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Abstract 

It is still a matter of debate whether functional cerebral asymmetries (FCA) of many 

cognitive processes are more pronounced in men than in women. Some evidence suggests 

that the apparent reduction in women’s FCA is a result of the fluctuating levels of gonadal 

steroid hormones over the course of the menstrual cycle, making their FCA less static than 

for men. The degree of lateralization has been suggested to depend on interhemispheric 

communication that may be modulated by gonadal steroid hormones. Here, we employed 

visual-evoked EEG potentials to obtain a direct measure of interhemispheric communication 

during different phases of the menstrual cycle. The interhemispheric transfer time (IHTT) 

was estimated from the interhemispheric latency difference of the N170 component of the 

visual-evoked potential from either left or right visual field presentation. Nineteen right-

handed women with regular menstrual cycles were tested twice, once during the menstrual 

phase, when progesterone and estradiol levels are low, and once during the luteal phase when 

progesterone and estradiol levels are high. Plasma steroid levels were determined by blood-

based immunoassay at each session.  It was found that IHTT, in particular from right-to-left, 

was generally longer during the luteal phase relative to the menstrual phase. This effect 

occurred as a consequence of a slowed absolute N170 latency of the indirect pathway (i.e. left 

hemispheric response after LVF stimulation) and, in particular, a shortened latency of the 

direct pathway (i.e. right hemispheric response after LVF stimulation) during the luteal 

phase. These results show that cycle-related effects are not restricted to modulation of 

processes between hemispheres but also apply to cortical interactions, especially within the 

right hemisphere. The findings support the view that plastic changes in the female brain occur 

during relatively short-term periods across the menstrual cycle.   
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Introduction 

It is well established that the cerebral hemispheres are specialized for particular 

cognitive, emotional and motor processes. Language functions, for example, are 

predominantly carried out in the left cerebral hemisphere, whereas spatial and emotional 

processing is predominantly performed in the right (Hugdahl & Westerhausen, 2010). It is 

also generally accepted that these functional cerebral asymmetries (FCA) are more 

pronounced in men than women (e.g. McGlone, 1980; Shaywitz et al., 1995). However, sex 

differences in FCAs are not always found (e.g. Sommer, Aleman, Bouma, & Kahn, 2004), 

partly because sex hormonal factors have been largely ignored (Hausmann, 2010; Hausmann 

& Bayer, 2010). In fact, considerable evidence has accumulated that suggests that FCAs in 

women are modulated by fluctuations in gonadal steroid hormones across the menstrual cycle 

(e.g. Bibawi, Cherry, & Hellige, 1995; Hausmann, 2005; Hausmann, Becker, Gather, & 

Güntürkün, 2002; Hausmann & Güntürkün, 2000; Heister, Landis, Regard, & Schroeder-

Heister, 1989; McCourt, Mark, Radonovich, Willison, & Freeman, 1997; Mead & Hampson, 

1997; Rode, Wagner, & Güntürkün, 1995; Sanders & Wenmoth,1998, Weis, Hausmann, 

Stoffers, & Sturm, 2008; Weis, Hausmann, Stoffers, Vohn, Kellermann, & Sturm, 2011). In 

addition, FCAs change as a consequence of hormone therapy in postmenopausal women 

(Bayer & Erdmann, 2008; Bayer & Hausmann, 2009a). It is currently unclear which 

hemisphere is predominately sensitive to the influence of sex hormones. Some studies 

suggest the left hemisphere is particularly affected by sex hormones (e.g., Bibawi et al., 1995; 
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Hampson, 1990a; 1990b), while others suggest it is the right (e.g., Bayer & Hausmann, 

2009a; Sanders & Wenmoth, 1998). 

Hausmann and Güntürkün have proposed that FCAs are affected via mechanisms that 

alter processing in both hemispheres. They proposed that it is the interaction between 

hemispheres that is affected by fluctuations of sex hormones across the menstrual cycle 

(Hausmann & Güntürkün, 2000). Specifically, it was suggested that a cycle-dependent 

increase in progesterone concentration during the luteal phase of the menstrual cycle 

decreases glutamatergic, and increases GABA receptor activation. These effects lead, via a 

decrease of transcallosal neuronal activation, to hemispheric decoupling, which reduces 

FCAs. This view holds that the principal role of callosal communication is the inhibition of 

the non-dominant hemisphere by the dominant hemisphere. The reduction of callosal 

communication would reduce the inhibition of neurons in the non-dominant hemisphere, this 

in turn would result in an increase in bilateral activation resulting in a reduction in FCA (e.g. 

Cook, 1984; Regard, Cook, Wieser, & Landis, 1994). Hausmann and Güntürkün (2000) 

argued that this occurs in spite of cortico-cortical connections being mainly excitatory, as the 

main and longer lasting effect of callosal activation appears to be inhibitory (Innocenti, 1980; 

1986). This is argued to be because many callosal fibers terminate on pyramidal neurons that 

then activate GABAergic interneurons (Toyama & Matsunami, 1976; Toyama, Tokashiki, & 

Matsunami, 1969). It is also likely that many excitatory transcallosal fibres terminate directly 

on inhibitory interneurons (Conti & Manzoni, 1994). Either way, these activated inhibitory 

neurons could then induce a widespread inhibition in homotopic regions of the contralateral 

hemisphere (Conti & Manzoni, 1994). Consistent with this view are the findings from an 

fMRI study of word matching (Weis et al., 2008) that found both cycle-related changes in 

error rates and response times, and cycle-related fluctuations in neural activity. Although no 

general significant cycle-related (menstrual versus follicular phase) difference in activation of 
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the left inferior frontal gyrus (i.e. Broca’s area) was found, a connectivity analysis revealed 

that the inhibitory influence of the dominant on the non-dominant hemisphere fluctuated 

across the menstrual cycle. Specifically, it was shown that the inhibitory influence of left-

hemispheric language areas on homotopic areas of the right hemisphere was strongest during 

menses, resulting in a pronounced lateralization. In contrast, during the follicular phase, 

inhibition (and thus FCA) was reduced due to increased estradiol levels. In contrast, 

interhemispheric inhibition remained stable in men over a period of two weeks.  

