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Abstract. A homomorphism from a graph G to a graph H is a vertex
mapping f : VG → VH such that f(u) and f(v) form an edge in H
whenever u and v form an edge in G. The H-Coloring problem is to test
if a graph G allows a homomorphism to a given graph H. A well-known
result of Hell and Nešetřil determines the computational complexity of
this problem for any fixed graph H. We study a natural variant of this
problem, namely the Surjective H-Coloring problem, which is to
test whether a graph G allows a homomorphism to a graph H that
is (vertex-)surjective. We classify the computational complexity of this
problem when H is any fixed partially reflexive tree. Thus we identify the
first class of target graphs H for which the computational complexity of
Surjective H-Coloring can be determined. For the polynomial-time
solvable cases we show a number of parameterized complexity results,
especially on graph classes with (locally) bounded expansion.

1 Introduction

A graph is denoted G = (VG, EG), where VG is the set of vertices and EG is
the set of edges. A homomorphism from a graph G to a graph H is a mapping
f : VG → VH that maps adjacent vertices of G to adjacent vertices of H, i.e.,
f(u)f(v) ∈ EH whenever uv ∈ EG.

The problem H-Coloring is to test whether a given graph G allows a ho-
momorphism to a graph H called the target. Throughout our paper we assume
that H denotes a fixed graph (i.e., not part of the input) except when we con-
sider a parameterized setting and choose |VH | as the parameter. If H is the
complete graph (graph with edges between all pairs of different vertices) on k
vertices, then the H-Coloring problem is equivalent to the k-Coloring prob-
lem, which is to test whether a graph G allows a mapping c : VG → {1, . . . , k}
such that c(u) 6= c(v) whenever uv ∈ EG.

For a survey on homomorphisms we refer to Hell and Nešetřil [16]. Here, we
only mention the classical result in this area, which is the Hell-Nešetřil dichotomy
theorem [15]. This theorem states that H-Coloring is solvable in polynomial
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time if H is bipartite, and NP-complete otherwise. Note that H is assumed to
have no self-loop xx, as otherwise we can map every vertex of G to x.

A homomorphism f from a graph G to a graph H is surjective if for each
x ∈ VH there exists at least one vertex u ∈ VG with f(u) = x. This paper studies
the problem of deciding if a given graph allows a surjective homomorphism to
a fixed target graph H. This problem is called the Surjective H-Coloring
problem. We observe that, for this variant, the presence of a vertex with a self-
loop in the target graph H does not make the problem trivial. So, we do allow
such vertices in H and call them reflexive, whereas vertices with no self-loop are
said to be irreflexive. A graph is reflexive if all its vertices are reflexive, and a
graph is irreflexive if all its vertices are irreflexive. Throughout the paper, we
assume that the input graph G is irreflexive and that the target graph H may
contain one or more self-loops. We also assume that both graphs are undirected,
finite and have no multiple edges.

Recall that in this paper we assume that H is a fixed graph. When H is part
of the input, the problem is called Surjective Coloring and known to be
NP-complete even for very restricted graphs classes, as shown by Golovach et
al. [14]. In particular, they proved that it is NP-complete to test whether there
exists a surjective homomorphism from a graph G to a graph H even if G and
H are

(i) disjoint unions of paths (linear forests);
(ii) disjoint unions of complete graphs;
(iii) trees;
(iv) connected cographs;
(v) connected proper interval graphs;
(vi) connected split graphs.

Only for some special cases, for instance when H is a path [14], the Surjective
Coloring problem can be solved in polynomial time. Hence, there is not much
hope for finding non-trivial tractable cases in this direction, and it is therefore
natural to fix the target graph H and study the computational complexity of
the Surjective H-Coloring problem.

The Surjective H-Coloring problem is NP-complete for general graphs
when H is a nonbipartite simple graph. This follows from a simple reduction from
the corresponding H-Coloring problem, which is NP-complete due to the Hell-
Nešetřil dichotomy theorem [15]; we replace an instance graph G of the latter
problem by the disjoint union G+H of G and H, and we observe that G allows
an homomorphism to H if and only if G+H allows a surjective homomorphism
to H. For other cases, the complexity classification of Surjective H-Coloring
is still open; only some partial results are known. In particular, there exist cases
of bipartite simple graphs H for which the problem is NP-complete, e.g., when
H is the graph obtained from a 6-vertex cycle with one distinct path of length
3 added to each of its six vertices [1]. Recently, Surjective H-Coloring has
been shown to be NP-complete when H is a 4-vertex cycle with a self-loop in
every vertex [19]. In this case, the H-Coloring problem is equivalent to the
Disconnected Cut problem that is to test whether a graph G = (V,E) has a
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vertex cut U ⊆ V that in addition induces a disconnected subgraph of G [18].
This problem has also been studied in the context of H-partitions introduced by
Dantas et al. [3, 4]. For a survey on the Surjective H-Coloring problem from
a constraint satisfaction point of view we refer to the paper of Bodirsky, Kara
and Martin [1]. Below we discuss a number of other problems that are closely
related to Surjective H-Coloring.

1.1 Related Work

Locally surjective homomorphisms. A homomorphism f from a graph G to
a graph H is locally surjective if f becomes surjective when restricted to the open
neighborhood of every vertex u of G. We also say that such an f is an H-role
assignment, and the corresponding decision is called the H-Role Assignment
problem. Any locally surjective homomorphism is surjective if the target graph
is connected but the reverse implication is not true in general.

The computational complexity of the H-Role Assignment problem has
been completely classified with the problem being solvable in polynomial time
if and only if the fixed graph H has no edge, or H has an isolated reflexive
vertex, or H is bipartite, irreflexive and has an isolated edge. In all other cases,
H-Role Assignment is NP-complete [13]. For more on locally surjective ho-
momorphisms and the locally injective and bijective variants, we refer to the
survey of Fiala and Kratochv́ıl [12].

List-homomorphisms and retractions. Let G and H be two graphs with
a list L(u) ⊆ VH associated to each vertex u ∈ VG. Then a homomorphism f
from G to H is a list-homomorphism with respect to the lists L if f(u) ∈ L(u)
for all u ∈ VG. List-homomorphisms were introduced by Feder and Hell [8]
and generalize list-colorings. Feder, Hell and Huang [9] completely classified the
computational complexity of the problem that tests whether a graph G allows
a list-homomorphism to a fixed graph H with respect to some given lists L. In
our context, a special kind of list homomorphisms are of importance, namely the
retractions defined below.

Let H be an induced subgraph of a graph G. A homomorphism f from a
graph G to H is a retraction from G to H if f(h) = h for all h ∈ VH . In that
case we say that G retracts to H. A retraction from G to H can be viewed as a
list-homomorphism if we choose L(x) = {x} for each x ∈ VH and L(u) = VH for
each u ∈ VG \ VH .

The H-Retraction problem is to test whether a graph G retracts to a fixed
subgraph H. A pseudoforest is a graph in which each (connected) component
has at most one cycle different from a self-loop. Feder et al. [10] classified the
complexity of the H-Retraction problem for all fixed pseudoforests H.

Compactions. We stress that a surjective homomorphism is vertex-surjective as
opposed to the stronger condition of being edge-surjective. The latter condition
has been defined in the literature as well. A homomorphism from a graph G to
a graph H is called edge-surjective or a compaction if for any edge xy ∈ EH with
x 6= y there exists an edge uv ∈ EG with f(u) = x and f(v) = y. Note that
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the edge-surjectivity condition only holds for edges xy ∈ EH ; there is no such
condition on the self-loops xx ∈ EH . If f is a compaction from G to H, we also
say that G compacts to H.

The H-Compaction problem is to test whether a graph G compacts to a
fixed graph H. Vikas [27–29] determined the computational complexity of this
problem for several classes of fixed target graphs, e.g., when H is a reflexive
cycle, an irreflexive cycle, or a graph on at most 4 vertices. Recently, Vikas [30]
considered the H-Compaction problems for graphs G that belong to some
special graph class.

Finally, we observe that in contrast to the Surjective H-Coloring problem,
the injective variant has been well studied in the literature; when both G and
H are part of the input, the injective variant is equivalent to the Subgraph
Isomorphism problem.

