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ABSTRACT

We use an extremely large volume (2.4 h−3 Gpc3), high-resolution N-body simulation to mea-

sure the higher order clustering of dark matter haloes as a function of mass and internal

structure. As a result of the large simulation volume and the use of a novel ‘cross-moment’

counts-in-cells technique which suppresses discreteness noise, we are able to measure the

clustering of haloes corresponding to rarer peaks than was possible in previous studies; the

rarest haloes for which we measure the variance are 100 times more clustered than the dark

matter. We are able to extract, for the first time, halo bias parameters from linear up to fourth

order. For all orders measured, we find that the bias parameters are a strong function of mass

for haloes more massive than the characteristic mass M∗ . Currently, no theoretical model is

able to reproduce this mass dependence closely. We find that the bias parameters also depend

on the internal structure of the halo up to fourth order. For haloes more massive than M∗ , we

find that the more concentrated haloes are more weakly clustered than the less concentrated

ones. We see no dependence of clustering on concentration for haloes with masses M < M∗ ;

this is contrary to the trend reported in the literature when segregating haloes by their formation

time. Our results are insensitive to whether haloes are labelled by the total mass returned by the

friends-of-friends group finder or by the mass of the most massive substructure. This implies

that our conclusions are not an artefact of the particular choice of group finding algorithm.

Our results will provide important input to theoretical models of galaxy clustering.
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1 IN T RO D U C T I O N

The spatial distribution of dark matter haloes is not as simple as

was once suspected. In the standard theoretical model for the abun-

dance and distribution of haloes, the clustering strength of haloes is

predicted to be a function of mass alone, with more massive haloes

displaying stronger clustering (e.g. Kaiser 1984; Cole & Kaiser

1989; Mo & White 1996). However, recent numerical simulations

of hierarchical cosmologies, by covering larger volumes with ever

improving mass resolution, have been able to reveal subtle de-

pendences of halo clustering on other properties such as formation

redshift, the internal structure of the halo and its spin (Gao, Springel

& White 2005; Harker et al. 2006; Wechsler et al. 2006; Bett et al.

2007; Espino-Briones, Plionis & Ragone-Figueroa 2007; Jing et al.

2007; Wetzel et al. 2007).

The dependence of halo clustering on a second parameter in

addition to mass is generally referred to as assembly bias. However,

the nature of the trend in clustering strength recovered depends

upon the choice of property used to classify haloes of a given mass.

Early simulation work failed to uncover a convincing assembly bias
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signal, as a result of insufficient volume and mass resolution, which

meant that halo clustering could be measured for only a narrow

range of mass and with limited statistics (Lemson & Kauffmann

1999; Percival et al. 2003; Sheth & Tormen 2004). The first clear

indication of a dependence of halo clustering on a second property

was uncovered by Gao et al. (2005). These authors reported that

low-mass haloes which form early are more clustered than haloes

of the same mass which form later on. No effect was seen for

massive haloes. Wechsler et al. (2006) were able to confirm this

result but also found that halo clustering depends on the density

profile of the halo, as characterized by the concentration parameter

(Navarro, Frenk & White 1997). The sense of the dependence of

clustering strength on concentration changes with mass. Wechsler

et al. found that massive haloes showed a dependence of clustering

strength on concentration, with low-concentration haloes being the

more strongly clustered (as confirmed by Gao & White 2007, Jing

et al. 2007; Wetzel et al. 2007). This trend of clustering strength with

concentration is reversed for low-mass haloes. Although formation

time and concentration are correlated (e.g. Neto et al. 2007), their

impact on the clustering of haloes does not follow trivially from

this correlation, suggesting that some other parameter may be more

fundamental (as argued by Croton, Gao & White 2007).

Previous studies of assembly bias have exclusively focused on

the linear bias parameter, which relates the two-point correlations
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of haloes and dark matter. Measurements from local surveys have

shown that galaxies have significant higher order correlation func-

tions and that the spatial distribution of galaxies and haloes is not

fully described by two-point statistics (e.g. Baugh et al. 2004;

Croton et al. 2004; Frith, Outram & Shanks 2006; Nichol et al.

2006). With large surveys planned at higher redshifts, there is a

clear need for accurate models of the higher order clustering of

dark matter haloes, and to establish whether or not the higher order

bias parameters depend on other properties in addition to mass.

In this paper, we measure the higher order bias parameters of

dark matter haloes using a simulation which covers a volume more

than an order of magnitude larger than the run analysed by Gao and

collaborators. We use a novel approach to estimate the higher or-

der correlation functions of dark matter haloes. Our method builds

upon the cross-correlation technique advocated for two-point cor-

relations by Jing et al. (2007), Gao & White (2007) and Smith,

Scoccimarro & Sheth (2007). By considering fluctuations in the den-

sity of haloes and dark matter within the same smoothing window,

we can suppress discreteness noise in our measurements. This im-

proved clustering estimator, which uses the counts-in-cells method,

when coupled with the large volume of our simulation, allows us to

recover the bias parameters from linear to fourth order, and to study

the dependence of these parameters on the halo concentration.

In Section 2, we give the theoretical background to the counts-

in-cells technique we use to estimate higher order clustering and

explain how the clustering of haloes relates to the underlying dark

matter at different orders. We also introduce the numerical simu-

lations in that section. We present our results in Section 3 and a

summary and discussion in Section 4.

2 TH E O R E T I C A L BAC K G RO U N D

A N D M E T H O D

In this section, we give the theoretical background to the measure-

ments presented in Section 3. We estimate the clustering of haloes

and dark matter using a counts-in-cells approach. An overview of

this method is given in Section 2.1, in which we explain how to ob-

tain expressions for the higher order autocorrelation functions of a

density field from the moments of the distribution of counts-in-cells.

We also introduce the concept of higher order cross-correlation

functions, which combine fluctuations in two density fields. The

concept of hierarchical amplitudes, scaling relations between higher

order correlation functions and the two-point correlation function

is introduced in Section 2.2. The key theoretical results relating the

higher order cross-correlation functions of haloes to the two-point

function and hierarchical amplitudes of the dark matter are given

in Section 2.3. The simulations we use to measure the clustering of

dark matter haloes are described in Section 2.4.

2.1 The counts in cells approach to measuring clustering

Here, we give a brief overview of the approach of using the distri-

bution of counts in cells to estimate the higher order autocorrelation

functions of a set of objects. An excellent and comprehensive re-

view of this material is given by Bernardeau et al. (2002). We first

discuss the higher order correlation functions for the case of a con-

tinuous, unsmoothed density field, then introduce the concept of

cross-correlations (Section 2.1.1), before explaining how these re-

sults are changed in the case of a smoothed distribution of discrete

points (Section 2.1.2).