The original model by Hausmann and Güntürkün (2000) has been revised recently 

(Hausmann & Bayer, 2010) to take into account some new findings. The revised Hypothesis 

of Sex Hormone-Modulated Cortical Interaction differs from the original model in three main 

aspects. First, it is suggested that interhemispheric decoupling is not solely progesterone 

dependent, but may also be influenced by estradiol (e.g. Hausmann, 2005; Holländer, 

Hausmann, Hamm, & Corballis, 2005; Weis et al., 2008), although the neural mechanisms 

are not fully clear. Second, the effects of gonadal steroid hormones are not restricted to 

interhemispheric inhibition, which has been assumed to be the key mechanism in generating 

hemispheric asymmetries. Sex hormones also affect other aspects of interhemispheric 

interaction (e.g. interhemispheric integration), and thus their influence is not limited to the 

manifestation of hemispheric asymmetries (Bayer & Hausmann, 2009b; Bayer, Kessler, 

Güntürkün, & Hausmann, 2008). Third, sex hormonal effects are not restricted to the 

modulation of interhemispheric crosstalk but can also apply to cortical interactions within 

hemispheres. In fact, visual half-field studies in postmenopausal women using hormone 

therapy revealed that it is the right hemispheric performance in particular that is modulated 

by (synthetic) gonadal steroid hormones (Bayer & Erdmann, 2008; Bayer & Hausmann, 

2009b). 

A TMS study (Hausmann, Tegenthoff, Sänger, Janssen, Güntürkün, & Schwenkreis, 
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2006) has addressed the activating effects of progesterone and estradiol on interhemispheric 

inhibition on a neural level. TMS applied to the primary motor cortex evokes a suppression of 

tonic voluntary muscle activity contralateral and ipsilateral to the stimulation (Ferbert, Priori, 

Rothwell, Day, Colebatch, & Marsden, 1992; Wasserman, Fuhr, Cohen, & Hallett, 1991). 

The ipsilateral suppression, called ipsilateral silent period, is probably mediated cortically by 

excitatory transcallosal fibres targeting inhibitory interneurons. Therefore, the ipsilateral 

silent period might reflect the functional integrity of the connection between homotopic areas 

of left and right primary motor cortices (e.g. Ferbert et al., 1992) and so provide an estimate 

of interhemispheric inhibition. It has been shown that the ipsilateral silent period fluctuates 

across the menstrual cycle, with the largest suppression/inhibition during the luteal phase 

(high levels of estradiol and progesterone) compared to the follicular phase (high estradiol 

levels). These results are consistent with the predictions of the revised model, and strongly 

suggest that both estradiol and progesterone can independently modulate interhemispheric 

processes across the menstrual cycle. It should be noted, however, that using muscle activity 

as the dependent variable is a rather indirect measure of interhemispheric (de)coupling. It is 

quite possible that gonadal steroid hormones have effects at a number of loci other than at the 

targets of transcallosal neurons, there may be other explanations for these data. 

 A much more direct measure of interhemispheric (de)coupling involves recording the 

hemispheric latency differences between visual potentials (e.g. the N170 component) evoked 

by briefly stimulating either the right or left visual fields. The IHTT can be derived by 

calculating the difference between the latency of the evoked potential in the directly 

stimulated contralateral hemisphere and that of the evoked potential in the ipsilateral 

hemisphere, which is believed to be generated by the transfer of information via the corpus 

callosum (Saron & Davidson, 1989). Previous work employing visual-evoked potentials to 

measure IHTT, revealed a directional asymmetry in conduction velocities between 
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hemispheres (e.g. Barnett, Corballis, & Kirk, 2005; Barnett & Kirk, 2005; Brown, Larson, & 

Jeeves, 1994; Iwabuchi & Kirk, 2009; Moes, Brown, & Minnema, 2007; Nowicka & Fersten, 

2001; Patston, Kirk, Rolfe, Corballis, & Tippett, 2007; Rolfe, Kirk, & Waldie, 2007; Saron & 

Davidson, 1989; see also Marzi, 2010, and Nowicka & Tacikowski, 2011, for reviews). The 

transfer of neural information from the right hemisphere to the left is faster than transfer from 

the left hemisphere to the right. At least this is the case for right-handed males. Left-handers 

(Iwabuchi & Kirk, 2009), musicians (Patston et al., 2007), those with a variety of 

neurological disorders (Barnett et al., 2005; Barnett & Kirk, 2005; Rolfe et al., 2007), and, of 

particular relevance here, females (Moes et al., 2007; Norwicka & Fersten, 2001) differ from 

this pattern and show more symmetrical IHTTs. This fits with numerous reports of less FCA 

in these groups (e.g. Bourne, 2005; Galaburda, Lemay, Kemper, & Geschwind, 1978; 

Hausmann, Behrendt-Korbitz, Kautz, Lamm, Radelt, & Güntürkün, 1998; McGlone, 1980; 

Shaywitz, et. al., 1995; Witelson, 1976). 

