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Abstract 3 

Over the past decade the use of long-lasting insecticidal nets (LLINs), in combination with improved 4 

drug therapies, indoor residual spraying (IRS) and better health infrastructure, has helped reduce 5 

malaria in many African countries for the first time in a generation. However, insecticide resistance in 6 

the vector is an evolving threat to these gains. We review emerging and historical data on 7 

behavioural resistance in response to LLINs and IRS.  Overall the current literature suggests 8 

behavioural and species changes may be emerging, but the data are sparse and, at times 9 

unconvincing. However, preliminary modelling has demonstrated that behavioural resistance could 10 

have significant impacts on the effectiveness of malaria control. We propose seven 11 

recommendations to improve understanding of resistance in malaria vectors. Determining the public 12 

health impact of physiological and behavioural insecticide resistance is an urgent priority if we are to 13 

maintain the significant gains made in reducing malaria morbidity and mortality.  14 
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Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are currently the key 1 

components of vector management strategies used for the control of malaria (Roll Back Malaria 2 

Partnership 2005). Over the past decade the use of LLINs, in combination with improved drug 3 

therapies, IRS and better health infrastructure, has helped reduce malaria in many African countries 4 

for the first time in a generation (O'Meara et al. 2010, World Health Organization 2010). Malaria 5 

mortality has declined since 2000 by 25% globally and 33% in sub-Saharan Africa (World Health 6 

Organization 2011a). These remarkable successes have created unprecedented optimism about 7 

reaching the malaria reduction targets outlined in the Global Malaria Action Plan (Roll Back Malaria 8 

Partnership 2008) and, ultimately, for the local elimination of malaria; however, there is a growing 9 

threat to these gains in the form of insecticide resistance. 10 

 11 

Evolution of resistance to the chemotherapeutic is a common outcome of effective (and ineffective) 12 

vector or parasite control programmes. While this is often viewed as a failure of the program, it is 13 

better regarded as an almost inevitable consequence since history has repeatedly shown that 14 

intensive interventions lead to the emergence of physiological (biochemical) resistance due to the 15 

high selective pressure exerted on the targeted population. The emergence of resistance in the 16 

vector has not only developed against all four classes of insecticide licensed to control adult 17 

mosquitoes for public health purposes (Ranson et al. 2011, World Health Organization 1970), but 18 

also in the malaria pathogen against the most widely used antimalarials, starting with chloroquine, 19 

the standard drug of treatment during the Global Malaria Eradication Campaign (GMEC) (Najera 20 

1999). Indeed, resistance was one of the reasons cited for ending the GMEC in the late 1960s (Najera 21 

1999). At that time resistance to DDT had developed in 14 anopheline species. The recent emergence 22 

of artemisinin drug resistance in South East Asia (Phyo et al. 2012, World Health Organization 2011b), 23 

makes clear that this is not simply a problem of the past, nor one confined to insecticides. 24 

 25 
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The finding of widespread physiological resistance to pyrethroids in Anopheles gambiae, the major 1 

vector of malaria in Africa (Ranson et al. 2011), is a major public health concern because pyrethroids 2 

are the only insecticides currently used for treating bed nets. Results from experimental hut studies 3 

in West Africa demonstrate a marked reduction in mosquito mortality in areas with high levels of 4 

physiological resistance (N'Guessan et al. 2007). Of course, in the absence of effective chemical 5 

control, intact bed nets still provide barrier protection against biting mosquitoes (Clarke et al. 2001, 6 

Snow et al. 1988); however, nets become worn and it is likely that torn or holed treated nets provide 7 

inadequate protection in areas where pyrethroid-resistant vectors are common (Irish et al. 2008, 8 

N'Guessan et al. 2007). This has recently been confirmed in studies at the same locations as the 9 

experimental hut trial (Asidi A. et al. 2012). In households in the areas where resistant mosquitoes 10 

were common there were high rates of blood-feeding and freshly treated nets provided no 11 

protection once holed. In contrast, sleeping under a holed bed net in the location where susceptible 12 

mosquitoes were common decreased the odds of being bitten by 66% and the majority of 13 

mosquitoes were killed by the treatment.  14 

 15 

At present there are 40 malaria-endemic countries reporting resistance to insecticides, most to 16 

pyrethroids (WHO Global Malaria Programme 2012). Multiple insecticide resistance is also common, 17 

with some regions having resistance to all  four insecticide classes used in public health (Ranson et al. 18 

2009). Although evidence is currently lacking that this level of resistance is impeding malaria control, 19 

most experts expect that current vector control efforts will soon be compromised unless strategies 20 

are implemented to manage the resistant vectors. It is estimated that more than half of the benefits 21 

gained from the current coverage of LLINs and IRS in Africa would be lost if pyrethroids lose their 22 

efficacy, resulting in approximately 120,000 additional deaths per year (WHO Global Malaria 23 

Programme 2012). 24 

 25 



5 
 

As a consequence of this growing threat, the World Health Organisation Global Malaria Programme 1 

have published a Global Plan for Insecticide Resistance Management (GPIRM) (WHO Global Malaria 2 

Programme 2012). This strategy focuses solely on physiological resistance in malaria vectors. 3 

However, it is likely that behavioural resistance may also develop in response to insecticide exposure. 4 

