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Orbital energies in Kohn–Sham density functional theory �DFT� are investigated, paying attention
to the role of the integer discontinuity in the exact exchange-correlation potential. A series of
closed-shell molecules are considered, comprising some that vertically bind an excess electron and
others that do not. High-level ab initio electron densities are used to calculate accurate orbital
energy differences, ��, between the lowest unoccupied molecular orbital �LUMO� and the highest
occupied molecular orbital �HOMO�, using the same potential for both. They are combined with
accurate vertical ionization potentials, I0, and electron affinities, A0, to determine accurate “average”
orbital energies. These are the orbital energies associated with an exchange-correlation potential that
averages over a constant jump in the accurate potential, of magnitude �XC= �I0−A0�−��, as given
by the discontinuity analysis. Local functional HOMO energies are shown to be almost an order of
magnitude closer to these average values than to −I0, with typical discrepancies of just 0.02 a.u. For
systems that do not bind an excess electron, this level of agreement is only achieved when A0 is set
equal to the negative experimental affinity from electron transmission spectroscopy �ETS�; it
degrades notably when the zero ground state affinity is instead used. Analogous observations are
made for the local functional LUMO energies, although the need to use the ETS affinities is less
pronounced for systems where the ETS values are very negative. The application of an asymptotic
correction recovers the preference, leading to positive LUMO energies �but bound orbitals� for these
systems, consistent with the behavior of the average energies. The asymptotically corrected LUMO
energies typically agree with the average values to within 0.02 a.u., comparable to that observed
with the HOMOs. The study provides numerical support for the view that local functionals exhibit
a near-average behavior based on a constant jump of magnitude �XC. It illustrates why a recently
proposed DFT expression involving local functional frontier orbital energies and ionization potential
yields reasonable estimates of negative ETS affinities and is consistent with earlier work on the
failure of DFT for charge-transfer excited states. The near-average behavior of the
exchange-correlation potential is explicitly illustrated for selected systems. The nature of hybrid
functional orbital energies is also mentioned, and the results of the study are discussed in terms of
the variation in electronic energy as a function of electron number. The nature of DFT orbital
energies is of great importance in chemistry; this study contributes to the understanding of these
quantities. © 2008 American Institute of Physics. �DOI: 10.1063/1.2961035�

I. INTRODUCTION AND BACKGROUND

Kohn–Sham density functional theory �DFT� is the most
widely used electronic structure method. Practical calcula-
tions rely on an accurate representation of the exchange-
correlation energy and its functional derivative, the
exchange-correlation potential vXC�r�. Perdew et al.1 demon-
strated that a plot of the exact total electronic energy as a
function of electron number comprises a series of straight
line segments, with derivative discontinuities at the integers.
This has the important consequence that the exact exchange-
correlation potential jumps discontinuously as the electron
number increases through an integer. The issue has attracted

significant recent interest.2–15 In particular, Sagvolden and
Perdew3 re-examined the assumptions in the original proof.
They concluded that the discontinuity is rigorously a con-
stant jump for one-electron systems, and they established a
strong presumption that it is a constant jump for many-
electron systems. �A constant jump refers to a shift in the
potential by the same amount at all points in space;3 the
value of the jump is both system and electron number depen-
dent�.

In the present study, we shall consider the implications
of the integer discontinuity in practical DFT calculations us-
ing local functionals such as generalized gradient approxima-
tions �GGAs�. We shall show that local functional frontier
orbital energies are consistent with a potential that averages
over a constant jump, the magnitude of which is given by the
discontinuity analysis. The results will provide key insight
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into the orbital energies of DFT, illustrating why they are so
different from the Koopmans values.16,17 The study will also
provide justification and insight into a recently proposed
DFT scheme9 for estimating negative electron affinities. It
also has direct relevance to other important aspects of DFT,
including the failure of charge-transfer excited states10 and
the asymptotic breakdown of exchange-correlation
potentials.18

We commence by summarizing the relevant theory; see
Ref. 1 for full details. The linearity of the energy, combined
with Janak’s theorem,19 leads to exact orbital energies for
systems with N− f and N+ f electrons of

�N�N − f� = − I0,

�N+1�N + f� = − A0, �1�

where 0� f �1 and I0 and A0 are the exact ground state
vertical ionization potential and electron affinity, respec-
tively, of the N electron system. In the limit f →0, the exact
exchange-correlation potentials on the limiting electron defi-
cient and electron abundant sides of the integer N, denoted as
vXC

− �r� and vXC
+ �r�, respectively, differ by the integer discon-

tinuity,

�XC = vXC
+ �r� − vXC

− �r� , �2�

where we have assumed a constant jump. In this limit, the
orbital energies in Eq. �1� can be identified as the highest
occupied molecular orbital �HOMO� and lowest unoccupied
molecular orbital �LUMO� energies of the N-electron sys-
tem, determined using vXC

− �r� and vXC
+ �r�, respectively. We

therefore write the exact HOMO energy of the N electron
system determined using vXC

− as

�HOMO
− = − I0 �3�

which implies that vXC
− �r� vanishes asymptotically

�r→��.20,21 We write the exact LUMO energy of the
N-electron system determined using vXC

+ as

�LUMO
+ = − A0. �4�

Equations �3� and �4� are exact Koopmans-type relationships
for DFT.

The potential vXC
− �r� differs from vXC

+ �r� by the spatial
constant �XC, and so the orbital energies from the two po-
tentials also differ by this amount; from Eqs. �2� and �4�, the
exact LUMO energy determined using vXC

− is

�LUMO
− = − A0 − �XC, �5�

and so combining Eqs. �3� and �5� gives the discontinuity22

�XC = �I0 − A0� − ��LUMO
− − �HOMO

− � . �6�

This is a key equation. The orbital energies �LUMO
− and �HOMO

−

can be accurately calculated from ab initio electron densities,
and so combining them with experimental I0 and A0 permits
the calculation of accurate approximations to �XC.