The aim of the present study is to expand on these previous reports of a sex 

difference in the degree of asymmetry of directional IHTTs and investigate whether IHTT 

differs across the menstrual cycle as the levels of estradiol and progesterone fluctuate. This is 

the first electrophysiological study on IHTT that measured participants’ serum hormone 

levels. It is expected that, in line with the (revised) Hausmann and Güntürkün model, IHTT 

will generally lengthen during the luteal phase. In addition, it is predicted that the degree of 

asymmetry of directional IHTTs will decrease in the luteal phase. Given that IHTT is a 

composite measure of direct and indirect N170 latencies, cycle-related modulations of both 

pathways will also be analysed separately. This will allow us to test the specific hypothesis 

that it is especially the latency of the indirect right-to-left pathway that is affected during the 

luteal phase. 
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Methods  

Subjects 

Twenty-four normally cycling women with a mean age of 26.96 years (SD = 6.19; range: 19-

42 years) were investigated. All women were right-handed, as determined with the 

Edinburgh-Inventory (Oldfield, 1971).  The asymmetry-index (LQ) provided by this test is 

calculated as [(R-L)/(R+L)] × 100, resulting in values between –100 and +100.  This range 

describes the continuum from extreme sinistrality to extreme dextrality. The mean LQ of 

female participants was 80.23 (SD = 18.02; range: 47.0 to 100) and the reading direction of 

all participants was left-to-right.  Women who had used oral contraceptives or any other 

medication affecting the central nervous system during the last six months before testing 

were excluded. All participants had normal or corrected-to-normal visual acuity and were 

naive to the study’s hypotheses. They were recruited by announcements, and were paid for 

their participation. Female participants also took part in other experiments investigating the 

hormone effects on cognitive abilities and the functional cerebral organisation. 

 

Procedure 

The procedure has been adapted from Barnett, Corballis and Kirk (2005) and is 

similar to previous studies (e.g. Nowicka, Grabowska & Fersten, 2001). Participants were 

seated in front of a SVGA monitor (640 x 480 pixel resolution) at a distance of 57 cm in a 

quiet, electrically shielded Faraday chamber during the experiment. They were presented 

with a total of 260 stimuli: 120 left visual field (LVF), 120 right visual field (RVF), and 20 

catch trials of no stimuli, which were broken into four blocks that were in a counterbalanced 

order for the responding hand. The stimuli were circular checkerboards with a diameter of 

three degrees of visual angle and squares of 6 x 6 pixels, producing 3 checks per degree at 57 

cm viewing distance. The stimuli were positioned six degrees horizontally from the central 
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fixation cross in the LVF or RVF. Following presentation of the fixation cross for 1000 ms, a 

stimulus was presented for 100 ms, with a randomized and varied inter-stimulus interval of 

550, 750 or 950 ms. Participants were instructed to respond immediately after detecting a 

stimulus in any position by pressing the space bar on the keyboard. A brief practice session 

was provided prior to electroencephalogram (EEG) recording. 

 

EEG Acquisition and Analysis 

EEG activity was recorded continuously on an Electro Geodesics Inc. 128-channel 

Ag/AgCl electrode net (Electrical Geodesics Inc., Eugene, OR, USA) at a sampling rate of 

1000-Hz. The impedances of electrodes ranged between 35 and 40 kΩ. A common vertex 

(Cz) served as the reference, which was later re-referenced to the common average reference. 

Recordings contaminated by eye blinks (rejection criterion of 70 µV in eye channels) were 

rejected and automatic eye-movement correction was conducted on the remaining segments 

(Jervis et al., 1985). In line with previous studies (e.g. Barnett, Corballis & Kirk, 2005; 

Nowicka, Grabowska & Fersten, 2001), recordings of each participant were segmented into 

epochs with a pre-stimulus baseline of 100 ms and a post-stimulus period of 500 ms , which 

were then averaged for each visual half-field (VHF) condition (LVF or RVF). The recordings 

were bandpass filtered using a bi-directional three pole Butterworth filter between 0.1 and 30 

Hz (Alarcon, Guy, & Binnie, 2000). The N170 component was determined as the greatest 

negative peak between 140 and 250 ms following stimulus onset and were acquired 

separately for each participant for electrode clusters in and surrounding P7 and P8 parietal 

sites (according to the international 10-20 system). The parietal sites were selected because 

“IHTTs from parietal electrodes are sensitive to stimulus properties and, thus, are likely to 

reflect callosal transfer of important aspects of visual stimulus information” (Brown & 

Jeeves, 1993, p. 1270). Moreover, parietal sites showed the most pronounced N170 
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component bilaterally. The present study focused on interhemispheric N170 latency 

difference as the measure of IHTT, rather than that for P100 for example, as the N170 

difference has been suggested to be the most reliable IHTT measure (Brown & Jeeves, 1993). 

Channels showing excessive alpha activity were excluded. IHTTs were calculated by 

subtracting the N170 latency of the mean ERP from the electrode cluster contralateral to the 

stimulus from the N170 latency of the mean ERP from the electrode cluster ipsilateral to the 

stimulus (see Figure 1). The amplitude of the N170 was calculated as the voltage deflection at 

the N170 peak relative to the baselined waveform (baselined from -100 ms to 0 ms). IHTTs 

were analysed using a two-way, within-subjects ANOVA, with transfer direction (right-to-

left, left-to-right) and menstrual phase (menstrual, luteal) as the within-subjects factors. In 

addition, N170 latencies were analyzed using a 2 x 2 x 2 repeated measures Analysis of 

Variance (ANOVA) with menstrual phase (menstrual, luteal), hemisphere (left, right) and 

VHF (LVF, RVF) as within-subject factors. All statistical analyses were conducted on SPSS 

17.0 for Windows and used an alpha level of .05. All post hoc t-tests were alpha-adjusted 

(Bonferroni). 

