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ABSTRACT

Aim The speed of range expansions, be itinvasive species colonizinganew areaor species
tracking a moving climaticniche, critically depends on dispersal. Models for species’ range
expansions generally assumedispersal to be independent of local population densities.
However, animals often disperse in response to high population size, or alternatively may avoid
or leave areas of very low population sizes. We explore whether such densitydependence in

dispersal can safely be ignored when predicting the speed of range expansions.

Location Simulation study

Methods We use simulations to examine the effect of different forms of density dependence in
emigration and immigration on the speed of range expansions. Foremigration, we consider
linearand non-linearforms of positive density dependence, negative density dependence at low
population densities, and constant emigration rates. Forimmigration, we consider options
where individuals avoid crowded patches, are attracted to the presence of conspecifics or settle

independent of local density.

Results The speed of range expansion was slowest when emigration was strongly positively
related to density (higheremigration at higher densities) and whenindividuals avoided settling
inlow-density patches. Ittended to be fastest under negatively density-dependent emigration
(higheremigration at lower densities). These results were consistent across two different life

histories and different levels of carrying capacity.

Main conclusions Our results suggest that considering density-dependent dispersaland the
mechanisms leadingtoitare importantforcorrectly predicting species’ rates of spread.

Organisms with a tendency to aggregate, e.g. by relying on conspecificattractionin settlement
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and emigratingmainlyinresponse to highlocal densities, are predicted to be least likely to

expandtheirrangesand most at risk from spatial shiftsin their climaticniches.

Keywords: Allee effect, climate change, density-dependent emigration, density-dependent

immigration, global change, invasion, range expansion, settlement, simulation model
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INTRODUCTION

Understanding species’ range dynamics under climate change isan urgentgoal in
conservation biology (Huntley et al., 2010), yetthe speed at which species can track a moving
climaticniche remains one of the bigopen questions. Studies of the spread of invasive species
suggestthat dispersal is the mostcritical determinant of the speed at which species expand
(Neubert & Caswell 2000). Even though species distribution models have started to consider
dispersal explicitly (Midgley et al., 2006), it is not yet clear what aspects of dispersal need to be
considered. One potentiallyimportant aspect of dispersal isits relationship to local population

density.

Several local processes can cause the emigration rates fromalocal patch to dependon
densityin different ways (Sutherland et al., 2002). Territorial individuals can settle accordingto
theideal free distribution (Fretwell & Lucas Jr, 1970), where fitness decreases with local density
and individuals choose to settlein the patch where they can maximise theirfitness. This
mechanism leads to positively density-dependent emigration, i.e. higher emigration rates as
population densities increase. The relationship between emigration rate and density is expected
to dependonthe relative quality of the other nearby habitat patches. If territorial individuals
settle accordingto an ideal despoticdistribution, where individuals can defend territories
(Fretwell & Lucas Jr, 1970), emigration should be related to density in afashion thatresembles a
step-wise function. There would be littleemigration aslong as vacant territories existin the
currentcell and full emigration otherwise. Otherforms of competition should also lead to
positively density-dependent emigration. Onthe other hand, negatively density-dependent

emigration, i.e. increased emigration rates as local density declines, has mostly been related to
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social factors, for example if aggregations are beneficial for foraging or predator avoidance.

If dispersal through areas of high density is risky due to conspecificaggression or high predator
presence, negatively density-dependent emigration can also result (Matthysen, 2005). Finally, if
individuals dispersedue to intrinsic(e.g. geneticor morphological) reasons, emigration rates

may be unrelated to density.

Immigrationis often density dependent for similarreasons to emigration. It may be more
difficulttofind avacant territoryin an areaof high density, in which case immigration would be
negativelydensity dependent, i.e. individuals are less likely toimmigrate into patches of high
density. Onthe otherhand, positive density dependence in immigration may arise from
conspecificattraction (Stamps, 1988, 2001; Greene & Stamps, 2001). High population densities
may indicate good habitat or opportunities forfindinga mate. Bark beetles, forexample, are

strongly attracted to conspecifics (Wood, 1982).

