake et al. 2007; Thomas, Abdalla & Lahav 2011b)
have also found a significant excess in their angular power spec-
trum, C�, at the low multipoles relative to the best-fitting �CDM
models. They used photometric-redshift catalogues of the LRGs at
z ≈ 0.5 similar to our 2SLAQ sample. The most significant (≈4σ )
low-� power excess is observed in the highest redshift bin. The au-
thor carried out various systematic checks and found no indication
of such an effect.

While the clustering excess only affects C� at multipoles smaller
than the acoustic oscillations in Fourier space, unfortunately in
configuration space the effect is expected on a wider range of scales
and could affect our w(θ ) BAO measurement.

Fig. 23 shows the Thomas et al. (2011a) C� and the excess power
model used to predict the AA� w(θ ). For further detail of the low-�
power excess model, see Sawangwit (in preparation). The resulting
w(θ ) model with the amplitude normalized to fit the data at θ = 40–
400 arcmin is shown as the red dot–dashed line in Fig. 22. The model
appears to be consistent with our wcom (13 per cent confidence level,
χ 2 = 23.6 over 18 − 1 d.o.f.) at r ≈ 20–200 h−1 Mpc. Therefore
we note that the excess clustering signal in our w(θ ) is in good
agreement with that observed in the C� by Thomas et al. (2011a).
The fact that the excess power in the C� has the form of an � ≈ 10
spike, suggests that this excess in w(θ ) is due to something other
than acoustic oscillations in the power spectrum.

We note that evidence for a large-scale (>150 h−1 Mpc) correla-
tion function excess has also been detected in the NRAO VLA Sky
Survey (NVSS) radio source survey by Blake & Wall (2002) and
Xia et al. (2010). We have compared our results with theirs and find
that our correlation function shows a similar shape but a factor of

Figure 23. The angular power spectrum of the 0.6 < z < 0.65 MegaZ-DR7
LRG (Thomas et al. 2011b) with significant power excess at low multipoles
(diamonds). The low-� power excess plus the best-fitting �CDM model of
the 0.6 < z < 0.65 C� (blue dot–dashed and solid lines) is extrapolated to
the AA� redshift range (red dot–dashed and dashed lines).

2–3 times lower amplitude. If the excess clustering signal observed
here is real, then it could be evidence for non-Gaussianity (Xia et al.
2010) or for the gauge dependence of the matter power spectrum on
the largest scales (Lin 2001; Yoo, Fitzpatrick & Zaldarriaga 2009).
But until this feature is detected in an independent galaxy data set,
there will always be the possibility that it is caused by some un-
known systematics. Certainly, if the �CDM model were correct
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then we would have to conclude that this excess was caused by
systematics at the level of �w ≈ 0.001–0.0015 in the photometric
AA�-LRG sample.

7 SU M M A RY A N D C O N C L U S I O N S

We have presented here a new and detailed analysis of the angular
correlation function of the LRGs extracted from the SDSS DR5
photometric catalogue. All the necessary information for inferring
the spatial clustering is obtained and calibrated through redshift
surveys of sample subsets. Our conclusions are as follows.

(i) We measured the angular correlation function of the LRGs
at three different redshifts, namely 0.35, 0.55 and 0.68, and found
the results to be well approximated by power laws at small and
intermediate scales.

(ii) With the large samples in terms of the numbers of objects and
volume cover by the data, we see the deviation from the canonical
single power law at high significance.

(iii) The data are better fitted by a double power law where the
large-scale (�1–2 h−1 Mpc) slope is equal to that of the conventional
single power law, i.e. γ ≈ 1.8.

(iv) The form of the angular correlation functions at large scales
is consistent with the expectation of the linear perturbation theory
in the flat standard �CDM Universe.

(v) The LRG linear bias is high, bg ≈ 2.0, as expected for massive
luminous early-type galaxies, and the clustering strength is found
to be strongly linked to the sample intrinsic brightness.