Consider the implications of the integer discontinuity for
practical approximate DFT calculations on systems contain-
ing integer N electrons. Perdew and Levy22 presumed that
local functionals—whose potentials are continuous with

electron number—approximately average over the disconti-
nuity. We denote the exact average �av� potential by

vXC
av �r� =

vXC
− �r� + vXC

+ �r�
2

= vXC
− �r� +

�XC

2
, �7�

which lies exactly midway between vXC
− �r� and vXC

+ �r�
=vXC

− �r�+�XC, approaching the nonzero value �XC /2 as-
ymptotically. The corresponding orbital energies are

�HOMO
av = − I0 +

�XC

2
�8�

and

�LUMO
av = − A0 −

�XC

2
, �9�

and so

�LUMO
av + �HOMO

av = − �I0 + A0� . �10�

For open-shell systems in a restricted formalism, the HOMO
and LUMO energies are degenerate, and the discontinuity in
Eq. �6� reduces to I0−A0. The average potential is then

vXC
av �r� = vXC

− �r� +
I0 − A0

2
, �11�

and the HOMO and LUMO energies equal the negative of
the electronegativity

�HOMO
av = �LUMO

av = −
I0 + A0

2
. �12�

It is well established that open-shell HOMO energies
from local functionals lie well above −I0. They are much
closer to the value in Eq. �12�,22 consistent with an
exchange-correlation potential that approximately averages
over the discontinuity in regions of space that are relevant to
the HOMO. Of course, in asymptotic regions the average
potential approaches a nonzero value, whereas the local
functional potential vanishes. These regions of space are of
little significance for the HOMO, and so its energy is barely
affected by this breakdown; the more diffuse higher-lying
orbitals are more affected. �The breakdown is easily repaired
using an asymptotic correction �AC�; we shall explicitly il-
lustrate this in Sec. II, quantifying the influence on both the
HOMO and LUMO energies. See Ref. 18 for further discus-
sion�.

In our own studies, we have provided further compelling
evidence that the potentials of local functionals should, and
do, approximately average over the integer discontinuity in
open-shell systems. In Ref. 23, we demonstrated that for the
open-shell atoms up to chlorine, the approximate homogene-
ity of a local functional �degree 4/3� requires its potential to
resemble Eq. �11� if it is to yield accurate exchange-
correlation energies and potentials simultaneously. In Ref.
24, we demonstrated that for the hydrogenic atoms H, Li2+,
C5+, and O7+, the exchange-correlation potentials from a
standard GGA functional closely resemble the average po-
tential in Eq. �11� in nonasymptotic regions despite the fact
that the shift �the hardness� varies by more than an order of
magnitude between the systems. In our local functional de-
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velopment work,20 we have highlighted the need to add con-
stant shifts of approximately �I0−A0� /2 in fits to open-shell
accurate vXC

− �r� potentials in order to obtain accurate ener-
gies and potentials simultaneously, again in accordance with
Eq. �11�.

All this evidence relates to open-shell systems, which
are generally able to vertically bind the excess electron; i.e.,
the vertical electron affinity A0 is positive. In Ref. 9, evi-
dence was provided that an approximate average behavior is
also observed for F2 and Cl2, which also have positive ver-
tical affinities but which are closed shell systems. Most
closed-shell systems, however, cannot vertically bind an ex-
cess electron. This issue was briefly considered by
Sagvolden and Perdew,3 who concluded that for the helium
atom, the discontinuity may not be well defined. Neverthe-
less, it remains important to understand how local function-
als behave for closed-shell systems and whether this behav-
ior can be understood in terms of the above mathematical
analysis.

As in the open-shell case, it is well known that closed-
shell HOMO orbital energies lie well above −I0, again sug-
gesting a shift in the potential from vXC

− �r� in regions of
space that are relevant to the HOMO. To further quantify
this, we considered in Ref. 25 a series of closed-shell mol-
ecules that do not vertically bind an excess electron. We used
the Zhao–Morrison–Parr26 �ZMP� procedure to determine ac-
curate values of �HOMO

− and �LUMO
− , and we combined these

with experimental ionization potentials and electron affinities
to obtain values of the quantity �XC in Eq. �6�. We then used
these values to compute the average HOMO energies in Eq.
�8� and compared them with HOMO energies from local
functionals. The agreement was rather good, leading us to
conclude that for these systems, the local functional HOMO
energy is still consistent with the average potential in Eq. �7�,
as in the positive electron affinity case. The interesting fea-
ture of this earlier study is that in the evaluation of Eq. �6�,
we set A0 to be the negative experimental electron affinity
from electron transmission spectroscopy27,28 �ETS� rather
than the ground state affinity, which is zero. The ETS affinity
reflects the energy of the temporary anion �shape resonance�
associated with the temporary electron capture in the
LUMO; the ground state affinity reflects the true ground state
energy of the anion, which equals that of the neutral due to
loss of the excess electron �assuming no dipole-bound state�.