2.1.1 Higher order correlations: unsmoothed and continuous

density field

In general, the complete hierarchy of N-point correlation functions is

required to fully characterize the spatial distribution of fluctuations

in a density field. An exception to this occurs for the special case of

a Gaussian density field, which can be described completely by its

two-point correlation function.

The N-point correlation functions are usually written in terms of

the dimensionless density fluctuation or density contrast at a point:

δ(x) = ρ(x)/〈ρ〉 − 1, (1)

where 〈ρ〉 is the mean density, the average is taken over different

spatial locations. By definition, 〈δ(x)〉 = 0 when the average is taken

over a fair sample of the density field. The Nth-order moment of the

density field, sometimes referred to as a central moment because δ

is a fractional fluctuation around the mean density, is given by

µN = 〈δ(x1), . . . , δ(xn)〉, (2)

where, in general, the density fluctuations are correlated at different

spatial locations.

The Nth-order central moments defined in equation (2) can be

decomposed into terms which include products of lower order mo-

ments. This is because there are different permutations of how the

N-points can be ‘connected’ or joined together. This idea is illus-

trated nicely by tree diagrams in the review by Bernardeau et al.

(2002). The terms into which the central moments are broken down

are called connected moments and these cannot be reduced further.

In the tree diagram language, an N-point connected moment has

no disjoint points; all N-points are linked to one another when the

spatial averaging is performed. The distinction between connected

and unconnected moments may become clearer if we write down

the decomposition of the unconnected central moments up to fifth

order:

〈δ2〉 = 〈δ2〉c + 〈δ〉2
c (3)

〈δ3〉 = 〈δ3〉c + 3〈δ2〉c〈δ〉c + 〈δ〉3
c (4)

〈δ4〉 = 〈δ4〉c + 4〈δ3〉c〈δ〉c + 3〈δ2〉2
c

+6〈δ2〉c〈δ〉
2
c + 〈δ〉4

c
(5)

〈δ5〉 = 〈δ5〉c + 5〈δ4〉c〈δ〉c + 10〈δ3〉c〈δ
2〉c

+10〈δ3〉c〈δ〉
2
c + 15〈δ2〉2

c〈δ〉c

+10〈δ2〉c〈δ〉
3
c + 〈δ〉5

c, (6)

where the subscript c outside the angular brackets denotes a con-

nected moment. Remembering that 〈δ〉= 0, these equations simplify

to

〈δ2〉 = 〈δ2〉c (7)

〈δ3〉 = 〈δ3〉c (8)

〈δ4〉 = 〈δ4〉c + 3〈δ2〉2
c (9)

〈δ5〉 = 〈δ5〉c + 10〈δ3〉c〈δ
2〉c. (10)

Hence, for the second- and third-order moments, there is no differ-

ence in practice between the connected and unconnected moments.

The N-point autocorrelation functions, ξN , are written in terms

of the connected moments:

ξN (x1, . . . , xN ) = 〈δ(x1), . . . , δ(xN )〉c. (11)
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By analogy with the N-point autocorrelation functions of fluc-

tuations in a single density field, we can define the i + j-point

cross-correlation function of two, co-spatial density fields, with re-

spective density contrasts given by δ1 and δ2:

ξi,j (x1, . . . , xi ; y1, . . . yj ) =

〈δ1(x1), . . . , δ1(xi) δ2(y1), . . . , δ2(yj )〉c. (12)

In the application in this paper, the first index will refer to the dis-

tribution of dark matter haloes and the second index to the dark

matter. When the density contrasts are evaluated at the same spatial

location, i.e. x1 = · · · = xi = y1 = · · · = yj = 0, the connected mo-

ments ξi,j are called cumulants of the joint probability distribution

function of δ1 and δ2 (and are sometimes denoted as ki,j ).

To generate expressions for the higher order correlation func-

tions of the cross-correlated density fluctuations, ξi,j , we will use

the method of generating functions (see section 3.3.3 of Bernardeau

et al. 2002). A moment generating function is defined for the central

moments (µi,j ) as a power series in δ1 and δ2, which can be written as

χ ≡ 〈exp (δ1t1 + δ2t2)〉, where t1 and t2 are random variables. This

moment generating function can be related to the cumulant gener-

ating function (ψ) for the connected cumulants by (see Bernardeau

et al. 2002 for a proof)

ψ(t1, t2) ≡ ln χ (t1, t2). (13)

Then, by taking partial derivatives of ψ and χ evaluated at t1 =

t2 = 0, one can ‘generate’ the cumulants and moments:

ξi,j (0) = ki,j =
∂

i+j

∂t i
1 ∂t

j

2

ψ |t1=t2=0 (14)

µi,j =
∂

i+j

∂t i
1 ∂t

j

2

χ |t1=t2=0 =
〈

δi
1δ

j

2

〉

. (15)

Following this method, we can obtain expressions for the cross-

correlation cumulants up to the order of i + j = 5, grouping terms

of the same order:

k1,1 = µ1,1 (16)

k2,0 = µ2,0 (17)

k3,0 = µ3,0 (18)

k2,1 = µ2,1 (19)

k4,0 = µ4,0 − 3 µ2,0
2 (20)

k3,1 = µ3,1 − 3 µ2,0µ1,1 (21)

k2,2 = µ2,2 − µ2,0µ0,2 − 2 µ1,1
2 (22)

k5,0 = µ5,0 − 10 µ3,0µ2,0 (23)

k4,1 = µ4,1 − 4 µ3,0µ1,1 − 6 µ2,0µ2,1 (24)

k3,2 = µ3,2 − µ3,0µ0,2 − 6 µ2,1µ1,1 − 3 µ2,0µ1,2. (25)

Note that these results are symmetric with respect to exchanging

the indexes and that we have used the fact that µ1,0 = µ0,1 = 0,

since, by construction 〈δ1〉 = 〈δ2〉 = 0.

2.1.2 Higher order correlations: smoothed and discrete

density fields

Sadly, density fluctuations at a point are of little practical use as they

cannot be measured reliably. Typically we have a finite number of

tracers of the density field (i.e. galaxies in a survey or dark matter

particles in an N-body simulation) and so we have a limited resolu-

tion view of the density field. Furthermore, estimating the N-point

correlations for a modern survey or simulation is time consuming

and shortcuts are often taken, such as restricting the number of con-

figurations of points sampled. To overcome both of these problems,

moments of the smoothed density field can be computed instead of

the point moments.