1.2 Our Results

We give a complete classification of the computational complexity of the Surjec-
tive H-Coloring problem when H is a tree. Because we consider target graphs
that may contain self-loops, H is a partially reflexive tree, i.e., a connected graph
with no cycles different from a self-loop. Let RH denote the (possibly empty) set
of reflexive vertices of a graph H. We say that H is loop-connected if RH induces
a connected subgraph of H. Note that H is loop-connected if H is irreflexive,
i.e., if RH = ∅. Our main result is the following theorem.

Theorem 1. For any fixed tree H, the Surjective H-Coloring problem is
polynomial-time solvable if H is loop-connected, and NP-complete otherwise.

We analyze the running time of the polynomial-time solvable cases in Theorem 1.
For connected graphs with n vertices and m edges we find a running time of
O(nk(n+m)), where k is the number of leaves of H. We show that there is no
function f that only depends on k such that this running time can be improved
to f(k) · nO(1), unless FPT = W[1], or to f(k) · no(k), unless the Exponential
Time Hypothesis [17] is false. On the positive side, we prove that for any loop-
connected tree H, the Surjective Coloring problem parameterized by |VH |
is FPT on any graph class with locally bounded expansion (defined in Section 2).
Examples of such graph classes are graphs of bounded genus (e.g. planar graphs),
graphs that exclude a fixed (topological) minor and graphs that locally exclude
a fixed minor [7].

2 Preliminaries

Graphs and graph homomorphisms. We refer to the text book of Diestel [5]
for all graph notions and notations not defined in this section. We start by
shortly recalling the following graph-theoretic notions from Section 1. A graph
is denoted G = (VG, EG), where VG is the set of vertices and EG is the set of
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edges. A vertex is irreflexive if it has no self-loops and it is reflexive otherwise.
A graph G is irreflexive or reflexive, if G contains no reflexive vertices or only
reflexive vertices, respectively. We let RG denote the (possibly empty) set of
reflexive vertices of a graph G and say that G is loop-connected if G[RG] is
connected; here we use the notation G[U ] to denote the subgraph of G induced
by a set U ⊆ VG, i.e., the graph with vertex set U such that for all u, v ∈ U , there
exists an edge between u and v if and only if there exists an edge between u and
v in G. A pseudoforest is a graph in which each component has at most one cycle
different from a self-loop; here a component is a connected subgraph of G that is
not contained in any other connected subgraph of G. A partially reflexive tree
is a connected graph with no cycles different from a self-loop. If it is clear from
the context we omit the adjective “partially reflexive”. A homomorphism from
a graph G to a graph H is a mapping f : VG → VH such that f(u)f(v) ∈ EH

whenever uv ∈ EG, which is called surjective if for each x ∈ VH there exists at
least one vertex u ∈ VG with f(u) = x, and which is called a retraction if H
is an induced subgraph of G and f(h) = h for all h ∈ VH . The problems H-
Surjective Coloring and H-Retraction are to test whether there exists a
surjective homomorphism or a retraction, respectively, from a given graph G to
a graph H called the target graph that is fixed, i.e., that is not part of the input.
Here, we assume that G is irreflexive, whereas H may contain self-loops. Note
that we can make this assumption for the Retraction problem only by a slight
adjustment of the definition, namely that G must contain the graph obtained
from H by removing all self-loops as an induced subgraph. This adjustment does
not influence the computational complexity of the problem.

Let G = (V,E) be a graph. A subset E′ ⊆ E is a matching of G if no
two edges in E′ have an endvertex in common. The graph obtained from G
after removing a subset E′ ⊆ E is denoted by G − E′. A subset V ′ ⊆ V is a
clique of G if G[V ′] is a complete graph, i.e., a graph with edges between all
pairs of different vertices. The graph obtained from G by removing a subset
V ′ ⊆ V is denoted by G− V ′; if V = {u} we write G− u instead. The distance
distG(u, v) between a pair of vertices u and v of G is the number of edges on
a shortest path between them. For a set U ⊂ VG and a vertex u ∈ VG \ U , we
define distG(u, U) = minv∈U distG(u, v). We denote the (open) neighborhood of
a vertex u in G by NG(u) = {v 6= u | uv ∈ EG}. We define the neighborhood
of a set U ⊆ VG as NG(U) = {v | v ∈ NG(u) \ U for some u ∈ U}. We let
degG(u) = |NG(u)| denote the degree of a vertex u in a graph G. A pendant
vertex in a graph is a vertex of degree one. A set U ⊆ VG is called independent
if there is no edge between any two vertices of U , and U is called a cut set if
G−U has more components than G. The edge contraction of an edge e = uv in
G removes u and v from G, replaces them by a new vertex adjacent to precisely
those vertices to which u or v were adjacent, and (only) adds a self-loop incident
with this vertex if u or v is reflexive. We denote the resulting graph by G/e.

Let G be a irreflexive graph. We say that we identify two vertices u and v
of G if we remove them from G and add a new vertex that we make adjacent
to every vertex in NG({u, v}). We say that we glue a set W ⊆ VG into a new
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vertex w∗ if we remove all vertices of W and add w∗ to G by making it adjacent
to every vertex in NG(W ).

Parameterized complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and the other one is a parameter k. A parameterized
problem is called fixed parameter tractable (FPT) if it can be solved in time
f(k) ·nc, where f is a function only depending on k, and c is some constant. The
basic complexity class for fixed parameter intractability is W[1]. The principal
way of showing that a parameterized problem is unlikely to be fixed-parameter
tractable is to prove W[1]-hardness by giving a parameterized reduction from
a known W[1]-hard problem. We refer to the text books of Downey and Fel-
lows [6] and Niedermeier [24] for a formal definition of this complexity class.
The assumption that there is no algorithm that solves the 3-Satisfiability
problem in 2o(n) time on n-variable formulas is known as the Exponential Time
Hypothesis [17]. The Exponential Time Hypothesis has proven to be an effective
tool for establishing tight complexity bounds for parameterized problems.

Graph classes with bounded expansion. Graph classes with bounded ex-
pansion were introduced by Nešetřil and Ossona de Mendez [20–23]. Later,
graph classes with locally bounded expansion were defined by Dvořák, Král’
and Thomas [7]. In particular, graphs of bounded treewidth, graphs of bounded
degree, graphs that belong to some proper minor-closed graph class, graphs that
contain no subgraph isomorphic to a subdivision of a fixed graph, and graphs
that can be drawn in a fixed surface in such a way that each edge crosses at most
a constant number of other edges have bounded expansion, whereas classes of
graphs with locally bounded treewidth or locally excluding a minor have locally
bounded expansion.

In order to define the graph classes with (locally) bounded expansion, we need
some extra terminology. Let G be a graph. The eccentricity of a vertex v ∈ VG is
the maximum distance between v and any other vertex of G. The radius of G is

the minimum eccentricity of a vertex. The edge density of G is |EG|
|VG| . A graph F is

a minor of G if F can be obtained from G by a series of edge contractions, edge
deletions and vertex deletions. For an integer r ≥ 0, we call F an r-shallow minor
of a graph G if F can be obtained from a subgraph G′ of G by contracting all
edges of |VF | non-empty mutually vertex-disjoint subgraphs of G′, each of which
has radius at most r. A graph class G has bounded expansion if there exists a
function f : N→ R≥0 such that, for every integer r ≥ 0, every r-shallow minor of
every graph of G has edge-density at most f(r). For a vertex u of a graph G and
an integer d ≥ 0, the d-neighborhood of u consists of those vertices in G that are
at distance at most d from u; note that NG(u) is not equal to the 1-neighborhood
because u /∈ NG(u). A graph class G has locally bounded expansion if there exists
a function g : N × N → R≥0 such that for every two integers d, r ≥ 0, for every
graph G ∈ G and for every u ∈ VG, every r-shallow minor of the d-neighborhood
of y = u in G has edge-density at most g(d, r). By definition, a graph class with
bounded expansion has locally bounded expansion, but the converse may not be
true. The syntax of the first-order logic of graphs includes logical connectives ∨,
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∧, ¬, ⇔, ⇒, variables for vertices, and quantifiers ∀, ∃ that can be applied to
these variables. The syntax also includes the following two binary relations for
two vertex variables u and v, namely “adj(u, v)”, which expresses that u and v
are adjacent, and “u = v”, which expresses that u and v are equal. Dvořák, Král’
and Thomas [7] showed that graph properties expressible in first-order logic can
be tested in linear time on classes of graphs with bounded expansion.

Theorem 2 ([7]). Let G be a class of graphs with bounded expansion, and let
Π be a first-order property of graphs. Then there exists a linear-time algorithm
that correctly decides whether a given graph from G satisfies Π.