Furthermore, how the behaviour of physiologically resistant vectors might differ in comparison to 5 

their sensitive counterparts is very poorly known.  6 

 7 

Behavioural resistance refers to any modification to mosquito behaviour that facilitates avoidance or 8 

circumvention of insecticides. The contribution of behavioural changes in agricultural pests to 9 

insecticide/pesticide resistance has been long acknowledged (Gould 2010, Sparks et al. 1989), with 10 

theoretical studies providing valuable information to inform and improve management practice s 11 

(Castillo-Chavez et al. 1988, Gould 1984). In comparison, determining if behavioural adaption in 12 

vectors may be of medical importance has lagged behind. Perhaps the best-documented behavioural 13 

change in malaria vectors, and the biggest concern, is the development of an early, outdoor feeding 14 

phenotype among anopheline populations in areas of extensive indoor insecticide use. These 15 

mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside 16 

human homes and being active earlier in the evening before people have gone to sleep.  In addition, 17 

there are a variety of other changes in vector behaviour such as increased zoophagy that may evolve 18 

in response to intensive interventions. Part of the reason for the lack of information about 19 

behavioural resistance is that it is harder to investigate using relatively simple exposure assays, and 20 

far more difficult to monitor in field populations, compared to physiological resistance (Ferguson et 21 

al. 2010, Takken 2002). 22 

 23 

Both physiological and behavioural resistance to insecticides may be determined by a limited number 24 

of major genes or be affected by a relatively large number of genes of small effect.  The genetic basis 25 

of resistance affects the dynamics of spread as well as the ease with which molecular markers of 26 
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resistance can be developed. Phenotypes caused by single gene mutations generally demonstrate an 1 

exponential increase in frequency, where much of the initial stage of spread occurs at very low, near-2 

undetectable gene frequencies, prior to a period of rapid amplification to high frequencies. In 3 

contrast, phenotypes based on standing genetic variation in many genes typically have a different 4 

dynamic: their spread is generally described by an immediate and sustained change in their 5 

phenotypic distributions.   6 

 7 

One cannot predict a priori which model will apply to a specific trait. Physiological resistance may 8 

occur through single mutations, for example knock-down resistance  (kdr) in the sodium channel 9 

protein targeted by pyrethroids, but may also arise through altered levels of detoxifying enzymes 10 

such as P450s and esterases, whose expression levels may well be modulated by variation in many 11 

genes, making it a quantitative genetic trait (Ranson et al. 2004, Wondji et al. 2009). Similarly, 12 

behavioural changes are often regarded as complex, quantitative genetic traits but there are 13 

instances of a single gene mutation in insects having large effects on behaviour. For example, 14 

polymorphisms in the phosphoglucose isomerase (pgi) gene are associated with differences in 15 

butterfly dispersal rates as well as other phenotypic traits (Niitepold et al. 2009), while major 16 

mutations in some Drosophila circadian rhythm genes can affect their daily behaviour cycles 17 

(reviewed in (Sokolowski 2001)). Another possible example is single gene mutations encoding 18 

physiological insecticide resistance which also appear to change behaviour through pleiotropic action 19 

that alters repellency (see later discussion). An important research gap is therefore a detailed 20 

understanding of the likely genetic basis of specific behavioural resistance traits, and how 21 

surveillance programmes should be implemented to best monitor changes in these traits.  22 

 23 

Here we review emerging and historical data on behavioural resistance in response to LLINs and IRS 24 

in an effort to understand better the biology underlying the field observations and highlight areas in 25 

need of further research. The data reviewed specifically focuses on the Anopheles vectors of malaria, 26 
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with an emphasis on sub-Saharan African species where much of the behavioural research has been 1 

conducted. The predominant species are Anopheles gambiae sensu lato and An. funestus. Anopheles 2 

gambiae s.l. is a species complex consisting of several closely related sibling species including An. 3 

gambiae sensu stricto, An. arabiensis, An. melas, An. merus, An. quadriannulatus Species A, An. 4 

quadriannulatus Species B and An. bwambae. There are a number of secondary vectors contributing 5 

to malaria transmission in sub-Saharan Africa which we do not consider (Antonio-Nkondjio et al. 6 

2006).  7 

  8 

Evidence for impact of indoor insecticides on mosquitoes 9 

Vector abundance 10 

The insecticides used for LLINs and IRS exert their effect on the vector population in three ways: toxic 11 

chemical action, spatial repellecy/deterrency and contact irritancy (Box 1) (Lines J. D. et al. 1987, 12 

Smith A. and Webley 1968, Takken 2002). The relative importance of each of these in determining 13 

how an insecticide works is dependent not only on the chemical and concentration used, but also on 14 

the mosquito species (Chareonviriyaphap 2012, Dezulueta et al. 1963, Grieco et al. 2007) and the 15 

application methods (e.g. IRS versus LLINs). The non-toxic chemical effects are highly relevant when 16 

assessing the impact of physiological resistance since it is the interaction between toxicity and 17 

behaviour that determines the level of insecticide uptake and ultimately the probability that the 18 

insect dies.  19 

 20 

Data collected from experimental hut studies indicate that bednets treated with pyrethroids and 21 

walls sprayed with DDT dramatically increase the rate at which African mosquitoes leave huts and 22 

reduce the number of blood-fed mosquitoes compared to untreated controls (Asidi A. N. et al. 2005, 23 