 

Hormone assays 

Prior to the experimental session, women were informed about the general procedure 

and data were collected about their individual menstrual cycles.  All women agreed to inform 

us of the first day of their next cycle, in order to plan the dates for the experimental sessions.  

The normally cycling women were tested twice, once during the menstrual phase (cycle day 1 

- 5) and once during the luteal phase (cycle day 21 – 22), to yield the largest differences in 

estradiol and progesterone levels.  To control for potential repeated-measures effects, half of 

the female group was first tested during the luteal phase, and later tested during the menstrual 

phase and vice versa.  Directly after every session a blood sample was collected.  Serum 
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estradiol and progesterone levels for each cycle phase were determined with 

Chemiluminescent Microparticle Immunoassay (CMIA) by an independent professional 

medical laboratory, with commercially available CMIA kits.   

 

Mood 

Since cycle-dependent fluctuations in mood can affect interhemispheric processes 

(Compton & Mintzer, 2001), the State-Trait-Cheerfulness-Inventory (STCI-S18; Ruch, 

Köhler, & van Thriel, 1996; 1997) was applied during each test session. The STCI-S18 is an 

instrument measuring the three concepts of cheerfulness, seriousness, and bad mood.  The 

concept of ‘cheerfulness’ represents positive affect, such that subjects with a high score 

describe themselves (e.g. as being “in good spirits” or “in a mirthful mood”).  The concept of 

‘seriousness’ is understood as the readiness to perceive, act, or communicate seriously (e.g. 

“I’m prepared to do a task in earnest”).  The concept of ‘bad mood’ is defined by the two 

elements of sadness/melancholy and ill humor (e.g., “I am in a bad mood”, “I am sad”, “I am 

in a grumpy mood”).  Each concept included 6 items and the response was given on a 4-point 

rating-scale (strongly disagree = 1, moderately disagree = 2, moderately agree = 3, and 

strongly agree = 4). 

 

Results 

Hormone assays 

Nineteen normally cycling women completed two test sessions.  Five women were 

excluded because they completed only one session and one woman was excluded because her 

progesterone levels were close to the detection limit in both sessions, suggesting an absence 

of ovulation in this participant. The mean level of serum progesterone in the remaining 19 

women was 1.0 (SD = 0.5) nmol/L in the menstrual phase and 32.0 (SD = 16.0) nmol/L in the 
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luteal phase.  The mean level of serum estradiol of the19 women was 181.9 (SD = 41.1) 

pmol/L in the menstrual phase and 564.4 (SEM = 188.0) pmol/L in the luteal phase.  Paired t-

tests revealed significant cycle-phase differences in both the mean serum progesterone, t(18) 

= 8.34, p < 0.001, and the mean serum estradiol levels, t(18) = 8.73, p < 0.001. 

  

Mood 

Paired t-tests revealed no significant differences in mood between menstrual and luteal cycle 

phase in cheerfulness (menstrual: 2.64 ± 0.77, luteal: 2.77 ± 0.97, t(18) = 0.42, n.s.), 

seriousness (menstrual: 2.87 ± 0.39, luteal:, 2.71 ± 0.47, t(18) = 1.43, n.s.), and bad mood 

(menstrual: 1.67 ± 0.76, luteal: 1.72 ± 0.75, t(18) = 0.28, n.s.).  

 

IHTT   

The latency differences between the N170 recorded in the hemisphere ipsilateral and 

contralateral to the field of stimulation were the basis for the cycle-phase dependent analysis 

of IHTT in both directions: from the left hemisphere to the right and from the right 

hemisphere to the left (see Figure 1). A menstrual phase (menstrual, luteal) by transfer 

direction (left-to-right, right-to-left) repeated measures ANOVA was conducted on IHTT. 

The analysis revealed a significant main effect of cycle phase (F(1, 18) = 22.42, p<.001, 

ηp
2=.56), indicating longer IHTT in the luteal phase, and a cycle phase by transfer direction 

interaction, F(1, 18) = 9.50, p=.006, ηp
2 =.36. The main effect of transfer direction was not 

significant, F(1, 18) = 0.02, p=.89, ηp
2 = .001.  As shown in Figure 2, right-to-left IHTT was 

significantly shorter during the menstrual phase (Mean ± SD) (11.16 ms ± 7.25) relative to 

the luteal phase (23.68 ms ± 10.71; t(18) = 5.12, p<.001), whereas this difference only 

approached significance for left-to-right transfer (menstrual phase: 14.74 ± 6.54, luteal phase: 

19.37 ± 10.85, t(18) = 2.36, p=.03, not significant after Bonferroni correction). Post hoc t-
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tests also showed that the transfer time did not differ based upon direction during either the 

menstrual phase, t(18) = 1.79, p=.09, or the luteal phase, t(18) = 1.19, p=.25).  

 

 

Figure 1. Event-related potential (ERP) waves for left visual half-field (LVF, right-to-left 
IHTT (“A)”, top pannel), and right visual half-field (RVF, left-to-right IHTT (‘B”), bottom 
panel) presentations during the menstrual cycle. Left and right hemisphere electrodes 
(parietal leads P7 and P8, respectively) are shown for LVF and RVF presentation 
respectively. Right-to-left IHTT calculated as latency difference at N170 between right and 
left hemisphere electrodes after LVF presentation (“A”, top panel), left-to-right IHTT 
calculated as latency difference at N170 peak between left and right hemisphere electrodes 
after RVF presentation (“B”, bottom panel).   
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Figure 2. Interhemispheric transfer time (IHTT) in milliseconds and standard error means for 
left-to-right (left) and right-to-left transfer (right) during the menstrual phase (white bars) and 
luteal phase (black bars). 