The smoothed density contrast, δR , is a convolution of the density

contrast at a point with the smoothing window, WR , which has

volume V:

δ(x)R =
1

V

∫

dx3′

δ(x)WR(x − x ′). (26)

Typically, the smoothing window is a spherical top-hat in which

case WR = 1 for all points within distance R from the centre of the

window and WR = 0 otherwise. After smoothing, the cumulants

correspond to the i + j-point volume-averaged cross-correlation

functions:

ξ̄i,j (R) ≡

∫

d3x1 . . . d3xi d3y1 . . . d3yj

×WR(x1) . . . WR(xi) WR(y1) . . . WR(yj )ξi,j . (27)

Equations (16)–(25) are still valid, with the cumulants replaced by

volume-averaged cumulants.

Another issue introduced by the discreteness of the density field

is the contribution of Poisson noise to the measurements of the

cumulants. To take this into account, we can modify the moment

generating function as follows (Peebles 1980):

χ (t1, t2) = 〈exp(f1 (t1) + f2 (t2))〉, (28)

f1 = (exp(t1) − t1 − 1) n̄1 + (exp(t1) − 1) δ1, (29)

f2 = (exp(t2) − t2 − 1) n̄2 + (exp(t2) − 1) δ2. (30)

Here, n̄1 and n̄2 are the mean number of objects in density

field 1 and density field 2, respectively, within spheres of ra-

dius R. Using this modified generating function, and defining

µ′
i,j = 〈(n1 − n̄1)i(n2 − n̄2)j 〉, we obtain the following relations be-

tween the volume-averaged, connected i + j-point cross-correlation

functions, ξ̄i,j , and the central moments, µi,j :

n̄2
1 ξ̄2,0 = µ′

2,0 − n̄1 (31)

n̄1n̄2 ξ̄1,1 = µ′
1,1 (32)

n̄2
2 ξ̄0,2 = µ′

0,2 − n̄2 (33)

n̄3
1 ξ̄3,0 = µ′

3,0 + 2n̄1 − 3µ′
2,0 (34)

n̄2
1n̄2 ξ̄2,1 = µ′

2,1 − µ′
1,1 (35)

n̄1n̄
2
2 ξ̄1,2 = µ′

1,2 − µ′
1,1 (36)

n̄3
2 ξ̄0,3 = µ′

0,3 + 2n̄2 − 3µ′
0,2 (37)

n̄4
1 ξ̄4,0 = µ′

4,0 − 6n̄1 + 11µ′
2,0 − 6µ′

3,0 − 3µ′2
2,0 (38)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 921–932



924 R. E. Angulo, C. M. Baugh and C. G. Lacey

n̄3
1n̄2 ξ̄3,1 = µ′

3,1 + 2µ′
1,1 − 3µ′

2,1 − 3µ′
1,1µ

′
2,0 (39)

n̄2
1n̄

2
2 ξ̄2,2 = µ′

2,2 − µ′
1,2 − µ′

2,1 + µ′
1,1 − µ′

2,0µ
′
0,2

−2µ′2
1,1

(40)

n̄1n̄
3
2 ξ̄1,3 = µ′

1,3 + 2µ′
1,1 − 3µ′

1,2 − 3µ′
1,1µ

′
0,2 (41)

n̄4
2 ξ̄0,4 = µ′

0,4 − 6n2 + 11µ′
0,2 − 6µ′

0,3 − 3µ′2
0,2. (42)

Note that these expressions revert to those in the literature for au-

tocorrelation moments in the case of either i or j equal to zero (see

e.g. Baugh, Gaztanaga & Efstathiou 1995). Also note that in the

limit n̄1 → ∞, n̄2 → ∞, they correspond to the expressions given

by equations (16)–(25).

2.2 Hierarchical amplitudes

At this point, it is useful to define quantities called hierarchical am-

plitudes which are the ratio between the N-point, volume-averaged

connected moments and the two-point volume-averaged connected

moment raised to the N − 1 power:

SN ≡
ξ̄N

ξ̄N−1
2

. (43)

This form is motivated by the expected properties of a Gaussian

field which evolves due to gravitational instability (Bernardeau et al.

2002). In the case of small amplitude fluctuations, i.e. on smoothing

scales for which ξ̄2(R) ≪ 1, the SN depend only on the local

slope of the linear perturbation theory power spectrum of density

fluctuations and are independent of time (Juszkiewicz, Bouchet &

Colombi 1993; see Bernardeau 1994 for expressions for the SN ).

Similar scalings, but with different values for the SN , apply in the

case of distributions of particles which have not arisen through

gravitational instability, e.g. particles displaced according to the

Zel’dovich approximation (see Juszkiewicz et al. 1993).

In the case of a Gaussian density field, all of the SN are equal to

zero. Initially, as perturbations grow through gravitational instabil-

ity, the two-point connected moment increases. The distribution of

fluctuations soon starts to deviate from a Gaussian, particularly as

voids grow in size and cells become empty (δ → −1). Voids evolve

more slowly than overdense regions. There is in principle no limit

on how overdense a cell can become. As a result, the distribution

of overdensities becomes asymmetrical or skewed, with the peak of

the distribution moving to negative density contrasts and a long tail

developing to high-density contrasts. To first order, this deviation

from symmetry is quantified by the value of S3, which is often re-

ferred to as the skewness of the density field. Higher order moments

and hierarchical amplitudes probe progressively further out into the

tails of the distribution of density contrasts.

2.3 Higher order correlations: biased tracers

We are now in a position to consider the cross-correlation functions

for the case of relevance in this paper, when the set of objects making

up one of the density fields is local function of the second density

field; the first density field is a biased tracer of the second. In our

application, one density field is defined by the spatial distribution

of dark matter haloes and the other by the dark matter. In the case

of a local bias and small perturbations, the density contrast in the

biased tracers (δ1) can be written as an expansion in terms of the

underlying dark matter density contrast (δ2), as proposed by Fry &

Gaztanaga (1993)

δ1(R) =

∞
∑

k=0

bk

k!
δk

2(R), (44)

where the bk are known as bias coefficients and b1 is the linear bias

commonly discussed in relation to two-point correlations. Note

that, by construction, we require that 〈δ〉 = 0, which implies b0 =

−
∑∞

k=2〈bk〉/k!. The bk , as we will see later, depends on mass but

this is suppressed in our notation.