Chandre et al. 2010, Lines J. D. et al. 1987). This outcome suggests that these chemicals are contact 24 

irritants. 25 
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 1 

The evidence for spatial repellency, where mosquitoes are deterred from entering the house, is 2 

equivocal for treated nets, with some studies finding no reduction in the rate of entry (Chandre et al. 3 

2010, Kirby et al. 2008, Malima et al. 2008, N'Guessan et al. 2010) while others reported significant 4 

decreases (Asidi A. N. et al. 2005, Lindsay et al. 1991a, Lines J. D. et al. 1987). In less controlled 5 

settings, short-term use of treated nets did not appear to impact the number of An. gambiae s.l. 6 

entering houses (Mathenge et al. 2001), but instead acted as a contact irritant that increased exit 7 

rates, particularly of unfed mosquitoes, resulting in fewer mosquitoes resting indoors (Akogbeto et 8 

al. 2011, Mathenge et al. 2001, Quinones et al. 1998). Studies with IRS employing DDT suggested that 9 

the compound had some spatial repellence that may reduce mosquito entry into the house 10 

(Dezulueta et al. 1963, Roberts et al. 2000, Smith A. and Webley 1968). The level of deterrence 11 

reported for some experimental hut trials based on the number of mosquitoes collected indoors is 12 

sometimes confounded by the fact that mosquitoes entering the hut can leave by the same opening. 13 

This means that unless mosquito movements are carefully recorded through all openings, reductions 14 

in the rate of entry cannot be distinguished from unrecorded or higher rates of departure (Silver 15 

2008). 16 

 17 

Whatever the precise mechanism, the large-scale use of LLINs or IRS frequently results in a major 18 

reduction in the abundance of vectors, often referred to as the ‘mass community effect’ (Hawley et 19 

al. 2003). This effect is the basis for the universal coverage advocated by Roll Back Malaria (RBM) 20 

where the goal is that 80% of people at risk from malaria are protected by vector control methods, 21 

primarily LLINs and IRS (Roll Back Malaria Partnership 2005). Community surveys comparing villages 22 

with and without LLINs, or changes pre- and post-intervention show decreased abundance of indoor 23 

resting mosquitoes (Bayoh et al. 2010, Lindblade et al. 2006, Mbogo et al. 1996), feeding mosquitoes 24 

(Trape et al. 2011) and larvae (Bayoh et al. 2010). 25 

 26 
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Mosquito behaviour 1 

There are a number of possible impacts that insecticide use indoors could have on mosquito 2 

behaviour including changes in biting phenology and the frequency of endophagy.  All anopheline 3 

vector species predominantly feed at night. One of the consequences of large-scale indoor 4 

insecticide use is the potential selection for vectors that feed on people earlier in the night while 5 

they are outdoors. Exophily was one of the reasons cited for why IRS (when used in isolation) failed 6 

to reduce malaria parasite rates substantially in the Garki project in northern Nigeria (Molineaux and 7 

Gramiccia 1980). Here large-scale use of IRS with propoxur, a carbamate insecticide, in an area of 8 

high transmission (Entomological Inoculation Rate (EIR) = 18-145 sporozoite-positive bites per person 9 

each year) resulted in a 90% reduction in vectorial capacity, but only reduced the parasite prevalence 10 

for Plasmodium falciparum by 25% (the major vector was An. gambiae s.l.).  11 

 12 

Anopheles arabiensis populations show a wide range of peak biting times at different sites (Braack et 13 

al. 1994, Dukeen and Omer 1986, Fontenille et al. 1997b, Lemasson et al. 1997, Mattingly 1949, 14 

Yohannes and Boelee 2012, Yohannes et al. 2005), with some of this variation being explained by 15 

season (Tirados et al. 2006). One possible explanation for the remaining variation is that peak biting 16 

times may reflect the historical use of insecticides. Most interventions against this vector have 17 

involved IRS which kills endophillic but not exophilic mosquitoes. Exophilic mosquitoes that are 18 

strongly anthropophagic need to feed early in the evening when humans are readily available 19 

outdoors. DDT has been used for IRS in Ethiopia for the last 40 years and there is some evidence in 20 

this country for increase exophily (Figure 1) (Biscoe et al. 2005, Tirados et al. 2006, Yohannes and 21 

Boelee 2012, Yohannes et al. 2005). A clearer example of selection for early feeding comes from 22 

extensive indoor spraying of DDT to control Anopheles farauti in the Solomon Islands (Taylor 1975). 23 

Prior to IRS the peak biting time for An. farauti was early evening, declining gradually until early 24 

morning. After extensive IRS the biting activity in the late evening and early morning almost 25 

disappeared, with most occurring in the early evening (Figure 2). While these examples demonstrate 26 
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clear shifts in biting behaviour, this response to indoor spraying has not been found everywhere.  For 1 

example, in northern Sudan where indoor DDT spraying had been used for the 8 years, an 2 

entomological survey found ‘standard’ biting cycle persisted in An. arabiensis (Figure 1) (Dukeen and 3 

Omer 1986).  4 

 5 

There are also mixed reports of the evolution of behaviour in response to bed net deployment. 6 