 

N170 latencies 

Given that IHTT measures are based on both direct and indirect pathways, grand 

average N170 latencies were additionally subjected to 2 x 2 x 2 ANOVA with repeated 

measures with menstrual cycle (menstrual, luteal), hemisphere (left, right) and VHF (LVF, 

RVF) as within-subject factors (see Figure 3). The ANOVA revealed a significant 

hemisphere by VHF interaction (F(1, 18) = 165.14, p < .001, ηp
2 = .90), indicating that, as 

expected, the N170 latencies of the directly stimulated hemispheres were shorter than the 

latencies of the indirectly stimulated hemisphere. Specifically, for LVF stimulation, post hoc 

tests revealed shorter N170 latencies for the right hemisphere (direct pathway; 180 ms ± 

11.16) than the left hemisphere (indirect pathway; 197 ms ± 10.62), t(18)=9.99, p < .001. 

After RVF stimulation, N170 latencies were shorter for the left hemisphere (direct pathway, 

178 ms ± 11.00) than the right hemisphere (indirect pathway; 197 ms ± 10.29), t(18) = 7.62, p 

< .001. The interaction between menstrual cycle phase and hemisphere was also significant 

(F(1, 18) = 9.74, p = .006, ηp
2 = .35). Post hoc paired t-tests revealed longer latencies for the 
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right hemisphere (190 ms ± 9.01) than for the left (187 ms ± 10.36) during the menstrual 

phase, albeit this effect only approached significance, t(18) = -1.84, p =.08. During the luteal 

phase the N170 latencies for the left hemisphere (189 ms ± 11.19) did not differ from those of 

the right hemisphere (187 ms ± 10.72), t(18) =1.19, p =.25. Finally, the three-way interaction 

was significant, F(1, 18) =7.53, p =.013, ηp
2=.30). Means and the standard error of the means 

of the N170 latencies are shown in Figure 3.  

 

 

Figure 3. Grand average N170 latencies in milliseconds and standard error means of left 
parietal (P7, white bars) and right parietal leads (P8, black bars) after left visual half-field 
(LVF) and right visual half-field (RVF) stimulation during the menstrual (left bars) and luteal 
cycle phase (right bars). 

 

To analyze the nature of the three-way interaction, two 2 x 2 ANOVAs were 

conducted separately for each VHF. For RVF, only the main effect of hemisphere was 

significant, F(1, 18) =58.03, p <.001, ηp
2 = .76, indicating again shorter latencies of the 

directly than indirectly stimulated hemisphere. For LVF, the main effect of hemisphere, F(1, 

18) =99.74, p <.001, ηp
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longer N170 latencies for the direct pathway (right hemisphere recordings after LVF 

stimulation) during the menstrual phase (184 ms ± 10.49) compared to those during the luteal 

phase (176 ms ± 14.45), t(18) =2.72, p = .014). The N170 latencies of the indirect pathway 

(i.e., left hemisphere recordings after LVF stimulation) revealed the opposite pattern, that is, 

longer N170 latencies during the luteal phase (200 ms ± 13.11) compared to the menstrual 

phase (195 ms ± 11.33). This effect, however, only approached significance, t(18) =1.92, p = 

.07). 

Finally, we calculated two 2 x 2 ANOVAs with laterality (direct pathway: LVF/left 

hemisphere vs. RVF-right hemisphere; indirect pathway: LVF/right hemisphere vs. RVF/left 

hemisphere) and menstrual cycle as within-subject factors. The ANOVA for the direct 

pathways revealed a significant main affect of menstrual cycle, F(1,18) = 6.18, p = .02, 

ηp
2=.26, indicating longer latencies during the menstrual than luteal phase. No other effect 

approached significance, all F(1,18) < 1.82, ns. For the indirect pathways, the interaction 

between laterality and menstrual cycle approached significance, F(1,18) = 3.69, p = .07, ηp
2= 

.17, indicating a slowed left hemisphere latency after LVF stimulation (right-to-left transfer) 

in the luteal phase as compared to menses. This effect only approached significance (p = 

.025, alpha-adjusted) when tested with a one-tailed test, t(18)=1.92, p=.036. In contrast, the 

right hemispheric response after RVF stimulation (left-to-right-transfer) was virtually 

identical across cycle phases, t(18) = 0.00, ns. No main effect approached significance, all 

F(1,18) < 1.08, ns. 

 

Relationship between sex hormones and IHTT  

Since the ANOVA results revealed significant cycle-related differences in directional 

IHTT and direct and indirect N170 latencies, we expected estradiol and/or progesterone 

levels to be significantly related to these measures. To test whether sex hormone levels are 
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related to slowed IHTTs (the increase in the indirect pathway, and the decrease in the direct 

pathway after LVF stimulation), we used stepwise multiple regressions. Left-to-right and 

right-to-left IHTTs, and direct and indirect N170 latencies after LVF and RVF stimulation 

were the criterions, and estradiol and progesterone levels were predictors. To rule out that 

mood contributed significantly to the observed effects (Compton & Mintzer, 2001), we also 

included mood scores (i.e. cheerfulness, seriousness and bad mood) as potential predictors in 

the regression analyses.  