Most theoretical studies assume dispersal rates to be independent of local population
density (butsee Veit & Lewis 1996). However, if characteristics of dispersal are allowed to
evolve, positive density dependence often emerges (Travis, 1999; Kun & Scheuring, 2006;
Hovestadt et al., 2010). Positive density dependence was also assumed in the original
formulation of source-sink models (Pulliam, 1988). On the otherhand, McPeek and Holt (1992)
foundthat optimal dispersal strategies should vary spatially in a way that patches exchange
equal numbers of dispersers, thus leading to a negative correlation between local carrying

capacity and emigration rate across space. Empirical support forthese different forms of
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dispersal, including negative density dependence, has been found (e.g. Doncaster et al.
1997; Diffendorfer 1998; Kuussaari et al. 1998; reviews: Denno & Peterson 1995; Sutherland,

Gill, & Norris 2002; Matthysen 2005).

Bestat al. (2007) recently found that positive density dependencein dispersal can slow
species’ spatial responseto climaticchange compared to species with density-independent
dispersal. Here, we extend these results by examining awide range of plausible dispersal forms
interms of theireffect on species’ range expansion ratesin asimulation model. We consider
positive and negative density dependence both in emigration and immigration. We limitour
investigations to animals that have a distinct dispersive life stage and remain relatively
sedentary throughoutthe rest of theirlife. We considertwo general life histories, an annual life
cycle with high fecundity and low survival (e.g. a univoltine butterfly), and a multi-annual life
cycle withrelatively low fecundity, high survival and overlapping generations (e.g. a non-

passerine bird ora mammal).

We distinguish between three phases of dispersal: emigration; transit; and immigration
(sensulms & Yoccoz 1997). We considerdensity dependence in emigration and immigration, i.e.
the decisionstoleave andto settle. The distance travelled (transit) has also been found to be
density dependent but this may often be a result of density-dependent settlement decisions
mostly affecting short movements. The studies thatfound density-dependent dispersal

distances were conducted at relatively smallspatial scales (Matthysen, 2005). We do not
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examine density dependence in dispersal distance explicitly, butitisan emergent property

of dispersal subject to density-dependent emigration and immigration.

Species often colonise suitable habitat, e.g. by invading novel areas or because they are
lagging behind a spatially moving environmental niche (Kasparek, 1996; Devictor et al., 2008). In
these cases, density dependence in dispersal is likelyto affect the rate of emigration from
habitat patches at the periphery of a species’ range where populations will typically be below
carrying capacity. If dispersal is positively density dependent, emigration from these patches
would be reduced until densities build up to a level where individuals start emigrating. The
converse would be true for negatively density-dependent emigration, where a high proportion
of individuals would leave these low-density patches untilthe populations nevertheless build up
and emigration rates tended towards values typical for the species. Since dispersal is critical for
the spread of species (Kotetal., 1996), we expectthe mean emigration rate from local habitat
patches to be the main mechanism by which density-dependent dispersal could affect the speed
of range expansions. The speed at which recently established marginal populations grow
towards high densities, determined by the intrinsicrate of increase (r) and carrying capacity (K),
should also be critical forhow density-dependent dispersal affects the speed of range

expansions.

METHODS / THE MODEL

We used the spatially explicit, grid based model MIGRATE, which has been described and

testedin detail elsewhere (Collingham etal., 1996; Collingham & Huntley, 2000; Hill etal.,
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2001), to simulate the spatial dynamics of a population across agrid. Local population

dynamics within each cell are determined by the life-history of the species. At each time step, a
proportion of offspring emigrates and arrivesin cells at distances with probabilities that
decrease with increasing distance from the source cell accordingto a bivariate normal
distribution. The actual number of offspring which settle inacell is determined by the amount
of available space. So given a positive population growth rate, local populations will grow with a
logisticgrowth rate until the carrying capacity is reached. If a cell receives afraction p of an
individual, itis setto one with probability p and to zero otherwise, thus introducing stochasticity
intothe model. The simulated species are reproducing sexually and we therefore assume that
local populations need atleast one female and one male to be established successfully.

