
4-Coloring H-Free Graphs When H Is Small ?

Petr A. Golovach, Daniël Paulusma, and Jian Song

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{petr.golovach,daniel.paulusma,jian.song}@durham.ac.uk

Abstract. The k-Coloring problem is to test whether a graph can be
colored with at most k colors such that no two adjacent vertices receive
the same color. If a graph G does not contain a graph H as an induced
subgraph, then G is called H-free. For any fixed graph H on at most
6 vertices, it is known that 3-Coloring is polynomial-time solvable on
H-free graphs whenever H is a linear forest and NP-complete otherwise.
By solving the missing case P2 + P3, we prove the same result for 4-
Coloring provided that H is a fixed graph on at most 5 vertices.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding k-Coloring problem is to decide whether a graph can be colored
with at most k colors. Due to the fact that k-Coloring is NP-complete for any
fixed k ≥ 3, there has been considerable interest in studying its complexity when
restricted to certain graph classes. One of the most well-known results in this re-
spect is due to Grötschel, Lovász, and Schrijver [12] who show that k-Coloring
is polynomial-time solvable for perfect graphs. More information on this classic
result and on the general motivation, background and related work on coloring
problems restricted to special graph classes can be found in several surveys [22,
25] on this topic.

We continue the study of the computational complexity of the k-Coloring
problem restricted to graph classes defined by one or more forbidden induced
subgraphs. This problem has been studied in many papers by different groups of
researchers [3–9, 11, 13, 15–18, 20, 21, 26]. Before we summarize these results and
explain our new results, we first state the necessary terminology and notations.

1.1 Terminology

We only consider finite undirected graphs G with no loops and no multiple
edges. We refer to the textbook by Bondy and Murty [2] for any undefined
graph terminology. We write G[U] to denote the subgraph of G induced by the

? This work has been supported by EPSRC (EP/G043434/1) and an extended abstract
of it has been accepted for SOFSEM 2011.

vertices in U , i.e., the subgraph of G with vertex set U and an edge between two
vertices u, v ∈ U if and only if uv ∈ E.

The graph Pn denotes the path on n vertices, i.e., V (Pn) = {u1, . . . , un} and
E(Pn) = {uiui+1 | 1 ≤ i ≤ n−1}. The graph Cn denotes the cycle on n vertices,
i.e., V (Cn) = {u1, . . . , un} and E(Cn) = {uiui+1 | 1 ≤ i ≤ n− 1} ∪ {unu1}. The
graph K1,n denotes the star on n + 1 vertices, i.e., V (K1,n) = {u1, . . . , un+1}
and E(K1,n) = {u1ui | 2 ≤ i ≤ n + 1}. The disjoint union of two graphs G and
H is denoted G + H, and the disjoint union of r copies of G is denoted rG. A
linear forest is the disjoint union of a collection of paths. Let {H1, . . . ,Hp} be a
set of graphs. We say that a graph G is (H1, . . . ,Hp)-free if G has no induced
subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we sometimes write
H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .}
such that c(u) 6= c(v) whenever uv ∈ E. Here, c(u) is referred to as the color of
u. A k-coloring of G is a coloring c of G with c(V) ⊆ {1, . . . , k}. Here, we used
the notation c(U) = {c(u) | u ∈ U} for U ⊆ V . If G has a k-coloring, then G is
called k-colorable. Recall that the problem k-Coloring is to decide whether a
given graph admits a k-coloring. Here, k is fixed, i.e., not part of the input. If k
is part of the input then we denote the problem as Coloring. The optimization
version of this problem is to determine the chromatic number of a graph G, i.e.,
the smallest k such that G has a k-coloring.

1.2 Related Work

Král’, Kratochv́ıl, Tuza and Woeginger [17] completely determined the computa-
tional complexity of Coloring for graph classes characterized by one forbidden
induced subgraph. They achieved the following dichotomy.

Theorem 1 ([17]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1+P3, then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

The computational complexity of Coloring for H-free graphs where H is
a family of two graphs is still open, although several partial results are known,
e.g., Král’ et al. [17] also showed that Coloring is NP-complete for (C3, H)-
free graphs whenever H is a fixed graph containing at least one cycle. This
work has been extended by Schindl [23]. Maffray and Preissmann [20] showed
that Coloring is NP-complete for (C3,K1,5)-free graphs. Broersma et al. [5]
showed that Coloring is polynomial-time solvable for (C3, 2P3)-free graphs,
hereby completing a study of Dabrowski et al. [9] who considered the Coloring
problem restricted to (C3, H)-free graphs for graphs H on at most six vertices.

We focus on the computational complexity of the k-Coloring problem for
H-free graphs. Kamiński and Lozin [15] showed that for any k ≥ 3, the k-
Coloring problem is NP-complete for the class of graphs of girth (the length
of a shortest induced cycle) at least p for any fixed p ≥ 3. Their result has the
following immediate consequence.

2

Theorem 2. For any k ≥ 3, the k-Coloring problem is NP-complete for the
class of H-free graphs whenever H contains a cycle.

Holyer [14] showed that 3-Coloring is NP-complete on line graphs. Later,
Leven and Galil [19] extended this result by showing that k-Coloring is also
NP-complete on line graphs for k ≥ 4. Because line graphs are claw-free, i.e., they
have no induced K1,3, these two results together have the following consequence.

Theorem 3. For any k ≥ 3, the k-Coloring problem is NP-complete for the
class of H-free graphs whenever H is a forest with a vertex of degree at least 3.

Due to Theorems 2 and 3, only the case in which H is a linear forest remains.
We first consider the case when H is a path. Hoàng et al. [13] showed that for
any k ≥ 1, the k-Coloring problem can be solved in polynomial time for P5-
free graphs. Randerath and Schiermeyer [21] showed that 3-Coloring can be
solved in polynomial time for P6-free graphs. It is also known that 4-Coloring
is NP-complete for P8-free graphs [4] and that 6-Coloring is NP-complete for
P7-free graphs [3]. Combining these results leads us to Table 1. In this table, “P”
means that the combination of k and ` is polynomial-time solvable and “NP-c”
means that it is NP-complete; all open cases are denoted “?”.

k →
P`-free 3 4 5 ≥ 6

` ≤ 5 P P P P
` = 6 P ? ? ?
` = 7 ? ? ? NP-c
` ≥ 8 ? NP-c NP-c NP-c

Table 1. The complexity of k-Coloring for P`-free graphs for combinations of fixed
k and `.