Since estradiol and progesterone levels within each phase showed only small inter-

individual variation, and in order to cross-validate the regression models, we carried out the 

analyses twice, once for each session (i.e. session one and session two). This procedure has 

two advantages: (1) the inter-individual variability in estradiol and progesterone levels covers 

the whole range in hormone levels (from minimum to maximum); and (2) the regression 

model can be cross-validated by splitting the data according to session. Paired t-tests revealed 

no significant differences between session one and session two in estradiol and progesterone 

levels, mood scales, right-to-left and left-to-right IHTTs, and direct and indirect latencies 

after LVF and RVF stimulation, all t(18) ≤1.87, n.s.  

For session one, stepwise multiple regressions revealed a significant model for right-

to-left IHTT when only estradiol was entered into the model, F(1,18) = 6.33, p = .02. The 

correlation between both variables was r = .52, p = .02, indicating that 27.1% of the variance 

in right-to-left IHTT can be explained by estradiol levels. The other predictors (i.e., 

progesterone levels and mood scores) were not significantly related to the dependent variable, 

all partial r < .24, n.s. There were no other significant effects for session one. Similarly, 

stepwise multiple regressions for session two did not reveal any significant correlations. 

Although estradiol levels were again positively related to right-to-left IHTT, this effect did 

not approach significance, r = .32, p = .18, thereby challenging the cross-validity of the 
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regression found in session one. Although the STCI might not be sensitive enough to detect 

cycle-related mood changes, multiple regressions did not revealed any relationships with 

mood scores. 

 

Discussion 

The present study has shown for the first time that IHTT, as assessed by EEG, fluctuates 

across the menstrual cycle. Specifically, we have shown that right-to-left IHTT is particularly 

affected, with significantly slower IHTT during the luteal phase, when levels of estradiol and 

progesterone (and their metabolites) are high, compared to IHTT in the menstrual phase, 

when sex hormone levels are significantly lower. The results also showed that it is the N170 

latency in the right hemisphere after LVF stimulation (direct pathway) in particular that 

fluctuates across the menstrual cycle, with the longer N170 latencies occurring during the 

menstrual phase. Cycle-related differences of the left hemisphere N170 latencies after LVF 

stimulation only approached significance indicating a longer N170 latency of the indirect 

pathway during the luteal phase compared to the menstrual phase. In other words, although 

both direct and indirect N170 latencies in response to LVF stimulation fluctuate across the 

menstrual cycle, this effect was more robust for the direct pathway. 

At first glance, dynamic changes in IHTT across the menstrual cycle are compatible 

with the hypothesis that sex hormone-mediated variations in FCA can be explained as 

hormone-modulated variations in the degree of interhemispheric coupling (Hausmann & 

Güntürkün, 2000). As discussed above, Hausmann and Güntürkün (2000) suggested that the 

increase in progesterone and/or estradiol (see Hausmann & Bayer, 2010, for details) results in 

interhemispheric decoupling during the luteal phase of the menstrual cycle. Furthermore, 

their model posits that the principal role of callosal communication (at least with respect to 

the emergence of FCAs) is the inhibition of one hemisphere by the other. However, although 
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there is evidence that IHTT is directly related to the structural integrity of the corpus 

callosum (e.g. Westerhausen et al., 2006; Whitford et al., 2011), the extent to which 

interhemispheric inhibition and IHTT share the same transcallosal mechanisms needs further 

consideration.  

There is an ongoing debate as to whether interhemispheric crosstalk is predominantly 

inhibitory or excitatory, and there is good evidence for both (see Bloom & Hynd, 2005, for a 

review). One central conclusion by these authors is that the interhemispheric callosal 

projections may be both inhibitory and excitatory. The dominant interhemispheric influence 

might depend on the task and the specific interhemispheric process. Interhemispheric 

inhibition probably results from mainly glutamatergic transcallosal axons (e.g., Bloom, & 

Hynd, 2005; Conti & Manzoni, 1994). These excitatory axons terminate on GABAergic 

inhibitory interneurons (Toyama & Matsunami, 1976; Toyama, Tokashiki, & Matsunami, 

1969) that induce a widespread inhibition in the contralateral hemisphere when activated 

(Clark & Zaidel, 1994; Kawaguchi, 1992). This increased inhibition of the subdominant 

hemisphere results in increased FCAs. In contrast, interhemispheric transfer and 

interhemispheric integration are assumed to rely primarily on excitatory transcallosal 

pathways (Van der Knaap & Van der Ham, 2011). Given that sex hormones are known to 

modulate both the glutamatergic and GABAergic system, high levels of estradiol, 

progesterone and their metabolites are assumed to modulate interhemispheric inhibition and 

FCAs (Hausmann & Güntürkün, 2000) as well as interhemispheric transfer and 

interhemispheric integration (Hausmann & Bayer, 2010), although the mechanisms of 

hormonal action may vary. Thus, on one hand, a hormone-related reduction of callosal 

communication can reduce the inhibition of neurons in one hemisphere by the dominant 

hemisphere for a particular task, resulting in an increase in bilateral activation, and reduced 

FCAs. Recent data from TMS (Hausmann et al., 2006) and fMRI (Weis et al., 2008; 2011) 
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strongly supports this view (see above). On the other hand, a hormone-related reduction of 

transcallosal excitation may also reduce the speed of interhemispheric transfer.  