Increased exophagy by An. gambiae s.l. in response to LLIN use has been reported in Kenya (Mbogo 7 

et al. 1996) but not Tanzania (Russell et al. 2011), while An. funestus exophagy increased significantly 8 

in Tanzania (Russell et al. 2011). Inside houses, the proportion of An. gambiae s.l. and An. funestus 9 

feeding before 2200 h increased, though peak biting still occurred after midnight (Mbogo et al. 1996, 10 

Russell et al. 2011, Trape et al. 2011). In addition, the proportion of early feeding mosquitoes 11 

increased following the introduction of LLINs, yet the absolute number of mosquitoes feeding during 12 

this time was generally less. This suggests that the observations may have resulted from failure to 13 

control a smaller population of residual mosquitoes that continued to bite earlier in the night. It 14 

should also be noted that the changes reported for An. gambiae s.l. do not account for any potential 15 

shifts in species composition within the complex.  That is, the apparent behavioural changes could 16 

simply reflect effective control of a later-feeding member of the complex so that a previously less 17 

abundant species that feeds earlier in the night becomes relatively more dominant. In spite of these 18 

inconsistencies, the limited data available highlights the importance of monitoring for these 19 

behavioural changes in a range of settings, using a robust experimental and/or observational 20 

approach.  21 

 22 

The difficulty and expense of accurately measuring mosquito behaviour in the field has also limited 23 

the documentation and understanding of behavioural resistance.  In one study, Mbogo et al (1996) 24 

reported a reduction in the overall human biting rate from 95 to 34 bites per night, and an increase 25 

in the proportion of mosquitoes feeding outdoors from 1.2% to 30.3% following the introduction of 26 
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LLINs. In the control village the biting rate remained constant at about 5 bites per person per night 1 

over the intervention period, and the proportion feeding outdoors increased from 2.7 to 20.3%. 2 

These results are difficult to interpret and extrapolate as sampling pre-intervention was conducted in 3 

five intervention and four control zones, while post-intervention sampling was only conducted in one 4 

intervention and one control village. Data collected by pyrethrum spray collections (PSC) from all the 5 

villages in the study indicated significant variations between sites meaning the pre - and post-6 

intervention data may not be directly comparable.   7 

 8 

Results presented by Russell et al (2011) are equally difficult to interpret. Their study used data from 9 

three field collections in Tanzania conducted i) prior to the introduction of LLINs (1997), ii) after 75% 10 

of the community used untreated nets (2004) and iii) after 47% of the population used LLINs (2009) 11 

(Russell et al. 2011). No estimate of the overall biting rate is presented. However, graphical data 12 

suggest there is little difference in the overall biting rate between 2004 and 2009 for An. gambiae 13 

s.l., while biting rates for An. funestus are higher in 2009 compared to 2004. Compelling data are 14 

presented for decreasing endophagy rates for An. funestus over the time series, but not An. gambiae 15 

s.l., and a decreasing proportion of mosquitoes attempting to feed between 2100 h and 0500 h in 16 

both species (Russell et al. 2011). Interestingly, the trend for decreasing night feeding was consistent 17 

across the sample period, even though the coverage of LLINs only significantly increased in the 18 

second part of the time series, between 2004 and 2009.  19 

 20 

Changes in Vector Dominance 21 

In parts of Africa the massive scale-up of LLIN deployment is associated with an apparent shift in 22 

vector dominance from the highly endophilic An. gambiae s.s. to the more exophilic An. arabiensis. 23 

This is seen in western and southern Kenya (Bayoh et al. 2010, Lindblade et al. 2006, Mutuku et al. 24 

2011, Zhou et al. 2011) and Tanzania (Russell et al. 2011), but not Senegal (Trape et al. 2011). Recent 25 

data from western Kenya shows an unexplained resurgence in An. gambiae s.s. during 2010 (Zhou et 26 
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al. 2011). Species composition changes are also reported in coastal Kenya with significantly less An. 1 

gambiae s.s and more An. merus in intervention compared to non-intervention areas (Mbogo et al. 2 

1996). However, as no pre-intervention data are presented, it is not possible to infer whether this 3 

difference is a result of an insecticide-induced change in species composition, or a difference in the 4 

initial species composition at the study sites. The change in species composition of adult mosquitoes 5 

at some sites is mirrored in the corresponding larval populations (Mutuku et al. 2011). 6 

 7 

Analysis of data collected at Lupiro village, Tanzania beginning in 2002 shows a significant reduction 8 

in the relative proportion of An. gambiae s.s. compared to An. arabiensis over time leading the 9 

authors to conclude that high LLIN usage has dramatically altered the mosquito populations  (Russell 10 

et al. 2011). However, closer examination of the data sources reveals a number of potentially 11 

confounding factors. For instance, the studies use a variety of collection methods including CDC light 12 

traps, human landing catches, resting collections and “Ifakara traps”, and some report data from 13 

indoor collections only while others represent both indoor and outdoor collections. Also the studies 14 

are conducted at different times of the year relative to the wet and dry season, a factor known to 15 

differentially affect  the abundance, feeding and resting behaviour of the vectors (Cano et al. 2004, 16 