The same authors [7] also showed a consequence of this result for graph
classes with locally bounded expansion. For some problem P , we say that there
exists an almost linear-time algorithm that solves P if for every ε > 0 there
exists an algorithm that solves P with running time O(n1+ε), where n denotes
the size of the input instance.

Corollary 1 ([7]). Let G be a class of graphs with locally bounded expansion,
and let Π be a first-order property of graphs. Then there exists an almost linear-
time algorithm that correctly decides whether a given graph from G satisfies Π.

3 The Polynomially Solvable Cases of Theorem 1

We use the classification of Feder et al. [10] on the H-Retraction problem
when H is a pseudoforest.

Theorem 3 ([10]). For a fixed pseudoforest H, the H-Retraction problem
is NP-complete if

(i) H contains a component that is not loop-connected, or
(ii) H contains a cycle on at least 5 vertices, or

(iii) H contains a reflexive cycle on 4 vertices, or
(iv) H contains an irreflexive cycle on 3 vertices.

In all other cases, the H-Retraction problem can be solved in polynomial time.

We also need the following result.

Proposition 1. Let H be a fixed graph. If the H-Retraction problem can be
solved in f(n, |VH |) time on n-vertex graphs, then the Surjective H-Coloring
problem can be solved in time O(n|VH | · f(n, |VH |)).

Proof. Let VH = {x1, . . . , x|VH |}. Let G be an irreflexive graph on n vertices. We
consider all ordered sets U = {u1, . . . , u|VH |} of |VH | vertices of G one by one.

For each ordered set U we do as follows. We map ui to xi for i = 1, . . . , |VH |.
We then check if xixj ∈ EH whenever uiuj ∈ EG. If not, we discard U . If
this condition does hold, then we add an edge uiuj whenever xixj ∈ EH and
uiuj /∈ EG. This leads to a graph G′ such that G′[U ] is isomorphic to the graph
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obtained from H after removing all self-loops from H. We solve H-Retraction
on G′. If we find a retraction f , then f is a surjective homomorphism from G to
H and we return Yes. If we do not find a retraction, then we discard U .

After discarding a set U we consider the next ordered set of |VH | vertices
of G, unless we already considered all such sets. In the latter case we return No.

Checking adjacencies between the vertices of an ordered set U of |VH | ver-
tices and constructing the corresponding graph G′ costs O(|VH |2) time. By our
assumption, we can solve H-Retraction in f(n, |VH |) time. This means that
processing each set costs O(|VH |2f(n, |VH |)) time. Because there are at most
n|VH | different ordered sets of |VH | vertices of G, we find that the total running
time is O(n|VH | · |VH |2f(n, |VH |)), which is O(n|VH | ·f(n, |VH |)), as H is assumed
to be fixed. Hence, the result follows. ut

Combining Theorem 3 and Proposition 1 yields the following result, which
covers the polynomial part of Theorem 1.

Corollary 2. For a pseudoforest H, Surjective H-Coloring can be solved
in polynomial time if every component of H is loop-connected, and H contains
no cycle on at least 5 vertices, no reflexive cycle on 4 vertices, and no irreflexive
cycle on 3 vertices.

Note that Corollary 2 does not give any specific bound on the running time; Feder
et al. [10] do not state such a bound on the running time of their polynomial-time
algorithm in Theorem 3. As a side effect of the proof of our FPT result on graph
classes with (locally) bounded expansion in Section 3.1, we obtain the following
result, a proof of which will be given in a broader context in Section 3.2.

Theorem 4. Let H be a loop-connected tree with k leaves. Then Surjective
H-Coloring can be solved in O(nk(n + m)) time on connected graphs with n
vertices and m edges.

3.1 Parameterized Complexity

We first show that there is no function f that only depends on k such that the
running time in Theorem 4 can be improved to f(k) ·nO(1), unless FPT = W[1].
Let Sk denote the graph obtained from the star K1,k after adding a self-loop to
its center. Because Sk is a loop-connected tree with k leaves, the Surjective
Sk-Coloring can be solved in O(nk(n + m)) time by Theorem 4. We observe
that for all k ≥ 1 a connected graph G on at least two vertices allows a surjective
homomorphism to Sk if and only if G has an independent set of size at least k.
Because the Independent Set problem, which asks whether a graph has an
independent set of size at least k, is W[1]-complete when parameterized by k (cf.
[6]), we immediately obtain the following.

Proposition 2. Surjective Sk-Coloring is W[1]-complete when parameter-
ized by k.
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Our next result shows that the running time in Theorem 4 cannot be im-
proved to f(k) ·no(k), unless the Exponential Time Hypothesis fails. This follows
from combining the aforementioned observation that for all k ≥ 1 a connected
graph G on at least two vertices allows a surjective homomorphism to Sk if and
only if G has an independent set of size at least k with the result of Chen et
al. [2] who showed that there is no algorithm that solves Independent Set on
n-vertex graphs in time f(k) · no(k), unless the Exponential Time Hypothesis
fails.

Proposition 3. Surjective Sk-Coloring cannot be solved in f(k)·no(k) time
on n-vertex graphs, unless the Exponential Time Hypothesis fails.

Due to Propositions 2 and 3 it is natural to consider special graph classes in
order to improve the running time. For this purpose we consider graph classes
with locally bounded expansion. Our aim is to show that Surjective Coloring
is FPT for ordered pairs (G,H) where G belongs to some graph class with locally
bounded expansion, H is a loop-connected tree, and |VH | is the parameter. Due
to Corollary 1, we obtain this result if we can show that the existence of a
surjective homomorphism from a graph G to a loop-connected tree H can be
reduced to a problem that can be expressed in first-order logic. This is our
objective for the rest of this section.

The following observation follows immediately from the definition of a sur-
jective homomorphism.

Observation 1 Let G and H be two graphs and let h : VG → VH be a mapping.
Let x ∈ VH and let W ⊆ h−1(x). Let G′ be the graph obtained from G by gluing
W into w∗. Let h′ : VG′ → VH be the mapping defined as

h′(v) =

{
h(v), v 6= w∗,

x, v = w∗.

Then the following two statements hold:

(i) if h is a surjective homomorphism from G to H, then h′ is a surjective
homomorphism from G′ to H;

(ii) if h′ is a surjective homomorphism from G′ to H, and W is independent or
else x is reflexive, then h is a surjective homomorphism from G to H.

Let v be a vertex of a partially reflexive tree H rooted at r. Observe that r
defines the parent-child relation between any two adjacent vertices. Then C(v)
denotes the set of all children of v, and D(v) ⊇ C(v) denotes the set of all
descendants of v. Note that v /∈ D(v), and consequently, v /∈ C(v) either.

Let H be a loop-connected tree that has a reflexive root r. Let LH =
{z1, . . . , zk} denote the set that consists of all leaves of H that are not equal
to r (should r be a leaf). Let U = {u1, . . . , uk} be an ordered subset of vertices
of a connected graph G. We define a partition of VG into sets Wx with x ∈ VH
inductively:
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u5

v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 u6 u7

u1 u2 u3 u4 v11

z5

r r
r

y1 r y1 y2

y3 y1
y3 z6 z7

z1 z2 z3 z4 y2

G1

r

y1 z5 y2

y3

z6 z7

z1 z2 z3 z4

H1

Fig. 1. The U -mapping fU from a connected graph G1 with U = {u1, . . . , u7} to a
loop-connected tree H1 with reflexive root r that is a surjective homomorphism from
G1 to H1.

1. Set Wzi = {ui} for i = 1, . . . , k.
2. Let x be in VH \ ({r} ∪ LH) such that Wx is not yet defined. Let Z ⊆ VH

be the set of all vertices z of H, for which we already defined corresponding
sets Wz. Assuming that D(x) ⊆ Z we set Wx =

⋃
y∈C(x)

NG(Wy) \
⋃

z∈Z
Wz.

3. Finally, to define Wr, we assume that sets Wz are constructed for all z ∈
VH \ {r}, and we set Wr = VG \

⋃
z∈D(r)

Wz.

The mapping fU : VG → VH is given by fU (v) = x if v ∈ Wx. We call this
mapping the U -mapping from G to H; recall that U is an ordered set, hence G
has exactly one U -mapping. See Figure 1 for an example.

