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The unfolding of a protein by the application of an external force pulling two atoms of the protein can

be detected by atomic force and optical tweezers technologies as have been broadly demonstrated in the

past decade. Variation of the applied force results in a modulation of the free-energy barrier to unfolding

and thus, the rate of the process, which is often assumed to have single exponential kinetics. It has been

recently shown that it is experimentally feasible, through the use of force clamps, to estimate the

distribution of unfolding times for a population of proteins initially in the native state. In this Letter

we show how the analysis of such distributions under a range of forces can provide unique information

about the underlying free-energy surface such as the height of the free-energy barrier, the preexponential

factor and the force dependence of the unfolding kinetics without resorting to ad hoc kinetic models.
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Single molecule protein unfolding studies are shedding
light on the free-energy landscape underlying the macro-
scopic properties of proteins. In particular, atomic force
microscopy is providing a picture of the free-energy land-
scape at an unprecedented level of detail, revealing the
presence of distinct states and parallel unfolding routes
[1,2], the barriers and free-energies between states [3]
and in some instances, the secondary structure elements
that make up the structured core of unfolding intermediates
[4,5]. Traditionally, the analysis of force spectroscopy ex-
periments have relied on a phenomenological model due to
Bell [6,7], where the mean unfolding time and the maxi-
mum unfolding force is predicted to scale exponentially
and logarithmically with the force and pulling speed, re-
spectively. It has been recently shown [8–10] that even
though Bell’s formalism works well for average quantities
(e.g., maximum force or mean unfolding time), it fails to
reproduce the variance and the distribution of those quan-
tities. Furthermore, Bell’s model assumes that (i) the in-
tegration over all other degrees of freedom other than the
reaction coordinate, x, induces a one-dimensional free-
energy profile, GðxÞ, that accurately describes the transi-
tion, (ii) the ‘‘distance’’ between the native state and the
transition state along x is invariant with the force and
(iii) the kinetics is single exponential. To this end,
Dudko, Hummer, and Szabo [9] proposed an alternative
formalism (DHS) that corrects for assumption (ii) and
found that their theory is able to account for the variances
in the maximum unfolding force at different pulling veloc-
ities. Intriguingly, in contrast to Bell, DHS also appears to
allow the estimation of the naked barrier height without
recourse to arbitrary values of the preexponential factor.
However, like Bell, DHS also assume that conditions (i)
and (iii) hold.

Below, we show that the distribution of unfolding times
not only imposes more severe constraints on a ‘‘model’’

(e.g., Bell or DHS), but also contains unprecedented infor-
mation regarding the free-energy landscape of the protein,
amplifying the importance of such single molecule experi-
ments. Remarkably, we observe that at high forces (i.e.,
low effective barrier), the distribution of unfolding times is
not single exponential. An analogous deviation from the
expected single exponential kinetics has been recently
observed experimentally [11] although the explanation of
the deviation from single exponential kinetics was quite
different from the one we present below. In addition, by
solving the diffusion equation for the probability density,
one can fit the distribution of unfolding times and not only
extract a model-free estimate of the preexponential factor,
the activated time for the unfolding and the force depen-
dence of the unfolding kinetics, but also an independent
estimate of xu, which in the mechanical unfolding litera-
ture, is commonly taken to be the distance to the transition
state. We note that this interpretation of xu is only valid in
the one-dimensional case and that xu can be understood in
more general terms in the context of a Taylor’s expansion
of the free-energy around the barrier (see below).
To generate the distributions, we used Langevin dynam-

ics simulations with a coarse-grained (only C� atoms are
represented) native-centric protein model [12]. While it is
arguable whether such models are realistic enough to
describe how a protein collapses and folds [13–15], they
are accurate in predicting the mechanical properties of
proteins [16,17].
Specifically, we study the mechanically resistant pro-

tein, ubiquitin, which has a well-defined transition state
both in simulations [16,18] and experiments [19]. We first
characterized the protein by performing simulations over a
broad range of temperatures. At 300 K, the native state is
very stable and no unfolding event was recorded during a
1:25 �s simulation. Along this simulation, 5000 phase
points (coordinates and velocities) were extracted as initial
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conditions for constant force pulling simulations. Applying
a force of 250 pN to the two ends of the polypeptide chain,
ubiquitin unfolds in about 0.7 ns on average over 5000 in-
dependent simulations. (Unfolding is defined as the protein
reaching an extension of 100 Å, which is about 40% the
maximal length. Unfolding occurs in a highly cooperative

manner at an extension of�42 �A even at the largest forces
probed in this work and as such, the time distributions do
not depend on the exact definition of an unfolding event).
At large enough forces, the cumulative probability of un-
folding times [Fig. 1(a)] is clearly not single exponential,
but can be well described by a double exponential.