Koenraadt et al. 2004, Mutuku et al. 2011, Reddy et al. 2011, Trape et al. 2011, Wanji et al. 2003). 17 

Unfortunately several studies did not report when the collection was conducted, and the dry season 18 

collections tended to be clustered later in the study period confounding the interpretation of LLIN 19 

impact. Large variations (range: 4% - 96%) in the proportion of An. gambiae s.s. between sample 20 

clusters were also reported in at least one of the studies included in the analysis (Killeen et al. 2007), 21 

demonstrating the extreme variability in the ratio of An. gambiae s.s. to An. arabiensis in the village.  22 

 23 

The above example highlights the complexity of assessing the exact impact of LLINs due to the 24 

background variability in the vector populations. Indeed a substantial decline in vector numbers in 25 

the Tanga region of Tanzania where vector control has not been used on a large scale was reported 26 
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between 1998-2009 (Meyrowitsch et al. 2011), highlighting the variability of malaria vector 1 

abundance. Relative species composition also varies greatly over time in natural populations as 2 

demonstrated by the unexplained change in dominant species from An. funestus to An. arabiensis 3 

between 1992 and 1995 in Dielmo village Senegal (Fontenille et al. 1997a), and the strong seasonal 4 

relationship between the relative abundance of An. gambiae s.s. and An. arabiensis (Dia et al. 2005, 5 

Highton et al. 1979, Lindsay et al. 1991b, Oyewole et al. 2007, Trape et al. 2011).   6 

 7 

In one series of experimental hut trials An gambiae s.s. was controlled more readily by LLINs than An. 8 

arabiensis despite having similar sensitivity to pyrethroid (Kitau et al. 2012). It is postulated that this 9 

differential mortality may be attributable to the more zoophilic An. arabiensis being less persistent in 10 

its attempts to bite the human host through the net than the more anthropophilic An. gambiae. 11 

Whatever the reason, the differential mortality provides one explanation for the possible shift in 12 

species ratio from An. gambiae s.s to An. arabiensis in areas with high coverage of LLINs. 13 

 14 

Whether the propensity for outdoor biting by individuals of a given species is increasing or there is 15 

merely a residual population of outdoor-biting vectors is debatable, but the consequences of this 16 

change are important. Outdoor biting is difficult to counter with available control methods. Larval 17 

source management, spatial repellents, transgenic mosquitoes and attractive toxic sugar bait could 18 

be used or developed for malaria control, but are either difficult to scale-up in all locations or are 19 

tools that will need much more research before they can be successfully deployed. The development 20 

of these, as well as new tools targeting outdoor-feeding mosquitoes is an urgent priority.   21 

 22 

What are the population dynamic consequences of the continued use of LLINs and IRS?    23 

Changes in vector abundance and species dominance are linked to processes affecting mosquito 24 

population dynamics. The observed abundance of mosquitoes is determined by the interaction of 25 

density-independent and density-dependent processes affecting mosquito survival and fecundity.  26 
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The nature and action of the density-dependent processes is particularly critical as it sets the mean 1 

abundance about which populations fluctuate.  We still know relatively little about An. gambiae s.l. 2 

population dynamics but most vector biologists believe that the most important density-dependent 3 

process involves competition amongst mosquito larvae for food (Smith D. L. and McKenzie 2004).  A 4 

few studies that have manipulated larval densities in semi-natural breeding sites show mortality 5 

increases relatively linearly with density (Gimnig et al. 2002, White M. T. et al. 2011). Understanding 6 

the location of density-dependence in the mosquito life cycle relative to where insecticides act, as 7 

well as the shape of the mortality-density function, is important as it determines the degree to which 8 

insecticide deaths are compensated for by reduced density-dependent mortality; that is, it 9 

determines the impact of insecticide on vector population density (Hancock and Godfray 2007). 10 

 11 

Reductions in mosquito abundance can have two further effects on disease transmission mediated 12 

through density dependence. There is evidence that lower larval densities increase survival, increase 13 

adult size and lower development rate. As Lyimo and Koella (Lyimo and Koella 1992) among others 14 

has pointed out, increased size may be particularly pertinent to disease transmission if larger 15 

individuals live longer and so are more likely to survive through the disease latent period.  16 

Longitudinal surveillance data of mosquito size during an LLIN or IRS intervention would address this 17 

question, as would more data about the relationship between larval density and adult size, and adult 18 

size and longevity, in the field. Second, we know that the larval habitats for different members of the 19 

An. gambiae complex differ but overlap (Schneider et al. 2000, Service 1973). We do not know if 20 

these differences reflect adaptations to different niches or if different taxa compete with one 21 

excluding the other. If the latter is the case, then reducing the number of one type of mosquito may 22 

lead to competitive release of another. If the two mosquito taxa have different degrees of 23 

exophily/endophily then the ratio of mosquitoes feeding indoors or outdoors may change through 24 

interspecific population-dynamic processes. 25 

 26 
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Finally, the evolution of resistance typically entails fitness costs to the mosquito which are most likely 1 

to be manifest when the insect is stressed, in particular when it is subject to density -dependent 2 

mortality (Kraaijeveld and Godfray 1997). We do not know the extent to which this happens, or 3 

indeed if it happens at all, but it is quite likely that the demographic and genetic dynamics of vectors 4 