Note that an U -mapping from a connected graph G to a loop-connected tree
H with a reflexive root does not have to be a surjective homomorphism from
G to H; it may not even be a homomorphism if two u-vertices are adjacent.
The following lemma is the first of two crucial lemmas. It gives a necessary and
sufficient condition for a U -mapping to be a surjective homomorphism, as in the
example of Figure 1. Note that h 6= fU is possible in this lemma. For instance, in
the example of Figure 1 we may modify fU by mapping v3 to y2 instead, while
still obtaining a surjective homomorphism from G1 to H1.

Lemma 1. Let H be a loop-connected tree that has a reflexive root r. Let LH =
{z1, . . . , zk}, and let U = {u1, . . . , uk} be an ordered vertex subset of a connected
graph G. Then there is a surjective homomorphism h from G to H with h(ui) =
zi for i = 1, . . . , k if and only if fU is a surjective homomorphism from G to H.

Proof. The backward implication holds, because the U -mapping of G maps every
ui to zi. We prove the forward implication by induction on |VH |.

Let |VH | = 1. Then LH = ∅, and consequently, U = ∅. Moreover, h is equal to
the function that maps every vertex of G to r. By definition, h is the ∅-mapping
from G to H.
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Let |VH | ≥ 2. First suppose that H is a star with r as the central vertex
implying that C(r) = LH ; note that this case also covers the case when H
contains only two vertices. We modify h if necessary by mapping every vertex
of VG \ U to r in order to obtain the U -mapping fU from G to H. Because
r is reflexive and h is a homomorphism from G to H, we find that fU is a
homomorphism from G to H. Because h is surjective and h(ui) = zi for i =
1, . . . , k, we find that fU is surjective.

From now on, suppose that H is not a star with central vertex r. Then we can
choose a vertex x 6= r with ∅ 6= C(x) ⊆ LH . We assume without loss of generality
that C(x) = {z1, . . . , zs} for some 1 ≤ s ≤ k. We may also assume without loss
of generality that h−1(zi) = {ui} for i = 1, . . . , s. In order to see this, suppose
that h−1(zi) contains at least one other vertex besides ui for some 1 ≤ i ≤ s.
Because h is a homomorphism and the only neighbor of zi is x, we find that h
maps every neighbor of every vertex v in G with h(v) = zi to either x or to zi; the
latter may only happen if zi is reflexive. In other words we have that NG(v) ⊆
h−1(zi)∪h−1(x) for all v ∈ h−1(zi). Then h can be redefined as follows. If x is a
reflexive vertex, then we may map all vertices of h−1(zi) \ {ui} to x. Otherwise,
if x is irreflexive, then x has a parent y, because x 6= r. Because r is reflexive
and x is irreflexive, zi cannot be reflexive; otherwise H[RH ] is disconnected, and
consequently, H would not be loop-connected. Hence, the vertices of h−1(zi)
form an independent set. This means that h maps no neighbor of any vertex v
with h(v) = zi to zi. Hence, in this case we have that NG(v) ⊆ h−1(x) for all
v ∈ h−1(zi). This means that we may map the vertices of h−1(zi)\{ui} to y; we
may even do so if y is irreflexive as the vertices of h−1(zi) form an independent
set.

Let W =
⋃s

i=1NG(ui). Note that W 6= ∅, because G is connected. We find
that every neighbor of every ui is mapped to x, because x is the only neighbor of
zi and h only maps zi to ui, as we deduced above. This means that h(W ) = {x}.

Let G′ be the connected graph obtained from G by gluing W into w∗. Then,
by Observation 1(i), the mapping h′ : VG′ → VH such that

h′(v) =

{
h(v), v 6= w∗,

x, v = w∗

is a surjective homomorphism from G′ to H.

Let G′′ = G′ − {u1, . . . , us}, and let H ′ = H − {z1, . . . , zs}. Then H ′ is a
loop-connected tree, and we choose r to be its (reflexive) root. By construction,
every ui is only adjacent to w∗ in G′. This implies that G′′ is connected. Recall
that x 6= r. Hence, LH′ = {x, zs+1, . . . , zk}. We let U ′ = {w∗, us+1, . . . , uk}.
Then h′′ = h′|VG′′ is a surjective homomorphism from G′′ to H ′ that maps w∗ to
x and ui to zi for i = s+1, . . . , k. Then, by the induction hypothesis, we find that
the corresponding U ′-mapping f ′U ′ from G′′ to H ′ is a surjective homomorphism
from G′′ to H ′. From the definition of the U -mapping fU from G to H we find
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that

fU (v) =


f ′U ′(v), v /∈ {u1, . . . , us} ∪W ,

f ′U ′(w∗), v ∈W ,

zi, v ∈ {u1, . . . , us}.

Suppose that x is reflexive. By Observation 1(ii), we obtain that fU is a
surjective homomorphism from G to H. Suppose that x is irreflexive. Recall
that h maps every vertex of W to x. Consequently, W is an independent set.
Again we use Observation 1(ii) to deduce that fU is a surjective homomorphism
from G to H. This completes the proof of Lemma 1. ut

If H is a loop-connected tree and we cannot choose a reflexive vertex to be
the root, then H must be irreflexive. In that case we cannot use Lemma 1 and
do as follows. Assume that H has at least two vertices. Choose a vertex r to be
the root of H, and let r′ be a neighbor of r in H. We say that H is rooted by
the ordered pair (r, r′). Let L∗H = {z1, . . . , zk} consist of all leaves of H that are
neither equal to r nor to r′ (should r or r′ be a leaf). Let U = {u1, . . . , uk} be an
ordered subset of vertices of a connected bipartite graph G on partition classes
V1 and V2. Let (p, q) ∈ {(1, 2), (2, 1)}. We define a partition of VG into sets Wx

with x ∈ VH inductively:

1. Set Wzi = {ui} for i = 1, . . . , k.
2. Let x be in VH \ (L∗H ∪ {r, r′}) such that Wx is not yet defined. Let Z ⊆ VH

be the set of all vertices z of H, for which we already defined corresponding
sets Wz. Assuming that D(x) ⊆ Z we set Wx =

⋃
y∈C(x)

NG(Wy) \
⋃

z∈Z
Wz.

3. Finally, to define Wr and Wr′ , we assume that sets Wz are constructed for
all x ∈ VH \ {r, r′}. We set Wr = Vp \

⋃
z∈Z

Wz and Wr′ = Vq \
⋃

z∈Z
Wz.

The mapping fp,qU : VG → VH is given by fp,qU (v) = x if v ∈ Wx. We call this
mapping the Up,q-mapping from G to H; recall that U is an ordered set, hence
G has exactly one Up,q-mapping. See Figure 2 for an example.

Just as in the case of U -mappings, an Up,q-mapping from a connected bipar-
tite graph G to an irreflexive tree H does not have to be a surjective homomor-
phism from G to H. The following lemma is the second crucial lemma. It gives
a necessary and sufficient condition for an Up,q-mapping fp,qU to be a surjective
homomorphism, as in the example of Figure 2. Note that h 6= fp,qU is possible in
this lemma.

Lemma 2. Let H be an irreflexive tree rooted by (r, r′). Let L∗H = {z1, . . . , zk},
and let U = {u1, . . . , uk} be an ordered vertex subset of a connected bipartite
graph G on partition classes V1 and V2. Then there is a surjective homomorphism
h from G to H with h(ui) = zi for i = 1, . . . , k, and moreover, with h−1(r) ⊆ Vp
and h−1(r′) ⊆ Vq if and only if fp,qU is a surjective homomorphism from G to H.

Proof. The backward implication holds, because the Up.q-mapping of G maps
every ui to zi. We prove the forward implication by induction on |VH |. Recall
that H contains at least two vertices as it is rooted by (r, r′).

12



u5

v1 v2

v3 v4 v5

v6 u6 u7 u4 v7

u1 u2 u3 v8 v9 v10
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r
y1

y1 r′ y2

y2
z6 z7 z4 y1

z1 z2 z3 r′ y2 y2

G2

r

y1

z5

r′

y2

z6 z7

z1 z2 z3 z4

H2

Fig. 2. The U1,2-mapping f1,2
U from a connected bipartite graph G2 with partition

classes V1 and V2 such that v1 ∈ V1, and with U = {u1, . . . , u7} to an irreflexive tree
H2 rooted by (r, r′) that is a surjective homomorphism from G2 to H2.

Let |VH | = 2. ThenH only contains r and r′. Then L∗H = ∅, and consequently,
U = ∅. Moreover, h is equal to the function that maps every vertex of Vp to r,
and every vertex of Vq to r′. By definition, h is the ∅p,q-mapping from G to H.