Assumingan equal sex ratio and no sex differencesin dispersal, the probability of an empty cell
. . . . 2 .
being colonised by a group of eithermales orfemalesonlyis p, = 2—n where nisthe numberof

individuals arriving atan empty cell. Newly colonised cells thus get established with probability

1-p. inour simulations.

We assumed agrid of 500 x 1300 cells of uniform habitat suitability (fixed carrying capacity,
K).The size of the grid was chosen so as to be sufficiently large to ensure that space did not
become limitingin any scenario. Beyond that, the size of the grid had no effecton our results. A
block of 10 x 10 cells at the centre of one end along the shorter dimension was populated with5
individuals per cell at generation 1. After 50 generations, we measured how faralongthe longer

dimension the population had spread, by recording the furthest colonized grid cell.
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We examined density-dependent dispersalin three groups of scenarios. First, we
varied the shape of the density-dependence of emigration and keptimmigration density
independent. Then we varied the shape of the density-dependence of immigration while
keeping emigration densityindependent. Finallywe varied both, exploring two possible
combinations representing species that eitheravoid areas of high or of low density.See Table 1
for an overview. The forms of emigration rates we examine can be described by the following

equation (adapted from Best et al. 2007):

eq.1

Here, the emigrationrate at time t, €, isa function of the current population size N, relative
to the carrying capacity K. ¢ isthe emigrationrate at N;=K, and we set itat 0.10. y determines
the shape of density dependence. In oursimulations, we used the following values fory: -0.15,
0,0.2, 1 and 10 (Fig.1).y=-0.15 leadsto negatively density-dependent emigration. With y=0,
emigrationisindependent of density, y=0.2 describes a concave relationship, y=1a linear
relationship and y>1 a convex relationship between emigration and density (Fig. 1). For high
valuesofy (i.e. 10), emigration approximates a step function with little dispersal for N, <K, but
maximum dispersalfor N,=K. We chose these scenarios sothat they all produced the same
emigration rate at carrying capacity. Thus, effects of density-dependent emigration on the speed
of range expansion can only be caused by different emigration rates from cells along the range
front where carrying capacity has not yet beenreached and will not be confounded by different

dispersal rates from the saturated core area. The distribution of dispersal distances was density
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independentand followed a bivariate normal distribution with standard deviation =50

grid cells. All directions were equally likely.

Using the density-independent emigration scenario, we then considered two different
scenarios for density-dependent immigration. In the first scenario, individuals avoid cells with
high population density (negatively density-dependentimmigration) whereasin the second
scenariothey avoid cells with low population densities (positively density-dependent
immigration). We envision individuals to reach a target cell, butthen being able to settle either
inthe targetcell, or one of the eight surrounding cells according to local population density
within each of these nine cells. Underthe first scenario, individuals leave their target cell ifitis
at a density higherthan 0.7 x K and instead settle in the neighbouring cell with the lowest
density amongthose with densities <0.7 x K. In the second scenario, they leave the target cell if
itsdensityisbelow 0.3 x K and instead settle inthe neighbouring cells with density above 0.3 x
K, starting with the one with the highest density butstill with available space. All 8 neighbouring
cellsare examinedin order of their perceived suitability according to these settlement rules
until all the dispersingindividuals have been accounted fororall of the 8 neighbouring cells
examined. We used the density of residentsinthe previous time step as ameasure of local
population density ratherthan the number of queuing recruits at the present time step. Since
most offspring settle locally underthe chosen parametervalues, the two densities were nearly
identical, but using density of residents greatly reduced the computationalburden. Mortality

was based on current densities sothat K was not exceeded.
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Finally, we examined possible interactions between density effects on emigration and
immigrationintwo furtherscenarios. The first represents aspecies that avoids high density both
when decidingtoleave and when deciding to settle. Forthis scenario, we combined positively
density-dependent emigration, assumingy =1, and negatively density-dependent immigration,
as describedinthe previous paragraph. The second scenario represents aspecies that avoids
areas of low conspecific density. We assumedy =-0.15 and positively density-dependent

immigration.