We now discuss the case when H is a linear forest that is the disjoint union
of two or more paths. Combining a result from Balas and Yu [1] on the maximal
number of independent sets in an sP2-free graph and a result from Tsukiyama
et al. [24] on the enumeration of such sets leads to the known result that k-
Coloring is polynomial-time solvable on sP2-free graphs for any two integers k
and s. Broersma et al. [4] extended the aforementioned result of Randerath and
Schiermeyer [21] by showing that 3-Coloring is polynomial-time solvable for
H-free graphs if H is a linear forest with |VH | ≤ 6 or H = sP3 for any integer s.
They also observed that 3-Coloring is polynomial-time solvable for (P1 + H)-
free graphs whenever this problem is polynomial-time solvable for H-free graphs.
Couturier et al. [7] extended the aforementioned result of Hoàng et al. [13] by
proving that for any fixed integers k and r, the k-Coloring problem can be
solved in polynomial time for (rP1 + P5)-free graphs. All these positive results
are summarized in Theorems 4 and 5 taking into account that k-Coloring is
polynomial-time solvable on H ′-free graphs whenever it is so on H-free graphs
for some graph H containing H ′ as an induced subgraph.

3

Theorem 4. The 3-Coloring problem can be solved in polynomial time for
H-free graphs if

• H = rP1 + P2 + P4 for all r ≥ 0
• H = rP1 + P6 for all r ≥ 0
• H = sP3 for all s ≥ 0.

Theorem 5. For any k ≥ 4, the k-Coloring problem can be solved in polyno-
mial time for H-free graphs if

• H = rP1 + P5 for all r ≥ 0
• H = sP2 for all s ≥ 0.

1.3 Our new result

Theorems 2–4 imply that for any fixed graph H on at most 6 vertices, 3-
Coloring is polynomial-time solvable on H-free graphs whenever H is a linear
forest and NP-complete otherwise. We prove the following result.

Theorem 6. For any fixed graph H on at most 5 vertices, 4-Coloring is
polynomial-time solvable on H-free graphs whenever H is a linear forest and
NP-complete otherwise.

Theorems 2, 3 and 5 imply that the only missing case is when H = P2 +P3. We
present a polynomial-time algorithm for this case in Section 3. The correctness
proof of this algorithm uses some known structural and algorithmic results stated
in Section 2.

2 Preliminaries

In order to proceed we must slightly generalize the coloring concept as follows.
A list assignment of a graph G = (V,E) is a function L that assigns a list L(u)
of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for u ∈ V ,
then L is also called a k-list assignment. Equivalently, L is a k-list assignment
if |⋃u∈V L(u)| ≤ k. We say that a coloring c : V → {1, 2, . . .} respects L
if c(u) ∈ L(u) for all u ∈ V . For a fixed integer k, the List k-Coloring
problem has as input a graph G with a k-list assignment L and asks whether
G has a coloring that respects L. If |L(u)| = 1 for every vertex u of some
subset W ⊆ V and L(u) = {1, . . . , k} for all u ∈ V \W , then we obtain the
k-Precoloring Extension problem. In that case we also say that we want to
extend the precoloring of W to a k-coloring of G.

We will frequently use the following observation, the proof of which follows
from the fact that the problem in this case can be modeled and solved as an
instance of the 2-Satisfiability problem. This approach has been introduced
by Edwards [10] and is folklore now.

4

Lemma 1 ([10]). Let G be a graph in which every vertex has a list of admissible
colors of size at most 2. Then checking whether G has a coloring respecting these
lists is solvable in polynomial time.

Let G = (V,E) be a graph. For a subset U ⊆ V we define NG(U) = {v ∈
V \ U | uv ∈ E for some u ∈ U}; note that N(∅) = ∅. A set D ⊆ V dominates a
set S ⊆ V if S ⊆ D ∪NG(D); if S = V then we say that D is a dominating set
of G.

For positive integers p and q, the Ramsey number r(p, q) is the smallest
number of vertices n such that all graphs on n vertices contain an independent
set of size p or a clique of size q. Ramsey’s Theorem states that such a number
exists for all positive integers p and q.

Lemma 2 ([4]). Let s ≥ 1 and G = (V,E) be an sP3-free graph with a set
W ⊆ V such that each vertex in W is precolored with a color from {1, . . . , k}
and every vertex in V \W has degree at least k for some integer k. If G has a
k-coloring extending the precoloring of W , then G contains a set D of size at
most k · r(s, k + 1) + (k2 + 3) · (s− 1) that dominates V \W .

Because any (P2 + P3)-free graph is 2P3-free, we can apply Lemma 2 for
W = ∅, k = 4 and s = 2. After observing that r(2, 5) = 5, this leads us to the
following lemma that is crucial for our algorithm.

Lemma 3. Let G = (V,E) be a (P2 +P3)-free graph of minimum degree at least
4. If G has a 4-coloring, then G contains a dominating set D of size at most 39.

Note that Lemma 3 involves a minimum degree condition. However, we can
easily get around this by applying the following well-known procedure on a graph
G = (V,E). Remove all vertices of V with degree at most 3 from G. Propagate
this until we obtain a graph G∗ of minimum degree at least 4; note that G∗ may
be the empty graph. We observe the following straightforward result, see e.g.
Broersma et al. [4] for a proof.

Lemma 4. Let G be an H-free graph for some graph H. Then G has a 4-coloring
if and only if G∗ has a 4-coloring. Moreover, G∗ is H-free and can be obtained
in polynomial time.

Broersma et al. [3] show that 3-Precoloring Extension is polynomial-
time solvable for P6-free graphs. They note that their proof of this result can be
used to show the stronger statement that List 3-Coloring can be solved in
polynomial time for P6-free graphs. Because every (P2+P3)-free graph is P6-free,
we obtain the following lemma which we need for proving the correctness of our
algorithm.

Lemma 5. The List 3-Coloring problem can be solved in polynomial time
for the class of (P2 + P3)-free graphs.

We also need the following lemma, which follows immediately from Lemma 5.

Lemma 6. Let G = (V,E) be a (P2 + P3)-free graph. Then a partition of V
into three (possibly empty) independent sets I1, I2, I3 can be found in polynomial
time if it exists.

5

3 The Algorithm

Let G be a (P2+P3)-free graph that is an instance of 4-Coloring. By Lemma 4
we may assume that G has minimum degree at least 4. We also assume that each
vertex u has been assigned an initial list L0(u) = {1, 2, 3, 4} of admissible colors.

Outline. Our algorithm is a branching algorithm. The main idea is to obtain
in polynomial time a polynomial-bounded set L of list assignments for G that
have the following two properties. First, G has a 4-coloring if and only if G has
a coloring that respects at least one list assignment in L. Second, for every list
assignment in L, we either have that all its lists have size at most two or else
that the union of its lists that contain at least 2 colors has size 3; in the first
case we can use Lemma 1, and in the second case we can use Lemma 5 after
removing all vertices with a single color in their list from G. Because we obtain
L in polynomial time and its size is bounded by a polynomial, this means that
the total running time of our algorithm is polynomial.