Now let |VH | ≥ 3. Then we can choose a vertex x ∈ VH with ∅ 6= C(x)\{r′} ⊆
L∗H . We assume without loss of generality that C(x)\{r′} = {z1, . . . , zs} for some
1 ≤ s ≤ k. We may also assume without loss of generality that h−1(zi) = {ui}
for i = 1, . . . , s. In order to see this, suppose that h−1(zi) contains at least
two vertices for some 1 ≤ i ≤ s. Because h is a homomorphism and H is
irreflexive, h−1(zi) is independent and h maps every neighbor of every vertex
v with h(v) = zi to x, i.e., we have NG(v) ⊆ h−1(x) for all v ∈ h−1(zi). We
redefine h as follows by mapping all vertices of h−1(zi)\{ui} to y, where y is the
parent of x unless x = r, then we take y = r′; note that we take y = r if x = r′ as
r is the parent of r′. The resulting mapping is also a surjective homomorphism
from G to H.

Let W =
⋃s

i=1NG(ui). Then W 6= ∅, because G is connected. Moreover,
h(W ) = {x}, because zi is irreflexive and has x as its only neighbor for i =
1, . . . , s. Let G′ be the connected graph obtained from G by gluing W into w∗.
Then, by Observation 1(i), the mapping h′ : VG′ → VH defined as

h′(v) =

{
h(v), v 6= w∗,

x, v = w∗

is a surjective homomorphism from G′ to H.
Let G′′ = G′ − {u1, . . . , us}, and let H ′ = H − {z1, . . . , zs}. Then H ′ is

an irreflexive tree containing r and r′, and we root it by (r, r′). By construc-
tion, every ui is only adjacent to w∗ in G′. This implies that G′′ is connected.
As we only removed vertices, G′′ is bipartite with partition classes V ′′1 ⊆ V1
and V ′′2 ⊆ V2. Recall that x /∈ {r, r′}. Hence, L∗H′ = {x, zs+1, . . . , zk}. We let
U ′ = {w∗, us+1, . . . , uk}. Then h′′ = h′|VG′′ is a surjective homomorphism from
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G′′ to H ′ that maps w∗ to x, and ui to zi for i = s + 1, . . . , k, and moreover,
h′′−1(r) ⊆ V ′′p and h′′−1(r′) ⊆ V ′′q . Then, by the induction hypothesis, we find
that the corresponding U ′p,q-mapping (fp,qU ′ )′ from G′′ to H ′ is a surjective ho-
momorphism from G′′ to H ′. From the definition of the Up,q-mapping fp,qU from
G to H we find that

fp,qU (v) =


(fp,qU ′ )′(v), v /∈ {u1, . . . , us} ∪W ,

(fp,qU ′ )′(w∗), v ∈W ,

zi, v ∈ {u1, . . . , us}.

Because h(W ) = {x} and x is irreflexive, W is independent. We use Observa-
tion 1(ii) to deduce that fp,qU is a surjective homomorphism from G to H. This
completes the proof of Lemma 2. ut

We are now ready to prove the main result of this section, which shows that
Surjective Coloring is FPT for ordered pairs (G,H) where G belongs to
some graph class with locally bounded expansion, H is a loop-connected tree,
and |VH | is the parameter.

Theorem 5. Let G be a graph class of locally bounded expansion, and let H be a
loop-connected tree. Then the problem Surjective H-Coloring can be solved
in almost linear time on G.

Proof. By Corollary 1, we have proven Theorem 5 after showing that the exis-
tence of a surjective homomorphism from G to H can be reduced in constant
time to a problem that can be expressed in first-order logic.

LetH be a loop-connected tree. LetG be a graph with componentsG1, . . . , Gp

for some p ≥ 1. Then G allows a surjective homomorphism to H if and only if
every Gi allows a surjective homomorphism to some Hi for connected induced
subgraphs H1, . . . ,Hp of H such that VH =

⋃p
i=1 VHi

. We can construct all pos-
sible ordered tuples (H1, . . . ,Hp) in constant time by brute force, as H is fixed.
Hence, we may assume that p = 1, i.e., that G is connected.

We distinguish between the cases RH 6= ∅ and RH = ∅. First suppose that
RH 6= ∅. If H has one vertex, then G has a trivial surjective homomorphism,
namely the homomorphism that maps every vertex of G to the single reflexive
vertex of H. We now assume that H has at least two vertices. We choose a
root vertex r in H, which defines the parent-child relation between every pair
of adjacent vertices. Because RH 6= ∅, we may assume that r is reflexive. We
let {z1, . . . , zk} be the set of all non-root leaves of H. By Lemma 1, there is a
surjective homomorphism from G to H if and only if there is an ordered subset
U = {u1, . . . , uk} of vertices of G such that fU is a surjective homomorphism
from G to H.

We first show how to construct a first-order logic formula φx for every x ∈ VH
such that for every v ∈ VG, φx(v) expresses the property v ∈Wx, or equivalently,
the property fU (v) = x. For this purpose we use the inductive definition of Wx.
For i = 1, . . . , k, we define φzi(v) as v = ui. Let x ∈ VH \ {r, z1, . . . , zk}. Let
Z ⊆ VH be the set of all vertices z of H for which the formulas φz have already
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been constructed. Assuming that D(x) ⊆ Z, we let φx(v) express the following
properties that together describe the property v ∈Wx:

1. there are y ∈ C(x) and u ∈ NG(v), such that φy(u) holds;
2. for all z ∈ Z and all u ∈ VG, if φz(u) then u 6= v.

Finally, to define φr(v), we assume that formulas φz have been constructed for
all z ∈ VH \ {r}. Then φr(v) expresses the following property: for all z ∈ D(r)
and all u ∈ VG, if φz(u) then u 6= v.

We can now express the property that there is an ordered set of vertices
U = {u1, . . . , uk} of G such that fU is a surjective homomorphism from G to
H: there are u1, . . . , uk such that ui 6= uj if i 6= j, and for all x ∈ VH , there
is v ∈ VG such that x = f{u1,...,uk}(v) (expressing the surjectivity property),
and for all v, w ∈ VG, v 6= w, there are x, y ∈ VH such that the following three
conditions (expressing the homomorphism property) hold:

(i) fU (v) = x and fU (w) = y;
(ii) if x = y, then adj(v, w) if and only if x ∈ RH ;
(iii) if x 6= y, then adj(v, w) if and only if x, y are adjacent in H.

We observe that the formulas φu are constructed in constant time, as H is fixed.
Now suppose that RH = ∅. We answer No if G is not bipartite, because only

bipartite graphs allow a homomorphism to a bipartite graph. Hence, assume
that G is bipartite with partition classes V1 and V2. If H has one vertex, then G
has a surjective homomorphism to H if and only if G also has one vertex. Let
H have at least two vertices. Choose a vertex r to be the root of H, and let r′

be a neighbor of r in H. We let {z1, . . . , zk} be the set of all leaves of H distinct
from r, r′. By Lemma 2, there is a surjective homomorphism from G to H if and
only if there is an ordered subset U = {u1, . . . , uk} of vertices of G and a pair

(p, q) ∈ {(1, 2), (2, 1)} such that f
(p,q)
U is a surjective homomorphism from G to

H. By an analysis similar to the case when RH 6= ∅, we can express in first-order
logic the property that there is an ordered set of vertices U = {u1, . . . , uk} of G
such that f1,2U or f2,1U is a surjective homomorphism from G to H. Just as in the
case when RH 6= ∅ this takes constant time. ut

3.2 A Remark on the Running Time Analysis

Lemmas 1 and 2 immediately yield an O(n + m) time algorithm that solves
H-Retraction on a connected graph G with n vertices and m edges when H
is a loop-connected tree. This can be seen as follows. Let H ′ denote the induced
subgraph of G that is isomorphic to H. Then H ′ fixes the set U . Suppose that
RH 6= ∅. We observe that the construction of fU respectsH ′. Hence, by Lemma 1,
we only have to construct fU and check if the obtained mapping is a surjective
homomorphism from G to H. This takes O(n + m) time. If RH = ∅, we first
check whether G is bipartite, say with partition classes V1 and V2, as otherwise
the answer is No. We also recall that for every homomorphism h from G to H

15



either h−1(x) ⊆ V1 or h−1(x) ⊆ V2 for each x ∈ VH . Hence we can use Lemma 2
to derive the same running time.