Overall, therefore, studies suggest that local functionals
yield orbital energies that are reasonably close to those in
Eqs. �8� and �9�, with �XC defined in Eq. �6�, irrespective of
whether the excess electron binds or not. In the former case,
A0 is the positive ground state affinity. In the latter, defining
A0 to be the negative ETS affinity appears to be the appro-
priate choice. In Ref. 10, we used this to provide insight into
the failure of local functionals to describe long-range charge-
transfer excitations. In Ref. 9, Tozer and De Proft �TDP�
went further, suggesting that it could be used as a direct
method for estimating electron affinities in closed-shell sys-
tems. Rearranging the approximate local functional analog of
Eq. �10� and approximating I0 using a local functional gives
their unconventional affinity expression,

ATDP = − ��LUMO
local + �HOMO

local � − Ilocal. �13�

Affinities determined in this manner are not quantitatively
accurate. For systems where the electron binds, it cannot
compete with affinities determined in the conventional man-
ner, A=EN−EN+1. However, for systems where the electron
does not bind, it does provide an estimate of the negative
ETS affinity, which does not collapse to zero when the basis
set becomes diffuse; this is the fundamental difficulty with
the conventional approach. Negative affinities determined
using Eq. �13� have been shown29 to correlate well with the
experimental ETS values, which is particularly important in
conceptual DFT where chemical trends are central. Ejsing
and Nielsen30,31 demonstrated that it can also be applied suc-
cessfully to anionic species. More recently, it has been used
to control the binding of the excess electron in temporary
anions, allowing self-consistent calculations to be
performed.32,33

The present study has three aims. The first is to review
briefly our existing numerical evidence regarding the influ-
ence of the integer discontinuity on local functionals; this has
been achieved in the preceding paragraphs. The second aim
is to provide a thorough and coherent investigation into the
nature of local functional frontier orbital energies in closed-
shell systems in order to assess how well they can be under-
stood in terms of the above mathematical analysis. In par-
ticular, we shall address a range of issues that have not been
considered previously: �1� We shall consider both the aver-
age HOMO and LUMO energies and not just the former; �2�
we shall consider the possibility of using the ETS and
ground state �zero� affinities and not just the former; �3� we
shall consider the possible breakdown of the LUMO energy
due to the asymptotic breakdown of the exchange-correlation
potential; �4� we shall separately consider systems that bind
and do not bind an excess electron; �5� we shall explicitly
plot the potentials to quantify the average behavior; and �6�
we shall consider hybrid functionals, with reference to con-
ventional and optimized effective potential calculations. The
third and final aim is to provide justification and insight into
the unconventional affinity expression in Eq. �13� and its
ability to yield a qualitative description of the negative ETS
affinity.

We commence in Sec. II by using high-level ab initio
electron densities and accurate ionization potentials and elec-
tron affinities to determine accurate values of the average
orbital energies in Eqs. �8� and �9�. We then compare orbital
energies from conventional local functionals with these av-
erage values, together with the Koopmans values. Exchange-
correlation potentials of selected systems are explicitly pre-
sented. Orbital energies from hybrid functionals are also
briefly considered, and the results of the study are discussed
in terms of the variation in electronic energy as a function of
electron number. Conclusions are presented in Sec. III. Cal-
culations are performed using CADPAC �Ref. 34� and a devel-
opment version of DALTON.35

044110-3 Orbital energies and negative electron affinities J. Chem. Phys. 129, 044110 �2008�

Downloaded 02 Nov 2012 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



II. RESULTS AND DISCUSSION

A. Accurate average orbital energies

We consider the 15 closed-shell molecules, SO2 Cl2, F2,
H2CO, C2H4, CO, PH3, H2S, HCN, HCl, CO2, NH3, HF,
H2O, and CH4, using the same near-experimental geometries
of Ref 36. Experimental vertical ionization potentials are
available37 for all these systems; the values are denoted as I0

in Table I. To confirm the validity of this choice of experi-
mental data, we have also determined the ionization poten-
tials using CCSD�T�/aug-cc-pVTZ. The values agree with
the experimental ones to better than 0.1 eV on average. For
the electron affinities, the first three molecules are known to
have positive experimental adiabatic affinities, but we are not
aware of experimental vertical affinities. It is well estab-
lished that the remaining 12 molecules do not vertically bind
an excess electron. To further investigate this, we have de-
termined vertical affinities using CCSD�T�/aug-cc-pVTZ.
For the first three molecules, positive values are obtained,
indicating that the excess electron does bind. For the remain-
ing 12 molecules, small negative values are obtained, reflect-
ing the artificial binding of the excess electron by the finite
basis set. The column of values denoted as A0,GS in Table I
therefore represents our best estimates of the true ground
state �GS� vertical electron affinities. For the first three mol-
ecules, the values are the CCSD�T�/aug-cc-pVTZ affinities;
for the remainder, they are zero because the ground state
corresponds to the neutral plus a free electron, again assum-
ing no dipole-bound states.

For the 12 molecules that do not bind an excess electron,
we must also consider using the negative ETS affinities,
which are usually quoted as being the “experimental” verti-
cal affinities for these systems38 and which are the appropri-
ate quantities in conceptual DFT. The values, taken from
Ref. 38, are denoted as A0,ETS and are presented in Table I.

For each system, the Wu–Yang39 �WY� approach was

applied to the CCSD�T�/aug-cc-pVTZ electron density; all
calculations in this study use this basis set. Following Ref.
20, the WY exchange-correlation potential represents our
best estimate to the exact electron deficient potential,

vXC
WY�r� � vXC

− �r� , �14�

while the WY orbital energies represent our best estimates to
the corresponding exact orbital energies,

�HOMO
WY � �HOMO

− ,

�LUMO
WY � �LUMO

− . �15�

The WY quantities are formally identical to those obtained
using the ZMP procedure, and the WY HOMO orbital energy
should be close to the negative of the experimental ionization
potential, −I0 �Eq. �3��.