Using this bias prescription, and following the treatment Fry

& Gaztanaga (1993) used for autocorrelations, we can write the

volume-averaged cross-correlation functions of dark matter haloes

in terms of the two-point volume-averaged correlation function

(ξ̄0,2) and hierarchical amplitudes of the dark matter, SN :

ξ̄1,1 = b1ξ̄0,2 + O
(

ξ̄ 2
0,2

)

(45)

ξ̄2,0 = b2
1 ξ̄0,2 + O

(

ξ̄ 2
0,2

)

(46)

ξ̄1,2 = b1ξ̄
2
0,2 (c2 + S3) + O

(

ξ̄ 3
0,2

)

(47)

ξ̄2,1 = b2
1 ξ̄

2
0,2 (2 c2 + S3) + O

(

ξ̄ 3
0,2

)

(48)

ξ̄3,0 = b3
1 ξ̄

2
0,2 (3 c2 + S3) + O

(

ξ̄ 3
0,2

)

(49)

ξ̄1,3 = b1ξ̄
3
0,2 (3S3c2 + S4 + c3) + O

(

ξ̄ 4
0,2

)

(50)

ξ̄2,2 = b2
1 ξ̄

3
0,2

(

S4 + 6S3c2 + 2c2
2 + 2c3

)

+ O
(

ξ̄ 4
0,2

)

(51)

ξ̄3,1 = b3
1 ξ̄

3
0,2

(

6c2
2 + 9S3c2 + S4 + 3c3

)

+ O
(

ξ̄ 4
0,2

)

(52)

ξ̄4,0 = b4
1 ξ̄

3
0,2

(

12c2
2 + 12S3c2 + S4 + 4c3

)

+ O
(

ξ̄ 4
0,2

)

(53)

ξ̄1,4 = b1ξ̄
4
0,2

(

4c2S4 + 6c3S3

+ c4 + S5 + 3c2S
2
3

)

+ O
(

ξ̄ 5
0,2

)

(54)

ξ̄2,3 = b2
1 ξ̄

4
0,2

(

12S3c3 + 6S2
3c2 + 12S3c

2
2 + 6c2c3

+ 2c4 + S5 + 8c2S4

)

+ O
(

ξ̄ 5
2

)

(55)

ξ̄3,2 = b3
1 ξ̄

4
0,2

(

12c2S4 + 18c3S3 + 18c2c3 + 36c2
2S3

+ 9c2S
2
3 + S5 + 6c3

2 + 3c4

)

+ O
(

ξ̄ 5
2

)

(56)

ξ̄4,1 = b4
1 ξ̄

4
0,2

(

4c4 + 24c3
2 + S5 + 72c2

2S3 + 16c2S4

+ 36c2c3 + 24c3S3 + 12c2S
2
3

)

+ O
(

ξ̄ 5
2

)

(57)

ξ̄5,0 = b5
1 ξ̄

4
0,2

(

20c2S4 + 15c2S
2
3 + 60c3

2 + 30c3S3

+ 5c4 + 120c2
2S3 + S5 + 60c2c3

)

+ O
(

ξ̄ 5
2

)

(58)

where ck = bk/b1. Note that it has been shown that these transfor-

mations preserve the hierarchical nature of the clustering (Fry &

Gaztanaga 1993).
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2.4 Numerical Simulations

To make accurate measurements of the higher order clustering of

dark matter and dark matter haloes, we use the N-body simulations

carried out by Angulo et al. (2008). Two simulation specifications

were used: (i) The BASICC, a high-resolution run which used 14483

particles of mass 5.49 × 1011 h−1 M⊙ to follow the growth of struc-

ture in the dark matter in a periodic box of side 1340 h−1 Mpc. (ii)

The L-BASICC ensemble, a suite of 50 lower resolution runs, which

used 4483 particles of mass 1.85 × 1012 h−1 M⊙ in the same box size

as the BASICC. Each L-BASICC run was evolved from a different

realization of the initial Gaussian density field. The simulation vol-

ume was chosen to allow the growth of fluctuations to be modelled

accurately on a wide range of scales, including that of the baryonic

acoustic oscillations (the acronym BASICC stands for Baryonic

Acoustic oscillation Simulations at the Institute for Computational

Cosmology). The extremely large volume of each box also makes it

possible to extract accurate measurements of the clustering of mas-

sive haloes. The superior mass resolution of the BASICC run means

that it can resolve the haloes which are predicted to host the galaxies

expected to be seen in forthcoming galaxy surveys. The L-BASICC

runs resolve haloes equivalent to group-sized systems. The indepen-

dence of the L-BASICC ensemble runs makes them ideally suited

to the assessment of the impact of cosmic variance on our clustering

measurements.

In both cases, the same values of the basic cosmological param-

eters were adopted, which are broadly consistent with recent data

from the cosmic microwave background and the power spectrum of

galaxy clustering (Sánchez et al. 2006): the matter density parame-

ter, �M = 0.25, the vacuum energy density parameter, �	 = 0.75,

the normalization of density fluctuations, expressed in terms of the

linear theory amplitude of density fluctuations in spheres of radius

8 h−1Mpc at the present day, σ 8 = 0.9, the primordial spectral index

ns = 1, the dark energy equation of state, w = −1, and the Hub-

ble constant, h = H0/(100 km s−1 Mpc−1) = 0.73. The simulations

were started from realizations of a Gaussian density field set up

using the Zel’dovich approximation (Zel’Dovich 1970). Particles

were perturbed from a glass-like distribution (White 1994; Baugh

et al. 1995). The starting redshift for both sets of simulations was

z = 63. The linear perturbation theory power spectrum used to set

up the initial density field was generated using the Boltzman code

CAMB (Lewis, Challinor & Lasenby 2000). The initial density field

was evolved to the present day using a memory efficient version of

GADGET-2 (Springel 2005).

Outputs of the particle positions and velocities were stored from

the simulations at selected redshifts. Dark matter haloes were iden-

tified using the Friends-of-Friends (FOF) percolation algorithm

(Davis et al. 1985) and substructures within these were found using

a modified version of SUBFIND (Springel et al. 2001). Our default

choice is to use the number of particles in a structure as returned

by the FOF group finder to set the mass of the halo; at the end of

Section 3.4 we discuss a variation on this to assess the sensitivity

of our results to the group finder. The position of the halo is the

position of the most bound particle in the largest substructure, as

determined by SUBFIND. In this paper, only gravitationally bound

groups with more than 26 particles are considered. The SUBFIND al-

gorithm also computes several halo properties such as the circular

velocity profile Vc(r) = (GM(r)/r)1/2, Vmax, the maximum value of

Vc for the largest substructure, and V200 = Vc(r200), where r200 is the

radius of a sphere enclosing a volume of mean density 200 times

the critical density. These properties are calculated using only the

particles which are bound to the main subhalo of the FOF halo; i.e.

Figure 1. The ratio Vmax/V200 as a function of halo mass for gravitationally

bound haloes in the BASICC simulation, which have a minimum of 26 particles.

Vmax is the maximum effective circular velocity of the largest substructure

within the halo and V200 is the effective rotation speed at the radius within

which the mean density is 200 times the critical density, computed using

all of the particles within this radius. Each panel shows the relation at a

different redshift as indicated by the legend. The red lines show the 20–80

percentile range of the distribution of Vmax/V200 values, and the blue lines

show the mean.

ignoring all of the other substructure haloes within the FOF halo.