Note that we can also obtain an O(n+m) running time for H-Retraction
if G is not connected and H is a loop-connected tree. The reason is that H
will be an induced subgraph of a component of G, because H is a connected
graph. If H contains a reflexive vertex, then we map the vertices of the other
components of G to this vertex. If H is irreflexive, then every component of G
must be bipartite, and we map the vertices of the other components of G to an
edge of H should H contain at least one edge (if H consists of a single vertex,
then the problem is trivial).

The O(n+m) running time can also be obtained by analyzing the algorithm
of Feder et al. [10]. However, they do not define the mappings fU and fp,qU

explicitly. We had to do this in order to prove Theorem 5.
By Proposition 1, we obtain an O(n|VH |(n+m)) time algorithm that solves

Surjective H-Coloring on a graph G when H is a loop-connected tree. If
G is connected, then we may obtain a considerable improvement, because the
number of leaves of H can be considerably less than the total number of vertices
of H. In that case, we consecutively check all ordered k-vertex sets U and apply
Lemma 1 or 2, respectively. Because the number of different sets U is O(nk), we
find a total running time of O(nk(n+m)). Note that in the case that RH = ∅,
we must also consider the pairs (p, q) = (1, 2) and (p, q) = (2, 1). However, this
only influences the constant hidden in the big-O notation. Note that this is a
proof of Theorem 4.

4 The NP-Complete Cases of Theorem 1

In this section we show that the Surjective H-Coloring problem is NP-
complete for any fixed tree H that is not loop-connected. In order to do this, we
need some additional technical lemmas and observations.

Observation 2 Let h be a homomorphism from a graph G to a graph H. Let u
and v be in VG with h(u) = x and h(v) = y. Then distG(u, v) ≥ distH(x, y).

Observation 3 Let h be a homomorphism from a graph G to a partially reflex-
ive tree H. Let u, v, w form a triangle in G. Then h maps at least two vertices
of {u, v, w} to the same reflexive vertex in H.

Recall that H/e denotes the graph obtained from a graph H after contracting
an edge e.

Observation 4 Let e = xy be an edge of a graph H with x, y ∈ RH . Let z be the
(reflexive) vertex obtained by contracting xy. If h is a surjective homomorphism
from a graph G to H, then

h′(v) =

{
h(v), v ∈ VG \ h−1({x, y})
z, v ∈ h−1({x, y})

is a surjective homomorphism from G to H/e.
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Lemma 3. Let H be a connected graph with RH 6= ∅. Let x be a pendant ir-
reflexive vertex of H. Let H ′ = H − x. If h is a surjective homomorphism from
a graph G to H, then there is a surjective homomorphism h′ from G to H ′, such
that h′(v) = h(v) for all vertices v ∈ VG \ h−1(x).

Proof. Let h′ be a function that maps every v ∈ VG \ h−1(x) to h(v). We show
how to extend h′ to VG. Let y be the (unique) neighbor of x in H. If y ∈ RH , then
we set h′(v) = y for all v ∈ h−1(x). Otherwise, the assumption that RH 6= ∅
implies that y is adjacent to a vertex z 6= x, and we set h′(v) = z for all
v ∈ h−1(x). Because x is irreflexive, h−1(x) is an independent set. Hence, h′ is
a surjective homomorphism from G to H ′ (even if h′(v) = z for all v ∈ h−1(x)
and z is irreflexive). ut

Lemma 4. Let ` ≥ 2 be an integer, and H be a tree with RH 6= ∅ such that

1. for every two different vertices x, y ∈ RH , distH(x, y) ≥ `;
2. for every irreflexive leaf x ∈ VH and every y ∈ RH , distH(x, y) ≥ `.

Let G be a connected graph with a set U ⊂ VG such that h(U) ⊆ RH for some
surjective homomorphism h from G to H. Let u ∈ VG \ U be a vertex that has
distG(u, U) < ` and whose neighborhood is a clique. Let G′ = G − u. Then
h′ = h|VG′ is a surjective homomorphism from G′ to H.

Proof. Because h is a homomorphism from G to H, we find that h′ is a homo-
morphism from G′ to H. Hence we are left to prove that h′ is surjective, i.e.,
that h′(VG′) = VH . This will be true, if there is a vertex v in G′ that h maps to
z = h(u).

First suppose that either z ∈ RH or else that z is a leaf not in RH . Because
distG(u, U) < `, there is a vertex v ∈ U such that distG(u, v) < `; note that
v belongs to G′. Observation 2 combined with conditions 1 and 2, respectively,
tells us that u and v cannot be mapped to two different vertices of RH . Hence,
h(v) = h(u) = z.

Now suppose that z is not in RH and that z is not a leaf. Then z is an
inner vertex of an x, y-path P for two distinct leaves x, y in H. Let r, s be two
vertices of G such that h(r) = x and h(s) = y, and let Q be a shortest r, s-path
in G; observe that u /∈ {r, s}. Because H is a tree, P is the only path between
x and y. Then, VP ⊆ h(VQ). Moreover, u is not an inner vertex of Q, because
the neighborhood of u is a clique and Q is a shortest path, and consequently,
an induced path in G. Therefore, Q is a path in G′. Consequently, G′ contains
a vertex v (namely a vertex that lies on Q) with h(v) = z. ut

In our hardness proof, we reduce from a variant of the Matching-Cut
problem. This problem is to test whether a connected graph G has a matching-
cut M , i.e., a matching M ⊆ EG such that G −M is disconnected. Patrignani
and Pizzonia [25] prove that this problem is NP-complete. We call two vertices
s and t of a graph G the (matching) roots of G if s and t belong to two different
components of G−M for every matching-cut of G (should G have at least one
matching-cut). This leads to the following variant that is useful for our purposes.
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Matching-Cut with Roots
Instance: a connected graph G of minimum degree at least two with roots s, t.
Question: does G have a matching-cut?

We emphasize that by definition, the roots s and t are part of the input of every
instance of Matching-Cut with Roots, i.e., we do not have to check whether
the specified vertices s and t are roots as they are given to us. It is stated in
Lemma 5 that Matching-Cut with Roots is NP-complete. This lemma is
essentially due to Patrignani and Pizzonia [25] as it immediately follows from
the following small observation in their hardness reduction from the Not-All-
Equal-3-Satisfiability problem, which is an NP-complete problem [26]. For
a given instance of Not-All-Equal-3-Satisfiability, Patrignani and Pizzo-
nia [25] construct a connected graph G of minimum degree at least two with
the following property: G contains two disjoint sets F and T of vertices (that
compose a so-called false chain and true chain, respectively) such that for every
matching-cut M , the sets F and T are in distinct components of G−M . We use
their construction and choose s ∈ F and t ∈ T respectively.

Lemma 5. The Matching-Cut with Roots problem is NP-complete.

We are now ready to prove the main result of this section.

Theorem 6. For any fixed tree H that is not loop-connected, the Surjective
H-Coloring problem is NP-complete.

Proof. Because checking if a given mapping is a surjective homomorphism can
be done in polynomial time, the problem belongs to NP. In order to prove NP-
hardness we reduce from the problem Matching-Cut with Roots, which is
NP-complete by Lemma 5. We start with some auxiliary constructions. Let H
be a tree that is not loop-connected. We choose two vertices p, q ∈ VH that
belong to two different components of H[RH ] in such a way that distH(p, q) ≤
distH(x, y) for any pair x, y that are in two different components of H[RH ]. Let
` = distH(p, q). By definition, ` ≥ 2. Let H1 and H2 be two different components
of the forest obtained from H after removing the edge incident with q in the
unique p, q-path in H. Assume that p ∈ VH1

and q ∈ VH2
. We construct graphs

Fi for i = 1, 2 (see Figure 3) as follows:

1. For each vertex x ∈ VHi
\RH , we introduce a vertex t

(1)
x ;

2. For each vertex x ∈ VHi
∩RH , we introduce two adjacent vertices t

(1)
x , t

(2)
x ;

3. For each edge xy ∈ EHi
, we add an edge between any t

(h)
x and any t

(j)
y .

We say that t
(1)
p , t

(2)
p are the roots of F1, and t

(1)
q , t

(2)
q are the roots of F2.