In the WY procedure, the exchange-correlation potential
is expanded in terms of an auxiliary basis set; we choose to
use the Glarge basis set of Ref. 40, although in practice very
similar results are obtained using the primary orbital basis.
We use a standard reference potential containing the Fermi–
Amaldi term in order to ensure an asymptotic −1 /r behavior.
Several studies highlighted the problem of unphysical poten-
tials when the orbital and potential basis sets are
unbalanced,40–43 and we investigated several approaches to
avoid such problems. First, we considered a truncated singu-
lar value decomposition,44 as was done in Ref. 40. Next, we
used the �-regularization scheme of Bulat et al.,45 defining
the optimal � from the corner of the L-curve or from the
maximum in the reciprocal slope. Finally, we considered the
alternative approach of choosing � to minimize the absolute
difference between the HOMO energy and −I0; the � values
from this final method were rather close to those using the
other approaches. Investigations revealed that all four ap-
proaches gave very similar HOMO-LUMO gaps, which are
the key quantities in the present study �see Eq. �6��. For the
present work, we therefore choose to use the final approach
since this ensures not only that the gaps are accurate but also
that unphysical shifts in the potentials and orbital energies
are minimized. We reiterate that the gaps and thus the con-
clusions of this study are insensitive to this choice. The gaps
are very close to those presented in Ref. 25, which used the
alternative ZMP procedure.

The accurate WY gaps were used, in conjunction with
the data in Table I, to calculate accurate values for the aver-
age HOMO and LUMO energies in Eqs. �8� and �9�. Values
determined using A0,GS are denoted as

�HOMO
av,GS = − I0 +

�XC
GS

2
�16�

and

�LUMO
av,GS = − A0,GS −

�XC
GS

2
, �17�

where

�XC
GS = �I0 − A0,GS� − ��LUMO

WY − �HOMO
WY � . �18�

Those determined using A0,ETS are denoted as

TABLE I. Accuratea vertical ionization potentials and electron affinities
�in a.u.�.

Molecule I0 A0,GS A0,ETS

Systems that do vertically bind an excess electron
SO2 0.459 0.026 …
Cl2 0.422 0.022 …
F2 0.577 0.011 …

Systems that do not vertically bind an excess electron
H2CO 0.401 0.000 −0.055
C2H4 0.392 0.000 −0.066
CO 0.515 0.000 −0.066
PH3 0.389 0.000 −0.070
H2S 0.386 0.000 −0.077
HCN 0.500 0.000 −0.085
HCl 0.469 0.000 −0.121
CO2 0.506 0.000 −0.140
NH3 0.398 0.000 −0.206
HF 0.592 0.000 −0.220
H2O 0.464 0.000 −0.235
CH4 0.526 0.000 −0.287

aI0 and A0,ETS are experimental values from Refs. 37 and 38, respectively;
A0,GS for SO2, Cl2, and F2 are calculated using CCSD�T�/aug-cc-pVTZ.
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�HOMO
av,ETS = − I0 +

�XC
ETS

2
�19�

and

�LUMO
av,ETS = − A0,ETS −

�XC
ETS

2
, �20�

where

�XC
ETS = �I0 − A0,ETS� − ��LUMO

WY − �HOMO
WY � . �21�

These average energies are now used to quantify the nature
of local functional orbital energies.

B. Orbital energies from a local functional

The first column of Table II lists the WY HOMO ener-
gies denoted as �HOMO

WY . The second column lists HOMO en-
ergies from conventional Kohn–Sham calculations using the
representative Perdew–Burke–Ernzerhof46 �PBE� local func-
tional denoted as �HOMO

PBE . The final three columns list �HOMO
av,GS ,

�HOMO
av,ETS, and −I0. Mean absolute differences �d�, relative to the

latter three quantities, are also presented for the two molecu-
lar subsets—those that bind an electron and those that do not.
�The former subset is very small, reflecting the difficulty of
finding closed-shell molecules with positive vertical affini-
ties that are amenable to good quality WY calculations�. For
all 15 molecules, the �HOMO

WY values are uniformly close to
−I0, with mean absolute differences of just 0.010 and 0.003
a.u. for the two subsets, reflecting the exact Koopmans rela-
tionship �Eq. �3��.

As has been widely observed, the �HOMO
PBE values are uni-

formly above −I0 by averages of 0.183 and 0.174 a.u. for the
two subsets. For the first three molecules, which do bind an
excess electron, the �HOMO

PBE values are, however, significantly

closer to the average orbital energy, �HOMO
av,GS , with a mean

absolute difference of just 0.016 a.u. For the remaining mol-
ecules, which do not bind an excess electron, �HOMO

PBE and
�HOMO

av,GS do not agree as well—the mean absolute difference is
almost five times greater at 0.078 a.u. However, consistent
with Ref. 25, the discrepancy is significantly reduced when
the ETS affinities are instead used to compute the average
HOMO. The average difference between �HOMO

PBE and �HOMO
av,ETS

is just 0.022 a.u. for the 12 molecules, essentially the same as
that obtained for the first three systems �when compared to
�HOMO

av,GS �. The key conclusion of Table II is that the conven-
tional PBE HOMO energies are almost an order of magni-
tude closer to the average values �determined using the
ground state affinity for systems that do bind an excess elec-
tron but the ETS affinity for those that do not� than to the
Koopmans values of −I0.

Table III presents the equivalent analysis for the LUMO
energies. The first column lists the WY LUMO energies de-
noted as �LUMO

WY . The second column lists LUMO energies
from conventional Kohn–Sham calculations using the PBE
functional denoted as �LUMO

PBE . The PBE values are all nega-
tive, and it is important to note that they barely change when
increasingly diffuse functions are added to the basis set. The
final four columns list �LUMO

av,GS , �LUMO
av,ETS, −A0,GS, and −A0,ETS.

Consistent with Eq. �5�, the �LUMO
WY values bear no resem-

blance to −A0,GS and −A0,ETS.
For the first three molecules, the �LUMO

PBE values are uni-
formly below −A0,GS by an average of 0.157 a.u. The errors
are, on average, approximately equal and opposite to those
obtained when comparing the HOMO with −I0, resembling
the behavior in Eqs. �16� and �17�. It follows that the �LUMO

PBE

values are reasonably close to �LUMO
av,GS , with a mean absolute

difference of just 0.010 a.u. For the remaining 12 molecules,
the �LUMO

PBE values are below the −A0,GS and −A0,ETS values by

TABLE II. HOMO energies compared to −I0. All quantities are in a.u.