In the best resolved haloes, substructures other than the largest sub-

structure account for at the most 15 per cent of the total halo mass

(Ghigna et al. 1998). Later on in the paper, we will present results

for the clustering of haloes as a function of mass and a second

parameter. We have a limited number of output times available to

us, so it is not feasible to use the formation time of the halo as the

second parameter. Instead, we will use the ratio Vmax/V200. Fig. 1

shows Vmax/V200 as a function of halo mass at different epochs in

the BASICC simulation. There is a trend of declining Vmax/V200 with

increasing halo mass. In cases where the density profile of the dark

matter halo matches the universal profile advocated by Navarro

et al. (1997), Vmax/V200 depends on the concentration parameter

which characterizes the profile. Haloes in the extreme parts of the

distribution of Vmax/V200 also have extreme values of the concen-

tration parameter (Navarro et al. 1997). More massive haloes tend

to have lower values of the concentration parameter and lower val-

ues of the velocity ratio Vmax/V200. The ratio Vmax/V200 is easier

to extract from the simulation, as it does not require a paramet-

ric form to be fitted to the density profile. There is a correlation

between formation time and concentration parameter, and hence

the ratio Vmax/V200, albeit with scatter (Navarro et al. 1997; Zhao

et al. 2003).

3 R ESULTS

Our ultimate goal is to measure the higher order bias of dark mat-

ter haloes. As described in Section 2, we follow a novel approach

to do this, employing cross moments between haloes and the dark

matter. The first step in this process is to compute the densities

of haloes and dark matter on grids of cubical cells of different
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sizes.1 A natural by-product of this procedure is the higher order

clustering of the dark matter and haloes in terms of the autocorrela-

tion functions. We first present the hierarchical amplitudes estimated

for the dark matter (Section 3.1) and haloes (Section 3.2) using the

autocorrelation function higher order moments. In Section 3.3, we

show the measurements of the cross moments and in Section 3.4

we present the interpretation of these results in terms of the bias

parameters.

3.1 Hierarchical amplitudes for the dark matter

Fig. 2 shows the hierarchical amplitudes SN measured for the dark

matter at different redshifts. The upper panels show the results in

real space and the lower panels include the effects of redshift space

distortions using the distant observer approximation. The points in-

dicate the median value of the hierarchical amplitudes measured

in the L-BASICC ensemble and the error bars indicate the vari-

ance in these measurements. The lines show the hierarchical am-

plitudes predicted by perturbation theory (Juszkiewicz et al. 1993;

Bernardeau 1994). At the highest redshift plotted, z = 4, the agree-

ment between the measurements made from the simulations and

the predictions of perturbation theory is impressive, covering scales

from 5 to 100 h−1 Mpc for S3 and S4. As redshift decreases, the sim-

ulation results for S5 and S6 are slightly higher than the perturbation

theory predictions. The measurements of S3 from the simulations

continue to agree with the perturbation theory predictions, but over

a narrower range of scales. For smoothing scales on which the vari-

ance is less than unity, the hierarchical amplitudes are expected

to be independent of epoch, depending only on the shape of the

linear perturbation theory power spectrum of density fluctuations

(Juszkiewicz et al. 1993; Bernardeau 1994; Gaztanaga & Baugh

1995). Fig. 2 confirms that this is the case. As the density field

evolves, the measured hierarchical amplitudes change remarkably

little, particularly when one bears in mind that the higher order cor-

relation functions change substantially between z = 4 and 0. For

example, for a cell of radius 50 h−1 Mpc, the two-point volume-

averaged correlation function increases by a factor of 14 over this

redshift interval, and the three-point function by a factor of 197.

Nevertheless, the simulation results do tend to exceed the pertur-

bation theory predictions on all scales at all orders as the density

fluctuations grow.

The hierarchical amplitudes measured on small scales differ sig-

nificantly from the predictions of perturbation theory. At z = 4,

the simulation results are below the analytical predictions for cell

radii smaller than R ∼ 5 h−1 Mpc. This behaviour is sensitive to

the arrangement of particles, which is perturbed to set up the initial

density field. At later times, the memory of the initial conditions

is erased on small scales and the measured amplitudes greatly ex-

ceed the expectations of perturbation theory. On these scales, the

dominant contribution to the cross-correlation moments is from

particles within common dark matter haloes. Note that in Fig. 2

we do not correct the measured higher order correlation functions

for Poisson noise, since the initial density field was created by per-

turbing particles distributed in a glass-like configuration which is

sub-Poissonian. Hence, the dark matter density field is not a random

1 Tests show that density fluctuations in cubical cells can be readily translated

into counts in spherical cells by simply setting the volume of the spherical

cell equal to that of the cube. We use cubical cells for speed. The counts are

regridded to improve the measurement of the rare event tails of the count

distribution.

sampling of a continuous density field (see Angulo et al. 2008 for an

extended discussion of this point). The turnover in the hierarchical

amplitudes seen at small cell radii (e.g. for R < 2 h−1 Mpc) is due

to the finite resolution of the L-BASICC simulations; the hierarchical

amplitudes continue to increase in amplitude on smaller smoothing

scales in the BASICC run.

The lower panels of Fig. 2 show the impact of gravitationally

induced peculiar motions on the hierarchical amplitudes. We model

redshift space distortions using the distant observer approxima-

tion, in which peculiar motions perturb the particle position parallel

to one of the co-ordinate axes. Virialized structures appear elon-

gated when viewed in redshift space. On large scales, coherent

bulk flows tend to increase the amplitude of correlation functions.

There is a modest reduction in the amplitude of the hierarchical

amplitudes on large scales. On small scales, there is a dramatic

reduction in the magnitude of the SN . The overall impact of the

redshift space distortions is to greatly reduce the dependence of the

hierarchical amplitudes on smoothing scale (see Hoyle, Szapudi &

Baugh 2000).

The estimated error on the measured hierarchical moments is

shown in Fig. 3, in which we plot the fractional error on SN ob-

tained from the scatter in the measurements from the L-BASICC

ensemble. The plot suggests that the skewness of the dark matter

can be well measured on all smoothing scales considered from a

volume of the size of the L-BASICC simulation cube. The range of

scales over which robust measurements can be made of the hierar-

chical amplitudes becomes progressively narrower with increasing

order. For example, at z = 0, reliable measurements of S6 are limited

to smoothing radii smaller than R ∼ 30 h−1 Mpc.