(vi) The best-fitting HOD models suggest that these LRGs re-
side in the massive dark matter haloes, 1013–1014 h−1 M�, and are
typically central galaxies in their dark matter halo hosts, with the
satellite fraction no more than 10 per cent.

(vii) The clustering evolution at intermediate scales (1 < r <

20 h−1 Mpc) is remarkably slow and may be approximately ex-
plained by a long-lived model or even a no-evolution model. The
long-lived model may be in line with the observed passive evolution
of the LRG luminosity function, consistent with a constant comov-
ing LRG space density in this redshift range. This latter conclusion
would also apply in the case that the no-evolution (comoving) model
were found to fit better but in this case the observations may require
a significantly higher bias.

(viii) Using the Lacey & Cole (1993) framework, our MDMH(z)
measurements are well fitted by the model where halo mass is grown
via merging of progenitors with masses of ≈1.4 × 1013 h−1 M� and
≈2.3 × 1013 h−1 M� from z = 1, for haloes that typically host L
≥ 2L* and ≥3L* galaxies, respectively. We found that these dark
matter haloes have tripled their masses over the last half of cosmic
time (although see the caveat given at the end of Section 5.1.2)
whereas it has been claimed that the LRG stellar masses have grown
by less than 50 per cent (Cool et al. 2008).

(ix) At small scales (r < 1 h−1 Mpc) the clustering evolution ap-
pears slightly faster at fixed luminosity and the clustering increases
towards lower redshift, consistent with a virialized clustering model.
Since our virialized model assumes a constant comoving LRG space
density, a combination of this stable clustering model at small scales
and the long-lived model at intermediate scales could be consistent
with the idea that merging of LRGs may not change the LRG space
density significantly out to z ≈ 0.7.

(x) However, the evolution based on HOD and the �CDM halo
merging framework requires that ∼ 2–3 per cent/Gyr of the LRGs
merge with each other in order to explain the small-scale clustering

evolution, consistent with the results of White et al. (2007) and
Wake et al. (2008).

(xi) In our AA�-LRG result we find a BAO peak at a level
consistent with the best estimate of ξ (s) obtained by Eisenstein et al
(2005). But, given the small size of our statistical errors, these results
deviate significantly, ≈4σ , from the standard �CDM prediction
because of an apparent large-scale clustering excess.

(xii) The excess clustering signal generally persists after a series
of systematic tests we performed. However, a few of these tests did
change the feature somewhat, suggesting that it could still be caused
by some unknown systematic effects.

(xiii) If the �CDM model were correct then we would have to
conclude that this excess was caused by systematics at the level of
�w ≈ 0.001–0.0015 in the photometric AA�-LRG sample.

(xiv) Otherwise, the excess signal in our w(θ ) relative to the
standard �CDM model appears to be in good agreement with the
C� power excess at low l observed by other authors who used photo-z
LRG samples at z ≈ 0.5.

(xv) If real, the large-scale clustering excess may be interpreted
as evidence for a non-standard cosmological model, e.g. primordial
non-Gaussianity or general relativistic effects. However, more, in-
dependent, data are required to check the reality of this clustering
excess.
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A P P E N D I X A : A N G U L A R C O R R E L AT I O N
F U N C T I O N S A N D C OVA R I A N C E M AT R I C E S

At the referee’s request, we tabulate the angular correlation func-
tions (Table A1) measured from the three photometric LRG samples
studied in this paper. The full covariance matrices in the form of
correlation coefficients are also shown in Fig. A1.
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Table A1. The measured angular correlation functions for the SDSS, 2SLAQ and AA�-LRG
and their 1σ JK errors.