Our algorithm consists of two phases. In Phase 1 we first check for a “small”
dominating set D. Such a set D must exist in the case that G is 4-colorable, as
we prove later. Because D has small size, the total number of 4-colorings of G[D]
will be “small” as well. The algorithm considers every 4-coloring of G[D]. Given
such a 4-coloring of D, it partitions the remaining vertices of G in four different
ways using Lemma 6. We use these partitions, together with further structural
properties of (P2 + P3)-free graphs, for a branching procedure. At the end of
Phase 1, we either have found that G has no 4-coloring or we have obtained a
set L of list assignments, for which we will prove the desired properties specified
in the outline. In Phase 2 we consider the list assignments of L one by one to
determine whether G has a coloring respecting at least one of them.

We now describe Phases 1 and 2 in detail. Here, we use the following terminology.
If we say that we “color the vertices of a set U according to their lists”, then
we mean that we assign every vertex u ∈ U a color that is in the list of u,
and moreover, such that two adjacent vertices in U do not get the same color.
Afterwards, for every u ∈ U , we may remove the color of u from the list of
every neighbor of u in NG(U). This is what we call updating the list assignment.
Also, when coloring a vertex, say with color i, then we set its list of admissible
colors to {i}. After proving a number of lemmas, we show in Theorem 7 that
our algorithm is correct and that it runs in polynomial time.

Phase 1. Determining the set L.
Step 1. Check if G has a dominating set of size at most 39. If such a set does
not exist, then return No. Otherwise, let D be such a dominating set.

Step 2. Check if G[D] is 4-colorable. If not, then return No.

Assume that G[D] is 4-colorable and set L = ∅. Perform Steps 3-9 for every
4-coloring cD of G[D].

Step 3. First update the list assignment. Then, for i = 1, . . . , 4, let Di ⊆ D be
the subset of vertices with color i, and let Fi = G[V \ (D ∪NG(Di)]. Note that

6

D

NG(D1)\D

F1

D1 D2 D3 D4

I1
1 I1

2 I1
3

u

Fig. 1. A graph G decomposed as VG = D∪(NG(D1)\D)∪VF1 , where edges inside the
different parts are not displayed; note that vertex u belongs to F1∩(NG(D2)\D)∩F3∩F4

in this particular example.

VFh
∩VFi

6= ∅ is possible for h 6= i. For i = 1, . . . , 4 check whether NG(Di)\D can
be partitioned into three independent sets, where one or more of such sets are
allowed to be empty; in particular, all three sets are empty if NG(Di)\D = ∅. If
such a partition does not exist for some i, then stop considering cD. Otherwise,
let Ii1, I

i
2, I

i
3 be such a partition for i = 1, . . . , 4. Figures 1 and 2 illustrate that

VG = D ∪ I11 ∪ I12 ∪ I13 ∪ I21 ∪ I22 ∪ I23 ∪ I31 ∪ I32 ∪ I33 ∪ I41 ∪ I42 ∪ I43

= D ∪ Ii1 ∪ Ii2 ∪ Ii3 ∪ VFi for i = 1, . . . 4,

where two sets Iij and Ii
′

j′ may intersect but only if i 6= i′.

Step 4. For i = 1, . . . , 4, determine the set Qi of isolated vertices of Fi, i.e., that
have no neighbors in Fi. For i = 1, . . . , 4, let F ′i be the graph obtained from Fi

by removing all vertices of Qi.

If some F ′i is “small”, then deal with this case in Step 5. Otherwise move on to
Step 6. This case distinction is mainly made for technical reasons, i.e., it will
simplify later statements.

Step 5. Check if there exists a graph F ′i that has at most 2 vertices. If so, then
pick an arbitrary such F ′i and do as follows. Color the vertices of Qi with color
i. Consider every possible coloring of the vertices of F ′i according to their lists.
Each time, update the list assignment and put the resulting list assignment in
L. Stop considering cD.

From now on assume that F ′i consists of at least three vertices for all 1 ≤ i ≤ 4.

7

D

I

D1 D2 D3 D4

I1
1 I1

2 I1
3 I2

1 I2
2 I2

3 I3
1 I3

2 I3
3 I4

1 I4
2 I4

3

I1
1 ∩ I2

2 I1
3 ∩ I2

3 ∩ I3
2 I3

2 ∩ I4
3

v

Fig. 2. A graph G decomposed as VG = D ∪
⋃

i,j I
i
j , where edges inside the different

parts are not displayed; note that I11 ∩ I22 6= ∅, I13 ∩ I23 ∩ I32 6= ∅ and I32 ∩ I43 6= ∅, whereas
all other sets Iij do not intersect in this particular example; also note for instance that
v ∈ I11 ∩ I22 belongs to F3 ∩ F4 as well.

Step 6. For i = 1, . . . , 4 and j = 1, . . . , 3 do as follows. Check if Iij 6= ∅. If so,

then do as follows. Find a vertex aij ∈ Di that has the maximum number of

neighbors in Iij over all vertices in Di; we allow aij = aij′ for some j 6= j′. Define

Ĩij = Iij ∩NG(aij) if Iij 6= ∅, and Ĩij = ∅ otherwise.

For i = 1, . . . , 4, let Ii = Ii1 ∪ Ii2 ∪ Ii3 \ (Ĩi1 ∪ Ĩi2 ∪ Ĩi3). Let I∗ = I1 ∪ I2 ∪ I3 ∪ I4.

Now, process the graphs F ′i further by first preforming Step 7 and then Step 8.
Note that if some F ′i is non-bipartite, then F ′i is not processed at all in Step 7.
Otherwise, F ′i is either connected and bipartite, or else disconnected and bipar-
tite. In the latter case, F ′i is the disjoint union of at least two edges due to the
(P2 + P3)-freeness of G and the fact that F ′i contains no isolated vertices by
definition; as we shall see this property will be crucial.

Step 7. For i = 1, . . . , 4 do as follows.

7a. If F ′i is connected and bipartite, then do as follows. Give all the vertices
of one partition class color i. Consider both possibilities. In both cases, color
the vertices of Qi with color i, update the list assignment, put the resulting list
assignment in L and restore all lists to the situation at the end of Step 6.

7b. If F ′i is disconnected and bipartite, then do as follows for every j with
Ĩij 6= ∅. Consider every edge in F ′i that has no end-vertex with list {i} already.

If both end-vertices are adjacent to all but at most three vertices of Ĩij , then
arbitrarily pick one of these end-vertices and color it with i. If exactly one end-
vertex is adjacent to all but at most three vertices of Ĩij , then color that end-

vertex with color i. Afterwards, let Si
j be the set of edges in F ′i , both end-vertices

8

of which are not colored i. Consider every possible coloring of the end-vertices
of the edges in Si

j according to their lists. Each time, color the vertices of Qi

with color i, update the list assignment, put the resulting list assignment in L,
and restore the lists to the situation at the end of Step 6.