Molecule �HOMO
WY �HOMO

PBE �HOMO
PBE�AC� �HOMO

B3LYP �HOMO
av,GS �HOMO

av,ETS −I0

Systems that do vertically bind an excess electron
SO2 −0.448 −0.294 −0.293 −0.340 −0.312 ¯ −0.459
Cl2 −0.422 −0.268 −0.268 −0.308 −0.281 ¯ −0.422
F2 −0.560 −0.347 −0.342 −0.420 −0.365 ¯ −0.577
�d� vs −I0 0.010 0.183 0.185 0.130
�d� vs �HOMO

av,GS 0.157 0.016 0.019 0.036
Systems that do not vertically bind an excess electron

H2CO −0.399 −0.230 −0.225 −0.278 −0.272 −0.245 −0.401
C2H4 −0.392 −0.249 −0.245 −0.278 −0.302 −0.269 −0.392
CO −0.513 −0.332 −0.330 −0.383 −0.390 −0.357 −0.515
PH3 −0.376 −0.247 −0.246 −0.279 −0.315 −0.280 −0.389
H2S −0.383 −0.232 −0.231 −0.266 −0.302 −0.263 −0.386
HCN −0.499 −0.332 −0.329 −0.370 −0.398 −0.356 −0.500
HCl −0.468 −0.296 −0.295 −0.336 −0.371 −0.311 −0.469
CO2 −0.501 −0.334 −0.332 −0.381 −0.414 −0.344 −0.506
NH3 −0.398 −0.227 −0.221 −0.272 −0.315 −0.212 −0.398
HF −0.586 −0.355 −0.345 −0.421 −0.483 −0.373 −0.592
H2O −0.463 −0.266 −0.260 −0.321 −0.368 −0.251 −0.464
CH4 −0.525 −0.347 −0.343 −0.393 −0.447 −0.303 −0.526
�d� vs −I0 0.003 0.174 0.178 0.130
�d� vs �HOMO

av,GS 0.094 0.078 0.081 0.034
�d� vs �HOMO

av,ETS 0.162 0.022 0.023 0.035
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averages of 0.041 and 0.176 a.u., respectively. The latter
errors—but not the former—are approximately equal and op-
posite to those obtained when comparing the HOMO with
−I0, now resembling the behavior in Eqs. �19� and �20�. It
follows that the �LUMO

PBE values are closer to �LUMO
av,ETS than to

�LUMO
av,GS ; the mean absolute differences are 0.026 and 0.056

a.u., respectively.
The need to use the ETS affinities, rather than the

ground state values, is less pronounced for the LUMO ener-
gies than for the HOMO energies. The reason for this can be
traced to a notable discrepancy between the �LUMO

PBE and
�LUMO

av,ETS values in Table III. Namely, the former values are all
negative, whereas the latter become positive toward the bot-
tom of the table. As noted in Sec. I, it is well established that
the exchange-correlation potentials of local functionals such
as PBE break down in asymptotic regions. This leads to er-
rors in high-lying virtual orbitals, but it may also have an
effect on LUMOs that are sufficiently diffuse. In order to
investigate whether this is the origin of the sign discrepancy,
we have improved the PBE potential by applying an AC
using the scheme of Tozer and Handy.18 Standard connection
parameters of �=3.0 and �=4.0 are used, together with the
PBE ionization potential. The HOMO and LUMO energies
from the asymptotically corrected calculations, denoted as
�HOMO

PBE�AC� and �LUMO
PBE�AC�, are listed in Tables II and III, respec-

tively.
The HOMO energies in Table II are barely affected by

the AC �i.e., �HOMO
PBE ��HOMO

PBE�AC�� because the compact nature
of these orbitals makes them insensitive to the asymptotic
potential. For the LUMO energies in Table III, the effect of
the AC depends on the position in the table. Near the top of
the table �positive affinities or small magnitude ETS affini-
ties�, the LUMO energies are not affected significantly, indi-

cating that the orbitals are again reasonably compact. By
contrast, for systems near the bottom of the table �large mag-
nitude ETS affinities�, the AC has a significant effect, indi-
cating that these orbitals are more diffuse, making them
prone to errors due to the breakdown of the asymptotic po-
tential. It is striking that for these molecules, the AC leads to
positive LUMO energies, which are consistent with the
�LUMO

av,ETS values, confirming our view that the discrepancy
arises due to asymptotic breakdown. For the 12 molecules
that do not bind an excess electron, the �LUMO

PBE�AC� values are
now notably closer to �LUMO

av,ETS than to �LUMO
av,GS ; the mean abso-

lute differences are 0.019 and 0.077 a.u., respectively. The
need to use the ETS affinities is therefore recovered, consis-
tent with the HOMO observations.

It is important to stress that for all 15 molecules the PBE
and PBE�AC� LUMO orbitals are bound �in the limit of a
complete basis set�, even though some of the latter have
positive energies. This is because the LUMO energies are
always below their respective asymptotic potentials in the
Kohn–Sham equations. For PBE, the asymptotic potential is
zero, but for PBE�AC� it takes the positive value,18

lim
r→�

vXC
PBE�AC��r� = �HOMO

PBE�AC� + IPBE, �22�

allowing for the possibility of bound orbitals with positive
energies. This is illustrated in Fig. 1, which plots the PBE
and PBE�AC� exchange-correlation potentials along the prin-
cipal axis of the HF molecule; the two horizontal lines rep-
resent the PBE and PBE�AC� LUMO energies. Despite the
positive orbital energy, the PBE�AC� LUMO is actually
more strongly bound than the PBE one in the sense that it
lies further below the asymptotic potential. We note that the

TABLE III. LUMO energies compared to −A0,GS and −A0,ETS. All quantities are in a.u.