The current regression analyses revealed some support for a positive relationship 

between estradiol levels and right-to-left IHTT; the higher the level of estradiol, the slower 

the transfer time from right to left. As mentioned earlier, there is some evidence that estradiol 

affects interhemispheric processes (e.g., Hausmann, 2005; Holländer, Hausmann, Hamm, & 

Corballis, 2005; Weis et al., 2008). Although the neural mechanisms are not fully clear, 

estradiol is known to increase the glutamate response (Smith, Waterhouse, & Woodward, 

1988). This should, however, potentiate glutamate-evoked excitation of transcallosal axons 

and accelerate IHTT, which is in contrast to the present findings. Alternatively, and in 

contrast to the general belief that IHTT depends mainly on excitatory transcallosal 

connections, it could be argued that high levels of estradiol might have non-specifically 

activated both hemispheres by increasing firing rates and increasing numbers of activated 

neurons (Dietrich et al., 2001). This would potentiate inhibitory processes between 

hemispheres (Weis et al., 2008), and consequently reduce the IHTT during the luteal phase. 

However, the estradiol effect found in the present study should be interpreted with caution 

because the relationship between estradiol and right-to-left IHTT failed cross-validation. 

Moreover, it should be noted again that IHTT is a composite score, calculated on the basis of 

both indirect and direct N170 latencies, and neither of them revealed a relationship with 

estradiol levels.  

One explanation for the rather moderate relationship between estradiol and IHTT 

measures of the present study might be the relatively small sample size, and consequently 

low statistical power. It should be noted, however, that significant and robust estradiol-

behaviour relationships have been shown with identical and even smaller samples (e.g. 

Hausmann, 2005; Weis et al., 2008). Also, it is possible that the relationship between 
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estradiol (and progesterone) levels and IHTTs and N170 latencies are not linear. Several 

previous studies found non-linear sex hormone/behaviour relationships (e.g. Gouchie & 

Kimura, 1991; Nyborg, 1988), suggesting an optimal hormone level for a specific 

neural/neuropsychological process. Finally, we cannot completely rule out the possibility that 

other sex hormones mediate the observed effects. Based on a non-linear relationship between 

testosterone levels and spatial cognitive abilities reported by Gouchie and Kimura (1991), the 

authors hypothesized that testosterone might have a “damping effect on the left hemisphere, 

perhaps through right-to-left callosal inhibition” (Gouchie & Kimura, 1991, p. 332). 

Although this hypothesis was not in the focus of the present study, it may explain sex 

differences in directional IHTTs. It is unlikely that this can account for the effects reported 

here however. 

Previous EEG studies that looked at individual differences in IHTT found a shorter 

overall IHTT in women compared to men (Moes et al., 2007; Nowicka & Fersten, 2001). In 

addition, IHTTs for left-to-right and right-to-left directions were relatively symmetrical in 

women, whereas men revealed a directional asymmetry in IHTT. Specifically, men showed 

significantly shorter IHTT for right-to-left transfer compared to left-to-right, a finding that 

has repeatedly been found in right-handed men (e.g. Iwabuchi & Kirk, 2009). Nowicka and 

Tacikowski (2011) suggested that these findings might be interpreted in terms of the 

Galarburda hypothesis (Galaburda, Rosen, & Sherman, 1990), “stating that the more 

symmetrical a brain, the more transcallosal connection it has, and thus the faster the 

interhemispheric communication” (Nowicka & Tacikowski, 2011, p. 59). In line with these 

findings, right-handed women of the present study did not show significant directional 

asymmetries in IHTT within each cycle phase, although there was a trend towards a “male–

like” faster right-to-left IHTT in the low hormone menstrual phase. The present study only 

revealed differences in right-to-left IHTTs across cycle phases (i.e. longer IHTT during the 
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luteal phase as compared to menses). There is still debate, however as to whether sex 

differences in the marco- and microanatomy of the corpus callosum exist and, if they do, 

what their functional relevance is (e.g. Bishop & Wahlsten, 1997; Westerhausen et al., 2011). 

 As mentioned above, IHTT is a composite measure of both direct and indirect 

pathways. Several previous studies have shown that the N170 latency over the hemisphere 

contralateral to the stimulated VHF (direct pathway) is unrelated to directional IHTT (e.g., 

Brown & Jeeves, 1993). This was, however, not the case in the present study. Here, cycle-

related fluctuation of right-to-left IHTT was significantly affected by cycle-related changes in 

the N170 latency of the right hemisphere after LVF stimulation (direct pathway), whereas the 

cycle-related change in N170 latency of the left hemisphere after LVF stimulation (indirect 

pathway) only approached significance. These findings challenge our prediction that it is 

mainly the interhemispheric transfer that is hormonally affected and suggests that 

intrahemispheric communication times are also affected by sex hormones. 

It is also of interest that cycle-related changes for both the direct and to some extent 

the indirect pathway occurred exclusively after LVF stimulation. This suggests that the right 

hemisphere is particularly sensitive to cycle-related changes. This is in line with previous 

studies suggesting that the right hemisphere is suppressed in normally cycling women during 

the luteal phase (e.g., Holländer et al., 2005; Sanders & Wenmoth, 1998; Rode et al., 1995) 

and in postmenopausal women using hormone therapy (Bayer & Hausmann, 2009a). In 

contrast, on the basis of their data from a visuospatial attention task, McCourt et al. (1997) 

concluded that both the left and right hemispheres might have been nonspecifically activated 

luteally, and a slight functional asymmetry favoring the right hemisphere might have been 

promoted. This conclusion is based on the well-known dominance of the right hemisphere in 

visuospatial attention, which includes a bilateral representation of the attentional spatial map 

in the right hemisphere and a strictly contralateral representation of the left hemisphere. The 



 23 

former requires a richer commissural projection from the right to the left hemisphere for top-

down attentional control of the response (Marzi, 2010). Nowicka and Tacikowski (2011) also 

suggested that the directional asymmetry in IHTT might reflect hemispheric specialization 

(i.e., FCAs). Interestingly, recent studies have shown that spatial attention (Hausmann, 2005) 

and attentional control (Hjelmervik et al., 2012) are modulated by estradiol, thereby 

modulating FCAs across the menstrual cycle. These findings might explain (a) the frequently 

reported faster right-to-left IHTT as compared to left-to-right IHTT, and (b) cycle-related 

changes in especially right hemisphere activation as reported in the present study. 