Step 8. For i = 1, . . . , 4, do as follows. If F ′i is connected or non-bipartite,
then choose an edge ei = uivi of F ′i . Otherwise, i.e., if F ′i is disconnected and
bipartite, then choose for all 1 ≤ j ≤ 3 a vertex ui

j that is adjacent to all but

at most three vertices in Ĩij . Here, it is allowed that {ui, vi} ∩ {ui∗ , vi
∗} 6= ∅ for

any two connected graphs F ′i and F ′i∗ with indices i∗ < i and that ui
j = ui∗

j∗ for
any two disconnected graphs F ′i and F ′i∗ with indices i∗ ≤ i and 1 ≤ j∗ ≤ j ≤ 3.

After considering all 1 ≤ i ≤ 4, let M be the set that consists of the following
vertices: the vertices ui, vi for every connected F ′i and the vertices ui

1, u
i
2, u

i
3 for

every disconnected F ′i ; note that |M | ≤ 12. Check whether there exists a coloring
of G[M] that respects the lists of the vertices in M , and moreover, that neither
colors ui nor vi with color i for each connected F ′i , and that colors none of
ui
1, u

i
2, u

i
3 with color i for each disconnected F ′i . If so, then call such a coloring

suitable and M a suitable branch set, and continue as described below.

For each connected F ′i , let Ĩi(ēi) be the set of vertices in (Ĩi1 ∪ Ĩi2 ∪ Ĩi3) \M
that are adjacent neither to ui nor to vi. For each disconnected F ′i , let Ĩij(ū

i
j) be

the set of vertices in Ĩij \M that are not adjacent to ui
j . Color M with a suitable

coloring. For i = 1, . . . , 4, if F ′i is connected, then color all vertices in Ĩi(ēi)
according to their lists, and if F ′i is disconnected, then color all vertices in every
Ĩij(ū

i
j) according to their lists. Afterwards, color all remaining uncolored vertices

in I∗ according to their lists. Only then update the resulting list assignment,
put it in L and restore all lists to the situation at the end of Step 7.

Repeat the above procedure until all suitable branch sets, all their suitable
colorings, all colorings of the vertices in the sets Ĩi(ēi), all colorings of the vertices
in the sets Ĩij(ū

i
j) and all colorings of any remaining uncolored vertices in I∗ have

been considered.

Phase 2. Determining if G has a coloring that respects a list assign-
ment in L.

Do as follows for every L ∈ L. Determine the set UL of vertices of G that have
a list of size 1. Color every vertex in UL with the (unique) color from its list. If
there are two adjacent vertices in UL colored alike, then stop considering L. If
such vertices do not exist, then update L and remove UL from G. Denote the
resulting graph and list assignment by G′ and L′, respectively. If all lists in L′

have size at most 2, then apply Lemma 1. If the union of all lists in L′ has size 3,
then apply Lemma 5. If this leads to a coloring of G′ respecting L′, then return
Yes. If after considering all L ∈ L no Yes-answer has been returned, then return
No.

We prove the correctness of our algorithm and analyze its running time in The-
orem 7. For doing this, we need the following lemmas.

9

Lemma 7. For i = 1, . . . , 4 and j = 1, . . . , 3, the number of vertices of Iij that

is not adjacent to aij in Step 6 of Phase 1 is at most 38.

Proof. In order to obtain a contradiction, suppose that there exists a pair of
indices (i, j) such that a0 = aij is not adjacent to 39 vertices b1, . . . , b39 in Iij .
Consider a vertex bh for some 1 ≤ h ≤ 39. Because bh is in NG(Di), it has
a neighbor ah ∈ Di; note that ah 6= a0 by definition. Suppose that ah is not
adjacent to two vertices c and c′ of Iij that are neighbors of a0. Then G contains
an induced P2 + P3, where P2 = ahbh and P3 = ca0c

′. This is not possible.
By our choice of a0, we find that ah cannot be adjacent to all neighbors of a0
in Iij ; otherwise ah has more neighbors in Iij than a0. We conclude that ah is

adjacent to all but one neighbor of a0 in Iij . By our choice of a0, this implies
that ah cannot be adjacent to a vertex bh′ with h′ 6= h. Hence, we found that Di

contains vertices a1, . . . , a39 (where each ai is adjacent to bi and to all but one
neighbor of a0 in Iij). However, then |D| ≥ |Di| ≥ 40, which is not possible as D
has size at most 39 according to Step 1 of Phase 1. This completes the proof of
Lemma 7. ut

Lemma 8. For each edge uv in each F ′i , there exists at most one vertex in each
Ĩij that is adjacent neither to u nor to v.

Proof. Suppose that there exists a pair of indices (i, j) such that Ĩij contains two
vertices b and b′ that are both adjacent neither to u nor to v. Then G contains
an induced P2 + P3, where P2 = uv and P3 = baijb

′. This is not possible. ut

Lemma 9. For all 1 ≤ i ≤ 4 and all 1 ≤ j ≤ 3, if F ′i is a disjoint union of at
least two edges, then all but at most one edge of F ′i have at least one end-vertex

that is adjacent to all but at most three vertices of Ĩij.

Proof. Suppose that F ′i is a disjoint union of at least two edges. In order to
obtain a contradiction, let st and uv be two edges in F ′i , such that each vertex

of {s, t, u, v} is not adjacent to at least four vertices of Ĩij .

We claim that s is adjacent to all but at most one neighbor of u in Ĩij , or else

that u is adjacent to all but at most one neighbor of s in Ĩij . In order to obtain a

contradiction, suppose that s is not adjacent to two vertices in Ĩij ∩NG(u), one

of which we call b, and that u is not adjacent to two vertices c, c′ in Ĩij ∩NG(s).

Recall that Ĩij is an independent set. Then G contains an induced P2 + P3, e.g.,
P2 = bu and P3 = csc′. This is not possible. Hence, we may assume without loss
of generality that s is adjacent to all but at most one neighbor of u in Ĩij .

By the same argument as above, we find that s is adjacent to all but at most
one neighbor of v in Ĩij , or else that v is adjacent to all but at most one neighbor

of s in Ĩij . Lemma 8 tells us that {u, v} dominates all but at most one vertex of

Ĩij . Consequently, in the first case, s is adjacent to all but at most three vertices

of Ĩij , and in the second case v is adjacent to all but at most three vertices of

Ĩij . Hence, in both cases we find a vertex of {s, t, u, v} that is adjacent to all

10

but at most three vertices of Ĩij . This is in contradiction with our assumption on
{s, t, u, v}. Hence, we have proven Lemma 9. ut

Lemma 10. In Step 7b of Phase 1, each Si
j contains at most one edge.