Molecule �LUMO
WY �LUMO

PBE �LUMO
PBE�AC� �LUMO

B3LYP �LUMO
av,GS �LUMO

av,ETS −A0,GS −A0,ETS

Systems that do vertically bind an excess electron
SO2 −0.310 −0.162 −0.161 −0.135 −0.173 ¯ −0.026 ¯

Cl2 −0.303 −0.155 −0.154 −0.122 −0.163 ¯ −0.022 ¯

F2 −0.418 −0.213 −0.207 −0.162 −0.223 ¯ −0.011 ¯

�d� vs −A0,GS 0.324 0.157 0.154 0.120
�d� vs �LUMO

av,GS 0.157 0.010 0.012 0.047
Systems that do not vertically bind an excess electron

H2CO −0.255 −0.098 −0.093 −0.061 −0.129 −0.101 0.000 0.055
C2H4 −0.179 −0.040 −0.034 −0.009 −0.090 −0.057 0.000 0.066
CO −0.247 −0.073 −0.070 −0.038 −0.125 −0.092 0.000 0.066
PH3 −0.134 −0.023 −0.010 −0.014 −0.074 −0.039 0.000 0.070
H2S −0.166 −0.031 −0.020 −0.019 −0.084 −0.046 0.000 0.077
HCN −0.202 −0.040 −0.034 −0.010 −0.102 −0.059 0.000 0.085
HCl −0.194 −0.040 −0.033 −0.025 −0.098 −0.037 0.000 0.121
CO2 −0.180 −0.032 −0.015 −0.019 −0.092 −0.022 0.000 0.140
NH3 −0.166 −0.026 +0.011 −0.017 −0.083 +0.020 0.000 0.206
HF −0.213 −0.036 +0.029 −0.024 −0.109 +0.001 0.000 0.220
H2O −0.191 −0.034 +0.012 −0.023 −0.096 +0.022 0.000 0.235
CH4 −0.158 −0.013 +0.025 −0.007 −0.079 +0.064 0.000 0.287
�d� vs −A0,GS 0.191 0.041 0.032 0.022
�d� vs −A0,ETS 0.326 0.176 0.155 0.158
�d� vs �LUMO

av,GS 0.094 0.056 0.077 0.075
�d� vs �LUMO

av,ETS 0.162 0.026 0.019 0.036
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AC has the added benefit that it shifts the discretized con-
tinuum solutions away from the LUMO.47

The WY data also provide a second approach for cor-
recting the LUMO energy. We can define a new LUMO en-
ergy that lies above the PBE HOMO energy by the same
amount as the WY LUMO energy lies above the WY HOMO
energy. In other words, we can correct the LUMO energy
such that the HOMO-LUMO gap equals the accurate WY
value,

�LUMO
WY/PBE = �HOMO

PBE + �LUMO
WY − �HOMO

WY . �23�

Values of �LUMO
WY/PBE �not presented� are rather close to the

�LUMO
PBE�AC� values and—importantly—they also become posi-

tive for the final four molecules.
The results of Tables II and III are consistent with our

earlier studies20,23–25 and with the theoretical discussion of
Sec. I—local functional frontier orbital energies exhibit a
near-average behavior �provided that an AC is applied for
particularly diffuse LUMOs�. For systems that do bind an
excess electron, the orbital energies resemble those in Eqs.
�16� and �17�; for those that do not bind, they more closely
resemble those in Eqs. �19� and �20�. In all cases, typical
discrepancies are 0.02 a.u. The results clearly illustrate why
the unconventional affinity in Eq. �13� provides an estimate
of the positive ground state affinity in the former case but the
negative ETS affinity in the latter.

We suggest that the need to use the ETS affinity—rather
than the ground state affinity—simply reflects the fact that
the LUMO of the neutral is a bound orbital. Electron addi-
tion into this orbital more closely resembles the ETS situa-
tion, where the electron is temporarily captured in a localized
orbital, than the ground state situation, where the excess
electron enters a continuum state.

C. Exchange-correlation potentials
from a local functional

The analysis of Sec. II B demonstrates that the HOMO
and LUMO energies from PBE�AC� �and, for the most part,
PBE� exhibit a near-average behavior. This observation, to-
gether with the general success of local functionals, implies
that the PBE�AC� potential must also be near average in
regions relevant to the HOMO and LUMO. We now demon-
strate this explicitly for two representative systems.

The WY potential vXC
WY�r� is our best estimate to the

exact vXC
− �r� �Eq. �14��. For systems that bind an excess

electron, the PBE�AC� potential should therefore lie approxi-
mately midway between vXC

WY�r� and �vXC
WY�r�+�XC

GS�. This is
vividly illustrated in Fig. 2�a�, which plots the potentials
along the bond axis of the F2 molecule. The need to asymp-
totically correct the potential to maintain the average behav-
ior at large distances is particularly pronounced, although
this has a minimal effect on the LUMO energy for this sys-
tem. �We observe that the WY potential exhibits small un-
physical undulations at regions away from the nuclei. These
may reflect the use of Gaussian basis functions in the
calculation,48 or they may arise due to the numerics of the
WY approach. Using the value of � based on the reciprocal
slope actually increases the size of these undulations. The
HOMO-LUMO gaps are not sensitive to these features—
further increasing � or using the primary orbital basis set
eliminates them with minimal effect on the gap, but these
calculations have the disadvantage that they also reduce the
true physical intershell structure.�

For systems that do not bind an excess electron, the
PBE�AC� potential should lie approximately midway be-
tween vXC