A simple explanation of the nonexponentiality at high
forces arises from assumption (iii) used in deriving one-
dimensional landscape models of protein unfolding (see
above), which is equivalent to taking only the eigenfunc-
tion belonging to the lowest eigenvalue of the diffusion
equation for the probability density Pðx; tÞ (where � ¼
1=kBT):

@P

@t
¼ @

@x

�
DðxÞ

�
@P

@x
þ �P

@G

@x

��
: (1)

This is not exact because there is no guarantee that the form
of the first eigenfunction is identical to the equilibrium
population of the denatured state, which itself forms the
initial condition for the evolution of Eq. (1). The single
exponential approximation becomes exact only in the limit
of large barriers (i.e., � 1kBT). Away from this limit, the
next most important term in the series become non-
negligible. The structure of the first two terms of this series
is [20,21]

PðtÞ ’ 1� A1e
�t=�1 � A2e

�t=�2 þ . . . ; (2)

where �1 � �0e
��Gu (�0 is the usual Kramers prefactor)

and �2 and time scales of all higher terms are of the order of
�0 (i.e., do not suffer the Boltzmann penalty). Higher-order
terms, An, in Eq. (2) arise from higher eigenfunctions of the
Smoluchowski equation [Eq. (1)] of index n ¼ 2; 3; 4; . . . .
From the continuity of the density function, Pðx; tÞ, these
terms have amplitudes An ’ 1=n2 which results in the
weakly perturbed region being dominated by A2.
Crucially, the amplitude of the first term (A1) is generi-

cally dominating [22] by a factor proportional to the ex-
ponential of the effective barrier height, i.e.,

A1

A2

¼ �e��Gu ; (3)

where � is a number of order one that depends on the shape
of the free-energy landscape GðxÞ.
In the presence of a force pulling the two ends of the

protein apart, the height of the free-energy barrier becomes
a decreasing function of the force.
The broadly used ‘‘Bell’’ expression

�Gu ¼ �Gu � Fxu (4)

constitutes the leading term only; here xu is the distance
along the one-dimensional reaction coordinate to the free-
energy barrier and�Gu ¼ �GðxuÞ. Even in the case where
Eq. (4) holds (i.e., for �Gu ! 1, F ! 0), when a large
number of degrees of freedom are involved, the coefficient
xu contains entropic contributions as well [23]; further-
more, high-dimensional folding landscapes strongly com-
promise the conclusions of one-dimensional analyses of
folding times [22,24], making interpretations of xu as a
physical distance perilous. However, the validity of Eq. (3)
does not depend on the validity of Eq. (4). The latter can
still be assumed in a small range of forces where �Gu can
be approximated as a linear function of F, which leads to
unambiguous values of xu.
It should be noted that � in Eq. (3) is computable if the

form of the potential is known. For example, in the flat
hypersphere case [22] treated by Bicout and Szabo, � ¼
9�2=24 ’ 3:7. If � is independent of the force, the value of
the coefficient, xu, extracted from Eq. (3) is independent of
the exact value of �. This is in strong contrast with models
that attempt to extract xu from the force dependence of the
mean unfolding time alone. We will show below that the
assumption that � is force independent is consistent with
our simulations.
By performing the simulations in a broad range of

forces, we evaluated the distribution of unfolding times
at each force and extracted the 2 times, �1 and �2, and the
amplitudes, A1 and A2.
From the double exponential fits of the distribution of

unfolding times of our ubiquitin model, �2 is approxi-
mately constant with an average of 18.9 ps [Fig. 2(a)].
This value is lower than the �10 ns rate of looping in
peptides [25] or the �1 �s folding rate of the fastest
proteins [26] that are often taken as rough estimations of
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FIG. 1 (color online). Cumulative probability of unfolding
times at two different forces and 300 K. (a) A double exponential
is required to fit the curve at F ¼ 250 pN. (b) At a lower force
(F ¼ 200 pN) the free-energy barrier is larger and the distribu-
tion of unfolding times is closer to single exponential.
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the preexponential factor. There are two reasons for this:
one is the low external friction at which the simulations
have been performed (0:1 ps�1 � 1000 times lower than
water) and the other is that the ‘‘internal friction’’ of the
model is lower than that of real proteins due to the
smoother free-energy surface of a structure-based model
designed to be ‘‘minimally frustrated.’’

Decreasing the applied force from 250 to 200 pN results
in the average unfolding time increasing to 8.5 ns and the
distribution of unfolding times becoming single exponen-
tial [Fig. 1(b)]: the effective barrier becomes high enough
that the kinetics are indistinguishable from single expo-
nential. In this case, the amplitude of the second term A2

[Fig. 2(b)] decreases to zero at low forces as expected.
The logarithm of A1=A2 [Fig. 2(c)] is perfectly linear,

compatible with the assumption that � and xu are indepen-
dent of the force. Fitting the ratio of the two amplitudes to

Eq. (3), the slope of lnðA1=A2Þ uniquely determines xu ¼
1:5 �A, which is independent on the shape of the underlying
free-energy profile. On the other hand, �Gu and � are
related by ��Gu þ lnð�Þ ¼ 10:9: if � is that of a
Bicout-Szabo barrier (� ’ 3:7), we obtain �Gu ¼
5:8 kcal=mol; if � varies by 1 order of magnitude, the
estimation of �Gu only varies by 1:4 kcal=mol.