Proof. In Step 7b of Phase 1, a graph F ′i is disconnected and bipartite and has
at least three vertices. Then, because G is (P2 + P3)-free, F ′i is a disjoint union
of at least two edges. Then Lemma 9 tells us that all but at most one edge of

F ′i have at least one end-vertex adjacent to all but at most three vertices of Ĩij .

Hence, a set Si
j contains at most one edge. ut

Lemma 11. In Step 8 of Phase 1, each Ĩi(ēi) contains at most one vertex, and
each Ĩij(ū

i
j) contains at most three vertices.

Proof. Consider a set Ĩi(ēi) for some ei = uivi in F ′i in Step 8 of Phase 1. By
definition, Ĩi(ēi) consists of vertices that are adjacent neither to ui nor to vi.
We apply Lemma 8 and find that Ĩi(ēi) contains at most one vertex. We note
that each set Ĩij(ū

i
j) in Step 8 of Phase 1 contains at most three vertices by

definition. ut

Lemma 12. Let L be a list assignment in the set L in Phase 2. Then either all
lists in L have size at most 2, or the union of the lists in L that contain at least
two colors has size 3.

Proof. Let L ∈ L. The algorithm has added L to L in Step 5, 7a, 7b, or 8, when
considering some 4-coloring cD of D. Note that for all w ∈ D, L(w) = {cD(w)},
and consequently, |L(w)| = 1. The sizes of the lists of the vertices in VG \ D
depend on which step L was added to L. Hence, we distinguish the following
four cases.

Case 1. L was added to L in Step 5.
Then there exists a graph F ′i that has at most two vertices. Note that

VG = D ∪ (NG(Di) \D) ∪Qi ∪ VF ′i
.

Let w ∈ VG \D. If w ∈ NG(Di) \D, then i /∈ L(w), because w is adjacent to a
vertex in Di, which has color i. If w ∈ Qi, then L(w) = {i} due to Step 5, hence
|L(w)| = 1. If w ∈ VF ′i

, then |L(w)| = 1 due to Step 5. Hence, the union of the
lists in L that contain at least 2 colors does not contain color i, and consequently,
has size at most 3. This means that either all lists in L have size at most 2, or
the union of the lists in L that contain at least 2 colors has size 3.

Case 2. L was added to L in Step 7a.
Suppose that this happened when considering 1 ≤ i ≤ 4. Then F ′i is connected
and bipartite. Let B1

i and B2
i be the two partition classes of F ′i . We may assume

without loss of generality that L is obtained after the algorithm assigned color
i to every vertex of B1

i . Note that

VG = D ∪ (NG(Di) \D) ∪Qi ∪B1
i ∪B2

i .

11

Let w ∈ VG \D. If w ∈ NG(Di) \D, then i /∈ L(w). If w ∈ Qi, then L(w) = {i}
due to Step 7a, hence |L(w)| = 1. If w ∈ B1

i , then L(w) = {i} due to Step 7a,
hence |L(w)| = 1. If w ∈ B2

i , then i /∈ L(w), because the algorithm updates the
list assignment in Step 7a after coloring each vertex of B1

i with color i, and each
vertex of B2

i is adjacent to at least one vertex of B1
i as F ′i is connected. Hence,

the union of the lists that contain at least 2 colors does not contain color i, and
consequently, has size at most 3.

Case 3. L was added to L in Step 7b.
Suppose that this happened when considering 1 ≤ i ≤ 4. Then F ′i is disconnected
and bipartite. Because F ′i has at least three vertices and G is (P2 +P3)-free, this
means that F ′i is a disjoint union of at least two edges. Let Ti be the set of
vertices of F ′i that have list {i} in L. Let Ui denote the union of all vertices in
the edges of Si

1 ∪ Si
2 ∪ Si

3; here we let Si
j = ∅ if Ĩij = ∅. Let Wi = VF ′i

\ (Ti ∪Ui).
Note that

VG = D ∪ (NG(Di) \D) ∪Qi ∪ Ti ∪ Ui ∪Wi.

Let w ∈ VG \D. If w ∈ NG(Di) \D, then i /∈ L(w). If w ∈ Qi, then L(w) = {i}
due to Step 7b, hence |L(w)| = 1. If w ∈ Ti, then L(w) = {i} by definition,
hence |L(w)| = 1. If w ∈ Ui, then |L(w)| = 1 due to Step 7b. If w ∈ Wi, then
i /∈ L(w), because i is an end-vertex of an edge, the other end-vertex of which
has color i according to Step 7b. Hence, the union of the lists that contain at
least 2 colors does not contain color i, and consequently, has size at most 3.

Case 4. L was added to L in Step 8.
Then the algorithm has obtained L starting from some suitable branch set M
and some suitable coloring of G[M]. Note that

VG = D ∪ I∗ ∪ Ĩ11 ∪ Ĩ12 ∪ Ĩ13 ∪ Ĩ21 ∪ Ĩ22 ∪ Ĩ23 ∪ Ĩ31 ∪ Ĩ32 ∪ Ĩ33 ∪ Ĩ41 ∪ Ĩ42 ∪ Ĩ43

= D ∪ (Ii1 \ Ĩi1) ∪ (Ii2 \ Ĩi2) ∪ (Ii3 \ Ĩi3) ∪ Ĩi1 ∪ Ĩi2 ∪ Ĩi3 ∪ VFi
for i = 1, . . . 4.

Let w ∈ VG \D. If w ∈ I∗, then |L(w)| = 1 due to Step 8. If w ∈ Ĩi(ēi)∪{ui, vi}
for some edge ei = uivi with ui, vi ∈ M , then |L(w)| = 1 due to Step 8. If
w ∈ Ĩij(ū

i
j) ∪ {ui

j} for some vertex ui
j ∈ M , then |L(w)| = 1 due to Step 8 as

well. In all other cases, w belongs to a set Ĩij for at least one 1 ≤ i ≤ 4 and some
1 ≤ j ≤ 3. If F ′i is connected or non-bipartite, then w is adjacent to a vertex in
M , which is an end-vertex of some chosen edge ei = uivi. If F ′i is disconnected
and bipartite, then w is adjacent to a vertex in M , which is some chosen vertex
ui
j . In both cases, this neighbor of w is colored with a color not equal to i, because

the coloring of M is assumed to be suitable. Because i /∈ L(w) by definition, this
means that |L(w)| ≤ 2. Hence, all lists of L have size at most 2. This completes
the proof of Lemma 12. ut

Lemma 13. If L contains a list assignment that is respected by some coloring
of G, then the algorithm returns Yes.

Proof. Let L ∈ L be a list assignment that is respected by some coloring c of G.
Because L is respected by c, coloring every vertex in UL with the (unique) color

12

from its list does not result in two adjacent vertices with the same color; each
u ∈ UL receives color c(u).