We now describe our polynomial-time reduction from Matching-Cut with
Roots to Surjective H-Coloring. Let G be a connected graph that has
minimum degree at least two and that has matching roots s and t. Note that
we may assume without loss of generality that G is irreflexive. Recall that by
definition s and t are separated by every matching-cut in G (if a matching-cut
exists). From F1, F2, and G we construct a graph G′ (see Figure 4) as follows:
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q

t
(2)
q

F1 F2

Fig. 3. The construction of the graphs F1 and F2 from a tree H that is not loop-
connected; note that ` = 3 in this example and that the pair (p, q) is not unique.

1. For each u ∈ VG we construct a clique Cu on max{degG(u), 3} vertices if
u /∈ {s, t} and on degG(u) + 2 vertices if u ∈ {s, t}. We denote d = degG(u)
vertices of Cu by gu,e1 , . . . , gu,ed to indicate that they correspond to the edges
e1, . . . , ed that are incident with u in G. Because G has minimum degree at
least two, Cu has at most one other vertex if u /∈ {s, t}; otherwise Cu has
two other vertices. If Cu has one other vertex then we denote this vertex by

g
(1)
u , and if Cu has two other vertices then we denote these vertices by g

(1)
u

and g
(2)
u , respectively.

2. For each edge e = uv ∈ EG, the vertices gu,e, gv,e are identified if ` = 2, and
the vertices gu,e, gv,e are joined by a path Pe of length ` − 2 if ` > 2. For
` = 2, we let Pe be the single vertex gu,e = gv,e.

3. We add F1 by identifying t
(1)
p , g

(1)
s and by identifying t

(2)
p , g

(2)
s .

4. We add F2 by identifying t
(1)
q , g

(1)
t and by identifying t

(2)
q , g

(2)
t .

G

s

t

F1

g
(1)
t

F1

F2

g
(1)
t

F2

G′, ` = 2 G′, ` = 3

g
(2)
s g

(2)
s

g
(2)
t g

(2)
t

g
(1)
sg

(1)
s

Fig. 4. The construction of G′.

We claim that G has a matching-cut if and only if there exists a surjective
homomorphism from G′ to H.

First suppose that G has a matching-cut M . Note that in G′ this matching-
cut is represented by a set P of |M | mutually vertex-disjoint paths Pe, such that
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no two vertices of any two different paths Pe and Pe′ are adjacent. Moreover,
if we remove all vertices of all paths in P then we disconnect G′. In particular,
if ` = 1 then the paths in P are single vertices, which form an independent set
that disconnects G′. Let V1 be the vertex set of the component of G −M that
contains s, and let V2 = VG \ V1. Note that t ∈ V2, because s ∈ V1 and s, t are
the two given roots of G. We define a mapping h : VG′ → VH as follows.

Consider an edge e = uv ∈ EG. If u and v are both in V1 or both in V2,
then we let h map every vertex from Pe to p or q, respectively. Suppose that
one of u, v, say u, belongs to V1, whereas the other one, v, belongs to V2. Let
Pe = a1 · · · a`−1 (note that a1 = gu,e and that a`−1 = gv,e). Let px1 · · ·x`−1q
denote the p, q-path in H. We let h map ai to xi for i = 1, . . . , `− 1. Finally, we

let h map every vertex t
(i)
x ∈ VF1

∪VF2
to x. We refer to Figure 5 for an example.

x2

G

s

t

F1

F2

G′, l = 3

p

q

x1

x1

x2

Fig. 5. An example of the surjective homomorphism h from G′ to H that is obtained
from a matching-cut in G. As the matching-cut in G we took the two vertical edges
in G that are displayed in bold. In G′ we did not denote any vertex labels but they
are all the same as in Figure 4. Instead, we show that all displayed vertices in the top
dotted area including g

(1)
s and g

(2)
s are mapped to p by h, whereas all vertices in the

bottom dotted area including g
(1)
t and g

(2)
t are mapped to q. Also note that the two

matching edges in G are in 1-to-1 correspondence with the two paths (of length 1) in
G′, the ends of which are mapped to x1 and x2.

We claim that h is a surjective homomorphism from G′ to H. This can be
seen as follows. Recall that the paths in P are in 1-to-1 correspondence to the
edges in M . Hence, V1 corresponds to one component in the graph obtained from
G′ after removing the vertices of the paths in P. This means that h maps all
vertices of every clique Cu either to one of p, x1 or else to one of q, x`−1. Because
M is a matching-cut of G, we find that h maps at most one vertex of any clique
Cu not to p or q. In that case, h maps such a vertex to x1 or to x`−1 depending
whether u is an end-vertex of an edge in M that belongs to V1 or V2. Finally,

h maps every vertex t
(i)
x ∈ VF1

∪ VF2
to x. This does not violate the definition

of a homomorphism either, because the only vertices of the subgraphs F1 and

F2 of G′ that have neighbors outside F1 and F2 are g
(1)
s , g

(2)
s , and g

(1)
t , g

(2)
t ,

respectively, and these vertices are mapped to p or q, respectively. We conclude
that h is a homomorphism from G′ to H. Because M contains at least one edge,
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there is at least one edge uv ∈ VG with u ∈ V1 and v ∈ V2. Hence, the vertices

x1, . . . , x`−1 are in h(VG′). Then, because h maps every vertex t
(i)
x ∈ VF1

∪ VF2

to x, we find that h(VG′) = VH . Hence, h is surjective.

Now suppose that there exists a surjective homomorphism h from G to H.
Throughout the proof we make heavily use of Observation 3 as we have given
the cliques Cu size at least three. By repeatedly applying this observation, we
find that h maps all but at most one vertex of every clique Cu in G′ to one or
more reflexive vertices of H. By the definition of a homomorphism these reflexive
vertices belong to the same component of H[RH ]. Claim 1 states that G′ must
contain two cliques Cu and Cv that contain vertices that are mapped to reflexive
vertices from two different components of H[RH ]. We first show that Claim 1 is
all we need to finish the proof. Then afterward we will prove Claim 1.

Claim 1. There are two vertices u, v ∈ VG such that h(Cu)∩RH and h(Cv)∩RH

belong to the vertex sets of two different components of H[RH ].

Assuming that Claim 1 holds we can do as follows. We choose a component D
of H[RH ] such that the set V1 = {v ∈ VG | h(Cv) ∩ VD 6= ∅} is nonempty. Let
V2 = VG \ V1. Claim 1 tells us that V2 6= ∅. Consider the edge-cut M = {uv ∈
EG | u ∈ V1, v ∈ V2}. Let e = uv be an arbitrary edge in M . By Observation 3
we find that h maps at least |Cu| − 1 vertices of Cu to VD, and at least |Cv| − 1
vertices of Cv to the vertices of some other component D′ of H[RH ]. Let P be
the shortest path in H with endpoints in D and D′. By definition, P has length
at least `. Therefore, all vertices of Pe must be mapped to inner vertices of P .
Hence P has length `, all internal vertices of P are irreflexive, and the vertices
gu,e ∈ Cu and gv,e ∈ Cv are mapped to irreflexive vertices of H. Because at
most one vertex of Cu or Cv can be mapped to a vertex outside D or D′,
respectively, M contains no other edges incident with u or v. This means that
M is a matching-cut in G meaning that we are done subject to proving Claim 1.
This is what we do below.

We prove Claim 1 as follows. In order to obtain a contradiction, suppose that
there is a component D of H[RH ] with h(Cu) ∩ RH ⊆ VD for every u ∈ VG.
Let H ′ be the tree obtained from H by contracting all edges between different
reflexive vertices, and recursively removing all irreflexive pendant vertices from
H that are at distance at most `− 1 from RH ; see Figure 6 for an example. By
Observation 4 and Lemma 3, we obtain a surjective homomorphism h′ from G′

to H ′. Note that the components of H ′[RH′ ] are isolated vertices. Let z be the
vertex in H ′ that is obtained by contracting the edges in H[D]. Then for any
u ∈ VG, we have h′(Cu)∩RH′ = {z}. Let X be the set of irreflexive vertices that
we have removed from H when we constructed H ′. Note that H ′ has no pendant
irreflexive vertices that are adjacent to reflexive vertices, because we would have
put such vertices in X as ` ≥ 2.