In total, we therefore had nine scenarios for density-dependent dispersal: five scenarios of
density-dependent emigration (Table 1, Fig. 1) with density-independent settlement; two
scenarios of density-dependentimmigration with density-independent emigration; and two
scenarios where both emigration and settlement were density dependent. As a sensitivity
analysistotestthe effect of the choice of particular parametervalues on our results, we ran
each of these scenarios atthree levels of K, crossed by three levels of maximum population
growth, r, and twollife histories, as detailed below. This led to 162 different parameter

combinations, each of which we replicated 5times.

We considered two contrasting life histories to model local population dynamics, which, in

the absence of dispersal, follows the general population model

Nep1 = Ang eq.2
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where n;is a vectorholding the numberof individualsin each stage at time tand A is

a population projection matrix. The first life history we consider is an annual organism with
A = TSgnnual eq.3

which produces r = 50 offspring that survive to the next step with probability sq,,.q. The
algorithmthen determines how many individuals emigrate, depending on the dispersal
scenarios detailed above, and spreads them across the grid where local population sizes are

updated.

The second life-history we consider represents an organism with amulti-yearlife cycle with

0 0 rs
A= Sperennial 0 0 eq.4

0 s S

It producesr =4 offspring which surviveto the 1st cohort class (1 yr olds) with probability
Sperennial, aNd thereafter survive with probability s =0.9. In thislife history pairsare needed for
breeding. If the number of adultsina cellis <20 thenthe number of breeding pairsis drawn
from a binomial distribution with sample size equal to the number of adults and probability
equal to 0.5, otherwise itis simply assumed to be half the numberof adults. This part of the
model isanothersource of stochasticity. Movement happens duringthe juvenile stage only for
organisms with a multi-yearlife cycle and new recruitsto a local cell compete for available space
so that the total number of individuals could not exceed K. Movementinto one of the eight
neighbouring cells may also occur depending onthe settlement rules forthat particular

simulation orif the local cell isfull. We envision the firstlife history to representan annual
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insect, such as a univoltine butterfly (e.g. Hill et al. 2001), and referto itbelowasa
butterfly. The second life history could represent a sub-tropical non-passerine bird (e.g. a
hadedaibis, Bostrychia hagedash, Duckworth et al., 2012), but the two life histories could apply

to many similarspecies; for convenience we referto this life history as a bird.

We ran all simulations forthree values each of K(222, 133 and 44 individuals percell)and r.
We manipulated the latter by changing Sannua (0.022, 0.025 and 0.028) and Sperennias (0.15, 0.34
and 0.6), leadingto maximum population growth rates of 1.1, 1.25 and 1.4 for both life histories.
By choosinglife histories with similar maximum growth rates, carrying capacities and dispersal
capabilities, we investigate possible interactions between density-dependent dispersal and life-
histories perseon the speed of range expansion. We do not necessarily imply that the two life
histories are similarinthe maximum densities they can reach or the distances they can travel.
We imply, however, thatthe densities and distances are comparable amongthe two life

historiesrelative to the grid cell size, which we assume can be chosen accordingly.

We examined how the nine scenarios, three levels of r, three levels of Kand two life
histories affected the speed of range expansion using aregression tree model (Breiman etal.,
1984) implemented in package ‘tree’ in program R2.15.0 (Ripley, 2010; R Development Core
Team, 2012). A regressiontree recursively partitions the responsevariable (speed of range
expansioninourcase)intosubsetsaccordingto its relationship to the factors we varied (density
dependenceindispersal, r, Kand the life history). It first splits the datainto two groups that are

most different, and then each groupis furthersplit until homogeneous groups remain. The
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244  lengthsof the branches are proportional to the reductionin deviance that each split
245  achieves. The mainsplits and branch lengths therefore visualize which factors or factor levels

246  had thelargesteffectonthe speed of range expansionin oursimulations.