We remove all vertices in UL from G and denote the resulting graph and list
assignment by G′ and L′, respectively. Let c′ be the restriction of c to VG′ . Then
L′ is respected by c′.

Lemma 12 tells us that either all lists in L have size at most 2, or the union
of the lists in L that contain at least two colors has size 3. Consequently, either
all lists in L′ have size at most 2, or the union of the lists in L′ has size 3. In
the first case the algorithm applies Lemma 1. In the second case the algorithm
applies Lemma 5. In both cases the algorithm will conclude that G′ has a coloring
that respects L′ (because c′ is such a coloring). Hence, it will return Yes. This
completes the proof of Lemma 13. ut

Theorem 7. The 4-Coloring problem can be solved in polynomial time for
(P2 + P3)-free graphs.

Proof. Let G = (V,E) be a (P2 + P3)-free graph with n vertices. Recall that we
may assume that G has minimum degree at least 4 due to Lemma 4.

Correctness. We start with proving that our algorithm is correct, i.e., that its
output is Yes if and only if G has a 4-coloring.

First suppose that the output of our algorithm is Yes. Note that such an
output only occurs in Phase 2. Hence, a graph G′ has a coloring respecting a
list assignment L′, where G′ and L′ are obtained by removing all vertices from
G that have a list of size 1, i.e., belong to a set UL for some L ∈ L. Coloring the
vertices in UL with the (unique) color from their list does not yield two adjacent
vertices colored alike, as otherwise the algorithm would have stopped considering
L and thus would not have modified L into L′. Because of this and because the
algorithm updates L before removing UL, we can extend the coloring of G′ to
a coloring of G by assigning every vertex that is not in G′, i.e., that belongs to
UL, the unique color in its list. Because every list in every list assignment of L
is a subset of {1, 2, 3, 4}, the resulting coloring is a 4-coloring of G.

Now suppose that G has a 4-coloring c. Lemma 3 tells us that G has a
dominating set of size at most 39. Consequently, our algorithm will find such a
dominating set in Step 1. Because G is 4-colorable, G[D] is 4-colorable. Hence,
the algorithm does not return No in Step 2. Instead it considers each 4-coloring
of G[D] including the 4-coloring cD of G[D] with cD(a) = c(a) for all a ∈ D.

In Step 3, the algorithm checks if a partition into three (possibly empty)
independent sets Ii1, I

i
2, I

i
3 of NG(Di) \ D exists for i = 1, . . . , 4. Because all

vertices in each NG(Di) \ D are adjacent to a vertex in Di, i.e., to a vertex a
with color c(a) = i and because c is a 4-coloring, we find that the restriction of
c to the vertices of NG(Di) \ D is a 3-coloring of G[NG(Di) \ D]. This means
that NG(Di)\D can be partitioned into three (possibly empty) independent sets
corresponding to the three color classes of this 3-coloring. Hence, the algorithm
will find independent sets Ii1, I

i
2, I

i
3 that form a partition of NG(Di) \ D for

i = 1, . . . , 4. Note that these four partitions into three independent sets may be
different than the ones induced by c. This does not matter; for our correctness

13

proof we only need the algorithm to find some partition Ii1, I
i
2, I

i
3 of NG(Di) \D

for i = 1, . . . , 4, and the fact that the restriction of c to NG(Di)\D is a 3-coloring
ensures that this is going to happen.

In Step 4, the algorithm determines for i = 1, . . . , 4, the set Qi that consists
of all isolated vertices in Fi and constructs the graph F ′i obtained from Fi by
removing the vertices of Qi.

In Step 5, the algorithm checks whether there exists a graph F ′i that has
at most 2 vertices for some 1 ≤ i ≤ 4. If so, then the algorithm considers
each possible coloring of these vertices, so including the coloring of F ′i that
corresponds to c. In addition, it colors each vertex of Qi with color i. We may
assume without loss of generality that c(u) = i for all u ∈ Qi. If c(u) 6= i for some
u ∈ Qi, then we may redefine c by setting c(u) := i for the following reason. All
neighbors of u in G belong to NG(Di) \D, i.e., are adjacent to a vertex in Di,
which c has assigned color i, and as such, no neighbor of u is assigned color i
by c. Hence, the algorithm goes to Phase 2 with a set L of list assignments that
include a list assignment L that is respected by c. Then it will return Yes due
to Lemma 13.

From now on, suppose that every F ′i has at least three vertices. We observe
that F ′i has at least two edges, because F ′i contains no isolated vertices.

In Step 6, the algorithm determines the set Ĩij for i = 1, . . . , 4 and j = 1, . . . , 3.
It also determines the set I∗ that consists of all vertices of NG(D) \D that are
not in some set Ĩij .

In Step 7, the algorithm checks for i = 1, . . . , 4 whether F ′i is connected and
bipartite, or whether F ′i is disconnected and bipartite. Here, we observe that a
graph F ′i may be non-bipartite, and in that case the algorithm does not process
F ′i in Step 7. Otherwise, after processing F ′i , the algorithm will place one or
more new list assignments in L. Then L may contain a list assignment that is
respected by c in the following two cases.

The first case is in Step 7a, when F ′i is connected and bipartite for some 1 ≤
i ≤ 4, such that c(u) = i for every vertex u in one partition class of F ′i . Because
the algorithm considers both partition classes of F ′i , one of the two created list
assignments that are to be placed in L is respected by c. Consequently, the
algorithm will return Yes due to Lemma 13.

The second case may be in Step 7b. We first note that in this step the algo-
rithm colors a vertex of all but at most one edge with color i due to Lemma 10.
Hence, if F ′i is a disconnected and bipartite graph, in which all but at most one
edge contain a vertex colored i by c, and moreover, such that the algorithm picks
exactly those vertices u with c(u) = i to get color i for some 1 ≤ j ≤ 3 with
Ĩij 6= ∅, then the resulting list assignment is respected by c. In that case, the
algorithm will return Yes due to Lemma 13. We emphasize that in this step the
algorithm considers at most three possible assignments of color i to vertices in
F ′i , namely one assignment for each nonempty Ĩij . If in each case the algorithm
assigns color i to one or more different vertices than the ones that are colored i
by c, then the resulting list assignment that is placed in L will not be respected
by c. We take this into account when analyzing Step 8.

14

Assume that the algorithm has not yet placed a list assignment in L that is
respected by c.

In Step 8, the algorithm creates list assignments by processing the graphs F ′i
for i = 1, . . . , 4 in sequential order. Let 1 ≤ i ≤ 4 and consider a graph F ′i . In
line with Step 8, we distinguish between the following two cases.