are closely intertwined. 5 

 6 

How concerned should we be about the future effectiveness of LLINs and IRS? 7 

The key to the prolonged future success of LLINs and IRS is to understand the biological mechanisms 8 

underlying the changes being observed in the field. One possibility is that insecticide interventions 9 

are selecting for a heritable trait, that is, vectors which are genetically programmed to feed early 10 

outdoors. In this situation the effectiveness of LLINs in reducing malaria infection rates will decrease 11 

over time as the susceptible, indoor-feeding vectors are removed from the population, leaving 12 

predominantly the early outdoor feeders. There is clear evidence for a genetic basis for behavioural 13 

differences as the two closely-related species An. gambiae and An. arabiensis often broadly differ in 14 

their feeding preferences and propensity to rest indoors or outdoors. In contrast, there  are limited 15 

data on the role of genetics in behavioural polymorphisms within a species.  It has been reported 16 

that there is an association between the 2R inversion polymorphism on chromosome 2 and 17 

differential endophily and endophagy in An. arabiensis (Coluzzi et al. 1977), but also that the 18 

preference of individual mosquitoes for a given resting location (indoor versus outdoor) is not 19 

consistent (Lines J.D. et al. 1986), and that An. arabiensis shows site fidelity (returning to location of 20 

feeding) rather than host fidelity (McCall et al. 2001). It has also been suggested that feeding 21 

preferences for An. gambiae are related to the abundance of potential host species; in environments 22 

where there are many people the proportion of human bloodfed mosquitoes was high, but 23 

decreased when cattle were abundant (White G. B. 1974). However the sporozoite rates were similar 24 

for mosquitoes which were human bloodfed and cattle bloodfed, suggesting that the feeding 25 
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preferences of An. gambiae s.s. are plastic (White G. B. et al. 1972). This overall plasticity in 1 

behaviour allows continued mosquito survival when host species vary in abundance.  2 

 3 

An alternative hypothesis, and one which presents a more promising outlook for LLINs, is that early 4 

outdoor feeding is a consequence of unsuccessful feeding on the prior evening. In this scenario 5 

mosquitoes retain their inherent feeding preferences (e.g. location, host and time) and in ideal 6 

situations will feed according to these preferences. With widespread LLIN coverage mosquitoes may 7 

not successfully feed indoors, being thwarted by the net barrier or repelled by the insecticide from 8 

the dwelling. Some of these mosquitoes may succeed in their search for a bloodmeal elsewhere, 9 

while others rest outdoors until the following evening at which time they recommence their search . 10 

These vectors may initiate their search soon after dusk and feed opportunistically on any outdoor 11 

hosts they encounter en route to a more preferred indoor feeding location.  Under this hypothesis 12 

LLINs will continue to be effective as populations of indoor feeding mosquitoes will be retained, 13 

albeit with declining abundance caused by direct killing or increased mortality associated with 14 

delayed and non-optimal feeding conditions. 15 

 16 

Direct evidence supporting such a thwarted feeding theory is limited, although a similar model has 17 

been proposed to explain changes in mosquito host-seeking activities after IRS of houses with DDT 18 

(Roberts et al. 2000). Under this hypothesis the proportion of mosquitoes feeding early in the 19 

evening should be correlated with the probability of obtaining a bloodmeal; the lower the probability 20 

of finding the preferred late-evening bloodmeal, the more mosquitoes which feed early in the 21 

evening. Searching for new hosts (either human or animal), feeding on non-preferred hosts and 22 

finding less suitable resting sites are all likely to be associated with increased mortality due to 23 

foraging risk, thus increasing the indirect impact of LLINs on mosquito survival and disease 24 

transmission. Previous modelling results have indicated that endemic disease transmission is hi ghly 25 

sensitive to changes in mosquito survival during searching or feeding (Saul 2003). It is becoming 26 
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increasingly clear that interventions such as LLINs and IRS are associated with dramatic reductions in 1 

malaria which often exceed that expected based on measured changes in mosquito abundance alone 2 

(Trape et al. 2011). Thus unobserved secondary impacts, other than direct mosquito killing through 3 

toxicity, are likely to be occurring. 4 

 5 

A critical appraisal and understanding of the biology underlying field observations is urgently needed 6 

to address the questions surrounding the longer-term prospects of current interventions and assess 7 

potential new interventions. We need to be cautious about inferring selection of new behaviour 8 

patterns when mosquitoes show an inherent plasticity in feeding when frustrated in accessing their 9 

hosts.  Overall the current literature suggests behavioural and species changes due to LLINs may be 10 

emerging, but the data are sparse and, at times unconvincing and liable to publication bias, 11 

highlighting the need for greater research effort in this area. Only when these issues are better 12 

resolved can the future impacts of LLINs be fully predicted.  13 

 14 

Modelling studies provide an important way of investigating the impact that physiological and 15 

behavioural resistance could have on disease prevalence; however, such studies are currently limited 16 

by a lack of understanding of the biological processes affecting insecticide resistance, particularly 17 

behavioural resistance. Theoretical predictions of the impact of IRS demonstrated over 30 years ago 18 

that model output is highly sensitive to assumptions regarding the uniformity of mosquito exposure 19 

to the insecticide (Molineaux et al. 1979), but there has been little advance in understanding the 20 

baseline distribution of exposure and if (or how) this changes following insecticide exposure . 21 