247

248  RESULTS

249 Density-dependent dispersalhad clear effects on the speed of range expansion (Fig. 2,
250 summaryinTable 1). At medium levels of carrying capacity (K) and population growth rate (r),
251  threedensity-dependentdispersal scenarios strongly reduced the speed of range expansion
252  comparedto the density-independentscenario (y =0, Fig. 2, central panel): strongly density-
253  dependentemigration (y=10), and the two scenarios with positively density-dependent

254  immigration (positively density dependentimmigration, Psl, and ‘avoid low density’, ALD).
255  Weaker positively density-dependent emigration (eitheralone, y =1, or in combination with
256  density-dependentimmigration, AHD) led toa smallerdecrease in the speed of range

257  expansion. Negatively density-dependent or weakly positively density-dependent emigration (y
258 =-0.15andy =0.2) had little effect onthe speed of range expansion. This general pattern was
259  qualitatively consistentacross the twolife histories and levels of carrying capacity (K) and

260 intrinsicgrowthrate (r, remaining panelsin Fig. 2).

261

262 The effect of density-dependent emigration onthe speed of range expansion was mediated
263 by the meanemigration rate atthe range edge (Figs. S1and S2 inthe Supplementary

264  Information). The emigration rate increased nearly linearly from the scenario with negatively
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density-dependent emigration (y =-0.15) through to strongly positively density-

dependent emigration (y=10).

Above, we presented the effects of density-dependent dispersal on the change inthe speed
of range expansion compared to the scenario with density-independent dispersal. However,
varying density dependence in dispersal, r, Kand the life history all affected the absolute speed
at which the ranges expanded. We used aregression tree model to visualize the relative
importance of varying these factors on the speed of range expansion (Fig. 3). We pruned the
tree to 5 terminal nodes, which yielded amodel that explained 87% of the total deviance in our
response and clearly shows the mostimportant splits. The first split was between simulations
that useda lowintrinsicgrowth rate, r, and the rest. With low r, range expansion was generally
the slowest. The next splitin both remaining subsetsinvolved dispersal scenarios, with the
‘avoid low density’, positively density-dependent immigration and positively density-dependent
emigration with y=10leadingto slower range expansions thanthe other dispersal scenarios. The
remaining split distinguished between the two life histories (the bird expanded more slowly

than the butterfly underthe remaining dispersal scenarios and medium/high r).

DISCUSSION

Individuals of mobile organisms leave their natal patch to avoid low resource levels,
inbreeding or parasites, and tend to settle in places where theirfitness prospects are good
(Clobertetal., 2009). These processes are likely to lead to emigration and immigration

probabilities that depend on local population density (Travis, 1999). We used a simulation model
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to examine the effect of density-dependent dispersal on the speed at which species’
geographicranges can expand, be they alieninvaders or native species undergoing range

dynamics.

Density dependence in emigration and settlement had profound eff ects onthe speed of
range expansioninourmodel (see Table 1foran overview). Range expansion was slowest when
emigration was positively density dependent, i.e. where individuals were more likely to emigrate
at densities closeto the carrying capacity. The reason forthis result was that newly colonised
grid cellsemitted few emigrants until their population sizes had built up. Positively density-
dependent emigrationis usuallyfound in situations whereindividuals compete forresources
(Sutherland etal., 2002; Matthysen, 2005). Where individuals behaveinamannerresembling an
ideal-free distribution orideal despoticdistribution (Fretwell & LucasJr, 1970), they are only
expected to emigrate once local densitiesin ahabitat patch build up; based on our simulations
we predict that such species would expand theirranges particularly slowly. Positively density-
dependentemigrationis expected to evolve underarange of conditions and accordingly to

occur frequently in nature (Travis, 1999).

Positively density-dependent immigration, i.e. when individuals avoid settling in patches
with low population densities, also led to slow range expansions in our model because
individuals emigrating from cells at the edge of the range preferentially dispersed backinto cells
behind the range front where densities were higher. This type of immigrationisakind of Allee

effect (Greene & Stamps, 2001; Courchamp et al., 2008), and can occur when species show
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conspecificattraction (Doligez et al., 2002). Conspecificattraction affects settlementin

many birds (Cam et al., 2004; Serrano et al., 2004; Laiolo & Tella, 2008), insects (Hanskietal.,
1994), reptiles (Stamps, 1988) and amphibians (Bee, 2007). Bled et al. (2011) found that collared
doves (Streptopelia decaocto) invading North America colonized new areasin a positively
density-dependent fashion. Ourresults suggest that this trait can reduce the speed with which

species can shifttheirrange.