WY�r� and �vXC
WY�r�+�XC

ETS�. This is again clearly il-
lustrated in Fig. 2�b�, which presents the potentials for the
HF molecule. Note that the WY potential only exhibits a
weak feature at the position of the H atom �at z=1.73 a.u.�,

FIG. 1. �Color online� PBE and
PBE�AC� exchange-correlation poten-
tials in the HF molecule plotted along
the bond axis. The horizontal lines in-
dicate the LUMO orbital energies.
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FIG. 2. �Color online� Exchange-correlation potentials
plotted along the bond axis. �a� F2 using �XC

GS, �b� HF
using �XC

ETS, and �c� HF using �XC
GS.
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consistent with an earlier work.49 By contrast, PBE�AC� has
a much sharper feature, reflecting the known failure of GGA
potentials at nuclei.50 To further highlight the importance of
using the ETS affinity for these systems, Fig. 2�c� replaces
�XC

ETS with �XC
GS in the electron abundant potential. The

PBE�AC� potential no longer resembles the average poten-
tial. The similarity of the PBE�AC� potential and �vXC

WY�r�
+�XC

GS� simply reflects the fact that the PBE�AC� HOMO is
numerically similar to the WY HOMO-LUMO gap.

D. Orbital energies from a hybrid functional

Most calculations in the chemical literature use hybrid
functionals such as B3LYP,51–54 which combine a GGA term
with a fraction of orbital exchange. It is therefore pertinent to
mention B3LYP HOMO and LUMO energies. Tables II and
III present the conventional B3LYP orbital energies denoted
�HOMO

B3LYP and �LUMO
B3LYP.

For all the systems, the �HOMO
B3LYP values lie below �HOMO

PBE ,
and so the agreement with −I0 is slightly improved. For the
first three molecules, the agreement with �HOMO

av,GS is less
marked than it is with PBE. For the remaining ones, the
mean absolute differences between �HOMO

B3LYP and �HOMO
av,GS or

�HOMO
av,ETS are essentially the same; there is no clear preference,

and it depends on the particular molecule. For all systems,
the �LUMO

B3LYP values lie above �LUMO
PBE . For the first three mol-

ecules, the agreement with �LUMO
av,GS is much less marked than it

is with PBE. For the remaining molecules, the �LUMO
B3LYP more

closely resemble �HOMO
av,ETS than �HOMO

av,GS , but the agreement is
again less marked than it is with PBE.

The situation with B3LYP is therefore less clear than
with PBE, and this can be traced to the nature of the orbital
equations in conventional implementations of hybrid func-
tionals. They are obtained by minimizing the energy with
respect to the orbitals rather than the density. The exchange-
correlation operator is therefore nonmulitiplicative, meaning
that there is no well-defined exchange-correlation potential.
It follows that unlike the PBE results, the B3LYP results
cannot be understood in terms of the mathematical analysis
in Sec. I. The fact that the B3LYP HOMO and LUMO are
uniformly below and above the PBE values means that elec-
tron affinities from Eq. �13� are still reasonable, although, as
noted in Ref. 9, they are less accurate than they are with
PBE.

The rigorous way to perform B3LYP calculations is to
use the optimized effective potential55,56 approach, which
minimizes the energy with respect to the density. Such cal-
culations, which are beyond the scope of the present study,
would yield �on the electron deficient side� HOMO energies
close to the conventional B3LYP values but LUMO values
that differ significantly from the conventional B3LYP ones;
see Ref. 13 for a discussion of this point. The B3LYP LUMO
values would be such that the B3LYP HOMO-LUMO gap is
close to the WY gaps �slightly larger than the PBE gaps�. In
effect the B3LYP HOMO and LUMO energies would both
be shifted down from the PBE values. The application of Eq.
�13� would be inappropriate, leading to significant errors.

E. Discussion in terms of E versus electron number

Recent studies6,7,14 have considered the variation in the
DFT electronic energy as a function of electron number. We
close by considering the results of the present study in this
context. Figure 3�a� presents a schematic plot of energy ver-
sus electron number for a molecule that binds an excess elec-
tron. The points labeled EN−1

0 , EN
0 , and EN+1

0 are the exact
ground state electronic energies of the N−1 �cation�, N �neu-
tral�, and N+1 �anion� electron systems. Following Ref. 1,
the exact ground state energy varies linearly between these
values. The vertical lines labeled I0 and A0,GS represent the
exact vertical ionization potential and electron affinity, re-
spectively. �All vertical lines in Fig. 3 represent positive
quantities�. The change in the slope from from −I0 to −A0 as
the electron number increases through N arises due to the
discontinuous behavior of the exact exchange-correlation
and kinetic components. Local functionals such as GGA
yield reasonable estimates for the ground state energies of
systems with integer numbers of electrons but give energies
that are significantly too low for noninteger. The dashed
curve illustrates this convex behavior. The departure from
linearity has been termed a many-electron self-interaction
error.6,7,14 For the clarity of the plot, the total energies of the
three integers from the local functional have been set equal
to the exact energies. In practice these energies will not be
this close to the exact values. However the differences be-
tween them �the ionization potential and the electron affinity�
are usually in good agreement. We do not consider the influ-
ence of the AC in this figure, as the associated energy func-
tional is not known.