Resolving these issues will lead to improved models and better information for policy and control 22 

programs.  Public health officials would then be able to address the key questions of whether 23 

resistance will compromise the long-term effectiveness of LLINs and IRS and how best to combat the 24 

problem.  25 

 26 
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To demonstrate the potential of mathematical models for investigating behavioural resistance we 1 

have selected one behavioural parameter, exophagy, and investigated its influence on the 2 

effectiveness of LLINS and IRS using two different comprehensive malaria transmission models 3 

(Chitnis et al. 2012, Griffin et al. 2010, OpenMalaria 2012, Smith T. et al. 2008) (see Box 2). 4 

Importantly, both models reach the same conclusion; that the impact of increased exophagy on EIR 5 

could be significant and of a magnitude comparable to, or exceeding, physiological resistance. There 6 

were also large differences in the predicted impact of resistance, particularly behavioural resistance, 7 

depending on the model assumptions regarding the structure of the mosquito population, 8 

specifically whether there is one homogenously mixed population or distinct populations of indoor 9 

and outdoor feeding mosquitoes. This preliminary modelling work highlights the importance of 10 

understanding mosquito behaviour. 11 

 12 

Is it all bad news? 13 

Causing vectors to feed more often outdoors may actually represent new opportunities for control. 14 

Blood-feeding vectors can be captured in odour-baited traps (Okumu et al. 2010), killed by 15 

insecticide-treated cattle (Rowland et al. 2001) or after feeding on attractive toxic sugar bait (Muller 16 

et al. 2010), whilst gravid females might be targeted if we can develop effective oviposition traps 17 

(Harris et al. 2011). It is essential that new tools continue to be developed targeting outdoor-feeding 18 

mosquitoes as their relative contribution to disease transmission will increase under successful LLINS 19 

and IRS campaigns. Behavioural changes favouring outdoor feeding and resting will also reduce 20 

vector exposure to insecticides inside the home, thereby reducing the selection pressure for 21 

physiological resistance.   22 

  23 

The overall epidemiological effects of physiological insecticide resistance are not easy to estimate 24 

because the impact of an insecticide on individual mosquitoes is not only affected by genotype, but 25 

also their age and environment. Insecticide resistance is often strongest in young adults (Lines J.D. 26 
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and Nassor 1991, Rowland and Hemingway 1987). The use of LLINS and IRS results in few mosquitoes 1 

surviving to be old enough to transmit malaria parasites so any (resistance) gene that increases 2 

survival during the first one or two gonotrophic cycles will have a major positive selective advantage. 3 

If as mosquitoes age the survival benefits of the gene decrease, many resistant mosquitoes may die 4 

before reaching the minimum infectious age. Hence malaria is still controllable, albeit to a lesser 5 

extent than in a purely sensitive mosquito population.  6 

A side effect of physiological resistance is often a reduction in the behavioural responsiveness to the 7 

insecticide (Hodjati and Curtis 1997, Rowland 1990). For example, in one study, pyrethroid resistant 8 

mosquitoes show reduced irritability when in contact with the insecticide causing them to rest on the 9 

surface for longer periods than susceptible mosquitoes, thus increasing the dose of insecticide 10 

received (Hodjati and Curtis 1997). In most cases the effect of physiological resistance is unquantified 11 

and dependent on the mechanism of resistance (Rivero et al. 2010). There has also been a recent 12 

suggestion that insecticides may select for vectors that invest in short-term reproduction rather than 13 

longer-term survival, resulting in a reduction in the number of older mosquitoes and a corresponding 14 

reduction in those able to transmit malaria parasites (Ferguson et al. 2012). For these reasons the 15 

overall consequences of accrued physiological and behavioural changes developed in response to the 16 

large-scale use of insecticides may not necessarily all be negative. 17 

 18 

The way forward 19 

This review has highlighted a number of gaps in our knowledge of behavioural resistance  in the 20 

vectors which transmit malaria; conclusive evidence for the evolution of behavioural resistance has 21 

often been confounded by methodological issues. However, our preliminary modelling study has 22 

demonstrated that behavioural resistance could have a significant impact on the effectiveness of 23 

malaria control. As a result, we propose seven recommendations to improve understanding of both 24 

physiological and behavioural resistance in malaria vectors. 25 
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1. Develop robust methodologies for detecting specific types of behavioural resistance in the 1 

field. 2 

2. Establish sentinel sites for long-term surveillance of physiological and behavioural resistance. 3 

3. Improve understanding of the variability in behaviour of individuals within a larger 4 

population of vectors (i.e. natural heterogeneity of population). 5 

4. Report absolute mosquito abundance for each species in field studies, rather than reporting 6 

only proportional changes. 7 

5. Determine whether apparent cases of behavioural resistance are due to heritable traits, and 8 

if so, develop diagnostic tests or identify a measured phenotype.  9 

6. Better understand how physiological resistance may affect behaviour, and consequently 10 

vectorial capacity. 11 

7. Improve understanding of the behaviour of male mosquitoes relative to exposure to 12 

insecticides via IRS and LLINS.  13 

 14 

Determining the public health impact of both behavioural and physiological insecticide resistance is 15 

an urgent priority if we are to maintain the significant gains that have been made in reducing malaria 16 

morbidity and mortality over the past decade. While there is still much research needed to 17 

understand better the spectrum of changes induced by intensive insecticide use, two points are 18 

paramount for future policy discussions. First, it must be remembered that interventions such as 19 