We consider the graphs F1 and F2. Recall that the vertices of each Fi cor-
respond to the vertices of Hi, and that for each reflexive vertex x ∈ VHi

we

introduced two adjacent vertices t
(1)
x , t

(2)
x of Fi that are adjacent to exactly the

same neighbors in G′. Hence, by Observation 3, any surjective homomorphism
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H H ′

Fig. 6. An example of a graph H and the corresponding graph H ′.

from G′ to H ′ maps at least one of the vertices t
(1)
x , t

(2)
x to a vertex of RH′ . By

symmetry, we may assume without loss of generality that h′ maps every t
(1)
x to

a vertex in RH′ . Let U = {t(1)x | x ∈ RH} ⊆ VF1
∪ VF2

be the set that will corre-
spond to the set U in Lemma 4. In order to apply this lemma we do as follows.
We consider the vertices of X in the order in which they were removed from H.

For each vertex x ∈ X, we remove the corresponding vertex t
(1)
x from G′. After

we have finished, we have obtained a graph G′′. Let F ′1 and F ′2 be the subgraphs
of G′′ induced by the remaining vertices of F1 and F2, respectively. Note that

we never destroy the connectivity of G′ while removing a vertex t
(1)
x . Moreover,

at the moment we remove a vertex t
(1)
x , it is of distance at most `− 1 from the

set U due to the definition of X. Hence we may apply Lemma 4 every time we

remove a vertex t
(1)
x with x ∈ X. Then in the end we find that h′′ = h′|VG′′ is

a surjective homomorphism from G′′ to H ′. Note that for each u ∈ VG we have
h′′(Cu)∩RH′ = {z}, because h′(Cu)∩RH′ = {z}. We modify h′′ into a mapping
f : VG′′ → VH′ that is defined as follows:

1. for each edge e ∈ EG, f(a) = z if a is an inner vertex of Pe;

2. for each u ∈ VG, f(g) = z if g ∈ Cu;

3. for each u ∈ F ′1 ∪ F ′2, f(u) = h′′(u).

We claim that f is a surjective homomorphism from G′′ to H ′. If f = h′′ then
this is the case, because h′′ is a surjective homomorphism from G′′ to H ′. Assume
that f 6= h′′.

First suppose that e = uv is an edge of G such that h′′ does not map all
inner vertices of Pe to z. Let a be an inner vertex of Pe with y = h′′(a) and
distH′(y, z) = max

b∈VPe

distH′(h′′(b), z). Note that distH′(y, z) < `, because the

length of Pe is `−2 and because h′′ maps at most one vertex of Cu and at most one
vertex of Cv to an irreflexive vertex, whereas h′′ maps all other vertices of Cu∪Cv

to z, due to Observation 3 combined with the fact that h′′(Cu) ∩RH′ = {z} for
all u ∈ VG . Hence, y is an inner vertex of a path P in H ′ with irreflexive inner
vertices that either joins z with another vertex in RH′ or that joins z with an
irreflexive leaf of H ′. Let y′ be the neighbor of y in H ′ that lies between z and
y in P ; note that y′ = z is possible. Because h′′ maps at most one vertex of
Cu and at most one vertex of Cv to an irreflexive vertex and all other vertices
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of Cu ∪ Cv to z, we obtain h′′(NG′′(a)) = {y′}. This means that we can do as
follows. If y′ = z, then we remap a to z. Otherwise, there is a neighbor y′′ of y′

that lies on P between z and y′, and we remap a to y′′. This new mapping is
a homomorphism from G′′ to H ′. In order to prove that it is vertex-surjective,
we observe that G′′ contains a path, the vertices of which are mapped to the
vertices of P by h′′. Therefore, there is a vertex b 6= a in this path that is mapped
to y. By repeatedly applying this procedure, we get a surjective homomorphism
that maps all inner vertices of each path Pe to z. From now on we assume that
h′′(a) = z for every inner vertex a of every path Pe.

Now suppose that there is a vertex u ∈ VG such that there is a vertex g ∈ Cu

that h does not map to z. Because Cu is a clique with at least three vertices, g
is the unique vertex of Cu with this property due to Observation 3. Moreover,
h′′(NG′(g)) = {z}. Hence we can remap g to z. By the same arguments as before,
the modified mapping is a surjective homomorphism from G′ to H ′. We repeat
this procedure as long as necessary. In this way, we obtain f and find that f is
a surjective homomorphism from G′′ to H ′.

We now define a mapping fe : EG′′ → EH′ that maps the edges of G′′ to the edges
of H ′ such that for each ab ∈ EG′′ , we have fe(ab) = f(a)f(b). Let E∗H′ be the set
of all edges of H ′ that are not self-loops. Because f is a surjective homomorphism
from G′′ to H ′ and G′′ is connected, we find that E∗H′ ⊆ fe(EG′′). Let xy ∈ E∗H′ .
Because E∗H′ ⊆ fe(EG′′), there exists an edge ab ∈ EG′′ with fe(ab) = xy (so,
f(a) = x and f(b) = y). Because all components of H ′[RH′ ] are isolated vertices,
no two reflexive vertices of H ′ are adjacent. This means that at least one of the
vertices x, y, say y, is irreflexive. Then, by the definition of f , we find that
ab ∈ EF ′

1
∪ EF ′

2
. There are four types of edges in F ′1 and F ′2:

A. an edge t
(1)
x′ t

(2)
x′ for each reflexive vertex x′ ∈ VH ;

B. an edge t
(i)
x′ t

(j)
y′ for each pair of different reflexive vertices x′, y′ ∈ VH and

each pair i, j ∈ {1, 2};

C. an edge t
(1)
x′ t

(j)
y′ for each irreflexive vertex x′ ∈ VH , each reflexive vertex

y′ ∈ VH and each j ∈ {1, 2};

D. an edge t
(1)
x′ t

(1)
y′ for each pair of different irreflexive vertices x′, y′ ∈ VH .

Suppose that ab is an edge of type A or type B. Then, as y is irreflexive, we apply
Observation 3 to deduce that x is reflexive and that f(NG′′(b)) = {x}. Because
H ′ has no irreflexive leaves adjacent to reflexive vertices by construction, y has
another neighbor in H ′ not equal to x. Hence, y is an inner vertex of a path P
in H ′ with irreflexive inner vertices that either joins x with another vertex in
RH′ or that joins x with an irreflexive leaf of H ′. Because G′′ is connected and
f is vertex-surjective, G′′ contains a path, the vertices of which are mapped to
the vertices of P by f . Because f(NG′′(b)) = {x}, we find that b is not on this
path. Hence, there must be an edge in G′′ of type C or D that is mapped to xy
by fe. So, we may assume that ab is of type C or D.

If ab is of type C, then we may assume without loss of generality that ab =

t
(1)
x′ t

(1)
y′ . Then Observation 3 tells us that either fe(t

(1)
x′ t

(2)
y′ ) = xy or fe(t

(1)
x′ t

(2)
y′ )
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is a self-loop in H ′. Let mC and mD denote the number of edges of type C
and the number of edges of type D, respectively. Then the above observation for
the edges of type C combined with the fact that E∗H′ ⊆ fe(EG′′) implies that
|E∗H′ | ≤ mC/2 +mD. However, we also have mC/2 +mD ≤ |E∗H′ | − 1, as in the
construction of F1, F2, and hence also in the construction of F ′1, F ′2, we removed
the edge on the path from p to q that was incident with q from H, and this
particular edge is in E∗H′ as well. By this contradiction we have proven Claim 1.
This completes the proof of Theorem 6. ut

5 Future Research

We have shown that for any partially reflexive tree H, the Surjective H-
Coloring problem is polynomial-time solvable if H is loop-connected and NP-
complete otherwise. Determining a complete complexity classification of the
Surjective H-Coloring seems a very challenging open problem, and even
conjecturing a possible dichotomy (between P and NP-complete) is difficult.

A natural question that also gives an indication on why this problem is so
challenging is whether the three problems H-Compaction, H-Retraction and
Surjective H-Coloring are polynomially equivalent to each other for each
target graph H. Also, the computational complexity classifications of the H-
Compaction problem and H-Retraction problem, respectively, are still far
from being completed. The well-known Feder-Vardi conjecture [11] states that
the H-Constraint Satisfaction problem, where H is some fixed finite target
structure, has a dichotomy. Feder and Vardi [11] showed that this conjecture is
equivalent to the conjecture that H-Retraction has a dichotomy.

Acknowledgments. The authors would like to thank Barnaby Martin for fruit-
ful discussions and useful comments on our paper. The authors are also grateful
to the anonymous referees for their constructive suggestions and remarks.

References
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20. J. Nešetřil and P. Ossona de Mendez, Linear time low tree-width partitions and
algorithmic consequences, in: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC 2006), pp. 391–400.
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