From Janak’s theorem,19 the initial slopes of the local
functional curve on the electron deficient and electron abun-
dant sides of N are the HOMO and LUMO energies of the
N-electron system, respectively. These initial slopes are
marked on the figure, allowing the negative of the orbital
energies to be represented by vertical lines. �The difference
between the initial slopes is barely evident in the figure be-
cause the HOMO and LUMO energies are of similar magni-
tude�. The fact that −�HOMO

local � I0 and −�LUMO
local 	A0,GS can

therefore be attributed to the convexity of the curve.13 We
define positive differences, marked �− and �+ on the figure,
by

�HOMO
local = − I0 + �− �24�

and

�LUMO
local = − A0,GS − �+. �25�

Tables II and III demonstrate that local functional
HOMO and LUMO energies are close to the average values
in Eqs. �16� and �17�. Comparing Eqs. �24� and �25� with
Eqs. �16� and �17�, respectively, leads to the approximate
equality

�− � �+ �
�XC

GS

2
. �26�
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The average behavior therefore manifests itself as a symme-
try between the electron deficient and electron abundant
sides of the figure. In terms of this notation, the unconven-
tional affinity in Eq. �13� takes the form

ATDP = A0,GS + �I0 − Ilocal� + ��+ − �−� . �27�

In terms of Fig. 3�a�, it is therefore the approximate equality
�−��+, together with the fact that Ilocal� I0, that leads to
approximate ground state affinities from Eqs. �27� and �13�
for systems that do bind an excess electron,

ATDP � A0,GS. �28�

Figure 3�b� presents the analogous plot for a system that
does not bind an excess electron. The ground state energy of
the anion is now identical to that of the neutral. The energy
labeled EN+1

0,ETS is the energy of the temporary anion, consis-
tent with the ETS affinity A0,ETS, the negative of which is
represented by a vertical line. The difference between the
initial slopes of the local functional curve is now much more
evident because the HOMO and LUMO energies are very
different. If we continue to define �+ and �− using Eqs. �24�
and �25�, then �+ becomes identical to the negative of the
LUMO energy because A0,GS=0. For systems that do not

FIG. 3. Schematic plots of electronic
energy vs electron number for systems
that �a� do bind and �b� do not bind an
excess electron. The solid line con-
necting the energy points is the exact
ground state energy; the dashed curve
represents a typical local functional
behavior, with the integer energies set
equal to the exact values for clarity.
See text for full details.
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bind, the LUMO energy is a small negative value, and so
�+��−, as shown in the figure. It follows that Eq. �27� yields
a negative affinity.

It is therefore natural to define the alternative quantity,

�̃+,

�LUMO
local = − A0,ETS − �̃+, �29�

which is also shown in Fig. 3�b�. Tables II and III show that
local functional HOMO and LUMO energies are close to the
average values in Eqs. �19� and �20�. Comparing Eqs. �24�
and �29� with Eqs. �19� and �20�, respectively, leads to the
approximate equality

�− � �̃+ �
�XC

ETS

2
. �30�

In this case, the unconventional affinity takes the form

ATDP = A0,ETS + �I0 − Ilocal� + ��̃+ − �−� . �31�

In terms of Fig. 3�b�, it is therefore the approximate equality
in Eq. �30�, together with the fact that Ilocal� I0, that leads to
approximate negative ETS affinities from Eqs. �27� and �13�
for systems that do not bind an excess electron,

ATDP � A0,ETS. �32�

III. CONCLUSIONS

Following a brief summary of earlier relevant studies,
we have investigated DFT closed-shell orbital energies, pay-
ing attention to the role of the integer discontinuity in the
exact exchange-correlation potential. Ab initio electron den-
sities and accurate vertical ionization potentials and electron
affinities have been used to calculate accurate average orbital
energies, i.e., the energies associated with an exchange-
correlation potential that averages over a constant jump of
magnitude �XC �Eq. �6�� in the accurate potential. For sys-
tems that do bind an excess electron, there is no choice of
electron affinity in the average energy calculation—the posi-
tive ground state value must be used. For systems that do not
bind, however, there are two possible affinities—the zero
ground state or the negative ETS value.

HOMO energies from the PBE local functional are al-
most an order of magnitude closer to the average values than
to the Koopmans values, with typical discrepancies of just
0.02 a.u. For systems that do not bind an excess electron, this
level of agreement is only achieved when the negative ETS
affinity is used to calculate the average energy; it degrades
notably when the zero ground state affinity is instead used.
Analogous observations are made for the PBE LUMO ener-
gies, although the need to use the ETS affinities is less pro-
nounced for systems where the ETS values are very negative.
The application of an AC recovers the preference, leading to
positive LUMO energies �but bound orbitals� for these sys-
tems, consistent with the behavior of the average energies.
Overall, the asymptotically corrected LUMO energies typi-
cally agree with the average values to within 0.02 a.u., com-
parable to that observed with the HOMOs.

Our results are consistent with earlier work and with the
theoretical analysis of Sec. I, providing numerical support

for the view that local functionals exhibit a near-average be-
havior based on a constant jump of magnitude �XC �provid-
ing an AC is applied for particularly diffuse LUMOs�. For
systems that do bind an excess electron, the orbital energies
resemble those in Eqs. �16� and �17�; for those that do not
bind, they more closely resemble those in Eqs. �19� and �20�.
The results clearly illustrate why the unconventional affinity
in Eq. �13� provides an estimate of the positive ground state
affinity in the former case but the negative ETS affinity in
the latter. The latter seems to reflect the fact that the LUMO
of the neutral is a bound orbital, and so electron addition
more closely resembles the ETS situation. The results are
also consistent with the charge-transfer excitation energy
analysis in Ref. 10. The near-average behavior of the
exchange-correlation potential has been explicitly illustrated
for selected systems.

We have also considered hybrid functional orbital ener-
gies, but these cannot be simply understood in terms of the
theoretical analysis in Sec. I due to the non-Kohn–Sham na-
ture of the orbital energies used in standard implementations.
Finally, given the current interest in the variation in the elec-
tronic energy as a function of electron number, we have dis-
cussed the results of the present study in this context.

The nature of DFT orbital energies is of great impor-
tance in chemistry; the present study contributes to the un-
derstanding of these quantities.
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