To compare the values of �Gu, xu and �2 obtained with
Eq. (2) and (3), we independently determined the parame-
ters by fitting �1 to the DHS equation [9].

�ðFÞ ¼ �ð0Þ
�
1� �Fxu

�Gu

�ð��1Þ=�
e���Guf1�½1�ð�FxuÞ=�Gu�1=�g;

(5)

where � ¼ 1=2 corresponds to the cusp case, � ¼ 2=3 to
the linear-cubic case and the Bell form is recovered for
either � ¼ 1 or �Gu ! 1. The fits of the �1 using the
Eq. (5) with both � ¼ 1=2 and 2=3 are shown in Fig. 2(d).

From the fit of the the activated time, �1, we obtained xu ¼
2:3 �A (� ¼ 1), xu ¼ 3:9 �A (� ¼ 2=3), xu ¼ 4:6 �A (� ¼
1=2), and �Gu ¼ 14:8 kcal=mol (� ¼ 2=3) and �Gu ¼
12:8 kcal=mol (� ¼ 1=2). These values of xu and �Gu

however, are those for zero force and cannot be directly
compared with those obtained from Eqs. (3) and (4). Given
a linear-cubic free-energy profile (� ¼ 2=3) with �Gu ¼
14:8 kcal=mol and xu ¼ 3:9 �A as estimated above, �Gu

and xu drop to 10–13 kcal=mol and 1.9–2.7 Å, respec-
tively, when the applied force is 200–300 pN. Such values
are slightly larger than those obtained using our ‘‘model-
free’’ approach in the same range of forces. However, the
values estimated from DHS depend on the assumed one
dimensionality and shape of the free-energy profile (which
is a central result of Ref. [9]), while those from the analysis
of the distributions of unfolding times do not. Indeed, we
have checked by performing Brownian dynamics on a one-
dimensional linear-cubic free-energy profile that in the
range of forces where our approach [i.e., Eqs. (3)] is
applicable (i.e., the kinetics are double exponential), it
gives estimates of �Gu and xu identical to directly fitting
�Gu of the linear-cubic profile to Eq. (4). Therefore, both
the atomistic model of ubiquitin and 1D Brownian dynam-
ics simulations corroborate the validity of Eq. (3). The
similarity of the estimates of �Gu and xu to the ‘‘true’’
values at zero force however, depends on the form of �Gu,
which for real proteins, is not only likely to show signifi-
cant deviations from the simple shapes analyzed here (i.e.,
linear cubic), but is also likely to be multidimensional.
In conclusion, we demonstrate that the distribution of

unfolding times in a range of forces provides crucial infor-
mation not obtainable from average times: an independent
estimate of both the preexponential factor (i.e., �2) and xu.
Remarkably, both the preexponential factor �0 ’ �2 and xu
obtained from the analysis of the time distributions do not
depend on a particular model (i.e., a form for the under-
lying free-energy profile) unlike all previously proposed
models. It should be noted that it is not possible to obtain
an estimate of the preexponential factor or �G with the
broadly used Bell model. Conversely, the determination of
�Gu will depend on the value of �, which is model
dependent; however, the dependence on the model is
much weaker than that observed within the DHS frame-
work. Lastly, we show that a deviation from single expo-
nential kinetics can be simply explained by a low barrier,
which is a well-known result (see, e.g., Ref. [27]). Thus, as
fast-improving atomic force instruments make the deter-
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FIG. 2 (color online). (a) Average unfolding time hti and fitting
parameters from the double-exponential fit of the time distribu-
tion �1 and �2 (�1 þ �2 ’ hti). (b) Amplitude A2 of the leading
term of the expansion in Eq. (2); A2 tends to 0 (i.e., PðtÞ can be
approximated with a single exponential) for F � 200 pN. (c) Fit
of A1=A2 to Eq. (3). (d) Activated time �1 fitted using Bell’s
relation (black line), DHS with � ¼ 1=2 (red line) and � ¼ 2=3
(blue line); data points for F > 300 pN have been disregarded in
the fits.
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mination of the distribution of unfolding times [11,28] at
the single molecule level more routine, the approach pro-
posed here can provide model-free estimates of the rele-
vant parameters that characterize the response of proteins
to a force. It also allows for the verification of hypotheses
and models that are often used by default without critical
assessment of the meaningfulness of the parameters
provided.
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