LLINs will provide some level of personal protection by presenting a physical barrier between 20 

sleeping hosts and mosquitoes, irrespective of the level of resistance, provided they remain in good 21 

condition. Therefore the development of insecticide resistance should never be a justification for 22 

removing or reducing the distribution of LLINs; rather, additional or modified interventions should be 23 

considered. Second, behavioural resistance cannot generally be addressed by simply changing 24 

insecticides. Instead, novel interventions exploiting new behavioural patterns are required. It is not 25 

unreasonable to recommend that interventions targeting outdoor feeding mosquitoes be the 26 
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mandatory second phase of all intervention programs given the probability that resistance will 1 

eventually develop. At the moment this second phase is lacking from most intervention programs but 2 

the time has come to correct this.  3 

  4 
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Figure legends 1 

Figure 1. Distribution of biting times for An. arabiensis after 40 years of DDT IRS in northern Ethiopia 2 

(Yohannes et al. 2005) and after 8 years of DDT IRS in northern Sudan (Dukeen and Omer 1986). 3 

Figure 2. Distribution of biting times for An. farauti before and after DDT spraying in the Solomon 4 

Islands (Taylor 1975). 5 

Figure 3. Predicted average EIR for the first 10 years of vector control (LLINs and IRS) using two 6 

mathematical models (Imperial and OpenMalaria) of malaria transmission.   7 
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Box 1 - Definitions 1 

Anthrophagy: species that feed on humans mainly 2 

Contact irritant: a chemical which stimulates mosquitoes to move away from the source after 3 

physical contact occurs 4 

Endophagy: species that have a preference to feed indoors 5 

Endophily: an inherent tendency to rest indoors after feeding (mosquitoes may feed indoors or 6 

outdoors) 7 

Exophagy: species that have a preference to feed outdoors mainly 8 

Exophily: species that have a preference to rest outdoors mainly 9 

Spatial repellent/deterrent: a chemical which stimulates mosquitoes to move away from the source 10 

without the need for physical contact 11 

Toxic chemical action: knockdown or death of mosquitoes after physical contact with the chemical  12 

Vectorial capacity: the total number of infectious mosquito bites on humans that will arise from a 13 

single infected person on a single day 14 

Zoophagy: species that feed on animals mainly  15 
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Box 2 – Modelling insecticide resistance and its impact on a combined LLN - IRS intervention 1 

The potential impact of insecticide resistance, both behavioral and physiological, on malaria 2 

transmission was assessed using two independent mathematical models: Imperial (Griffin et al. 2010) 3 

and OpenMalaria (Chitnis et al. 2012, OpenMalaria 2012, Smith T. et al. 2008). Both models 4 

incorporated the full malaria transmission cycle by including the mosquito lifecycle as well as the 5 

human disease component. Three independent simulations were conducted using each model; 1) 6 

baseline simulation where 80% of the population used LLINs which were replaced every three years 7 

and pyrethroid IRS treatment was applied every year to 80% of houses (both distributed at random), 8 

2) physiological resistance where the interventions were the same as the baseline simulation but the 9 

effects of the insecticide (both killing and repellency) were reduced by 70% (though the physical 10 

effects of the nets remained the same), and 3) behavioral resistance where the interventions were 11 

the same as the baseline simulation but exophagy of the vectors was increased so that 70% of bites 12 

take place outside, with all other parameters kept constant. The two models assumed extremes of 13 

mosquito biting behavior; the Imperial model assumed only one population of mosquitoes that 14 

sometimes bit outdoors and sometimes indoors, while the OpenMalaria model assumed two 15 

populations of mosquitoes that either always bit indoors or always outdoors (Molineaux et al. 1979). 16 

All simulations assumed a half-life of 3 months for pyrethroid effectiveness with an exponential 17 

decay. The models were parameterized for An. gambiae s.s. with no seasonality. All other baseline 18 

parameters were as previously reported for the individual models: Imperial (Griffin et al. 2010) and 19 

OpenMalaria (Briët et al. 2012).    20 

All simulations were calibrated so that the average EIR was 100 infectious bites per person per year 21 

prior to the introduction of the LLINs and IRS interventions. To investigate the impact of insecticide 22 

resistance (rather than the spread), it was assumed that the physiological or behavioral resistance 23 

was present when the interventions were introduced.  24 
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Ten years after the start of the interventions the average EIR in both models decreased by 1 

approximately 90% to 6.1 and 12.0 infectious bites per person per year using the Imperial model and 2 

the OpenMalaria model, respectively (Figure 3). As expected, the presence of physiological resistance 3 

reduced the impact of the interventions. Increased exophagy in the behavioral resistance simulations 4 

also decreased the effectiveness of the interventions; with the EIR predictions over 10 years after the 5 

start of the vector control being similar to, or higher than, those predicted for physiological 6 

resistance (Figure 3). This suggests that the impacts of behavioral resistance could potentially be as 7 

severe, or even worse than, those of physiological resistance.  8 
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