It is important to note that three previous studies (Bayer & Hausmann, 2009b; Bayer 

et al., 2008; Schultheiss, Patalakh, & Rösch, 2012) have investigated sex- and sex hormone- 

related effects on IHTT before. However, these studies estimated IHTT on the basis of 

response time measures. Reaction time of the response made on the side contralateral to VHF 

stimulation (uncrossed condition) was subtracted from reaction time following ipsilateral 

stimulation (crossed condition). The results by Bayer and Hausmann (2008) showed that the 

crossed-uncrossed difference (CUD) in the Poffenberger task (Poffenberger, 1912), as an 

estimate of IHTT, did not fluctuate across the menstrual cycle and also did not differ between 

men and women (and postmenopausal women), regardless which cycle phase was taken into 

account. Similarly, the follow up study (Bayer & Hausmann, 2009b) did not find any 

modulating effects of hormone therapy on CUD in postmenopausal women. In contrast, a 

recent cross-sectional study (Schultheiss, Patalakh, & Rösch, 2012) found larger CUDs in 

women with high progesterone levels (indicative of the luteal phase) as compared to women 

with lower progesterone levels. This finding is similar to the present study, although the 

present study found some evidence for estradiol to play an important role. Unfortunately, 

Schultheiss and colleagues (2012) did not include estradiol levels (also elevated luteally) and 
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calculated CUDs on the basis of a more demanding decision task which complicates the 

comparison between studies.  

It is also important to note that calculations of IHTT based on response time 

differences between crossed and uncrossed motor responses likely do not provide a reliable 

estimate of IHTT, as they measure processes other than the speed of interhemispheric 

transfer. In a recent comprehensive review, Nowicka and Tacikowski (2011) concluded that 

“the electrophysiological method of estimating IHTT, as performed in the present study, is 

definitely more reliable than behavioural methods” (Nowicka & Tacikowski, 2011, p. 54).  

Although neither study mentioned above (Bayer & Hausmann, 2009b; Bayer et al., 

2008) found effects of menstrual cycle or hormone therapy on CUD as an estimate of IHTT, 

they found significant effects on interhemispheric integration, as measured by the Banich-

Belger task (see Banich & Belger, 1990, for details). This task measures the efficiency of 

integration of visual information across hemispheres by comparing bilateral and unilateral 

processing. It has been shown that across VHF integration, that allows for a division of 

labour between hemispheres, enhances performance when task complexity increases (across-

field advantage; AFA) and impedes performance on less demanding tasks (Banich & Belger, 

1990). Interestingly, Bayer et al. (2008) found a strong AFA for the more demanding (name-

identity) task in normally cycling women during the luteal phase, which was identical to that 

of age-matched men and postmenopausal women. No AFA was found during the menstrual 

phase. Using the same approach, Bayer et al. (2009b) found that postmenopausal women 

using estrogen therapy or combined hormone therapy (estrogen plus gestagen) differed from 

postmenopausal controls in interhemispheric integration. More importantly here, 

postmenopausal women using hormone therapy differed from controls, especially in 

intrahemispheric processing (integration of visual information within VHF) which was 

improved across both tasks. In all three groups, the benefit of interhemispheric processing 
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(integration of visual information across VHF) equally increased in the more demanding task, 

indicating an efficient interhemispheric integration in postmenopausal women regardless of 

hormone therapy. In other words, although the absolute increase in the AFA, as a composite 

measure of across and within VHF integration, from the easier to the more demanding task 

was similar in all groups, women using hormone therapy showed a reduced relative 

efficiency of interhemispheric integration (i.e., strongly reduced AFA) as a result of an 

enhanced within-hemisphere performance (for review see Bayer & Hausmann, 2011). This 

finding also suggests that sex hormones can also affect intrahemispheric processing, which 

corresponds to the cycle-related effects found for the N170 latency in the right hemisphere 

after LVF stimulation (direct pathway) found in the present study.  

 In sum, the results of the present study show that cycle-related fluctuations in IHTT 

are based on N170 latencies of both indirect and direct neural pathways, albeit with the latter 

being particularly sensitive to sex hormonal changes. The findings occurred especially after 

LVF stimulation, suggesting that the right hemisphere plays a special role for the reported 

effects. The results of the present study are partly in line with the revised model of Hausmann 

and Güntürkün (2000) in that (a) hormone-related modulation of interhemispheric crosstalk is 

not to restricted to the neuromodulatory properties of progesterone but also involves other 

hormones, such as estradiol, (b) cycle-related effects are not restricted to FCAs and 

interhemispheric inhibition but can be extended to other aspects of interhemispheric 

interaction, which probably rely more on excitatory transcallosal communication, and (c) sex-

hormonal effects are not restricted to the modulation of processes between hemispheres but 

can also apply to cortical interactions within the hemispheres, particularly the right 

hemisphere. The results also suggest that levels of gonadal steroid hormones and menstrual 

state need to be controlled, if individual differences in IHTT and right hemisphere 

functioning are investigated, particularly those related to gender. The findings support the 
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idea that sex hormonal fluctuations across the menstrual cycle underlie dynamic changes in 

women’s neural processes.   
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