Case 1. Suppose that F ′i is connected or non-bipartite.
If c colors an end-vertex of every edge in F ′i with color i, then F ′i must be a
bipartite graph; the set of vertices colored i and the set of vertices not colored
i form the two partition classes. In that case, the algorithm has already placed,
namely in Step 7a or 7b, a list assignment in L that is respected by c. This is
in contradiction with our assumption that the algorithm has not yet done this.
Hence, F ′i contains at least one edge e = uv with c(u) 6= i and c(v) 6= i.

Case 2. Suppose that F ′i is disconnected and bipartite.
Then, because G is (P2 + P3)-free and F ′i contains no isolated vertices, F ′i is a
disjoint union of edges. Because F ′i has at least three vertices, this means that
F ′i has at least two edges. The algorithm considers the sets Ĩij for j = 1, . . . , 3 in

sequential order. Let 1 ≤ j ≤ 3 and consider a set Ĩij . Let Zi be the set of vertices

in F ′i that are adjacent to all but at most three vertices of Ĩij . By Lemma 9 we
find that Zi 6= ∅, because all but at most one edge in F ′i contains a vertex
adjacent to all but at most three vertices of Ĩij , and F ′i has at least two edges.
Suppose that every vertex in Zi is colored i by c. Then every one of those edges
that contains a vertex adjacent to all but at most three vertices of Ĩij contains
exactly one vertex of Zi, because two vertices that are both colored with color
i cannot be adjacent. However, in that case, the algorithm would already have
placed a list assignment in L that is respected by c, namely in Step 7b. Hence,
Zi contains a vertex u with c(u) 6= i.

By our case analysis we find that there exists a suitable branch set M , such
that the restriction of c to M is a suitable coloring of G[M]. Our algorithm will
detect this in one of the branches in Step 8. At some point it will also color the
vertices in each Ĩi(ēi), the vertices in each Ĩij(ū

i
j) and all remaining uncolored

vertices in I∗ according to c, because it considers all possibilities exhaustively. We
conclude that after Step 8 has finished, the algorithm has put a list assignment
L in L that is respected by c. Then, by Lemma 13, it will return Yes. This
completes our correctness proof.

Running time analysis. We prove that Phase 1 can be performed in polyno-
mial time and leads to a set L of polynomial size.

The algorithm performs Step 1 in O(n39) time by brute force. In Step 2 we
find at most 4|D| ≤ 439 different 4-colorings of G[D]. The algorithm performs
Step 3 in polynomial time by applying Lemma 6 at most four times. It performs
Step 4 in linear time, because it only has to detect the isolated vertices in each
Fi. Afterwards, it has immediately obtained the graphs F ′i .

The algorithm performs Step 5 in linear time; in addition to considering at
most one coloring of some set Qi of isolated vertices, it needs to consider at most

15

32 colorings of a set of at most 2 vertices that can be detected in linear time;
note that each vertex of such a set has indeed a list of size at most 3, because
it is adjacent to an already colored vertex in D and the algorithm updated the
list assignment in Step 3. If the algorithm starts Phase 2 directly after Step 5,
then we have a set L of size at most 439 · 32, which is a constant. Otherwise, we
must continue our running time analysis with Step 6.

For i = 1, . . . , 4 and j = 1, . . . , 3, the algorithm determines a required vertex
aij ∈ Di in Step 6 in polynomial time. By Lemma 7, each aij is adjacent to all

but at most 38 vertices of Iij , hence the set I∗ has at most 4 ·3 ·38 = 456 vertices.

The algorithm performs Step 7a in polynomial time, because it only has to
check whether the graphs F ′i are connected and bipartite, and if this is the case,
then it only has to construct 2 list assignments, each of which corresponds to
the partition class of F ′i whose vertices are colored with color i; note that the
vertices in Qi are colored in only one way. Hence, it places at most 4 · 2 = 8
different list assignments in L.

The algorithm performs Step 7b in polynomial time. This can be seen as
follows. The algorithm checks in polynomial time whether a graph F ′i is discon-
nected and bipartite, i.e., whether F ′i is a disjoint union of at least two edges. If
so, then it places at most 4 · 3 · 32 = 108 different list assignments in L, because
each set Si

j contains at most one edge according to Lemma 10, and the vertices

in Qi are colored in only one way for each 1 ≤ j ≤ 3 with nonempty Ĩij .

In Step 8 the algorithm considers in worst case all edges ei in every F ′i that
is connected or non-bipartite, all colorings of their end-vertices ui and vi, all
colorings of the vertices in Ĩi(ēi), all possible triples of vertices ui

1, u
i
2, u

i
3 in

every F ′i that is a disjoint union of at least two edges, all the colorings of these
triples, all colorings of the vertices in Ĩi1(ūi

1) ∪ Ĩi2(ūi
2) ∪ Ĩi3(ūi

3) and all colorings
of the remaining uncolored vertices in I∗. The number of edges ei is at most n2.
The number of colorings to be considered for the two end-vertices of an edge
ei is at most 32. The number of colorings to be considered for the vertices in a
set Ĩi(ēi) is at most 3, because Ĩi(ēi) has size at most 1 due to Lemma 11. The
number of triples of vertices ui

1, u
i
2, u

i
3 is at most n3. The number of colorings

to be considered for each such triple is at most 33. The number of colorings to
be considered for the vertices in Ĩi1(ūi

1) ∪ Ĩi2(ūi
2) ∪ Ĩi3(ūi

3) is at most 93, because
each Ĩij(ū

i
j) has size at most 3 due to Lemma 11. Recall that I∗ has at most

152 vertices. Hence, the set of remaining uncolored vertices of I∗ in some branch
has at most 3152 colorings. This means that the total number of list assignments
obtained in Step 9 is at most p(n) = n2 ·32 ·3 ·n3 ·33 ·93 ·3152. Hence, if we start
Phase 2 after Step 9, then we have a set L of size at most 439(8+108+p(n)), which
is polynomial. We also conclude that Phase 1 can be performed in polynomial
time.

In Phase 2, the algorithm preprocesses each L ∈ L in quadratic time; first it
colors every vertex in UL with the unique color in its list, then it checks whether
there exist two vertices in UL that are colored alike, and if not, it updates L
and then removes all vertices in UL from G. Afterwards, Lemma 12 implies that
the algorithm can apply (in polynomial time) Lemma 1 or else Lemma 5 for

16

every resulting graph G′ and list assignment L′. Because L has polynomial size
as we deduced above, this means that our algorithm can perform Phase 2 in
polynomial time. This completes the proof of Theorem 7. ut

We can generalize Theorem 7 in the following way.

Theorem 8. The 4-Precoloring Extension problem can be solved in poly-
nomial time for (P2 + P3)-free graphs.