θ (arcmin) SDSS 2SLAQ AA�

0.100 26.78 ± 2.37 9.85 ± 0.39 6.27 ± 0.24
0.150 15.96 ± 1.47 7.40 ± 0.14 4.65 ± 0.10
0.225 11.09 ± 0.56 4.54 ± 0.085 2.95 ± 0.057
0.337 6.10 ± 0.33 2.95 ± 0.050 1.86 ± 0.033
0.506 3.93 ± 0.19 1.83 ± 0.026 1.11 ± 0.016
0.759 2.04 ± 0.090 1.09 ± 0.020 0.65 ± 0.014
1.139 1.55 ± 0.061 0.68 ± 0.011 0.419 ± 0.0095
1.708 1.00 ± 0.038 0.416 ± 0.0057 0.282 ± 0.0059
2.562 0.56 ± 0.025 0.285 ± 0.0061 0.213 ± 0.0036
3.844 0.31 ± 0.019 0.199 ± 0.0038 0.151 ± 0.0023
5.766 0.22 ± 0.012 0.152 ± 0.0026 0.112 ± 0.0020
8.649 0.171 ± 0.0081 0.113 ± 0.0019 0.083 ± 0.0013
12.97 0.118 ± 0.0053 0.078 ± 0.0018 0.057 ± 0.0011
19.46 0.091 ± 0.0055 0.055 ± 0.0012 0.0405 ± 0.00077
29.19 0.060 ± 0.0041 0.038 ± 0.0011 0.0264 ± 0.00062
43.78 0.038 ± 0.0031 0.0226 ± 0.0009 0.0157 ± 0.00060
60.00 0.028 ± 0.0023 0.0144 ± 0.0008 0.0093 ± 0.00053
80.00 0.018 ± 0.0020 0.0086 ± 0.00076 0.0056 ± 0.00051
100.0 0.014 ± 0.0019 0.0054 ± 0.00067 0.0040 ± 0.00045
120.0 0.011 ± 0.0017 0.0034 ± 0.00060 0.0039 ± 0.00036
140.0 0.0071 ± 0.0018 0.0024 ± 0.00061 0.0035 ± 0.00027
160.0 0.0063 ± 0.0014 0.0019 ± 0.00064 0.0029 ± 0.00032
180.0 0.0045 ± 0.0013 0.0021 ± 0.00065 0.0024 ± 0.00039
200.0 0.0026 ± 0.0014 0.0020 ± 0.00060 0.0020 ± 0.00039
220.0 0.0020 ± 0.0014 0.0022 ± 0.00062 0.0011 ± 0.00035
240.0 0.0014 ± 0.0013 0.0019 ± 0.00058 0.0014 ± 0.00039
260.0 0.0014 ± 0.0015 0.0015 ± 0.00045 0.0015 ± 0.00040
280.0 0.0017 ± 0.0011 0.0013 ± 0.00044 0.0018 ± 0.00032
300.0 0.0020 ± 0.00077 0.0013 ± 0.00045 0.0021 ± 0.00038
320.0 0.0016 ± 0.00091 0.0015 ± 0.00045 0.0021 ± 0.00043
340.0 0.0032 ± 0.0010 0.0013 ± 0.00053 0.0019 ± 0.00048
360.0 0.0025 ± 0.0010 0.0011 ± 0.00047 0.0016 ± 0.00048
380.0 0.0023 ± 0.0011 0.0012 ± 0.00045 0.0016 ± 0.00045
400.0 0.0025 ± 0.0010 0.0010 ± 0.00045 0.0013 ± 0.00041
420.0 0.0017 ± 0.0011 0.00054 ± 0.00045 0.0007 ± 0.00041
440.0 0.0020 ± 0.0012 0.00064 ± 0.00042 0.0006 ± 0.00038
460.0 0.0003 ± 0.0012 0.00017 ± 0.00045 0.0008 ± 0.00038
480.0 0.0006 ± 0.0014 0.00002 ± 0.00047 0.0005 ± 0.00039
500.0 −0.0001 ± 0.0012 0.00018 ± 0.00051 0.0005 ± 0.00044

Figure A1. The correlation coefficients, rij , out to very large angular separations. These are derived from the covariance matrices (equation 13) via 96 JK
re-sampling fields. Three panels show rij for SDSS, 2SLAQ and AA�-LRG samples from left to right.
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