In our model, range expansion tended to be fastest with negatively density-dependent
emigration, i.e. where individuals were more likely to leave cells at low population densities, or
with density-independent dispersal. This resultis consistent with the empirical finding that
range expansions acceleratein areas not favoured by a species asindividuals move on more
readily (Andersen etal., 2004). If this type of emigration is governed by the same behavioural
mechanisms as settlement decisions, one would expect negatively density-dependent
emigrationto be coupled with positively density-dependent immigration. In our simulations, this
situation was represented by the scenario ‘avoid low density’, which led to a greatly reduced
speed of range expansion comparabletothe scenario with negatively density-dependent
emigration alone. Ourresults thus suggest that understanding the mechanisms that govern
decisionstoleave orsettle inaparticular patch are cruciallyimportant for predictinghow fasta

speciesisable toshiftits range.

The two life histories we considered represented two rather different points on the slow—

fast continuum (Saetheretal., 1996), with the butterfly representingan annual with high
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reproductive outputand the bird representingalong-lived organism with relatively low
reproductive output. We chose both to have the same intrinsicgrowth rate and carrying
capacity. While the butterfly expanded its range more quickly than the bird, both life histories
showed the same relationships between density-dependent dispersaland the speed of range

expansion. This suggests that ourresults apply to species across a wide range of life histories.

Our simulations assumed a spatially and temporally constant environment. While
environmental heterogeneitywould also affect the speed at which ranges change (e.g. Early &
Sax, 2011), neithertemporal norspatial heterogeneity should qualitatively change ourresults.
However, species expandinginto environments that become slowly more suitable may be close
to carrying capacity more oftenthan in the situation we simulated. Since all our scenarios had
the same emigration rate at carrying capacity, we would have found smaller effects of density

dependence inthissituation.

Our simulation model assumes that individuals disperse only once during their lifetime. This
isrealisticfororganismsthat have a specificdispersivelife stage such as many insects. Even
organismsthat remain equally mobile throughout their life often have astage during which they
are much more prone todisperse (e.g.juvenilesin many birds, Greenwood & Harvey, 1982). For
organismsthatdisperse multipletimes, our model is likely to underestimate the importance of
density dependence, which could affect dispersal decisions each time anindividual decides

whethertostay or to leave its patch. Ourresults are therefore likely conservative.
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Under current rates of observed climate change, abigworryis whether species can
shifttheirrangesfast enough to keep pace with a locally changing climate. Our result suggest
that organismsthattend to aggregate, forexample by relying on conspecificattraction for
settlement orby emigratingonlyinresponse to high local densities, are most at risk of falling
behind aspatially moving climaticniche. Ourresults also predict that such species would be
slowerinvadersifintroduced to new areas. Current modelling approaches are moving towards
including more detail on species’ demographics and dispersal abilities (Brook et al., 2009;
Huntley etal., 2010), and a big questionis how much detail needs to be included. Ourstudy
demonstrates that density-dependent dispersal can be important forthe speed of range

expansions, especiallyif the focal species has a high potential population growth rate.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1 speed of simulated range expansionin relation to mean emigration rate: bird

Figure S2 speed of simulated range expansion in relation to mean emigration rate: butterfly

As a service to our authors and readers, this journal provides supporting information supplied by
the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but
are not copy-edited ortypeset. Technical supportissues arising from supporting information

(otherthan missingfiles) should be addressed to the authors.
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498 Table 1. Overview of dispersal scenarios and their effects on the speed of range expansion across asimulated landscape. Forthe density-

499 dependentemigrationscenarios, y determines the shape of the relationship as plotted in Fig. 1.