Proof. Let G = (V,E) be a (P2 + P3)-free graph with a set W ⊆ V such that
each vertex in W is precolored with a color from {1, 2, 3, 4}. We may assume
without loss of generality that every vertex in V \W has degree at least 4. This
can be seen as follows. We consecutively remove vertices of V \W with degree at
most 3 from G until this is no longer possible. We denote the remaining graph,
which we obtain in polynomial time, by G∗. Because we only removed vertices,
G∗ is (P2 + P3)-free. Then G has a 4-coloring extending the precoloring of W if
and only if G∗ has a 4-coloring extending the precoloring of W (cf. [4]). Because
G∗ is also 2P3-free, we may apply Lemma 2 for k = 4 and s = 2 to find a
set D of at most 39 vertices that dominates V \W in the case that G∗ has a
4-coloring extending the precoloring of W . We put all vertices of W in D and
run the remainder of the algorithm of Theorem 7 for graph G[V ∗G ∪W] under
the additional condition that we let the algorithm only consider 4-colorings of
D that do not change the colors of the vertices of W as prescribed by the given
precoloring of W . As such, the number of different 4-colorings of D considered
by the algorithm is still at most 439. Hence, the correctness proof and running
time analysis are exactly the same as in the proof of Theorem 7. ut

Couturier et al. [7] prove that the List k-Coloring problem, and conse-
quently, the k-Precoloring Extension problem is polynomial-time solvable
for (rP1 + P5)-free graphs for any fixed r ≥ 0. The NP-completeness results
in Theorems 2 and 3 carry over to the k-Precoloring Extension problem.
These three results together with Theorem 8 imply the following theorem.

Theorem 9. For any fixed graph H on at most 5 vertices, 4-Precoloring
Extension is polynomial-time solvable on H-free graphs whenever H is a linear
forest and NP-complete otherwise.

4 Future work

We note that the running time of our algorithm involves large constants such as
439. As such it cannot be used to run in practice. We have not tried to minimize
the running time, as the motivation for this research is purely theoretical, i.e.,
to classify the complexity of k-Coloring for H-free graphs further. Hence the
following open questions, together with the missing cases of Table 1, are more
interesting to us:

1. Is List 4-Coloring polynomial-time solvable for (P2 + P3)-free graphs?

17

2. Is 4-Coloring polynomial-time solvable for (P1 + P2 + P3)-free graphs?
3. Is 4-Coloring polynomial-time solvable for 2P3-free graphs?
4. Is 5-Coloring polynomial-time solvable for (P2 + P3)-free graphs?

An affirmative answer to Question 1 would be useful for solving the other ques-
tions. So far, we only know that the List 5-Coloring problem is NP-complete
for P6-free graphs [3] and for (P2 + P4)-free graphs [7].

For answering Question 1, it seems difficult to modify the proofs of Theo-
rems 7 and 8. For the variant of list colorings, it is still possible to find a set D
that dominates all vertices with list {1, 2, 3, 4}. The main obstacle is that we do
not know how to deal with the vertices that have an initial list of three admis-
sible colors. Also the approach of Hoàng [13] for the k-Coloring problem for
P5-free graphs, which was further generalized by Couturier et al. [7], does not
seem applicable here.

Acknowledgments. We thank an anonymous referee for useful comments that
helped us to improve the readability of our paper.

References

1. E. Balas and C. S. Yu, On graphs with polynomially solvable maximum-weight
clique problem, Networks 19, 247–253 (1989).

2. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Math-
ematics 244 (2008).

3. H.J. Broersma, F.V. Fomin, P.A. Golovach and D. Paulusma, Three complexity
results on coloring Pk-free graphs, Proceedings of IWOCA 2009, LNCS 5874, 95–
104 (2009).

4. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complexity
status of coloring graphs without a fixed induced linear forest, Theoretical Com-
puter Science 414, 9–19 (2012).

5. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Determining the chro-
matic number of triangle-free 2P3-free graphs in polynomial time, Theoretical Com-
puter Science 423, 1–10 (2012).

6. D. Bruce, C.T. Hoàng and J. Sawada, A certifying algorithm for 3-colorability of
P5-free graphs, Proceedings of ISAAC 2009, LNCS 5878, 594-604 (2009).

7. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, List coloring in the
absence of a linear forest, Proceedings of WG 2011, LNCS 6986, 119–130 (2012).

8. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, On the parameterized
complexity of coloring graphs in the absence of linear forest, J. Discrete Algorithms
15, 56–62(2012).

9. K. Dabrowski, V. Lozin, R. Raman and B. Ries, Colouring vertices of triangle-free
graphs without forests, Discrete Mathematics 312, 1372–1385 (2012).

10. K. Edwards, The complexity of coloring problems on dense graphs. Theoret. Com-
put. Sci. 43, 337–343 (1986).

11. P.A. Golovach, D. Paulusma and J. Song, Coloring graphs without short cycles
and long induced paths, Proceedings of FCT 2011, LNCS 6914, 193–204.

12. M. Grötschel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs,
Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984).

18

13. C.T. Hoàng, M. Kamiński, V. Lozin, J. Sawada and X. Shu, Deciding k-colorability
of P5-free graphs in polynomial time, Algorithmica 57, 74–81 (2010).

14. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10, 718–720
(1981).

15. M. Kamiński and V.V. Lozin, Coloring edges and vertices of graphs without short
or long cycles, Contributions to Discrete Math. 2, 61–66 (2007).

16. M. Kamiński and V.V. Lozin, Vertex 3-colorability of Claw-free Graphs. Algorith-
mic Operations Research 21, (2007).

17. D. Král’, J. Kratochv́ıl, Zs. Tuza and G.J. Woeginger, Complexity of coloring
graphs without forbidden induced subgraphs, Proceedings of WG 2001, LNCS
2204, 254–262 (2001).

18. V.B. Le, B. Randerath and I. Schiermeyer, On the complexity of 4-coloring graphs
without long induced paths, Theoret. Comput. Sci. 389, 330–335 (2007).

19. D. Leven and Z. Galil, NP completeness of finding the chromatic index of regular
graphs, Journal of Algorithms 4, 35–44 (1983).

20. F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability prob-
lem for triangle-free graphs, Discrete Math. 162, 313–317 (1996).

21. B. Randerath and I. Schiermeyer, 3-Colorability ∈ P for P6-free graphs, Discrete
Appl. Math. 136, 299–313 (2004).

22. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a
survey, Graphs Combin. 20, 1–40 (2004).

23. D. Schindl, Some new hereditary classes where graph coloring remains NP-hard,
Discrete Math. 295, 197–202 (2005).

24. S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for gener-
ating all the maximal independent sets, SIAM J. Comput. 6, 505–517 (1977).

25. Zs. Tuza, Graph colorings with local restrictions - a survey, Discuss. Math. Graph
Theory 17, 161–228 (1997).

26. G.J. Woeginger and J. Sgall, The complexity of coloring graphs without long in-
duced paths, Acta Cybernet. 15, 107–117 (2001).

19