3.2 The hierarchical amplitudes of dark matter haloes

The hierarchical amplitudes of dark matter haloes are more com-

plicated than those of the dark matter. In addition to a term arising

from the evolution of the density field under gravitational instability,

there is a contribution which depends upon the height of the peak

in the initial density field which collapses to form the halo (Mo,

Jing & White 1997). For example, if we consider the second- and

third-order autocorrelation functions of haloes given by equations

(44) and (47), then the skewness for dark matter haloes, SH
3 , is given

by

SH
3 =

ξ̄3,0
(

ξ̄2,0

)2
(59)

=
3b2

b2
1

+
S3

b1

. (60)

The gravitational contribution to the skewness, S3, is diluted by the

linear bias factor, b1. In the case of rare peaks, or, equivalently,

haloes with masses far in excess of the characteristic mass, M∗, at

a given redshift, SH
3 approaches an asymptotic value. In this limit,

bk ≈ bk
1 and so SH

3 ≈ 3; similar arguments for the fourth- and fifth-

order hierarchical amplitudes yield asymptotic values of SH
4 = 16

and SH
5 = 125 (Mo et al. 1997). Massive haloes at high redshift

can therefore have non-zero hierarchical amplitudes even if the

dark matter distribution still has a Gaussian distribution and hence

SDM
p = 0.

We plot the hierarchical amplitudes of dark matter haloes in

Fig. 4, as a function of the scaled peak height, δc/σ (M, z). The

simulation results are averaged over smoothing radii of 20 < R <

50 h−1 Mpc. The dashed line shows the prediction obtained assum-

ing the mass function of Press & Schechter (1974) and the spherical
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Figure 2. The hierarchical amplitudes (SN ) measured for the dark matter as a function smoothing scale, which is plotted in terms of the radius of the sphere

with the same volume as the cubical cell used. The upper panels show the results in real space and the lower panels show redshift space. Each panel corresponds

to a different redshift as indicated by the legend. The points show the amplitude for the SN obtained from the L-BASICC ensemble, after taking the ratio of the

median correlation functions, as defined by equation (43). The error bars show the scatter in the measurements over the ensemble, obtained by computing SN

for each simulation from the ensemble. Error bars are plotted at smoothing scales for which the fractional error is less than unity; triangles show scales on

which the error exceeds unity. In both sets of panels, the dashed lines show the predictions of perturbation theory in real space (see text for details). Note that

no correction for shot noise has been applied to the measured amplitudes. The arrows indicate the cell radius for which the variance in the counts in cells for

the dark matter is equal to unity, which is roughly the scale down to which perturbation theory should be valid; at z = 4, this scale is below R = 1 h−1 Mpc.

collapse model (see Mo et al. 1997). The solid line shows an im-

proved calculation which uses the ellipsoidal collapse model and

the mass function derived by Sheth, Mo & Tormen (2001). There

is some dispersion between the simulation results at different red-

shifts. The measurements are in reasonable agreement with the

theoretical predictions for large values of δc/σ (M, z). For more

modest peaks, the hierarchical amplitudes of haloes averaged on

large smoothing scales show a dip and are significantly smaller

than the amplitude recovered for the dark matter. The strength

of this dip is more pronounced in the measurements from the

simulations than it is in the theoretical predictions. This discrep-

ancy suggests that the theoretical models do not reproduce the

trend of bias with halo mass for such objects, as we will see in

Section 3.4.
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Figure 3. The fractional scatter, σ (SN )/SN , in the measured hierarchical amplitudes, as estimated from the 50 simulations in the L-BASICC ensemble.

Different lines show the scatter for different orders as indicated by the legend.

Figure 4. The hierarchical amplitudes of dark matter haloes, plotted as a

function of the peak height corresponding to the halo mass. In this plot, the

hierarchical amplitudes are averaged over cell sizes of 20 < R < 50 h−1 Mpc.

The dashed curve shows a theoretical prediction based on the spherical

collapse model (Mo et al. 1997) and the solid line shows a revised prediction

based upon an ellipsoidal collapse, by Sheth et al. (2001). The corresponding

hierarchical amplitudes for the dark matter, averaged over the same range

of cell radii, are indicated in each panel by the arrow.

3.3 Cross-correlation estimates of higher order clustering

We now switch to estimating cross-correlation functions instead of

autocorrelation functions. To recap Section 2 to reduce the impact

of discreteness noise on our measurement of halo clustering, we

cross-correlate fluctuations in the spatial distribution of haloes with

the fluctuation in the dark matter density within the same cell. As

the order of the correlation function increases, the number of pos-

sible permutations of halo fluctuations and dark matter fluctuations

increases. For a given order of correlation function, the relation be-

tween these permutations can be understood using the expressions

for the cross-moments given in Section 2.3. The relationship at sec-

ond order is particularly straightforward. The halo autocorrelation

function, ξ̄2,0 (recall the first index gives the order of the halo den-

sity contrast and the second index gives the order of the dark matter

density contrast) is related to the autocorrelation of the dark matter,

ξ̄0,2, by ξ̄2,0 = b2
1 ξ̄0,2. The second-order cross-correlation function,

ξ̄1,1, is related to the autocorrelation function of dark matter by

ξ̄1,1 = b1ξ̄0,2. The primary difference between ξ̄2,0 and ξ̄1,1 is there-

fore a factor of b1. This basic trend is approximately replicated for

any order of correlation function: as fluctuations in the halo density

are substituted by fluctuations in the dark matter, the amplitude of

the cross-correlation is reduced by a factor which depends on b1.

Above second order, this factor is modulated by higher order bias

terms and the hierarchical amplitudes of the dark matter (see Sec-

tion 2.2). The precise relation between the different permutations

of cross-correlation functions depends upon the values of the bias

parameters and therefore on the halo mass under consideration.

We show illustrative examples of volume-averaged cross-

correlation functions, ξ̄i,j , estimated from the BASICC simulation in

Fig. 5. Each panel shows a different order of clustering, starting with

the second moment in the top left panel and ending with the fifth-

order correlation function in the bottom right panel. In this plot, the

haloes used have masses in the range 1.1 × 1013 < (Mhalo/h−1 M⊙)

< 2.8 × 1013 and the clustering is measured at z = 0. The top-left

panel of Fig. 5 shows that there is little difference in the amplitude
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Figure 5. Volume-averaged i + j-point cross-correlation functions, ξ̄i,j ,

measured for haloes of mass 1.1 × 1013 < (M/h−1 M⊙) < 2.8 × 1013

(619 386 objects) and the dark matter at z = 0 in the BASICC simulation.