Dispersal  Description Density effect Effecton the speedof
scenario on range expansion
1 vy=0 No density dependence in movement None Reference scenario
2 y=-0.15 Negatively density-dependent emigration:  Emigration Slightincrease whenr
higheremigration probabilities from cells and K were sufficiently
at low density high
3 y=0.2 Slight positively density-dependent Emigration Slight decrease whenK
emigration: higher emigration probabilities was sufficiently high
from cells at high density
4 y=1 Moderate positively density-dependent Emigration Cleardecrease under
emigration: higher emigration probabilities most combinations ofr
from cells at high density and K
5 y=10 Strong positively density-dependent Emigration Strong decrease under
glo emigration: higher emigration probabilities most combinations ofr
from cells at high density and K
6 Ngl Negatively density dependent Immigration: Immigration No change
higherimmigration probability into cells at
low density
7  Psl Positively density-dependent Immigration: Immigration Strongdecreaseinall
higherimmigration probability into cells at cases
high density
8 AHD Avoid High Density: combination of Emigration Slightdecrease whenr
scenarios4and 6 and and K were sufficiently
Immigration high
9 ALD Avoid Low Density: combination of Emigration Strongdecreaseinall
scenarios2and 7 and cases

Immigration
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Figure 1: Shapes of density dependence that we considered forthe emigration rate from local
cells to examine the effect of density dependence on the speed of range expansions. See

equation1inthe text.

Figure 2. Change inspeed of simulated range expansion achieved underthe different dispersal
scenarios and two life history scenarios compared to the scenario of no density dependence in
movement, as a percentage of the average of the five simulations with y=0. Black symbols
indicate significant differences from the density-independent scenario, using Tukey’s method for
post-hoccomparisons. The errorbars represent + one standard deviation, although they are
smallerthanthe symbolsin most cases. The vertical dashed lines separatethe three groups of
scenarios: density-dependent emigration (‘y=- 0.15" ... ‘y =10’, see Fig. 1), density-dependent
immigration (‘Ngl’ =Immigration negatively density dependent, ‘Psl’ =Immigration positively
density dependent),and both (‘AHD’ = Avoid High Density, ‘ALD’ =Avoid Low Density’). The

symbolsrepresentthe butterfly (filled dots) and bird life history (open triangles), respectively.

Figure 3: Regression tree showing the majorfactors causing variationinthe speed of simulated
range expansion. Tree models use predictorvariables to split the datainto groupsin a way that
resultsinthe greatestincrease in explained deviance. The predictorvariables werethe nine
dispersal scenarios (see Methods section), three levels of intrinsicgrowth rate (r: ‘L', ‘M’ and
‘H’), three levels of carrying capacity (K: ‘L', ‘M’ and ‘H’) and two life histories (‘bird’ versus

‘butterfly’). The text at each node indicates which factorlevels were grouped into the left
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branch. All others were groupedinto the right branch. The numbers atthe end of the

terminal branches give the mean of the furthest cell reached (our measure of speed of range
expansion)across all simulations that were grouped into the branch. (Key to abbreviations:
Dispersal scenarios: ‘ALD’ =avoid low density; ‘Psl’ =positively density-dependent Immigration;

‘g10’ = density-dependent emigration with y=10. Life histories: ‘brd’ =bird.)
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Supplementary Information

Figure S1. Simulation results forthe bird life history (see Methods section for details): speed of
simulated range expansion (furthest cell reached on a grid) in relation to mean emigration rate
fromlocal cells for nine scenarios that differed in the shape of density-dependent dispersal.
Trianglesrepresentthe five scenarios of density-dependent emigrationillustrated in Fig. 1, using
the same colour coding. Squares are two scenarios of density-dependent settlement with
density-independent emigration (y =0): more likely to settle in less crowded cells (negative
density dependence; orange symbol); and more likely to settlein more crowded cells (positive
density dependence; blue symbol). Two scenarios combining density-dependent emigration and
settlementare symbolised by ‘+": orange for a scenario that avoids high density (combining
positive density dependence in emigration [y =1] and negatively density-dependent
settlement); and blue forascenario that avoids low density (combining negatively density -

dependent emigration [y =—0.15] and positively density-dependent settlement).

Figure S2: Simulation results forthe butterfly life history: speed of simulated range expansion
(furthest cell reached onagrid) inrelation to mean emigration rate from local cells fornine
scenariosthatdifferedinthe shape of density-dependent dispersal. Seelegend to Fig. 2 for

details of the nine scenarios.
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Figure S1.
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