The autocorrelation function of haloes is denoted by ξ̄i+j,0 and the auto-

correlation of dark matter by ξ̄0,i+j . Each panel shows a different order

of cross-correlation. The key shows the different permutations of cross-

correlation function in each case. The moments have been corrected for

Poisson noise due to the finite number of haloes.

of the second-order correlation function on large smoothing scales

between the different permutations of i, j. This implies that for these

haloes, the linear bias term b1 ≈ 1. The correlation functions are,

however, different on small scales. The autocorrelation function of

the dark matter (ξ̄0,2) is steeper than the autocorrelation of haloes

(ξ̄0,2). The cross-correlation functions are different on large scales

for third, fourth and fifth orders. The difference in amplitude is fairly

independent of scale for cells with radii R > 10 h−1 Mpc. Since the

linear bias of this sample of haloes is close to unity, this difference

is driven by the higher order bias terms and the hierarchical ampli-

tudes of the dark matter. We plan to model the full behaviour of the

cross-correlation functions, including the small-scale form, using

the halo model in a future paper.

One might be concerned that replacing fluctuations in halo den-

sity by fluctuations in dark matter in the higher order correlation

functions leads to a reduction in the clustering amplitude (as is

indeed apparent in Fig. 5). However, this is more than offset by

a reduction in the noise or scatter of the measurement. The frac-

tional error on the measurements of the cross-correlation functions

is plotted in Fig. 6. The scatter is estimated using the L-BASICC en-

semble. Each panel shows the scatter at a different redshift. The

cross-correlation ξ̄1,i+j−1 (i.e. one part halo fluctuation, i + j − 1

parts dark matter fluctuation) gives the optimal error estimate, with

a performance comparable to the autocorrelation of the dark matter.

At z = 1, it is not possible to measure the four-point autocorrelation

function of this sample of haloes, even with a box of the size of the

L-BASICC runs. Nevertheless, it is possible to measure the bias fac-

tors relating the four-point functions of haloes and mass using the

cross-correlation. Our use of a cross-correlation estimator therefore

allows us to extend the measurements of the higher order clustering

of haloes to orders and redshifts that would not be possible using

autocorrelations.

Figure 6. The fractional error on the four-point cross-correlation functions,

estimated from the scatter over the L-BASICC runs. Each panel shows the

results for a different redshift, as shown by the key. The legend shows

the different permutations of cross-correlation moment. To improve the

statistics, all the haloes in the L-BASICC runs have been used in this case.

3.4 The bias parameters of dark matter haloes

We now use the cross-correlation functions to estimate the linear

and higher order bias parameters of dark matter haloes. As we

demonstrated in the previous section, the best possible measurement

of the i + jth-order correlation function is obtained when the cross-

correlation function is made up of one part fluctuation in halo density

and i + j − 1 parts dark matter fluctuation: i.e. in our notation

ξ̄1,i+j−1. This approach, combined with the huge volume of our

simulation, makes it possible, for the first time, to measure the

third- and fourth-order bias parameters, and to do so using narrow

mass bins.

In this section, we use the higher resolution BASICC run, which

can resolve the largest dynamic range in halo mass. We use the

higher order correlation function measurements over the range of

smoothing radii 15 < (R/h−1 Mpc) < 50 to estimate the halo bias

parameters. The large volume of the BASICC simulation means that

we can make robust measurements of the higher order correlation

functions out to larger smoothing radii than is possible with the

smaller Millennium simulation. The smallest scale we use is set

by the requirement that the expansion relating the overdensity in

haloes to the overdensity in dark matter (equation 44) is a good

approximation, i.e. when ξ̄ ≪ 1. The scales we use to extract the

halo bias parameters are considerably larger than those Gao et al.

(2005) and Gao & White (2007) were able to use in the Millennium.

We use the simulation outputs at redshifts of z = 0, 0.5, 1, 2 and 3

to measure the clustering of haloes.

The results for the first-, second-, third- and fourth-order bias

parameters of dark matter haloes are presented in Fig. 7. Each

panel corresponds to a different order. The upper half of each panel

shows the respective order of bias parameter as a function of halo

mass, expressed in terms of the peak height corresponding to the

halo mass, δc/σ (M, z). The lower half of each panel shows the

deviation from the bias parameter extracted for a given mass for

samples of the 20 per cent of haloes in the mass bin with the highest

and lowest values of Vmax/V200, which we are using as a proxy

for halo concentration. Different symbols in the upper panels show

the measurements at different output redshifts in the BASICC run, as

indicated by the key; the same colours are used to draw the lines

showing results for samples defined by different Vmax/V200 values

at the same output redshifts in the lower panels.

In Fig. 7, there is remarkably little scatter between the results

obtained from the different output redshifts for the case of the overall

bias as a function of mass. This is encouraging, as it shows that our

results are not affected by resolution [haloes with similar values of
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Figure 7. The bias parameters as a function of halo mass parametrized by ν = δc/σ (M, z). Each plot shows a different order of bias parameter: (a) linear bias

b1, (b) the ratio of the second-order bias, b2/b1, (c) the ratio of the third-order bias, b3/b1 and (d) b4/b1. In the lower panel of each plot, the residual bias

parameters for the 20 per cent of haloes with the highest or lowest values of Vmax/V200, a proxy for concentration, are plotted. In the upper panels, symbols

show the measurements for different output redshifts, as indicated by the key. The same line colours are used to show the results for different redshifts in the

lower panels. In the upper panel of each plot, we plot two theoretical predictions for the bias parameters, given by Mo et al. (1997) and Scoccimarro et al.

(2001).

δc/σ (M, z) at different output times are made up of very different

numbers of particles]. Gao et al. (2005) were able to measure the

linear bias parameter up to haloes corresponding to peak heights of

3σ ; we are able to extract measurements for haloes corresponding

to 5σ peaks.

In the upper sub-panels of Fig. 7, we show two theoretical predic-

tions for the bias parameters of dark matter haloes. The dotted lines

show the predictions from Mo et al. (1997), based on an extension

of Press & Schechter’s (1974) theory for abundance of dark matter

haloes and the spherical collapse model. The solid lines show the

calculation from Scoccimarro et al. (2001) which uses the mass

function of Sheth & Tormen (1999). Our results tend to best agree

with the latter, although the measurements favour a steeper depen-

dence of bias on peak height at all orders. For less rare peaks, neither

theoretical model gives a particularly good fit to the simulation re-

sults. A similar trend, albeit with more scatter between the results

at different output redshifts, was found by Gao et al. (2005) (see

also Wechsler et al. 2006; Jing et al. 2007).

Previous studies have reported a dependence of clustering

strength on a second halo property besides mass, such as halo for-

mation time or concentration (Wechsler et al. 2006; Gao & White

2007). We do not have sufficient output times to make a robust es-

timate of formation time so we use a proxy for halo concentration

instead, Vmax/V200. We find that the clustering of high peak haloes

is sensitive to the fact that whether the halo has a high or low value

of Vmax/V200. The 20 per cent of haloes with the lowest values

of Vmax/V200 within a given mass bin (i.e. those with the lowest

concentrations) have the largest linear and second-order bias terms.

This result agrees with previous estimates of the dependence of the

linear bias term on halo concentration (Wechsler et al. 2006).

The peak height dependence of the third- and fourth-order bias

terms for haloes split by Vmax/V200 is more complicated. Fig. 7
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shows that the third-order bias depends on our concentration proxy

in a non-monotonic fashion. The trend for the fourth-order bias is

reversed compared with the results for the first- and second-order

bias parameters: low-concentration haloes have a negative value

of the fourth-order bias. We note that it would not be possible

to measure a fourth-order bias at all using halo autocorrelation

functions.

One might be concerned that our results could be sensitive to the

operation of the group finder. In particular, it is well known that

the FoF algorithm can sometimes spuriously link together distinct

haloes into a larger halo, through bridges of particles (e.g. Cole &

Lacey 1996). We therefore carried out the exercise of relabelling

the mass of each halo by the mass of the largest substructure as

determined by SUBFIND. In the rare cases in which haloes are incor-

rectly linked into a larger structure, using instead the SUBFIND mass

would result in a significant shift in the mass bin to which the halo

is assigned. Moreover, one would expect that low-concentration

FoF haloes would be more prone to being broken up in this way.

However, we found no change in our results upon following this

procedure, demonstrating that the trends we find for the dependence

of bias on mass and concentration are robust.

4 SU M M A RY A N D D I S C U S S I O N

In this paper, we have combined ultra-large volume cosmological

simulations with a novel approach to estimating the higher order

correlation functions of dilute samples of objects. The large simu-

lation volume allows us to extract bias parameters on large scales,

which follow linear perturbation theory more closely, and provides

us with large samples of high-mass haloes from which robust clus-

tering measurements can be made. The cross-moment counts-in-

cells technique we use to estimate the higher order clustering of

dark matter haloes has superior noise performance to traditional

autocorrelation functions, allowing us to probe clustering to higher

orders. These improvements made it possible to extend previous

work on the assembly bias of dark matter haloes in a number of

ways. We have been able to extract measurements of halo cluster-

ing for objects corresponding to 5σ peaks, almost twice as high as in

earlier studies. We have also presented, for the first time, estimates

of the higher order bias parameters of haloes, up to fourth order,

and using narrow mass bins.

Our results are in qualitative agreement with those in the litera-

ture where they overlap. We find that the linear bias factor, b1, is

a strong function of mass, varying by an order of magnitude for

peaks ranging in height from δc/σ (M, z) = 1 to 5. We use the

ratio of the maximum of the effective halo rotation speed to the

speed at the virial radius, Vmax/V200 as a proxy for halo concentra-

tion. High-mass, high-Vmax/V200 haloes are less strongly clustered

than the same mass haloes with low values of Vmax/V200; haloes

with δc/σ (M, z) ∼ 4 display second-order clustering that differs by

≈25 per cent between the 20 per cent with the lowest values of

Vmax/V200 and the 20 per cent of the population with the highest

values of this ratio.

It is reassuring that we recover a similar dependence of the lin-

ear bias on halo mass when labelling haloes by Vmax/V200 as other

authors found using the concentration parameter (Wechsler et al.

2006). This trend is the opposite to that recovered when halo sam-

ples are split by formation time. Gao et al. (2005) found no depen-

dence of the clustering signal on halo formation time for massive

haloes. This is puzzling since formation time and concentration are

correlated, albeit with scatter (e.g. Neto et al. 2007). Croton et al.

(2007) have argued that this suggests that an as yet unknown halo

property is a more fundamental property in terms of determining

the clustering strength (for theoretical explanations of the physical

basis of assembly bias see e.g. Ariel Keselman & Nusser 2007;

Zentner 2007; Dalal et al. 2008).

The second-order bias parameter, b2, displays qualitatively simi-

lar dependences on mass and Vmax/V200 to b1 with the difference that

b2 is negative around δc/σ (M, z) ∼ 1. The third- and fourth-order

bias parameters are more complicated, being essentially indepen-

dent of mass until peaks δc/σ (M, z) ∼ 2–3 are reached, where

there is a dip in bias before a rapid increase for rarer peaks. The

dependence on Vmax/V200 is also different at third and fourth order.

We compared our measurements for the bias parameters with an-

alytic predictions. For haloes corresponding to rare peaks, the trend

in linear bias versus peak height is intermediate between the predic-

tions of Mo et al. (1997), which are based on Press & Schechter’s

(1974) theory for the abundance of haloes and the spherical collapse

model, and the calculation of Sheth et al. (2001) and Scoccimarro

et al. (2001), based on ellipsoidal collapse and an improved esti-

mate of the halo mass function. Both analytic calculations predict a

weaker dependence of b1 on peak height around δc/σ (M, z) ∼ 1 than

we find in the simulation. The comparison between the simulation

measurements and the analytic predictions is similar for b2. For the

third- and fourth-order bias parameters, the simulation results are

in good agreement with the analytic predictions for modest peaks.

For rare peaks, the bias parameters measured from the simulation

are again in between the two analytic predictions.

Observations of clustering are already entering the regime in

which our simulation can play an important role in interpreting

the measurements. Existing observations of high-redshift quasar

clustering suggesting that these objects live in haloes corresponding

to ∼5–6 sigma peaks in the matter distribution at z = 4 (White,

Martini & Cohn 2007). Future galaxy surveys, due to the volume

covered and number of galaxies targeted, will yield measurements

of clustering with unprecedented accuracy, to higher orders than the

two-point function. The measurements presented in this paper will

provide invaluable input to future models of galaxy clustering based

on halo occupation distribution models, which have been modified

such that galaxy clustering is a function of mass and a second halo

property.

AC K N OW L E D G M E N T S

We acknowledge Liang Gao, Shaun Cole and Carlos Frenk for

helpful discussions and Lydia Heck for managing the Cosmology

Machine at Durham which was used to run the simulations used

in this paper. We also thank Robert Smith, Martin White and An-

drew Zentner for useful comments on the preprint version of this

paper. REA is supported by a PPARC/British Petroleum sponsored

Dorothy Hodgkin postgraduate award. CMB is funded by a Royal

Society University Research Fellowship. This work was supported

in part by a rolling grant from STFC.

R E F E R E N C E S

Angulo R., Baugh C. M., Frenk C. S., Lacey C. G., 2008, MNRAS, 383,

755

Ariel Keselman J., Nusser A., 2007, MNRAS, 382, 1853

Baugh C. M., Gaztanaga E., Efstathiou G., 1995, MNRAS, 274, 1049

Baugh C. M. et al., 2004, MNRAS, 351, L44

Bernardeau F., 1994, ApJ, 433, 1
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